
Accessibility Designer: Visualizing Usability for the Blind
Hironobu Takagi, Chieko Asakawa
Tokyo Research Laboratory, IBM Japan

1623-14 Shimo-tsuruma
Yamato-shi, Kanagawa-ken, Japan
+81-46-215-4557, +81-46-215-4633

takagih@jp.ibm.com, chie@jp.ibm.com

Kentarou Fukuda, Junji Maeda
Tokyo Research Laboratory, IBM Japan

1623-14 Shimo-tsuruma
Yamato-shi, Kanagawa-ken, Japan
+81-46-215-4659, +81-46-215-4899

kentarou@jp.ibm.com, maeda@jp.ibm.com

ABSTRACT
These days, accessibility-related regulations and guidelines have
been accelerating the improvement of Web accessibility. One of
the accelerating factors is the development and deployment of
accessibility evaluation tools for authoring time and repair time.
They mainly focus on creating compliant Web sites by analyzing
the HTML syntax of pages, and report that pages are compliant
when there are no syntactical errors. However, such compliant
pages are often not truly usable by blind users. This is because
current evaluation tools merely check if the HTML tags are
appropriately used to be compliant with regulations and
guidelines. It would be better if such tools paid more attention to
real usability, especially on time-oriented usability factors, such
as the speed to reach target content, the ease of understanding the
page structure, and the navigability, in order to help Web
designers to create not simply compliant pages but also usable
pages for the blind. Therefore, we decided to develop
Accessibility Designer (aDesigner), which has capabilities to
visualize blind users’ usability by using colors and gradations.
The visualization function allows Web designers to grasp the
weak points in their pages, and to recognize how accessible or
inaccessible their pages are at a glance. In this paper, after
reviewing the related work, we describe our approach to visualize
blind users’ usability followed by an overview of Accessibility
Designer. We then report on our evaluations of real Web sites
using Accessibility Designer. After discussing the results, we
conclude the paper.

Categories and Subject Descriptors
K.4.2 [Social Issues]: Assistive technologies for persons with
disabilities, H.3.4 [Online Information Services]: Web-based
services, H.5.2 [User Interfaces]: Evaluation/methodology,
Graphical user interfaces (GUI), Screen design (e.g., text,
graphics, color), Standardization, Style guides

General Terms
Design, Reliability, Human Factors, Standardization, Verification.

Keywords
Accessibility, visually impaired, blind, voice usability,
accessibility checker.

1. INTRODUCTION
In the late 90s, Web accessibility received broad attention,

and regulations and guidelines were published and adopted. One
of the major focuses of these rules is blind usage. This contributed
to increase attention on accessibility issues for the blind. In the
United States, Section 508 of the Rehabilitation Act [1] was
amended in 1998 and has been in effect since June 2001. This
regulation has the power to force IT vendors to deliver accessible
Web sites and Web applications to federal agencies. It was epoch-
making regulation in the area of Web accessibility. Quite a few
efforts have been made to create compliant Web pages, and
various tools have been developed, such as authoring tools,
evaluation tools [2, 3], and repair tools[4, 5]. Many organizations
have been trying to enlighten people connected to Web
development, not just the Web developers and designers, but also
the site owners and business people. These efforts are invaluable
for improving Web accessibility and widening the production of
compliant pages.

In spite of these efforts, we unfortunately find that serious
usability issues still exist in many Web pages, even for some that
are compliant with the basic regulations[14]. For example, all of
the regulations and guidelines call for Web designers to link an
alternative text (ALT text) with each image. However, it is well
known that this instruction is easily misunderstood and many
Web designers tend to insert meaningless words for the obligatory
ALT text, such as “blank space”, “shadow of image”, “photo”, or
“image”. In spite of the severity of these issues, most accessibility
checkers do not have any function to check these inappropriate
ALT texts, because most of the regulations and guidelines do not
cover these practical issues.

Another example is problems with heading tags. Heading tags
(H1, H2, etc.) are defined as key elements to give structure to
pages for ease of navigation by users, including blind users. If
heading tags are “appropriately” embedded into pages, blind users
can easily grasp an overview of the content in a page, and
navigate through each chunk of content. However, most of the
accessibility checkers do not have functions for checking heading
tags. Some checkers warn Web designers about missing heading
tags, but do not have any ability to check the appropriateness of
these tags.

We classified these problems into three categories:

1) Too much focus on compliance to the guidelines, but not on
real usability.

Regulations have contributed to improving accessibility
technology, but compliance is becoming the objective of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASSETS'04, October 18–20, 2004, Atlanta, Georgia, USA.
Copyright 2004 ACM 1-58113-911-X/04/0010...$5.00.

177

checkers, even though “usability” is supposed to be the most
important objective for accessibility technologies.

2) Relying on syntactic checking of Web pages.

Current checkers only rely on syntactical checking technique to
detect accessibility issues, so the checkable errors are limited to
the level of the tag description layer.

3) No attention to “time-oriented aspects” of users’ operations.

Users almost never sit listening to speech output passively.
They move and jump in a page by using various types of jump
keys that are built into voice browsers. They create their mental
models of the pages through this process and try to logically
navigate through the pages to get to their target information.
This “time-oriented aspect” of usability is crucial to achieve
voice usability, but current checkers do not consider this aspect.

It is certain that the most effective method to detect and solve
these issues is to conduct usability testing on target pages. This
method, however, takes time, costs too much, and is inconsistent,
and therefore it is almost impossible to test thousands of pages on
a real site. The guidelines recommend that Web designers check
their pages by accessing their pages by using screen readers [6, 7].
However, it’s quite impractical for Web designers to even attempt
to experience the same situation as blind users. For example,
screen readers have a lot of complicated combination keys
(similar to keyboard shortcuts), and blind users become
experienced not only in the operation of their screen readers. In
addition, they usually develop stronger listening abilities than the
average sighted person [8].

Therefore, we decided to provide an easier and more effective
way to evaluate a page at a glance by developing a visualization
feature that tries to supplement or solve these three problems with
the current checkers. We developed the Accessibility Designer
(aDesigner), which has capabilities to visualize blind users’
usability by using colors and gradations. The visualization
function allows Web designers to grasp weak points in their pages,
and to recognize how accessible or inaccessible their pages are at
a glance.

In this paper, we will first give an overview of current
accessibility checkers and related work. Then we will propose a
new approach to check blind usability, Blind Usability
Visualization, followed by an implementation example with a
disability simulation tool, the Accessibility Designer. We then
evaluate real sites on the Web using Accessibility Designer.

2. RELATED WORK
Ivory and Hearst [9] classified automatic usability checking
methods into five categories with each category classified into
several subcategories. They mentioned existing accessibility
checkers, such as Bobby [2] and Lift [3], under “Inspection –
Guideline Review.” These tools focus on checking compliance to
guidelines and reducing the workload to repair them to be
compliant. From the usability point of view, there are wide
varieties of possibilities in other categories.

We think that one of the most promising approaches is “disability
simulation.” Persons with disabilities are accessing the Web using
totally different environments from non-disabled users. This is the
point of how Web designers imagine, recognize and understand

the disabled Web access experience. For this purpose, disability
simulation has possibilities to help Web designers to experience a
similar experience to having disabilities.

For low-vision simulation, Vischeck [10] and our Accessibility
Designers’ low-vision mode [11] have functions to create low-
vision users’ views based on image-processing techniques.
However, for blind simulation, no tool was available before we
created ours. Guidelines recommend checking pages by using
voice browsers, such as Jaws [7] or Homepage Reader [6], but it
is very hard to have an experience similar to being blind, since
these tools for blind users require learning a lot of key
combinations, and since the cognitive abilities of blind users are
developed differently compared with sighted users.

A-Prompt [4] offers a function to check the reaching order for
tables by presenting each table cell one-by-one, like the way blind
users access Web pages as a serialized format. The WAVE [12,
13] has a function to indicate the reading order of each text block
in a page by using small numbered labels on each text block, so
Web designers can check the reading order of the text blocks.
However, the numbering method is not intuitive for the sighted. In
addition, it is very hard for Web designers to recognize practical
usability, such as “How long does it take from the top to the main
content?” or “How effective are the skip-navigation links?”

3. PROPOSAL FOR BLIND USABILITY
VISUALIZATION
In Introduction, we described three problems of current checkers,
too much focus on compliance to the guidelines, relying on
syntactic checking of Web pages, and giving no attention to the
time-oriented aspects of users’ operations. We also indicated that
usability testing on target pages is very effective but not practical
for developing commercial-level sites. Only automatic checkers
still have the power to create accessible Web environments for the
blind. With such automatic methods, it could be possible to make
a Web site compliant with the guidelines, but it is still hard for
Web designers to learn the real problems of blind usage. The
compliance is the letter of the law, but it is much more important
to understand the real meaning of the law to establish the real
usability of the Web for the blind.

Therefore, we have proposed a new method, “Blind Usability
Visualization”. This method aims at allowing Web designers to
recognize their pages’ usability “at a glance”, including the time-
oriented aspects as well as to understand the real usability of blind
usage. This method consists of the following three features.

1) Presenting the reaching time to each part of a page by using
background “colors”.

As discussed in Introduction, the time-oriented aspect,
especially the navigability of a page, is a key factor to provide
usable Web pages. Therefore, this method fills in colors on a
Web page by analyzing how long it takes from the top of the
page to each part of the page. In this paper, we define this time
as the “reaching time”. Figure 1 shows the visualized snapshot
that is referenced later in this section. This function allows Web
designers to recognize various types of usability issues, such as
the lack of a skip-to-main content link (abb. skip-link), missing
heading tags, and so on, as well as to learn about the importance

178

of these elements. The calculation method for reaching time is
described in the next section.

2) Indicating accessible or inaccessible “areas” with color-filling

Current checkers mainly use “icons” to indicate accessible or
inaccessible parts in a browser view [2, 3]. In addition, they
insert icons to indicate areas, such as the beginning or the end of
a heading tag, a label, or a table. Therefore, we used a coloring
approach to indicate these areas.

3) Presenting the text information extracted or generated by
standard voice browsers, while retaining the fundamental visual
layouts.

The text information here means the undisplayed information
from the regular browser view, which is extracted or generated
by the voice browsers to provide verbal information about
specific elements for blind users. (Examples are alt texts for
images and image maps, notification messages for starting or
ending forms, etc.) It is recommended to test pages to check this
verbal information as well by using voice browsers, but it is
difficult for sighted Web designers to recognize the
corresponding positions in the visual browser view with such
verbal information just by listening to it. Therefore, the basic
visual layout structure is retained in our visualization view for
ease of checking, while presenting this verbal information
simultaneously in the same view.

Among these features, 1) the reaching-time presentation is the
most effective and novel feature to help improve the blind users’
usability, and the detailed description follows.

Figure 1 shows an example of visualization. The gradations of the
background color show the times to reach each element in a page
with standard voice Web browsers, white for 0 seconds and black
for 120 seconds or longer from the top.

The system calculates the times from the top of a page to each
element when a user uses voice output, then visualizes these times
by using color gradations. Figure 1 (b) shows an inaccessible page,
since there are no heading tags or any intra-page links, such as the
skip-link and the page index links. The main content area (here
including a title and a large image) is shaded as black, showing it
will take a long time to arrive at this area. Figure 1 (c) shows an
improved page with a skip-link. The main content area is shaded
with a light gray color, showing how blind users can now access
the main content easily. In this way, Web designers can recognize
how fast or slowly blind users can reach the main content by
referring to the differences in these colors. The darker color
indicates taking a longer time, while a lighter color indicates a
shorter time.

The insertion of a “skip-to-main-content” link, however, only
helps accessing the main content area. You can see other areas
filled with black, which means that these areas require more than
120 seconds for users to reach them. On the other hand,
appropriate heading tags help blind users to build their mental
model of a page by providing quick access to each part of the
page. In Figure 1 (d), there are several headings (highlighted with
blue) followed by brighter color areas. The standard voice
browsers provide functions to jump directly to each heading tag in
a page, so this allows blind users to navigate through each
heading quickly and it helps them to grasp the page overview

Figure 1. Effectiveness of reaching-time visualization
(white for 0 seconds and black for 120 seconds or longer from the top of a

page)

a) Original

c) With skip-link

b) Inaccessible

d) With headings

179

effectively. An important point is to have lighter colors at the
beginning of each block of information. It is not an issue that the
later part of each block becomes darker, since this is unavoidable
as blind users listen to the information in one dimension, unlike
the two dimensions of vision. These three pages have just the
same appearance when rendered by standard browsers (Internet
Explorer, etc.), but they are significantly different from the blind
usability point of view when they are rendered by standard voice
browsers.

Our background-color-based reaching-time visualization method
has the power to expose the following problems:

- Existence, availability and appropriateness of skip-links.

As mentioned above, Web designers can easily recognize the
existence of a skip-link by looking at the visualization view. If a
skip-link exists at the top of the page and the main content is
filled with a dark color, it means there is a problem, such as a
broken skip-link or a missing anchor. In addition, Web
designers can easily recognize the appropriateness by looking at
the color of the main content (target) area. Our visualization is
the first method to allow Web designers to check or evaluate
these “skip-link” related issues.

- Existence and appropriateness of heading tags

Figure 1 (d) shows an example of this function. Web designers
can check the existence of the blue-areas and their
appropriateness by looking at the background colors.

- Inappropriate content orders

In the visualization view, the color gradation indicates the
reading order of standard voice browsers. If visually closely laid
out and undividable pairs of text elements have different
gradation levels, it means they will not be read as paired texts.
Therefore it may be necessary to redesign the tag structure to
combine these text elements.

We considered two other types of reaching time visualization, a
position-based method and a “time map method”. The position-
based method split the visual page into blocks and arranged them
to fit in time-oriented graph based on the reaching time
calculations. This method can allow Web designers to check the
“exact” reaching times, but it mixes up the original page’s layout.
The “time map” is used to visualize geographical information,
such as arrival times from Tokyo for each major city in Japan, by
distorting the original map. We think this method can also be
applied for the purposes.

4. IMPLEMENTATION – THE
ACCESSIBILITY DESIGNER
We implemented the visualization method into a visual
accessibility checker, “Accessibility Designer” [15]. This tool
aims at providing Web designers an environment to gain
experience in how low-vision people see a Web page, and in how
blind people access a Web page by using voice browsers. In other
words, this tool aims at simulating disabilities to check the pages
real usability while authoring.

This tool has two modes, one for a low-vision simulator and
another for blind usability visualization. The low-vision simulator
can create simulated views of original page by using image

processing techniques [11]. First, it creates an image of the target
page by rendering the page. Then, it simulates the view of low
vision people and detects inaccessible parts of the page by
applying image analysis techniques. In this paper, we are focusing
on blind usability, so we will describe the blind mode in greater
detail.

4.1 User Interface
Figure 2 presents the user interface of the blind mode. The upper
left area is an embedded Web browser, not an image, so that the
user can actually navigate the Web. When a user (Web designer)
selects a target page in the left pane and presses the “Visualize”
button, a visualization view will be displayed in the upper right
pane. When a user moves the mouse over the visualization view, a
balloon message and icon, which indicate the exact reaching time
and acceptability of the reaching time, will be shown and follow
the movement of the mouse. Only three types of icons are used to
indicate an error position, an intra-page link, and an intra-page
link destination. When a user clicks an intra-page link icon, an
“arrow” appears between the link position and destination
position.

Accessibility Designer also has an original error detection
capability by using the voice browser engine (see Section
“Automatic Error Detection”). When problems are detected, they
will appear in the lower area, as shown in Figure 2. A tree view of
the categorized problems is displayed in the lower left area. The
user can select the category of problems to be listed in the line
view at the bottom center. The line view presents the problems of
the selected category line by line. Each line consists of a type and
description. By selecting lines in this view, the positions of the
corresponding problems are displayed in the visualization view.

4.2 Implementation
Most of the modules are written in Java, and C++ and
VisualBasic are used to access the HTML source code from the
browser view (left pane). We also used JavaScript to control the
arrows and balloon messages. The SWT (Standard Widget
Toolkit) [16] was used for the GUI (Graphical User Interface)
library.

 Figure 2. User interface of aDesigner

Browser View
Visualization View

Problem list

Balloon message

“Visualize” button

Problem Category Tree View

180

4.3 Visualization Process
Figure 3 shows the process to convert the original HTML source
code into the visualization view.

1. When a user presses the “Visualize” button, the HTML
source code of the target page (in the Browser View) is sent
to the HTML parser, and the parser converts the HTML into
a DOM tree structure.

2. The Voice Browser Simulation module creates a text
rendering by using the voice browser engine [6]. Text items
are associated with nodes in the DOM structure, so the
following modules can utilize this information.

3. The Intra-page Link Analysis module analyzes the linkage
structure of the intra-page links.

4. The Reaching-time Calculation module calculates the
reaching times based on the user’s operation model. The
model provides basic values to estimate reaching time, such
as default speech rate, time to switch between reading mode
and heading navigation mode, and so on.

5. The CSS & JavaScript Insertion module inserts CSS to fill
each element with graded colors corresponding to the
reaching times. JavaScript is used for balloons and arrows.

6. Image-text Replacement replaces each image and form
element with corresponding voice browser output text. Other
visualizations (table headers, heading tags, form elements,
adding intra-page link icons, etc.) are done by this module.

7. The final HTML file is sent to the Visualization View.

4.4 Reaching-time Calculation
Basically, the system calculates the reaching time to get to the
target elements by using the voice browser engine.

Blind users usually use various types of commands to get to the
specific information quickly, so usability should consider such
accelerating operations in calculating the reaching time, not only
the reading time for the text information. With the current
implementation, the reaching time is effected by the existence of
intra-page links and heading tags. So when these tags exist, the
reaching times become shorter.

Figure 4 shows an example of typical intra-page link connections.
There are 12 areas and 7 intra-page links. The calculation of
reaching time can be regarded as a shortest path problem for a
weighted directed graph. Figure 5 shows a graphic representation
of Figure 4. Nodes are the indicated areas, the numbers are area
identification numbers, the thin lines show the tag order, the bold
lines are forward links, and the dotted lines are backward links.
Each node has a weight representing the time required to read
through the corresponding area. For example, the shortest path to
get to Area 6 is the route 1, 2, 8, 9, 10, 11, and then 6. This will
take a minimum of 16 seconds (2 + 2 + 3 + 3 + 3 + 3). In addition,
heading navigation time should be taken into account, if headings
exist. Access keys also should be taken into account. Therefore,
we used a custom shortest-path-finding algorithm.

The reading time could be calculated for various speech rates.
When a user is advanced, he or she might use a faster rate, such as
360, 380, or 400 words per minute (wpm) or even faster [8].
However a novice user might use a slower rate, such as 180 or

11

22
44

88

33

77

55
66

2 sec

2 sec

20 sec 30 sec

30 sec
40 sec

20 sec

99 1010

1111

1212

3 sec 3 sec
3 sec

3 sec

3 sec

Figure 3. Block diagram for blind usability visualization
(for Accessibility Designer)

Figure 4. Example of intra-page link connections

Figure 5. Graph representation of intra-page link connection
in Figure 4

181

200 wpm. With the current implementation, only the novice user
operations are simulated, so the reading time is calculated using
180 wpm.

4.5 Automatic Error Detection
In addition to visualization, this tool has original error detection
capabilities, not only for compliance but also for usability.

Existence and availability of a skip-link.

The tool checks if a skip-link exists in a page. In addition, when it
exists, it checks if the destination anchor exists and is appropriate.
To evaluate the skip-link, several heuristic rules are used. When
the intra-page link is located at the top of a page it is assumed to
be the skip-link. In addition, it checks if that ALT text includes
specific words, such as “skip”, “main”, or “jump”. We will
describe a test of this function in the section “Evaluation”.

Redundant texts.

The tool has a function to detect repetitive texts that appear only
when a user uses voice browsers [14]. This is possible by using
the voice browser engine directly to extract its internal text
information. Such features are not integrated into other current
checkers. The redundancy often happens because equivalent text
or a text link is often available near the images or image links.
This might happen because there are various descriptions in the
guidelines related to alt texts and it confuses Web designers.
Therefore, they may provide both alt text and equivalent text for
an image. In such case, blind users are forced to listen to the same
texts repeatedly, e.g. "search" and "search". If Web designers
could understand correctly how blind users use the alt texts, such
redundant texts would not be used. Instead, they could input
"null" text for some of the alt texts. The tool has visualization
functions as well as automatic checking, so a user can
interactively check the severity of the issues visually, and then
confirm the effectiveness of modification afterwards.

Inappropriate ALT texts.

The tool has a function to detect inappropriate ALT texts based on
a customizable taxonomy. The inappropriateness of alt texts most
often happens because Web designers understand that all images
need to have alt texts and current checkers check if there is some
alt text for each image. The result is that some useless alt texts
such as "spacer", "line", "button", and so on are often used.
Instead, those images should also be described with "null" for the
alt texts, since those images are not actually important. Standard
voice browsers ignore "null" alt texts. We check for these
problems with alt texts to notify the designers about proper usage
of alt texts.

Too long reaching time.

The tool warns if the maximum reaching times on a page exceed a
threshold time.

5. EVALUATION
We conducted three trials for evaluating the effectiveness of the
Accessibility Designer and its visualization functions. The first
trial was an investigation of reaching times to the main content
areas in news articles on popular news sites, the second was an
investigation of the number of broken or missing skip-links on
sites that have a policy of providing skip-links, and the third was a

practical trial to apply this tool in the development process of a
Web application. We will briefly introduce and discuss these
trials.

5.1 Reaching Times to the Main Content Area
in Popular News Sites
Each news site has visually well designed page layouts, but the
level of accessibility consideration varies depending on the site
owner’s policies. Therefore, we tried to measure the average
reaching times to the article areas in news article pages in order to
compare their accessibility. We selected twelve major newspaper
sites, six in the U.S and six in Japan. We randomly selected 20
article pages, which have typical (or standard) layout on each
target site. Then each of these article pages was opened using
Accessibility Designer. When the page was opened and visualized,
our research assistant looked for the main content and moved the
mouse cursor over it to find out the reaching time from the top of
the page in the visualization view. She recorded the reaching-time
for each page.

Figure 6 shows comparative results for these twelve sites. The
Nikkei Shimbun is the most accessible newspaper site among the
tested sites. These pages have heading tags and three skip links
including a link to the article line. In these pages, blind users can
easily navigate to the main content as well as to each article title
by using heading navigation functions. The Tokyo Shimbun is
also fastest, but these pages have basic accessibility issues such as
missing ALT texts. The Boston Globe is also fast because of
heading tags. The Mainichi Shimbun is relatively faster than other
sites, since the site navigation links are located in the best place
on the page. They might have selected such a layout by
considering the accessibility, but if heading tags or a skip-link
were used, the usability would be more effectively improved.
CNN also has skip-links or heading tags, but the ratio of missing
skip-links was high and the results (see plot) become scattered.
The other tested sites do not use any heading tags or skip-links,

Figure 6. Comparison of average reaching time to main
content area in article pages

(box plot, order by average value)

182

and as a result, it takes about one to three minutes to get to the
main content areas.

5.2 Number of Broken Skip-links in
Accessible Sites
In Section 508 of Rehabilitation Act, it says that a method shall
be provided that permits users to skip repetitive navigation links
[1]. Therefore, most of federal agency sites have skip-links in
their pages, and many private companies and non-profit
organization sites have them. Skip-links can offer great usability,
but it is very hard to maintain all skip-links so they work perfectly.
We could easily find broken skip-links, which existed but which
did not work or which only jumped back to the top of the page
again. Such broken skip-links bother blind users and make the
usability worse.

One reason might be a technical issue. It is necessary to maintain
two elements, the link and the corresponding destination anchor
to keep these links working. Another reason might be lack of a
effective tool for checking the availability of skip-links. Therefore,
we evaluated how many skip-links are broken or missing in a site
where all pages have skip-links. These sites are accessible sites,
since they have the skip-links, so the site owners are probably
giving high attention to accessibility. From this trial, we would
like to show the importance of the maintenance process and the
importance of tools that can support appropriate skip-links.

We checked six sites, two from the private sector, one for a non-
profit organization, and three for government sites. We used the
Accessibility Designer Site-wide Edition, which has a function to
crawl a target site and create visualization results for all of the
pages, and generate a site-wide report of automatically detected
errors. We filtered the results to make the results more accurate
by checking visualization result manually.

Figure 7 shows the results of our evaluation. The “broken” means
the number of pages with broken skip-links, and “missing” means
pages without skip-navigation links. The “missing” pages include
pages that do not require skip links, so the number of “broken”
links is relatively more important in this case. Two private sector
sites, IBM (www.ibm.com) and CNN (www.cnn.com) have
almost the same broken-link rate, 6.1 percent. These two sites

have a very large number of pages, so we can see how hard it is to
maintain skip-links. However, we think that 6% is high enough
for blind users to lose faith in the skip-links. The non-profit
organization (mozilla.org) doesn’t have any broken links, and
shows a great effort to create an accessible site. Two major
government sites, Whitehouse (www.whitehouse.gov) and the
U.S. General Services Administration (www.section508.gov) do
not have any pages without skip-links, and we found only one
broken link. The U.S. Department of Justice site (www.usdoj.gov)
showed that many pages exist without “skip navigation.” We
manually checked some pages and we found that more than half
of them have simple layouts, and do not require skip-navigation
links. However, the site still has a large number of missing-skip
pages, and they are still needed to manage the content and layout
more neatly.

Through this trial, we demonstrated the difficulty of maintaining
skip-links and the effectiveness of the visualization and automatic
checking functions of Accessibility Designer.

5.3 Applying for the Practical Development
Environment
We used Accessibility Designer practically while developing an
Intranet Web application. This application consisted of over 200
JSP (Java Server Pages) files and a few static HTML files. After
the initial evaluation for accessibility of this Web application, it
was predicted it would take more than a couple of months to make
it compliant. However, it actually required only a few weeks to
make it even better than merely compliant. Through this
experience, we found the following advantages of the tool:

- It reduced the workload and costs for repairs. Web designers
and developers, who did not know much about accessibility,
could participate in the repair process, so the repair tasks
were performed effectively. Even so, accessibility
professionals still needed to join in the tasks, but the tool
contributed to reducing the necessary number of such experts.

- It established a high level of accessibility with less usability
testing with real users. The blind usability visualization
could substitute for the initial stage of real usability testing,
so that the time was reduced. Of course, real usability tests
are still needed to expose unforeseeable problems.
Nevertheless, it was effective in helping to complete the
usability testing process in a short amount of time.

- Finally, the web application became really accessible and
usable by focusing on the user experience and actual
productivity. We received favorable feedback from blind
employees immediately after the application was released.

6. CONCLUSION
This work was motivated by improving the Web’s accessibility,
not only for providing compliance, but also for improving the
usability and blind users’ productivity. After investigating
problems and missing features in the current Web accessibility
checkers and reviewing related work, we proposed a method for
visualizing the blind users’ usability in a visual layout view. This
fundamentally consists of three features, one for presenting the
reaching times to each part of a page by using background
“colors”, one for indicating accessible or inaccessible “areas”
with color-filling, and one for presenting the text information

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

correct
missing
broken

correct 973 751 370 61 132 312
missing 8 320 10 0 0 798
broken 64 70 0 1 0 16

IBM CNN Mozilla.
org

White
house

Access
Board DOJ

 Figure 7. Checking results of skip-links in accessible sites

183

extracted or generated by standard voice browsers, while retaining
the fundamental visual layout. This new approach allows Web
designers to check how fast or slowly blind users can reach the
main content area of their pages. It also indicates how well and
effectively the skip-links and heading tags can be used by blind
users. Both user categories are visualized for sighted designers to
recognize problems at a glance, instead of using long verbal
descriptions. Providing such visually intuitive interfaces, we
aimed at providing an effective learning tool for designers to
understand the importance of the Web accessibility and the real
meaning of the guidelines and regulations for Web accessibility.
After proposing the new visualization approach, we described the
implementation of the method on the Accessibility Designer.

Finally, we evaluated real sites using accessibility Designer. The
first trials on investigating the reaching times to the main content
showed that some sites take about one to three minutes, while
others take only 10 seconds or so. This is because some sites
provided accessibility features, such as skip-links and heading
tags, but others do not consider accessibility at all. In the second
group of trials, we checked skip-link related issues. Some sites
provide skip-links, but some of them did not work because there
were no destination anchors or the anchors were broken. The third
trial, which was the use in a practical development process,
clearly showed that it reduced the workload for repair and saves
time and cost, while establishing the high usability.

In our future work, we are planning to develop a more flexible
user model, which has an ability to simulate a variety of user
behaviors. When a user is more experienced, he or she will use
various operating commands to find the main content, not only
listening to the voice output or using simple commands. Therefore,
the user model needs to cover frequently used operations by
advanced users, intermediate users, and novice users more
precisely.

We have already distributed Accessibility Designer to Web
designers and developers [15]. So far, we have received a variety
of favorable feedback. Most of them requested us to make it
seamlessly usable with other authoring tools. Therefore, we are
considering how to integrate the Accessibility designer into a
Web authoring tool.

The Web accessibility effort has been spread all over the world,
but we are still far from realizing a truly accessible and usable
environment on the Web for people with disabilities. We believe
that our Web accessibility enabling tool will be one of the key
factors to achieve this goal. We hope that we can deliver this tool
to more Web designers and developers.

7. REFERENCES
[1] Section 508 of the Rehabilitation Act; see

http://www.section508.gov/.
[2] Bobby, Watchfire Corporation; see

http://bobby.watchfire.com/.
[3] LiFT, http://www.usablenet.com/
[4] A-Prompt, University of Toronto,

http://aprompt.snow.utoronto.ca/
[5] Asakawa, C. et al, Automatic Web Content Accessibility

Compliance Tool for Section 508, Proc. Technology and
Persons with Disabilities conference (CSUN 2002), 2002.

[6] Asakawa, C., Itoh, T., User Interface of a Home Page Reader,
Proc. the 3rd international ACM SIGCAPH conference on
Assistive Technologies (ASSETS ’98), pp.149-156, 1998.

[7] JAWS, Freedom Scientific Inc.,
http://www.freedomscientific.com/

[8] Asakawa, C., Takagi, H., et al. Maximum listening speeds
for the blind, Proc. Conf. of International Community for
Auditory Display 2003, 2003.

[9] Ivory, M.Y., Hearst, M.A, The state of the art in automating
usability evaluation of user interfaces, ACM Computing
Surveys (CSUR), Vol. 33 Issue 4, pp. 470 – 516, 2001.

[10] Vischeck, http://www.vischeck.com/
[11] Maeda, J., Fukuda, K., Takagi, H., Asakawa, C., Web

accessibility technology at TRL, IBM Research and
Development Journal, 2004. (on press)

[12] Kasday, L.R., A Tool to Evaluate Universal Web
Accessibility, Proc. the 2000 conference on Universal
Usability (ACM), pp. 161-162, 2000.

[13] WAVE 3.0 Accessibility Tool, see
http://www.wave.webaim.org/.

[14] Theofanos, F.M., Redish, J., Bridging the gap: between
accessibility and usability, Interactions, Vol 10 , Issue 6, pp.
36 – 51, 2003.

[15] aDesigner, http://www.alphaworks.ibm.com/tech/adesigner
[16] Standard Widget Toolkit, http://www.eclipse.org/swt/

184

