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The quantum coherence of a multipartite system is investigated when some of the parties are
moving with uniform acceleration and the analysis is carried out using the single mode approximation.
Due to acceleration the quantum coherence is divided into two parts as accessible and inaccessible
coherence and the entire analysis has been carried out in the single-mode approximation. First
we investigate tripartite systems, considering both GHZ and W-states. We find that the quantum
coherence of these states does not vanish in the limit of infinite acceleration, rather asymptoting to
a non-zero value. These results hold for both single- and two-qubit acceleration. In the GHZ and
W-states the coherence is distributed as correlations between the qubits and is known as global
coherence. But quantum coherence can also exist due to the superposition within a qubit, the local
coherence. To study the properties of local coherence we investigate separable state. The GHZ state,
W-state and separable states contain only one type of coherence. Next we consider the WW̄ and star
states in which both local and global coherences coexist. We find that under uniform acceleration
both local and global coherence show similar qualitative behaviour. Finally we derive analytic
expressions for the quantum coherence of N -partite GHZ and W-states for n < N accelerating
qubits. We find that the quantum coherence of a multipartite GHZ state falls exponentially with the
number of accelerated qubits, whereas for multipartite W-states the quantum coherence decreases
only polynomially. We conclude that W-states are more robust to Unruh decoherence and discuss
some potential applications in satellite-based quantum communication and black hole physics.
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I. INTRODUCTION

Entanglement is a widely studied quantum resource
with applications in quantum computing [1], quantum
algorithms [2–4], metrology [5], teleportation [6, 7], and
cryptography [8, 9]. In recent times, it has become more
apparent that there are several other quantum proper-
ties such as non-locality [10], steering [11], discord [12]
and coherence [13], which can also be used as a resource.
Based on their relative presence, it is known that there is
a hierarchy among these different resources. Of all these
resources, quantum coherence is more extensively present,
even when the quantum system does not have steering, en-
tanglement or discord. Hence an investigation of quantum
coherence can provide more complete information about
the ‘quantumness’ of physical systems. Consequently, sev-
eral studies have been performed into quantum coherence
with the aim to understand the fundamental quantum be-
haviour of systems. Some important investigations carried
out so far are on the measurement of quantum coherence
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[13, 14], the formulation of resource theory of quantum
coherence [15–18], the effect of external environments on
coherence [19, 20] and finally applications of quantum
coherence [21–23].

Investigations in quantum information theory are gen-
erally carried out in inertial reference frames. An exten-
sion to non-inertial reference frames has been discussed
through several works [24–27]. In this context entangle-
ment in non-inertial frames of reference has been an im-
portant area of research [28–30]. Initial works [31] in this
direction considered a family of peaked Minkowski wave
packets which admits only a single Unruh mode. Later
on the entanglement of a general set of states has been
discussed in a multimode setting [32, 33]. Though the
multimode approximation is more generally valid, several
studies are still carried out in the single mode approxi-
mation [34], due to the ease of obtaining a clear analytic
expression. Another approach is also available in non-
inertial scenario by considering Unruh-Dewitt detector
model[35, 36]. Several interesting results have been ob-
tained in the fields of black hole physics [31, 37–41], quan-
tum error correction [42], relativistic quantum metrology
[43–46], relativistic teleportation [47–50] and communi-
cation [51–54]. Similar studies on relativistic effects on
quantum discord [55, 56] have also been performed. Re-
cent experimental advances have increased the scope of
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quantum technologies from applications in terrestrial sit-
uations [57–59] to satellite-based space level technologies
[60–66]. Hence, we investigate quantum coherence under
uniform acceleration since compared to entanglement or
other resources it is more commonly found and can be
measured more easily.
The effect of relativistic motion on quantum coher-

ence has been studied in the following works [67–70]. In
Ref. [67], the relativistic effects on the quantum coher-
ence between a pair of Unruh-Dewitt detectors is studied.
Here they find that compared to entanglement, quantum
coherence is more robust to Unruh decoherence. A gener-
alisation of this result to tripartite system was performed
by [69]. Both these works consider a massless scalar field.
The relativistic coherence of a system of Dirac fields was
considered in [70]. In our work we consider the modes of a
massless scalar field and measure the coherence between
different modes as well as the coherence within a mode.
Here we consider a uniformly accelerating system which
can be described using a family of peaked Minkowski wave
packets and consequently we work in the single mode set-
ting. We estimate the information-theoretic change in the
coherence of the system using the `1-norm of coherence.
For a complete study of tripartite systems, we investigate
both the SLOCC (Stochastic Local Operations & Clas-
sical Communication) class of states, namely the GHZ
(Greenberger-Horne-Zeilinger) and W class of states. But
these two states have only global coherence which arises
due to correlation between qubits. For completeness sake,
we investigate the relativistic effects on separable states
with only local coherence, a type of quantum coherence
arising due to superposition within qubits. We also look
into two different tripartite states, namely the WW̄ and
star states in which both global and local coherence coex-
ist.

The structure of the manuscript is as follows: In Sec. II
we discuss the notion of relativity in the field of quantum
information and also introduce the `1-norm of coherence
which is used to measure coherence in our work. The
SLOCC class of states is studied in detail in Sec. III
with the GHZ class and W class forming two different
subsections. The separable state and an introduction to
the notions of local coherence and global coherence is
described in Sec. IV. The tripartite systems with both
local and global coherence are analysed in Sec. V. In
Sec. VI we discuss certain applications related to satellite-
based communication as well as black holes. Finally in
Sec. VII we discuss our results.

II. RELATIVITY & QUANTUM COHERENCE

To describe events independent of the inertial frame of
reference, the combination of three space and one time
dimension known as Minkowski space are used. For non-
inertial reference frames we need to use the Rindler co-
ordinates. The Minkowski and Rindler co-ordinates are
related to each other via a Rindler transformation. For a
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Figure 1: The (z, t) plane of the Minkowski co-ordinates is
divided into four regions of the Rindler co-ordinates. The solid
lines are the future (F ) and past (P ) event horizons and the
dashed lines are the trajectories of the uniformly accelerated

observers. Here H represents the horizon.

situation with one spatial and one time dimension (z, t),
the Minkowski space-time is divided into four wedges
as shown in Fig. 1. The regions F and P represent the
future and the past light cones and the regions I and II
are the two causally disconnected Rindler regions. The
equations |z| = t and |z| = −t describe the future and
past event horizons. For situations with one spatial and
one time dimension (z, t), the world lines of uniformly
accelerated observers in Minkowski co-ordinates corre-
spond to a hyperbola. The two branches of the hyperbola
constitute the regions I and II of the Rindler co-ordinates.
The co-ordinates of the two regions are,

t = a−1eaξ sinh aτ, z = a−1eaξ cosh aτ ; |z| < t,

t = −a−1eaξ sinh aτ, z = a−1eaξ cosh aτ ; |z| > t. (2.1)

where ξ is the space-like co-ordinate, τ is proper time,
and a is acceleration.
Alice, Bob and Charlie each having monochromatic

detector with their corresponding frequencies, ω1, ω2 and
ω3 of a free massless scalar field in a Minkowski space
time. A maximally entangled GHZ state in the framework
reads,

|0ω1〉M|0ω2〉M|0ω3〉M + |1ω1〉M|1ω2〉M|1ω3〉M√
2

, (2.2)

where |0ωi
〉M (|1ωi

〉M) is the vacuum (single particle exci-
tation) state of frequency ωi in Minkowski space. Initially
when all three parties are in inertial frames then |0ω1〉M,
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|0ω2〉M and |0ω3〉M are their respective ground states.
Their excited states can be obtained by applying their
corresponding Minkowski creation operators as follows,

|nωi〉M =
(â†ωi

)n
√
n!
|0ωi〉M. (2.3)

If Charlie starts moving with uniform acceleration the
wavefunction becomes higly delocalized in space and the
quantum state corresponding to the frequency ω3 can be
specified using Rindler or Unruh co-ordinates [32]. In both
the Rindler and Unruh basis, the initial Minkowski space is
divided into two regions which are casually disconnected
from each other. Let Ω be the dimensionless Rindler
frequency and the Unruh modes are also sharply peaked
at the same frequency. Using an analytic continuation
arguement it was shown [32] that Unruh mode is a purely
positive frequency linear combinations of the Minkowski
modes. But the definition of positive frequency in the
Rindler mode differs from the positive frequency definition
on the Minkowski mode. So we can relate the Minkowski
and the Rindler modes via the Unruh modes. The field
in each of these three bases are expanded as follows:

φ =
∫ ∞

0
(aω,Muω,M + a†ω,Mu

∗
ω,M) dω

=
∫ ∞

0
(AΩ,RuΩ,R +A†Ω,Ru

∗
Ω,R

+AΩ,LuΩ,L +A†Ω,Lu
∗
Ω,L) dΩ

=
∫ ∞

0
(bΩ,IuΩ,I + b†Ω,Iu

∗
Ω,I

+ bΩ,IIuΩ,II + b†Ω,IIu
∗
Ω,II) dΩ,

(2.4)

where aω,M is the Minkowski annihilation operator and
AΩ,R&AΩ,L are the Unruh annihilation operator for the
right and left regions and bΩ,I&bΩ,II are the Rindler
annihilation operators in I&II regions. The operators
obey the bosonic commutation relations [aω1,M, a

†
ω2,M] =

δω1ω2 , [AΩ1,R, A
†
Ω2,R

] = [AΩ1,L, A
†
Ω2,L

] = δΩ1Ω2 and
[bΩ1,I , b

†
Ω2,I

] = [bΩ1,II , b
†
Ω2,II

] = δΩ1Ω2 . For the Unruh
mode, the commutator between operators in the R and
L region vanish. Similarly the commutator between the
operators in region I and II vanish. The creation and
annihilation operators of the Minkowski and Unruh bases
do not mix and hence we have |0〉M = |0〉U =

∏
Ω |0Ω〉U .

But the state |0〉U does not coincide with the Rindler
vacuum and we have

|0Ω〉U =
∑
N

tanhn rΩ

cosh rΩ
|nΩ〉I |nΩ〉II . (2.5)

Here |nΩ〉I is the nth excited state of the Rindler I vacuum
state |0Ω〉I .
We consider a wave packet which is narrowly peaked

in Ω and for this the Unruh and Rindler commutators

read [AΩ,R, A
†
Ω,R] = [AΩ,L, A

†
Ω,L] = 1 and [bΩ,I , b†Ω,I ] =

[bΩ,II , b†Ω,II ] = 1. Under these ideal conditions, the most
general creation operator of a purely positive Minkowski
frequency can be written as,

a†Ω,U = qLA
†
Ω,L + qRA

†
Ω,R. (2.6)

Here the factors qR and qL are complex numbers with
|qR|2 + |qL|2 = 1. Under these conditions we have

a†Ω,U |0Ω〉U =
∞∑
n=0

tanhn rΩ

cosh rΩ
(
√
n+ 1

cosh rΩ
)|ΦnΩ〉,

|ΦnΩ〉 = qL|nΩ〉I |(n+ 1)Ω〉II + qR|(n+ 1)Ω〉I |nΩ〉II ,
(2.7)

where, in general we consider qR = 1 and qL = 0. Let
us consider a Minkowski smearing function which is a
Gaussian in ln(ωl),

f(ω) =
(

λ

πω2

)1/4
exp

{−1
2 λ[ln(ω/ω0)]2

}
(ω/ω0)−iµ,

(2.8)

When the uniformly accelerated particle has the above
smearing function and has negligible overlap with the
other states, then it is well approximated by a single
Unruh frequency. Thus we use this monochromatic wave
approximation in our investigation. Under this condition,
the Minkowski and Rindler modes can be connected via
the relations:

â†ω3
= b̂†Ω3I

cosh r − b̂Ω3II sinh r = ŜΩ3 b̂
†
Ω3I

Ŝ†Ω3

âω3 = b̂Ω3I cosh r − b̂†Ω3II
sinh r = ŜΩ3 b̂Ω3I Ŝ

†
Ω3
, (2.9)

where,

ŜΩ(r) = exp[r(b̂†ΩI b̂
†
ΩII − b̂ΩI b̂ΩII)]. (2.10)

Here the operator (Ŝ) effecting the transformation from
Minkowski co-ordinates to Rindler co-ordinates is struc-
turally identical to the two mode squeezing operator,

Ŝ(ζ) = exp(ζ∗ab− ζa†b†), (2.11)

in the quantum optics context. Hence for a non-inertial
observer, the single mode Minkowski vacuum becomes a
two mode squeezed state in the Rindler vaccum,

|0ω〉M = ŜΩ3(r)(|0〉I ⊗ |0〉II)

= 1
cosh r

∞∑
n=0

tanhn r|nΩ〉I |nΩ〉II , (2.12)

where cosh r = (1 − e−2πΩ)−1/2 and Ω = |ω|c/a. The
factors ω and c are the wave vector and velocity of light
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Figure 2: A schematic diagram of coherence in tripartite
is shown where the circles labelled A, B and C represent
the qubit and the blue arrow between them representing the
coherence. Fig (a) contains the coherence in a tripartite system
when all the qubits are in inertial frame. The part (b) contains
the coherence in the tripartite system when qubit C is under
acceleration. Here qubit C enclosed by the Red ellipse with
dashed boundary line, is split into two Rindler modes I and
II. Consequently the coherence shared by qubit C also is split
into two parts. The coherence shared with C of Rindler mode
I is the accessible coherence and the coherence shared with C
of Rindler mode II is the inaccessible coherence. The lighter
shades of blue for the accessible and inaccessible coherence
represents their relative strength to the coherence initially

present with C and shown in part (a).

respectively. Here |nΩ〉I and |nΩ〉II are the mode decom-

positions in Rindler regions I and region II respectively.
For the single particle excitation state we have,

|1ω〉M = â†ω3
|0ω3〉M = ŜΩ3(r)b̂†Ω3I

(|0〉I ⊗ |0〉II)

= 1
cosh2 r

∞∑
n=0

√
n+ 1 tanhn r|(n+ 1)Ω〉I |nΩ〉II .

We observe that due to the squeezing behaviour of a
non-inertial observer, a single Minkowski mode can be
written as a superposition of two Rindler modes. Conse-
quently there exists coherence between the two Rindler
modes. Since these two modes are not causally connected,
this coherence cannot be experimentally observed. Actu-
ally there is no new coherence created in the system.
To illustrate this let us consider a tripartite system

with Alice and Bob at rest, and Charlie moving with con-
stant acceleration. The coherence shared by Charlie with
Alice and Bob is split into two parts. One part remains
in Rindler mode I and can be experimentally observed,
which we call the accessible coherence. The other part of
the coherence which is shared with Rindler mode II cannot
be measured, which we refer to as inaccessible coherence.
This inaccessible coherence quantifies the decrease in co-
herence due to relativistic effects. A schematic diagram
explaining the accessible and inaccessible coherence is
shown in Fig. 2.

In a tripartite state when two qubits are accelerated the
vacuum (|000〉) and excited (|111〉) states can be expressed
as,

|000〉ABC = |0〉 ⊗ |0〉 ⊗ |0〉
accl−→ |0ω1〉 ⊗ [ŜΩ2(r2)(|0Ω2〉I ⊗ |0Ω2〉II)]⊗ [ŜΩ3(r1)(|0Ω3〉I ⊗ |0Ω3〉II)]

= |0〉 ⊗ 1
cosh r2

[ ∞∑
m=0

tanhm r2|m〉I |m〉II

]
⊗

[
1

cosh r1

∞∑
n=0

tanhn r1|n〉I |n〉II

]
, (2.13)

|111〉ABC = |1〉 ⊗ |1〉 ⊗ |1〉
accl−→ |1ω1〉 ⊗ [ŜΩ2(r2)b̂†Ω2I

(|0Ω2〉I ⊗ |0Ω2〉II)]⊗ [ŜΩ3(r1)b̂†Ω3I
(|0Ω3〉I ⊗ |0Ω3〉II)]

= |1〉 ⊗
[

1
cosh2 r2

∞∑
m=0

√
m+ 1 tanhm r2|m+ 1〉I |m〉II

]
⊗

[
1

cosh2 r1

∞∑
n=0

√
n+ 1 tanhn r1|n+ 1〉I |n〉II

]
.

(2.14)

The modes I and II correspond to the two causally dis-
connected regions in Rindler co-ordinates of Minkowski
space. Hence mode II is physically inaccessible to Al-
ice, Bob and Charlie and is partially traced out. For an
inertial observer, a quantum system in Minkowski space-
time is independent of the nature of the observer. But
when the observer is moving with constant acceleration,
they perceive a thermal bath with temperature propor-
tional to acceleration. This thermal bath is made up of

Rindler particles which are associated with the vacuum
state of Minkowski space. Due to this thermal bath, the
observer perceives decoherence of the quantum system, a
phenomenon known as Unruh decoherence.

Quantum coherence is in general measured as the dis-
tance between the quantum state under consideration
and the closest incoherent state in the same basis. Several
measures of quantum coherence [13, 14, 71, 72] have been
presented, but in the first work on quantum coherence by
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Baumgratz, Cramer and Plenio [13] two measures were
introduced corresponding to the entropic class and ge-
ometric class of measures. The relative entropy based
measure of quantum coherence belongs to the entropic
class, and the `1 norm of coherence to the geometric class.
Here we use the `1-norm of quantum coherence, defined
as,

Cl1(ρ̂, ρ̂d) = ‖ρ̂− ρ̂d‖l1 =
∑
i 6=j
|ρ̂i,j |, (2.15)

where ρ̂ is a given density matrix and ρ̂d is the associated
decohered density matrix defined as,

ρ̂d =
∑
i

ρ̂i,i|i〉〈i|. (2.16)

We can observe that this is equivalent to the sum of
the off-diagonal elements of the density matrix. Using
interference fringes, the quantum coherence of a physical
system can be measured using the robustness of coherence
[73], a measure introduced in Ref. [74]. In Ref. [75] it was
shown that for a pure state the robustness of coherence
measure is equal to the `1-norm of coherence. Hence
the `1-norm of coherence can be directly obtained from
the interference fringes, providing a method to compare
theoretical results with experimental data.

III. RELATIVISTIC EFFECTS IN THE SLOCC
CLASS OF STATES

Based on the local operations and classical communica-
tion (LOCC), tripartite entangled quantum states can be

divided into two distinct classes, namely the GHZ class
and the W class. The entanglement distribution is differ-
ent in these two class of states. In a GHZ state all the
entanglement vanishes even with the loss of a single qubit
whereas in a W-state a finite amount of entanglement is
always present even when we loose a single qubit. The
coherence of these class of states in inertial frames has
been discussed in detail in Ref. [20]. We extend upon this
by investigating the coherence when some of the qubits of
the tripartite system are in a non-inertial reference frame.
In particular, we probe the loss of coherence due to the
acceleration of qubits.

III.1. GHZ class

A GHZ state is maximally entangled and so the loss of
just a single qubit results in the complete loss of entan-
glement and coherence. The general form of a tripartite
Greenberger-Horne-Zeilinger (GHZ) state is,

|GHZ〉ABC = cos θ|000〉ABC + sin θ|111〉ABC , (3.1)

where θ ∈ [0, 2π) is a parameter generalizing the GHZ
state via the bias between the two basis states. On acceler-
ating qubit C its Minkowski modes are replaced with their
corresponding Rindler modes and the tripartite states be-
comes,

|GHZ〉ABC = 1
cosh r

∞∑
n=0

tanhn r
[

cos θ|00〉|n〉I |n〉II +
√
n+ 1

cosh r sin θ|11〉|n+ 1〉I |n〉II
]
. (3.2)

Here, |00〉|n〉I |n〉II and |11〉|n + 1〉I |n〉II refer to the
quantum state in which the Minkowski modes of the first
two qubits are |ab〉 and the Rindler modes correspond-
ing to the third qubit is as |c〉I |c〉II . We know that the

modes from the Rindler I and II regions are not causally
connected, so we can trace out the modes corresponding
to Rindler region II and the density matrix of the state
with Alice, Bob and Charlie reduces to,

ρ̂GHZ = 1
cosh2 r

∞∑
n=0

tanh2n r

[
cos2 θ|00n〉〈00n|+ cos θ sin θ

√
n+ 1

cosh r

(
|00n〉〈11n+ 1|+ |11n+ 1〉〈00n|

)
+ n+ 1

cosh2 r
sin2 θ|11n+ 1〉〈11n+ 1|

]
. (3.3)

The total coherence in the generalised GHZ state is calculated using the `1-norm measure of coherence. The
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Figure 3: The variation of coherence in a non-inertial frame
of reference is studied for a GHZ state under the variation
of (a) the acceleration parameter r and (b) the generalisation

parameter θ.

sum of the off-diagonal elements of Eq. (3.3) is

C(ρ̂) = 2 sin θ cos θ
cosh3 r

∞∑
n=0

√
n+ 1 tanh2n r. (3.4)

Using the trigonometric identities,
∞∑
n=0

tanh2n r = cosh2 r,

∞∑
n=0

(n+ 1) tanh2n r = cosh4 r, (3.5)

and the polylogarithm function

Li−1/2(z) =
∞∑
n=0

√
n+ 1(tanh2 r)n+1, (3.6)

where the polylogarithm function is defined as

Lin(z) ≡
∞∑
k=1

zk

kn
= z

1n + z2

2n + z3

3n + · · · , (3.7)

the total coherence of a GHZ state when one of the qubits
is in a non-inertial frame can be expressed as,

C(ρ̂) = 2 sin θ cos θ
Li−1/2(tanh2 r)
sinh2 r cosh r

. (3.8)

When Charlie’s qubit is not accelerated (i.e the r → 0
limit) the corresponding quantum coherence is,

C(ρ̂) = 2 cos θ sin θ. (3.9)

The variation of quantum coherence as a function of
the acceleration parameter r is shown in Fig. 3(a) for
different θ values. From the plot for any given value of θ
we notice that quantum coherence has a maximum value
when r = 0, corresponding to the situation where Charlie’s
qubit has not yet been accelerated. The coherence then
decreases with increase in r and saturates to a finite value.
The decrease in coherence due to uniform acceleration
is because some part of it becomes inaccessible as it lies
in a causally disconnected region. The saturation value
depends on the value of coherence in the inertial frame
(r = 0). Hence, higher the value of the coherence in the
inertial frame, the higher the saturation value of coherence
in the non-inertial frame.
In Fig. 3(b), we study the change of the quantum

coherence as a function of the generalisation parameter θ
for different values of the acceleration parameter r. The
coherence is maximum at θ = (2n+ 1)π/4 where n ∈ Z
and is zero at θ = nπ/2, but the maximum value depends
on the value of r.
To study the situation, when more than one party is

under acceleration, we consider the setting where both
Bob’s and Charlie’s qubits are being accelerated. The
quantum state when two qubits are accelerated is,

|GHZ〉 = 1
cosh r1

1
cosh r2

∞∑
n,m=0

tanhn r1 tanhm r2

[
cos θ|0〉|m〉I |m〉II |n〉I |n〉II

+
√
m+ 1

cosh r2

√
n+ 1

cosh r1
sin θ × |1〉|m+ 1〉I |m〉II |n+ 1〉I |n〉II

]
, (3.10)

where the pairs (r2,m) and (r1,n) are the acceleration
parameter and mode corresponding to Bob’s and Char-

lie’s qubits respectively. To construct the density matrix
we first trace out the contributions from the causally
disconnected Rindler II mode,
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ρ̂ = 1
cosh2 r1 cosh2 r2

∞∑
n=0

∞∑
m=0

tanh2n r1 tanh2m r2

[
cos2 θ|0〉|m〉|n〉〈0|〈m|〈n|+

√
m+ 1

√
n+ 1

cosh r1 cosh r2
cos θ sin θ(

|0〉|m〉|n〉〈1|〈m+ 1|〈n+ 1|+ |1〉|m+ 1〉|n+ 1〉〈0|〈m|〈n|
)

+ (m+ 1)(n+ 1)
cosh2 r1 cosh2 r2

sin2 θ

|1〉|m+ 1〉|n+ 1〉〈1|〈m+ 1|〈n+ 1|
]
, (3.11)
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Figure 4: The variation of quantum coherence of GHZ state
with both r1 and r2 is shown for (a) θ = π/4, (b) θ = π/5 and

(c) θ = π/6 respectively.

From the density matrix in Eq. (3.11) and using the
`1-norm measure we can determine the total quantum
coherence of the GHZ state when both Bob’s and Charlie’s
qubits are accelerated,

C(ρ̂) = 2 sin θ cos θ
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

,

(3.12)

where we find to be a product of two polylogarithm func-
tions one each corresponding to Bob’s and Charlie’s qubits.
If Bob and Charlie have the same acceleration, which
would translate to r1 = r2 = r, the coherence would then
be,

C(ρ̂) = 2 sin θ cos θ
[
Li−1/2(tanh2 r)

sinh2 r cosh r

]2

. (3.13)

The variation of quantum coherence with the param-
eters r1 and r2 corresponding to Bob’s and Charlie’s
acceleration is shown through the contour plots in Fig. 4.
The contour plots Fig. 4(a), 4(b) and 4(c) correspond to
θ of π/4, π/5 and π/6 respectively. We find that with the
increase in r1 and r2, the coherence decreases and satu-
rates to a finite value. The maximal value and saturation
value of coherence are dependent on the value of θ the
parameter generalizing the GHZ state.

In literature, the most commonly discussed GHZ state
is (|000〉 + |111〉)/

√
2, corresponding to the generalised

GHZ state with θ = π/4, which has quantum coherence,

C(ρ̂) =
Li−1/2(tanh2 r)
sinh2 r cosh r

,

C(ρ̂) =
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

. (3.14)

Finally we note that the two qubit reduced density
matrices corresponding to the GHZ state are diagonal in
nature and hence are incoherent. Thus all the coherences
in the GHZ state are genuinely multipartite in nature and
the loss of even one qubit removes all the coherence in
the system.

In Ref. [31], the authors considered a two qubit system
of which one qubit is moving with a constant accelera-
tion. The entanglement of the bipartite system vanished
in the infinite acceleration limit. It is well known that
entanglement is just one of the different types of quantum
correlations. Out of the different quantifiers of quantum
correlations, quantum discord measures the total quantum
correlations in the system. A study of quantum discord
in relativistic system [55] show that total quantum corre-
lations does not vanish in the infinite acceleration limit.
Hence a bipartite system in the infinite acceleration limit
has quantum correlations beyond the entanglement type.
An investigation on accelerating tripartite systems was
carried out in Ref. [76], where the GHZ and W-states
were characterised using the π-tangle measure of entan-
glement. The entanglement of the tripartite system did
not go to zero in the infinite acceleration limit, rather it
showed a decrease initially and then attained a saturation
value. This is in stark contrast to the behaviour of the
bipartite entanglement. In Ref. [76] it was suggested that
the incomplete definition of π-tangle could be the reason
as to why the tripartite entanglement shows a different
qualitative behaviour when compared to the bipartite en-
tanglement as measured in Ref. [31]. Through the present
work we observe that the quantum coherence of the GHZ
state is qualitatively similar to the change in its tripar-
tite entanglement. But here the saturation is due to the
non-vanishing behaviour of local quantum correlations.
However for quantum coherence, the `1-norm measures
the entire quantum coherence and the saturation value
is a physical feature of the system. In the case of en-
tanglement, the saturation value may not be an actual
physical feature since π-tangle is inadequate to measure
entanglement.
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Figure 5: The variation of quantum coherence as a function
of r for fixed values of θ and φ is given for (a) the tripartite
generalized W-state and (b) the two qubit reduced systems
ρAB , ρBC and ρAC . Here the notation W (ρAB) means the
reduced state ρAB corresponding to the symmetric W -state.

Next we can consider the three qubit GHZ state given in
Eq. (2.2) in which two qubits are under uniform accelera-
tion. The GHZ state can be rewritten as (|00〉+ |11〉)/

√
2,

where |0〉 = |00〉 and |1〉 = |11〉 are redundantly-encoded
logical qubits. Since the GHZ state can be written in
terms of the Bell state, we would expect the coherences
of both these states to be equal. But the coherence of the
GHZ state when the logical qubit is accelerated is,

C`1 = [Li−1/2(tanh2 r)/(sinh2 r cosh r)]2, (3.15)

which implies that C(|ψBell〉) 6= C(|ψGHZ〉) an relativistic
system. This is because in the GHZ state, the logical non-
inertial qubit is bigger than the regular qubit considered
in the Bell state. So, we find that the quantum coherence
coupled with uniform acceleration helps in distinguishing
between Bell states and GHZ states.

III.2. W class

The W-states exhibit non-maximal multipartite en-
tanglement which is not locally equivalent to GHZ-type
entanglement, and may therefore be considered a distinct
entanglement class. Unlike GHZ states, W-states with
large numbers of qubits are highly robust against qubit
loss. The generalised form of the tripartite W-state is,

|W 〉g = sin θ cosφ|100〉+ sin θ sinφ|010〉+ cos θ|001〉,
(3.16)

where θ = [0, π] and φ = [0, 2π) are the parameters
generalising the W-state.

First let us consider the situation when only one qubit
is in a non-inertial frame of reference. Towards this end,
we consider the situation when Charlie’s qubit is in a
non-inertial frame while Alice and Bob’s qubits are in an
inertial frame. Naturally the Minkowski modes of Charlie’s
qubit are replaced by their corresponding Rindler modes.
It is well known that the Minkowski region can be divided
into two causally disconnected Rindler modes. So, we
trace out the second Rindler region from the quantum
state, since it is inaccessible for measuerment. The total

quantum coherence is then measured using the `1-norm
of coherence,

C(ρ̂) = 2 sin θ cos θ(sinφ+ cosφ)
Li−1/2(tanh2 r)
sinh2 r cosh r

+ 2 sin2 θ sinφ cosφ . (3.17)

To understand the relativistic effects on a quantum
state with bipartite distribution, we compute the reduced
density matrices corresponding to the W -state. Here, we
can trace out either Alice or Bob’s qubit and the quantum
coherence corresponding to the reduced state is,

C(ρ̂BC) = C(ρ̂AC) = 2 sin θ cos θ sinφ
Li−1/2(tanh2 r)

sinh2 r cosh r
.

(3.18)

The reduced density matrix obtained after tracing out
Charlie’s qubit does not have any effects of non-inertial
nature and the coherence of the joint state of Alice and
Bob is,

C(ρ̂AB) = 2 sin2 θ sinφ cosφ, (3.19)

which is the expected standard result. The most common
form the three qubit W-state is the tripartite state of
the form |W 〉 = 1√

3 (|001〉 + |010〉 + |100〉), and of all
the generalised W-states it has the maximum amount of
coherence and entanglement. Also the total coherence and
entanglement are distributed in a symmetric manner. The
quantum coherence of a tripartite system when Charlie’s
qubit is accelerated is ,

C(ρ̂) =
4Li−1/2(tanh2 r)
3 cosh r sinh2 r

+ 2
3 . (3.20)

In the r → 0 limit (inertial limit), it reduces to the
standard value of C(ρ̂) = 2. The change in coherence of
the tripartite generalised W-state is given as a function of
the acceleration parameter r for different values of θ and
φ in Fig. 5(a). From the plots we notice that the quantum
coherence is initially maximum at r = 0 and then it de-
creases and reaches a saturation value at large values of r.
The decrease in coherence is due to the bifurcation of the
Minkowski mode into two Rindler modes, of which one is
disconnected from the rest of the system. Any coherence
due to this mode is inaccessible to measurements. The sat-
uration value is the amount of accessible coherence which
can never be lost to relativistic motion. The maximal
value and saturation value are dependent on the generali-
sation parameter. The |W 〉 = 1√

3 (|001〉 + |010〉 + |100〉)
state has the maximal coherence at r = 0 and also has
the maximal saturation value. The quantum coherence of
the reduced density matrices of the generalised W-state is
shown in Fig. 5(b). The quantum coherence of the reduced
state ρ̂AB is a constant since the accelerated qubit C has
already been traced out. In the case of ρ̂BC we find that
the coherence is maximal at r = 0 and saturates to a
finite value at large accelerations. The curve represents
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Figure 6: Contour plot of the Quantum coherence C(ρ) as a
function of θ and φ of the generalised W-state when one qubit
is in a non-inertial frame is shown for (a) r = 0.01 and (b)

r = 4.0.

the coherence of ρ̂BC and the dashed lines denote the
coherence in the state ρ̂AB. In Fig. 6 the contour plot
shows the variation of quantum coherence as a function of
the generalisation parameter θ and φ for the acceleration
parameters r = 0.01 and r = 4.0.
Next we look at the case where two qubits, the ones
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Figure 7: In the generalised W-state when both Bob’s and
Charlie’s qubits are accelerated, the variation of quantum
coherence as a function of the acceleration parameters r1 and
r2 is given for (a) W -state, (b) θ = π/5 , φ = π/5, (c) θ = π/6

, φ = π/6 and (d) θ = π/3 , φ = π/6.

corresponding to Bob and Charlie are being accelerated.
Adopting a similar procedure of replacing the Minkowski
states by Rindler modes and tracing out the Rindler
second mode, we measure the total quantum coherence
of the system. The quantum coherence of the tripartite
system is,

C(ρ̂) = 2 sin θ cos θ sinφ

×
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

+ 2 sin θ cos θ cosφ
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

+ 2 sin2 θ sinφ cosφ
Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

. (3.21)

From Eq. (3.21) we notice that the quantum coherence
is a sum of three terms. The first contains the non-inertial
decoherence from both Bob’s and Charlie’s qubit. The non-
inertial contributions from Bob and Charlie appear in the
second and third terms respectively. At the bipartite level,
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there are two possibilities namely: (i) when Alice’s qubit is
traced out; (ii) when either Bob’s qubit or Charlie’s qubit
is traced out. The quantum coherence corresponding to
these different situations are,

C(ρ̂BC) = 2 sin θ cos θ sinφ
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

×
Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

, (3.22)

C(ρ̂AC) = 2 sin θ cos θ sinφ
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

, (3.23)

C(ρ̂AB) = 2 sin2 θ sinφ cosφ
Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

. (3.24)

Here Eq. (3.22) refers to the situation where Alice’s
qubit is traced out and in the resulting bipartite system
both the qubits are in non-inertial frames. When Bob’s
qubit is traced out the total quantum coherence is given
through Eq. (3.23), and similarly when Charlie’s qubit
is traced out Eq. (3.24) gives the quantum coherence
of the resulting bipartite state. For the W -state of the
form 1√

3 (|001〉+ |010〉+ |100〉) when both Bob’s and Char-
lie’s qubits are accelerated the total quantum coherence
of the system is,

C(ρ̂) = 2
3
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

+ 2
3
Li−1/2(tanh2 r1)
sinh2 r1 cosh r1

+ 2
3
Li−1/2(tanh2 r2)
sinh2 r2 cosh r2

.

(3.25)

Eq. (3.25) reduces to the standard value of C(ρ̂) = 2
for r1, r2 → 0 and the single qubit acceleration limit
when either r1 or r2 tends to zero. In the contour plot
shown in Fig. 7 we analyse the variation of the quantum
coherence as a function of r1 and r2 namely Charlie’s and
Bob’s acceleration parameter for different values of the
generalisation parameters θ and φ. We find that coherence
is maximum when r1 and r2 are zero and decreases with
increase in their value.
A very interesting limiting case of the generalised W-

state occurs when θ = π/2 and φ = π/4. The generalised
W-state corresponding to this value is (|100〉+ |010〉)/

√
2.

We can observe that this quantum state is of the bisepara-
ble form AB-C, where the AB pair is entangled and C is
separable. In this state Charlie’s qubit is accelerated, the
total quantum coherence is C = 1. This is because the
only coherence contribution in the system comes because
of the correlation between Alice and Bob’s qubit. On the
contrary, when Bob is in a non-inertial frame of reference,
the total quantum coherence in the system is,

C(ρ̂) =
Li−1/2(tanh2 r)

sinh2 r cosh r
. (3.26)

When both Bob and Charlie are in non-inertial frames,
the resulting coherence is same as when Bob is in a non-

inertial frame. This is because Charlie’s qubit does not
contribute to the coherence in the system.

For the W-state, the tripartite entanglement measured
by the π-tangle saturates at a finite value [76]. This is in
stark contrast with the results obtained for the bipartite
entanglement in Ref. [31]. This is again due to the insuf-
ficiency in using π-tangle as a measure of entanglement.
For a W -state, the variation of the quantum coherence
due to uniform acceleration is similar to the change in
the entanglement of the system. But the `1-norm measure
of coherence is a complete measure unlike the π-tangle
measure of entanglement used in Ref. [76]. The saturation
nature of quantum coherence is due to the presence of
non-classical correlations at relativistic velocities. This re-
sult holds for single qubit as well as two qubit accelerated
systems.

IV. SEPARABLE STATES

The SLOCC class of classification applies to entangled
states. But in general quantum states may not be entan-
gled. An example of a separable state is |000〉 and for this
state ρ̂ = ρ̂d in the computational basis and so it is an
incoherent state. Here we would like to mention that one
of the crucial properties of quantum coherence is that it
is a basis-dependent quantity. Hence studying a separable
quantum state |+ ++〉 where |+〉 = (|0〉+ |1〉)/

√
2 in the

σz-basis we find quantum coherence in the system. To
find the relativistic effects, we accelerate either one or two
of these qubits. For the accelerated qubits we replace the
Minkowski states by their corresponding Rindler modes.
We already know that there are two causally disconnected
Rindler modes, so we trace out one of the modes and
compute the quantum coherence of the rest of the sys-
tem. Here when only Charlie’s qubit is accelerated the
quantum coherence computed using the `1-norm measure
is,

C(ρ̂) = 3 +
4 Li−1/2(tanh2 r)

cosh r sinh2 r
. (4.1)

In the r → 0 limit, the inertial value of the `1-norm
coherence of the system is recovered. When both Charlie’s
and Bob’s qubit are accelerated the quantum coherence
is,

C(ρ̂) = 1 +
2 Li−1/2(tanh2 r1)

cosh r1 sinh2 r1
+

2 Li−1/2(tanh2 r2)
cosh r2 sinh2 r2

+
2 Li−1/2(tanh2 r1)

cosh r1 sinh2 r1

Li−1/2(tanh2 r2)
cosh r2 sinh2 r2

. (4.2)

From this result, in the appropriate limiting conditions
we can recover the single qubit result as well as the inertial
value.

The coherence measured in the GHZ state, W-state and
the separable |+++〉 state is the total amount of quantum
coherence present in the states. But the type of coherence
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in the GHZ and W-states is fundamentally different from
the type of coherence present in the | + ++〉 state. In
the GHZ and W-states, the coherence arises due to the
correlation between the qubits. Meanwhile the coherence
in the |+++〉 state is because of the superposition between
the levels within each qubit. These two fundamentally
different forms of coherences were identified in Ref. [14].
The coherence arising due to the correlation between
the qubits is the global coherence of the system and the
coherence resulting from the superposition of the levels
within a qubit are called local coherence. These two forms
of coherences are complementary to each other in a sense
that the increase in the global coherence causes a decrease
in the local coherence and vice versa. With increase in
the acceleration the quantum coherence decreases and
it saturates at a finite value. To understand this for the
| + ++〉 state, we can consider the single qubit system
|+〉 system which we can write as,

|+〉 =
∞∑
n=0

tanhn r√
2 cosh r

(
|n〉I |n〉II +

√
n+ 1

cosh r |n+ 1〉I |n〉II
)
.

(4.3)

Here we can observe that the initial superposition be-
tween two levels is spread out between the four modes.
Of these two modes corresponding to Rindler region II
are traced out and hence there is a loss of superposition
and consequently a loss of coherence. This loss is the in-
accessible coherence when the system undergoes uniform
acceleration.

The GHZ and W-states represents one extreme where
the global coherence is maximum with zero local coherence
and the |+ ++〉 denotes the other extreme where the
local coherence is maximum with no global coherence.
But there are some pure quantum states in which both
these types of coherence coexist. For such states we can
quantify the global and local coherence using the formula,

CG = ‖ρ̂− π(ρ̂)‖l1 , (4.4)
CL = ‖π(ρ̂)− [π(ρ̂)]d‖l1 . (4.5)

Here π(ρ̂) = ρ̂1 ⊗ · · · ⊗ ρ̂N is the product state of
the density matrix ρ̂ where the reduced density matrix
ρ̂1 = Tr(2,...,N) ρ̂. The quantum state [π(ρ̂)]d is the deco-
hered density matrix corresponding to π(ρ̂) the product
state. The total quantum coherence of the system CT mea-
sures coherence contributions from correlations as well as
local superpositions. In Ref. [14] a trade-off was observed
between the global coherence and local coherence.

V. TRIPARTITE PURE STATES WITH LOCAL
AND GLOBAL COHERENCE

In this section we study the non-inertial effects when
both local and global coherences are present in the sys-
tem. Towards this end we analyze the quantum coherence
of tripartite WW̄ and star states. The WW̄ state is a

symmetric tripartite state with both local and global co-
herence. On the contrary the star state is an asymmetric
state with both local and global coherences.

V.1. WW̄ state

The three qubitWW̄ state [77] is a linear superposition
of the tripartite W state and the W̄ state as shown below,

|WW̄ 〉 = 1√
2

(|W 〉+ |W̄ 〉),

|W 〉 = 1√
3

(|001〉+ |010〉+ |100〉),

|W̄ 〉 = 1√
3

(|011〉+ |101〉+ |110〉). (5.1)

First we consider the situation, where a single qubit is
in a noninertial frame that is to say only Charlie’s qubit is
being accelerated. After tracing out one of the Rindler re-
gion, the total quantum coherence of the resulting density
matrix is,

CT (ρ̂) = 2 +
3 Li−1/2(tanh2 r)

cosh r sinh2 r
. (5.2)

In the r → 0 limit the quantum coherence recovers the
inertial limit.

The single qubit reduced density matrices of the WW̄
state in Eq. (5.1) are,

ρ̂A = ρ̂B = ρ̂C =
( 1

2
1
31

3
1
2

)
. (5.3)

From the reduced density matrix we notice that the single
qubit state has a finite amount of quantum coherence.
Consequently the product state ρ̂A⊗ρ̂B⊗ρ̂C will also have
some coherence which is the local coherence of the system.
Using Equations (4.4) and (4.5) we find the global and
local coherence when one of the qubit is in non-inertial
frame,

CG(ρ̂) = 2
9 +

31 Li−1/2(tanh2 r)
27 cosh r sinh2 r

, (5.4)

CL(ρ̂) = 16
9 +

50 Li−1/2(tanh2 r)
27 cosh r sinh2 r

. (5.5)

The behaviour of the total coherence, global coherence
and local coherence are shown in Fig. 8(a). From the
plots we find that all the different forms of coherences
show identical behaviour and they decrease with increase
in acceleration and attain a saturation value at higher
values of acceleration. The results show that both global
and local coherence have similar decoherence properties.
Hence Unruh decoherence cannot distinguish between the
two forms of coherence viz the one arising due to the
correlations between the qubits and the quantumness due
to the superposition between the levels within a qubit.
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Figure 8: A plot of the total coherence (CT ), global coherence (CG) and local coherence (CL) for (a) the WW̄ state, (b) Star
state when the central qubit is accelerating and (c) Star state when the peripheral qubit is accelerating.

To study the relativistic effects when two qubits are in
noninertial frames, we uniformly accelerate both Bob’s
and Charlie’s qubits. The total quantum coherence of the
WW̄ state in this scenario is,

CT (ρ̂) = 4
6 +

8 Li−1/2(tanh2 r1)
6 cosh r1 sinh2 r1

+
8 Li−1/2(tanh2 r2)
6 cosh r2 sinh2 r2

+
10Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

6 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.6)

The total coherence is present as both global coherence
arising from inter-qubit correlations and also as local
coherence coming from intraqubit superpositions. The
measured values of the global and local coherence of the
system are,

CG(ρ̂) =
2 Li−1/2(tanh2 r1)
9 cosh r1 sinh2 r1

+
2 Li−1/2(tanh2 r2)
9 cosh r2 sinh2 r2

+
25 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

27 cosh r1 sinh2 r1 cosh r2 sinh2 r2
, (5.7)

CL(ρ̂) = 2
3 +

10 Li−1/2(tanh2 r1)
9 cosh r1 sinh2 r1

+
10 Li−1/2(tanh2 r2)

9 cosh r2 sinh2 r2

+
20 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

27 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.8)

We find that the total coherence, global coherence and
local coherence reduce to their respective inertial values
when r1, r2 → 0. Also we find that the total coherence is
a sum of the global and local coherence for the `1-norm
of coherence.

V.2. Star state

A star state is an asymmetric quantum state [78, 79],
so called because a central qubit is entangled with the
peripheral qubits collectively, but upon tracing out the
central qubit the peripheral ones have a separable form,

ρ̂B,C = trA(|S〉A,B,C 〈S|A,B,C) = ρ̂B ⊗ ρ̂C . (5.9)

In the tripartite star state we have a central qubit A
which is entangled to other qubits B and C individually.
The qubits B and C are not entangled with each other
and are referred to as peripheral qubits. The form of the
tripartite star state is,

|S〉 = 1
2(|000〉+ |100〉+ |101〉+ |111〉). (5.10)

When the central qubit A is accelerated, the total quan-
tum coherence in the system is,

CT (ρ̂) = 1 +
2 Li−1/2(tanh2 r)

cosh r sinh2 r
. (5.11)

The star state has both global coherence and local coher-
ence and they are

CG(ρ̂) = −1
4 +

7 Li−1/2(tanh2 r)
8 cosh r sinh2 r

, (5.12)

CL(ρ̂) = 5
4 +

9 Li−1/2(tanh2 r)
8 cosh r sinh2 r

. (5.13)

When the peripheral qubit B is being accelerated, the
total coherence of the system calculated using the `1-norm
of coherence is,

CT (ρ̂) = 3
2 +

3 Li−1/2(tanh2 r)
2 cosh r sinh2 r

. (5.14)

The corresponding global of the system is,

CG(ρ̂) = 1
4 +

3 Li−1/2(tanh2 r)
8 cosh r sinh2 r

. (5.15)

The local coherence of the system on accelerating the
peripheral qubit is same as the local coherence when the
central qubit is being under acceleration, the expression
for which is given in Eq. (5.13). In both the cases namely
when the central qubit and the peripheral qubit in the
r → 0 limit the results corresponding to the inertial
frame are recovered. For the star states, the variation of
quantum coherence is qualitatively similar when both the
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central and peripheral qubits are accelerated. The global
local and total coherence have a maximum value in the
inertial frame and decreases with acceleration and attain
a saturation value for large values of the acceleration as
shown in Fig. 8. From the analysis of the two different
situations where either the central qubit or the periph-
eral qubit is being accelerated, we find that both global
and local coherence have similar decoherence properties.
This shows that Unruh decoherence affects all kinds of
quantumness equally.
Next we look at the situation where two qubits are in

non-inertial frames of reference. Due to the asymmetry of
the star states, there are two possibilities for this situation
viz: (i) when a peripheral qubit and a central qubit are
accelerated ; (ii) when both the peripheral qubits are
accelerated. The first situation can be analysed when both
Bob’s and Charlie’s qubits are simultaneously accelerated.
The total coherence of the system in this case is,

CT (ρ̂) = 1
2 +

Li−1/2(tanh2 r1)
cosh r1 sinh2 r1

+ 1
2
Li−1/2(tanh2 r2)
cosh r2 sinh2 r2

+
Li−1/2(tanh2 r1)
cosh r1 sinh2 r1

Li−1/2(tanh2 r2)
cosh r2 sinh2 r2

. (5.16)

Under the same conditions the global and local coher-
ence of the star state are,

CG(ρ̂) = 1
2 +

1 Li−1/2(tanh2 r1)
4 cosh r1 sinh2 r1

−
1 Li−1/2(tanh2 r1)
4 cosh r2 sinh2 r2

+
5 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
, (5.17)

CL(ρ̂) = 1
2 +

3 Li−1/2(tanh2 r1)
4 cosh r1 sinh2 r1

+
3 Li−1/2(tanh2 r2)
4 cosh r2 sinh2 r2

+
3 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.18)

In the second case when Alice and Bob’s qubits are
being accelerated, the total coherence of the system is,

CT (ρ̂) = 1
2 +

Li−1/2(tanh2 r1)
cosh r1 sinh2 r1

+
Li−1/2(tanh2 r2)
cosh r2 sinh2 r2

+ 1
2
Li−1/2(tanh2 r1)
cosh r1 sinh2 r1

Li−1/2(tanh2 r2)
cosh r2 sinh2 r2

. (5.19)

The corresponding global and local coherences are,

CG(ρ̂) =
Li−1/2(tanh2 r1)
4 cosh r1 sinh2 r1

+
Li−1/2(tanh2 r2)
4 cosh r2 sinh2 r2

+
Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)
8 cosh r1 sinh2 r1 cosh r2 sinh2 r2

, (5.20)

CL(ρ̂) = 1
2 +

3 Li−1/2(tanh2 r1)
4 cosh r1 sinh2 r1

+
3 Li−1/2(tanh2 r2)
4 cosh r2 sinh2 r2

+
3 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.21)
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Figure 9: A plot of the variation of the normalized decoher-
ence (a) with the acceleration parameter r and (b) with the
number of accelerated qubits n for a fixed values of r = 1.5
and r = 2.0. The total number of qubits in the system is

N = 11.

All the different quantum coherences attain their in-
ertial values in the limit r → 0. From the expressions
of the total, global and local coherence we find that the
CT = CG + CL for all the different cases of star states.

In the tripartite systems likeWW̄ -states and star states,
the total coherence in the system is distributed as global
and local coherence. Here by the word global coherence we
mean coherence arising due to all the types of non-classical
correlations (both local and entanglement type) between
the qubits. Hence the global coherence does not fall to
zero in the infinite acceleration limit and rather saturates
to a finite value due to the presence of local correlations.
The effect of non-inertial motion on local coherence has
not been investigated before. From our results we can
see that the intra-qubit superpositions do not completely
vanish in the infinite acceleration limit which is a very
interesting result. In the tripartite systems when either
one or two of the parties are in non-inertial frames of
reference, the accelerated qubits get split into two modes
corresponding to the two Rindler regions. The degradation
of quantum coherence is because part of the coherence
becomes inaccessible to experimental measurement. Both
the global and local coherence decay at the same rate.
Hence we find that the acceleration affects the interqubit
and intraqubit properties in the same manner.

VI. APPLICATIONS

VI.1. Relativistic effects on multipartite state
distributed over a network

Let us consider a network of satellites sharing a mul-
tipartite quantum state. An important study, could be
about the effect of acceleration on the quantum coher-
ence of the multipartite system. To understand this, we
measure the quantum coherence of the N -partite GHZ
and W-state. In the N partite state, we have n number
of uniformly accelerated qubits. First let us consider a
N -partite GHZ state,

|GHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (6.1)
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The total quantum coherence is C`1(ρ̂) = 1 for this state.
Out of the N -qubits if n qubits undergo acceleration, the
quantum coherence of the state is,

C(ρ̂) =
n∏
k=1

Li−1/2(tanh2 rk)
sinh2 rk cosh rk

. (6.2)

Let Ck(ρ̂) be the quantum coherence of the N -partite
system when only the kth qubit is being accelerated. Us-
ing this the coherence of the N -partite system with n
accelerating qubits can be written as,

C(ρ̂) =
n∏
k=1

Ck(ρ̂). (6.3)

When all the satellites have the same acceleration, the
quantum coherence simplifies to C(ρ̂) = [Ck(ρ̂)]n. From
this result we can see that the quantum coherence of the
N -partite GHZ state falls exponentially with the increase
in the number of accelerating satellites. This exponential
fall is a manifestation of genuinely multipartite form of
quantum coherence where the loss of even a single qubit
makes the state completely incoherent. Hence a small
acceleration of each of the m qubits leads to a huge loss
of coherence in the whole system. To put this into a nu-
merical perspective let us consider a 11 qubit GHZ state
without any of the qubits under acceleration. The quan-
tum coherence of such a system is C`1(ρ̂) = 1 and let us
consider r = 2.0 for each of the qubit. The coherence when
only one qubit is accelerating is C`1(ρ̂) = 0.8988. Now
when 10 qubits start accelerating, we can see that the total
coherence reduced to C`1(ρ̂) = (0.8988)10 = 0.3439. For
very large values of n, the quantum coherence C`1 → 0.
Since the reduction of quantum coherence depends on
its distribution in multipartite system, the results ob-
tained here might hold for entanglement as well. This is
because coherence and entanglement are distributed in
a similar manner. So we can expect entanglement to fall
exponentially similar to quantum coherence. Hence when
quantum information is shared between a network of satel-
lites, the quantum coherence is a function of the number
of accelerating satellites and the amount of acceleration.

Next we consider the N -partite W-state,

|W 〉 = 1√
N

(|00 · · · 01〉+ |00 · · · 10〉+ · · ·+ |10 · · · 00〉).

(6.4)

In the non-relativistic scenario the total quantum coher-
ence of this state in the non-inertial frame of reference is
C`1(ρ̂) = N − 1. Here if n qubits start accelerating, the

quantum coherence of the N -partite state changes to,

C`1(ρ̂) = 2
N

∑
1≤i,j≤n
i<j

Li−1/2(tanh2 ri)
sinh2 ri cosh ri

Li−1/2(tanh2 rj)
sinh2 rj cosh rj

+ 2
N

(N − n)
N∑
i=1

Li−1/2(tanh2 ri)
sinh2 ri cosh ri

+ (N − n)(N − (n+ 1))
N

. (6.5)

In the large N limit, when n ≈ N the first term which
is a product of two polylog functions dominates over the
second and the third term. Hence we would see the quan-
tum coherence falling as polynomial function of second
order. When n� N in the large N limit, the third term
dominates over the first and second term. Consequently
the decrease of quantum coherence due to the relativistic
effects will be minimal under such situations. If accelera-
tion is the same for all the satellites then we have,

C`1(ρ̂) = 2
N

n(n− 1)
2

[
Li−1/2(tanh2 ri)
sinh2 ri cosh ri

]2

+ 2
N

(N − n)n
[
Li−1/2(tanh2 ri)
sinh2 ri cosh ri

]

+ (N − n)(N − (n+ 1))
N

. (6.6)

Since the quantum coherence of the N -partite W-state
is (N − 1), it is not possible to compare it with the
coherence loss of the GHZ state. To make a comparison
between the coherence loss of the GHZ and W-states we
define,

CN`1
(ρ̂) =

CR`1
(ρ̂)

CNR`1
(ρ̂)

, (6.7)

where CN`1
is the normalized amount of quantum coherence

and CR`1
is the amount of relativistic coherence and CNR`1

is the quantum coherence of the non-relativistic state.
For the GHZ state CNR`1

= 1 and so CN`1
(ρ̂) = CR`1

(ρ̂).
In the case of the W-state, for r = 2.0, CR`1

(ρ̂) = 8.2430
and CNR`1

= N − 1. The normalized amount of quantum
coherence in the system when 10 out of 11 qubits are being
accelerated is CN`1

= 0.8243. Hence, for the same number
of quantum states and acceleration, we find that the
quantum coherence of W-state is more robust to Unruh
decoherence when compared with GHZ state. This implies
that in a multipartite system sharing quantum coherence
in a bipartite manner protects it from decoherence due
to relativistic effects.
Figs. 9(a) and 9(b) depicts the relativistic quantum

coherence of the system. In Fig. 9(a) we plot the change
in quantum coherence with r for both GHZ and W-states.
Here we consider two situations where one qubit is being
accelerated or 10 qubits are being accelerated. In the first
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case, where one qubit is under acceleration the loss of
coherence is minimal. Compared to the first case, we find
that the coherence loss is much higher when 10 qubits
are accelerated. Also we find that among these states, the
W-state with increasing accelerating qubits is more robust
to decoherence. In Fig. 9 (b) we plot the coherence as a
function of the number of accelerating qubits. We find
that the loss of coherence is higher with increase in the
number of accelerating qubits. Also for a given number of
accelerating qubits, the GHZ states experience a higher
loss of coherence.

VI.2. Coherence degradation at infinite
acceleration

The entanglement degradation in the highly relativistic
situation has been explained in Ref. [31] in the context
of a bipartite systems. In Ref. [31], the authors consider
the two qubit case where Alice is an inertial observer and
Bob being non-inertial with uniform acceleration. In the
infinite acceleration limit, non-inertial Bob is close to the
Rindler horizon Ref. [31], which can be considered as the
event horizon from the perspective of a black hole. It is
well known that a spherical non-rotating static black hole
can be described using a Schwarzchild space-time. This
can be approximated by Rindler co-ordinate in Minkowski
space-time in the infinite acceleration limit [80]. Hence
in the existing scenario, we consider Alice and Bob to be
close to the event horizon, such that inertial Alice falls
into a static black hole and accelerating Bob close to event
horizon escapes from falling into it.

Similarly our work investigates the quantum coherence
degradation in tripartite systems due to relativistic effects.
Here we consider three qubits, one each in the possession
of Alice, Bob and Charlie. Degradation of quantum co-
herence has been observed when either a single qubit or
two qubits are being accelerated. From our results in Sec.
III, for both GHZ and W-states we notice a decrease in
quantum coherence, but the coherence freezes at a finite
amount in the infinite acceleration limit. The entire coher-
ence in the GHZ and W-state is due to the correlations
between the qubits. In a similar context to understand
the relativistic effects on local coherence we study the
|+ ++〉 separable state. The qualitative behavior of the
local coherence in the |+ ++〉 state is similar to that of
the global coherence of the GHZ and W-states. Hence we
conclude that when an inertial observer falls into a black
hole, the quantum correlations and quantum superposi-
tion shared with the non-inertial observer does not vanish
completely.

VII. RESULTS & DISCUSSION

The relativistic effects on the quantum coherence of
a multipartite system is investigated using the `1-norm
measure of coherence. Initially all the qubits are in an

inertial frame and can be described using Minkowski
space-time coordinates. When some of the qubits are un-
der acceleration, the Minkowski space corresponding to
them is divided into two causally disconnected regions.
From the Minkowski modes, the Rindler modes can be ob-
tained via the Unruh modes. When we consider a Gaussian
Minkowski smearing function it can be approximated by a
single Unruh mode. Under the monochromatic approxima-
tion we can describe the states using Rindler co-ordinates
in the Minkowski space time. Hence the quantum co-
herence initially present in the Minkowski co-ordinates
is distributed between the two Rindler co-ordinates of
which only one is experimentally accessible. The coher-
ence which can be measured in the accessible Rindler
region is called the accessible coherence. The coherence
corresponding to the other Rindler region is called the
inaccessible coherence since it cannot be experimentally
measured.
First we investigate the tripartite quantum systems.

Based on the SLOCC classification, the tripartite states
are classified into the GHZ class and the W classes. For
both the GHZ and W-states we find that the quantum
coherence decreases with increase in acceleration and
attains a saturation value for very high accelerations.
Here we note that coherence can exist due to correlations
between qubits which is known as global coherence. Also
coherence may arise due to superposition between the
levels within a qubit, referred to as local coherence. The
global coherence is the only coherence present in the GHZ
and the W-states.

Next we consider a separable state of the form |+ ++〉,
to understand the relativistic effects on local coherence.
The local coherence also decreases with increase in accel-
eration and saturates at higher acceleration. The local
coherence and the global coherence are complementary
to each other and the total coherence is a combination of
these two types of coherences. Some tripartite quantum
states have both local and global coherence. As an exam-
ple we consider two such quantum states namely WW̄
and star states. In the WW̄ state, the global coherence
is distributed equally between the three qubits. There is
an asymmetric distribution of quantum coherence in the
star states. For both these states, all the different forms
of coherence namely the global, local and total coherence
decreases with an increase in acceleration.
The entanglement of the bipartite system decreases

due to relativistic effects and reaches zero in the infinite
acceleration limit [31]. But the tripartite entanglement
measured in Ref. [76] using the π-tangle does not go to
zero for higher values of acceleration. Due to relativistic
effects the quantum discord of a system also does not go to
zero in the infinite acceleration limit [55]. For the tripartite
entanglement, the non-vanishing nature is because the
π-tangle is not a complete measure of entanglement. But
for the quantum discord this is a fundamental feature of
the underlying quantum correlations. From our work we
find that there is a qualitative relationship between the
total quantum correlations and the quantum coherence
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Figure 10: A schematic illustration of the bifurcation of the
Bell state which displays linear loss of coherence into two
extreme classes of states viz. GHZ class with exponential loss
of coherence and W class with polynomial loss of coherence.

of a relativistic quantum system.
In quantum information theory, it is not possible to dis-

tinguish between Bell states and the GHZ states through
an estimation of entropy. But we can calculate the quan-
tum coherence of these two states when they are in
an inertial frame of reference. Here we again find that
C(|ψBell〉) = C(|ψGHZ〉) and so we will not be able to
distinguish between these two states. This is because the
GHZ state 1√

2 (|000〉+ |111〉) can be rewritten as an equiv-
alent Bell state 1√

2 (|00〉 + |11〉) where |0〉 = |00〉 and
|1〉 = |11〉 are redundantly encoded logical qubits encod-
ing the same quantum information. Next we consider the
situation where part of the system is moving with con-
stant acceleration. When the single qubit in GHZ and Bell
states move with constant acceleration it is not possible
to distinguish between them. On the contrary when the
logical qubit of the GHZ state is in an accelerated motion,
then we have C(|ψBell〉) 6= C(|ψGHZ〉) and the reason for
this is that the size of the logical qubit under uniform
acceleration is bigger than that of the regular qubit of the
Bell state. This result is very interesting from a quantum
information theory perspective where in general we can-
not distinguish between Bell and GHZ states or between
multipartite GHZ states with different number of qubits.
But a measurement of quantum coherence combined with
relativistic motion can differentiate them. Thus coher-
ence measurement of accelerated systems can be used in
quantum state discrimination.
Next we consider a N -partite GHZ state and W-state

and estimate the quantum coherence when n < N qubits
are accelerated. The GHZ and W-state represent the
two extremes of coherence sharing. In the GHZ state, the
coherence is present in a maximally entangled multipartite
manner such that the loss of a single qubit destroys the
entire coherence in the system. We find that in a GHZ
state when the number of accelerating qubits n increases,
the coherence falls exponentially. The coherence in a W-
state is shared in a local bipartite fashion. Here in the
case of a W-states we observe that the coherence falls
polynomially with increase in the number of accelerating

qubits. In Fig. 10, through a flow chart style we illustrate
the quantum coherence decrease as we move from n = 2
to n > 2 quantum system.

The Bell states describe the maximally entangled states
in a two qubit system. When one of the qubits becomes
non-inertial, then the coherence of the Bell state is given
by C`1 = Li−1/2(tanh2 r)/(sinh2 r cosh r). There is only
one way to entangle or correlate in a bipartite state.
When we move to multipartite systems, there is more
than one way to correlate the states. The GHZ and W-
states denote the two extreme forms of correlation sharing
where it is shared in a multipartite fashion in the former
case and in a bipartite manner in the later one. When
more than one qubit is accelerated, the coherence falls
exponentially in the GHZ state and polynomially in the
W-state. As we move from the bipartite to the multipartite
case, the linear fall of coherence observed in Bell type
states changes to exponential fall for the GHZ states
and polynomial decrease for the W-state. Hence the Bell
type maximally entangled state clearly bifurcates into two
extreme classes of entangled states with exponential fall
(GHZ class) and polynomial fall (W-state) of coherence.
This also proves that the W-state is more robust to Unruh
decoherence compared to the GHZ state. This is because
the coherence is shared in a genuinely multipartite manner
in a GHZ state, but in a W-state it is shared only in a
bipartite way. For large N W-state, the loss of a few
qubits results in a W-like state. This result might be
useful for satellite based quantum communication, where
some of the satellites are moving with very high velocities.
In Ref. [81] the quantum coherence of multipartite W-
states for Dirac field has been calculated in terms of the
Kruskal modes in certain limiting cases. But in our work,
we consider multipartite W-states of bosonic modes and
compute quantum coherence in a very general setting
where arbitrary number of qubits are being accelerated.
In our method the Minkowski modes are converted into
Rindler modes in the noninertial frame.
A spherical non-rotating blackhole is described by a

Schwarzchild space-time. In the infinite acceleration limit,
the Schwarzchild space-time can be approximately de-
scribed by Rindler co-ordinates in Minkowski space time.
Hence our investigation in the infinite acceleration limit
can be used to analyze quantum coherence in the context
of black holes. Our study shows that when Alice falls
into a black hole, she might still share quantum coher-
ence with Bob and Charlie who are escaping from the
black-hole. Hence we conclude that quantum correlations
and quantum superposition present in a system do not
completely vanish in the relativistic limit.
In our work we have used the single mode approxima-

tion where we use single frequency global modes. This
can be experimentally realized using localized sources
and detectors. Some proposals towards this end might
include the use of localized projective measurements [82],
homodyne detection [51] and accelerated cavities [83, 84].
Here we note that for a pure state, the l1 norm measure
of coherence is equal to the robustness of coherence [73],
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which can be directly estimated using the interference
of fringes. A possible method is the use of Berry phase
atomic interferometry experiment [85, 86], in which one
of arm of the interferometer is under non-inertial motion.
The phase difference between the inertial and non-inertial
arms can give us the change in coherence due to the
non-inertial motion. Hence an experimental verification
of relativistic effects on quantum coherence might be an
interesting future work. On the theoretical side an investi-
gation on the quantum coherence effects in curved space
time is also an interesting topic to explore.
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