Access to Functionalised Silver (I) and Gold(I) *N*-Heterocyclic Carbenes by [2+3] Dipolar Cycloadditions.

by

Audrey Hospital,^{*a*} Clémentine Gibard,^{*a*} Christelle Gaulier,^{*a*} Lionel Nauton,^{*a,b*} Vincent Théry,^{*a*} Malika El–Ghozzi,^{*a*} Daniel Avignant,^{*a*} Federico Cisnetti^{**a*} and Arnaud Gautier^{* *a,b*}

^a Institut de Chimie de Clermont–Ferrand, Clermont Université, Université Blaise Pascal, F–63000 Clermont–Ferrand, France Fax:+33 473 407 717; Tel: +33 473 407 110, E–mail: federico.cisnetti@univ–bpclermont.fr ^b CNRS, UMR 6296, F–63177 Aubière, CEDEX, France. Fax: +33 473 407 717; Tel: +33 473 407 646; E-mail: arnaud.gautier@univbpclermont.fr

Supporting information

Contents: S1: Crystal packing of 22 S2: Selected NMR spectra. S2a: ¹H and ¹³C NMR spectra of metallocarbenes. S2b: ¹H, ¹³C, COSY and HSQC spectra of cyclooctyne adducts.

S3: Representation of the calculated transition states.

S1: Crystal packing of 22

Packing of gold complex 22 showing azide–azide distances. Ellipsoids were drawn at 50% probability level and H atoms omitted for clarity

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

S2b:¹H, ¹³C, COSY and HSQC spectra of cyclooctyne adducts.

Table S1 – Partial NMR attribution (COSY, HSQC, JMOD) of 9

position(s)	¹ H NMR (δ / ppm)	¹³ C NMR (δ / ppm)
a	3.46 (dd, 2H, ${}^{3}J$ =7.0 Hz, ${}^{2}J$ =	66.6
	11 Hz) 3.40 (dd, 2H, $^{3}J = 7.0$	
	Hz, ${}^{2}J = 11$ Hz)	
b	0.73 (m, 2H)	29.1
С	0.90 (m, 4H)	23.7-23.8 (2 signals)*
d	1.51 (m, 4H), 2.39 (m, 2H),	28.8, 28.3
	2.48 (m, 2H)	
e	$3.08 \text{ (ddd, 2H, }^3J = 3.0 \text{ Hz,}$	26.5, 24.5
	$^{3}J = 7.5$ Hz, $^{2}J = 16.0$ Hz),	
	2.99-2.90 (m, 4H), 2.78	
	$(ddd, 2H, {}^{3}J = 3.0 \text{ Hz}, {}^{3}J =$	
	9.5 Hz, ${}^{2}J$ =16.0 Hz)	
f	7.65 (s, 4H)	124.0
g	2.61 (hept, 4H, ${}^{3}J = 7.0$ Hz)	31.0
h	1.41 (d, ${}^{3}J = 7.0 \text{ Hz}$), 1.33	24.74, 24.72, 23.7-23.8 (2
	$(d, {}^{3}J = 7.0 \text{ Hz})$	signals)*
i	8.50 (d, 2H, ${}^{4}J = 1.5$ Hz)	128.1
j	10.24 (t, 1H, ${}^{4}J = 1.5$ Hz)	141.2

*4 signals are observed between in the spectrum 23.7 and 23.8 ppm

¹H-¹³C HSQC spectrum

Table S2 – Partial NMR attribution (by COSY, HSQC and JMOD) of ${\bf 24}$

position(s)	¹ H NMR (δ / ppm)	¹³ C NMR (δ / ppm)
a	$3.28 (d, 4H, {}^{3}J = 6.5 Hz)$	64.0
b	0.60 (m, 2H)	27.6
С	0.76-0.83 (m, 4H)	21.72, 21.66
d	1.37-1.51 (m, 4H), 2.35 (m,	26.6, 27.2
	2H), 2.29 (m, 2H)	
е	3.08 (ddd, 2H, ${}^{3}J = 2.5$ Hz,	23.1, 25.4
	$^{3}J = 7.5$ Hz, $^{2}J = 15.5$ Hz),	
	2.91-2.78 (m, 4H), 2.71 (ddd,	
	$2H$, ${}^{3}J = 3.0$ Hz, ${}^{3}J = 10.0$	
	Hz, ${}^{2}J = 15.5$ Hz)	
f	7.54 (s, 4H)	121.6
g	2.56 (hept, 4H, ${}^{3}J = 7.0$ Hz)	28.8
h	1.32 (d, ${}^{3}J = 7.0$ Hz), 1.27 (d,	23.69, 23.66, 23.24, 23.20
	$^{3}J = 7.0 \text{ Hz}$)	
i	8.22 (s, 2H)	124.8

S3: Representation of the calculated transition states.