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Recently some interesting first-order statements independent of Peano Arithmetic
(P) have been found. Here we present perhaps the first which is, in an informal sense,
purely number-theoretic in character (as opposed to metamathematical or
combinatorial). The methods used to prove it, however, are combinatorial. We also
give another independence result (unashamedly combinatorial in character) proved
by the same methods.

The first result is an improvement of a theorem of Goodstein [2]. Let m and n be
natural numbers, n > 1. We define the base n representation of m as follows:

First write m as the sum of powers of n. (For example, if m = 266, n = 2, write
266 = 28 + 23 + 21.) Now write each exponent as the sum of powers of n. (For
example, 266 = 223 + 22 + 1 +2 1 . ) Repeat with exponents of exponents and so on until
the representation stabilizes. For example, 266 stabilizes at the representation
2*+l + 22 + l+2l.

We now define the number Gn(m) as follows. If m = 0 set Gn(m) = 0. Otherwise
set Gn(m) to be the number produced by replacing every n in the base n
representation of m by n +1 and then subtracting 1. (For example,
G2(266) = 333+1 + 33 + 1 +2) .

Now define the Goodstein sequence for m starting at 2 by

m0 = m, mx = G2{m0), m2 = G^mJ, m3 = G^m2), ... .

So, for example,
266O = 266 = 222+1 + 22+1 + 2

X = 333+1 + 33 + 1 + 2 ~ 1O38

2662 = 444+1 + 44+1 + l ~ 10616

2663 = 5s5+1 + 55+1 ~ 1010-000.

Similarly we can define the Goodstein sequence for m starting at n for any n > 1.

THEOREM 1. (i) (Goodstein [2]) Vm 3/c mk = 0. More generally for any m, n > 1
the Goodstein sequence for m starting at n eventually hits zero.

(ii) Vm 3k mk = 0 (formalized in the language of first order arithmetic) is not provable
in P.
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So, belying its early form, the sequence mk eventually hits zero. However despite
this fact being expressible in first order arithmetic we cannot give a proof of it in
Peano Arithmetic P. As we shall see later the reason for this is the immense time it
takes for the sequence mk to reach zero. (For example, the sequence 4k first reaches
zero when k = 3 x 2402-653-2"-3, which is of the order of io121-210-700.)

Before proving Theorem 1 we state our second result.
A hydra is a finite tree, which may be considered as a finite collection of straight

line segments, each joining two nodes, such that every node is connected by a unique
path of segments to a fixed node called the root. For example:

top node

root

A top node of a hydra is one which is a node of only one segment, and is not the
root. A head of the hydra is a top node together with its attached segment.

A battle between Hercules and a given hydra proceeds as follows: at stage n
(n ^ 1), Hercules chops off one head from the hydra. The hydra then grows n "new
heads" in the following manner:

From the node that used to be attached to the head which was just chopped off,
traverse one segment towards the root until the next node is reached. From this node
sprout n replicas of that part of the hydra (after decapitation) which is "above" the
segment just traversed, i.e., those nodes and segments from which, in order to reach
the root, this segment would have to be traversed. If the head just chopped off had
the root as one of its nodes, no new head is grown.

Thus the battle might for instance commence like this, assuming that at each
stage Hercules decides to chop off the head marked with an arrow:

after stage 2 after stage 3
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Hercules wins if after some finite number of stages, nothing is left of the hydra but
its root. A strategy is a function which determines for Hercules which head to chop
off at each stage of any battle. It is not hard to find a reasonably fast winning strategy
(i.e. a strategy which ensures that Hercules wins against any hydra). More
surprisingly, Hercules cannot help winning:

THEOREM 2. (i) Every strategy is a winning strategy.

We can code hydras as numbers and thus talk about battles in the language of
first order arithmetic. We cannot formalise Theorem 2(i) as a statement of this
language, as strategies are infinitary objects. However, we can if we restrict ourselves
to recursive strategies. In that case:

THEOREM 2. (ii) The statement "every recursive strategy is a winning strategy" is
not provable from P.

In proving the theorems we rely on work of Ketonen and Solovay [3] on
ordinals below e0, which in turn develops earlier work by the present authors,
Harrington, Wainer, and others. Gentzen [1] showed that using transfinite induction
on ordinals below e0 one can prove the consistency of P, and the Ketonen-Solovay
machinery we use here can be viewed as illuminating in more detail the relationship
between e0 and P.

(Note: Goodstein proved the following: if h : N -> N is a non-decreasing function,
define an fi-Goodstein sequence bQ,bx,... by letting bi + l be the result of replacing
every h(i) in the base h(i) representation of b{ by h{i +1), and subtracting 1. Then the
statement "for every non-decreasing h, every Ji-Goodstein sequence eventually
reaches 0" is equivalent to transfinite induction below e0.)

To prove Theorem 1 we first define the base n representation more formally, at
the same time defining the ordinal on(m), in Cantor Normal Form, which results
from replacing every n in the base n representation of m by a>.

Suppose m,ne N (the set of natural numbers), n > 1 and

m = nkak + nklak_l+ l 0

For x e iV or x = co, set
k

fm'"(x) = £ a,-x/ln(x).
i = 0

(This definition is by induction on m, starting with /0>"(x) = 0.) Then for
m > 0, Gn(m) = / m ' " ( n + l ) - l and on(m) = fm'n{(o). Set GB(0) = on(0) = 0. Finally
for n e N we define an operation <<x>(n) on ordinals a < e0 by induction on a:

and for <5 > 0,
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LEMMA 3. (i) For m ^ 0, n > 1, if a = on + l{m) then on + 1(m— 1) = <<X>(H).

(ii) For n > 1, <on(m)>(n) = on+1{Gn{m)).

Proof, (i) Consider the base n +1 representation of m: let

with 0 < a,- < w, and (since we may suppose m ^ 0) let j be minimal such that
cij =/= 0. The result is clear if j = 0 so we may assume that ; > 0 and that the result
holds for all 0 < m' < m. Then

whilst

Using the inductive hypothesis it is easy to see that these are equal.

P

(ii) Let m = £ bin
p'"(n) where 0 ^ b{ < n and bj-, j= 0. If j = 0 then it is clear that

<on(m)>(n) = on + 1(Gn(m)) so assume j > 0. Then

and

By(i)

and

o. + i((n + l ) / A l I ( "+ l ) - 1 - l ) = <G)<''-"(«»w>(n),

which gives the required result.

Thus for each Goodstein sequence bo,b1,b2,--- there is a corresponding
sequence

on{b0), On+iibJ, on + 2{b2), ...
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of ordinals. (E.g. in the example given before we would have

If we write <a>(nl5 n2,..., nk) for C-X<(a)(ni)Xn2)---)>(nfc) w e c a n write this
sequence as

on(b0) = a, <a>(n), <a>(n,n+l), <a>(n, n + 1 , n + 2), ... .

It is not hard to see that for any a < e0 and ne N,

<a>(n) < a if a > 0 .

Now we already have Theorem 1 (i) (following Goodstein). For suppose m, n
were such that the Goodstein sequence for m starting at n was always positive. Then
the corresponding sequence of ordinals would be an infinite, strictly decreasing
sequence which is an impossibility (by transfinite induction below e0).

In order to prove (ii) we introduce the Ketonen-Solovay machinery (see [3], [4]
for details). First we define another operation {<x}(n) for a < e0 and neN by
induction on a:

(n) = 0,

and for limit <5,

Note that (a}(n) < a for a > 0. Now define the notion of a-large finite sets for
0 < a < e0 by induction on a: If X a N is finite, enumerate the elements of X in
ascending order as Xo, X y,..., Xm _,.

X is 1-large if and only if \X\ ^ 2;

X is a-large if and only if X — {X0] is {a.}(X^Aarge.

Now write {a}(n1,..., nk) for { ... {{a}(n1)}(n2)... }(nk). Then by induction on a we
can show that X is a-large if and only if {cc}(X1,X2,..., Xm_{) = 0. For details see
Lemma 11 of [4].

Define co0 = w, (on + l = of".
The above concepts can be put in the language of first order arithmetic (with

ordinals < £0 replaced by suitable notations for them) and thus make sense in a
nonstandard model of P (see [4]).

THEOREM 4 (Ketonen-Solovay; see [3], [4]). (i) The function Y(a, b) = the
greatest c such that [a, b~\ is coc-large is an indicator for models of P.

(ii) The statement Va Vc 3b ([a, b~] is a>c-large) is independent of P and is equivalent
in P to Con (P+ Tt) where Tx is the set of the true I ^ sentences.

(iii) The functions gn(x) = least y ^ x such that [x, y~\ is con-large are provably (in P)
total recursive functions, and for any provably total recursive function f there exists
ne N such that f(x) < gn{x)for all sufficiently large x e N.
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Write p -* a if and only if for some j x , . . . , jk < n,
n

a = {P}Ui,-,Jk)'>

P => a if and only if the same holds with jY = ... = jk = n.

The following lemma is a standard application of these concepts.

LEMMA 5. (i) ///?=> a and n > 0 f/ien a / => a/.
n n

(ii) //0<i<7<nrten{j3}O-)=f W(i).

(iii) P => txif and only if P-* a..
n n

(iv) Suppose P = ojPi + ... + coPn, y = a>n + ... + coym, and

T/ien i/y -» 5 t/ien j9 + y -> P + d. In particular P + y -»• /?.

Having introduced this machinery we shall apply it to link the operations {a}(n)
and <a>(n) and hence obtain our result.

LEMMA 6. Suppose P -> a and 0 < n ^ nt < n2 < ... < nk. Then
n

Proof. The proof is by induction on p. Assume the result holds below p. By
Lemma 5 (iii),

so (jS}(«i) -*• {a}^ ) . Hence by inductive hypothesis

PROPOSITION 7. For a// a < e0 and j e N, <a>(j) -* {a}(j).

Proof by induction on a. If a is 0 or a successor, the result is trivial. If
<x = coy+i(p + \) then from the definitions {a}(;) = wy+1/? + a// , and

7) = {«}(./) + <©'>(;)• Applying Lemma 5 (iv), <a>(;) -* {«}(;)•

If a = cos(P+1), 5 limit, then by inductive hypothesis

7 WO")-
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By Lemma 5(i), (o<5>U) -> (Dm\ Thus

< a > ( ; ) = c o ^ + co<5>U)j + (a)<s>U)y{j) -> co5p + co<3>U) by Lemma 5 (iv)

PROPOSITION 8. Let bo,bl,b2,... be the Goodstein sequence for m starting at n
and let k be minimal such that bk = 0. Then [n — 1, n + k~\ is on(m)-large.

Proof. Consider the corresponding sequence of ordinals

on{m) = on(b0) = a

on+k{bk) = on+k{0) = 0 = <a>(n,

By Lemma 6 and Proposition 7,

^ ^ < > ( , , ) = 0 .

Hence [n — 1, n + /c] is a-large.
Now to prove (ii) of Theorem 1 suppose we had

P h Vm 3k mk = 0 . (*)

By Theorem 4 and the methods of indicator theory (see [5]) we can find M |= P and
nonstandard ce M such that

M\= -i 3y ([1, y~\ is coc-large).

(Briefly, this is done by taking a countable nonstandard model J of P and
nonstandard c,aeJ such that Y(c, a) is nonstandard but less than c — 1, where y is
as in Theorem 4 (i). Now the indicator Y having nonstandard value on (c, a) means
precisely that there is an initial segment of J which is a model of P and lies "between"
c and a, that is, contains £ but not a. We can let M be such an initial segment.)

In M, take d = 22 2 with c iterated exponentiations, so o2(d) = a>c. By (*) take
e € M such that de = 0. Since the proof of Proposition 8 can be carried out in P (see
the discussion preceding Lemma 4 in [4]), we have in M

[1, 2 + e] is wc-large,
a contradiction.
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We sketch the proof of Theorem 2, which is similar to that of Theorem 1. First
assign to each node in a given hydra an ordinal below e0 as follows:

To each top node assign 0.

To each other node assign ojai + ... + (oa", where <Xj ^ .
assigned to the nodes immediately "above", {o0 = 1).

Thus our original example would have the assignments
o

0 O

an are the ordinals

The ordinal of a hydra is the ordinal assigned to its root. For any strategy a, we
can define an operation [a]CT(n) which maps the ordinal of the hydra after stage n — 1
to the ordinal of the hydra after stage n, where a is the strategy being used.

To show Theorem 2 (i) it will suffice for the reader to check that for any strategy
a, any 0 < a < £0 and ns N,

[ a ] » < a.

For (ii) we shall produce a recursive strategy T for which

[«]t(n) = {<*}(«+ 1).

Then a proof like that of Theorem 1 will show that in P we cannot prove that T is a
winning strategy.

An algorithm for T is as follows: starting from the root, we travel "up" the tree in
such a way that, having reached a node, we travel to the node immediately above it
which has minimal assigned ordinal among all the nodes immediately above it. (If
more than one of them has minimal ordinal we choose, say, the leftmost.) Eventually
we reach a top node and the head it is attached to is the one to chop off.

Thus in the previous diagram the head determined by x is starred, and the battle
determined by x begins thus:

after stage 1 after stage 2
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(Note: A proof that T is a winning strategy is equivalent to a proof of "e0-induction
with respect to the predecessor function p(cc, n) = (a}(n)" which amounts in turn to a
proof that the function Xnx . gn(x) of Theorem 4 (iii) is total recursive, and this of
course is impossible in P.)

REMARK. Let /I f c denote Peano's axioms with induction restricted to Sk'
formulae. Then using results in [4] we can refine Theorem 1 to give, for k e N, k ^ 1,

THEOREM 1'. (i) For each fixed peN, / I k \- Vm,n > 1 {if m < n""nP [where n
occurs k times) then the Goodstein sequence for m starting at n eventually hits zero).

(ii) I'Lk \-f Vm,n > 1 (if m < n""" (where n occurs k + l times) then the Goodstein
sequence for m starting at n eventually hits zero).

Similarly if we restrict ourselves in Theorem 2 to hydras of height k + l (i.e. no
node is more than k+l segments away from the root) then we cannot prove that
"every recursive strategy is a winning strategy" using just /Xfc. In particular the
function giving the lengths of battles for hydras of height 2 with strategy x is not
provably total in /Zx and hence is not primitive recursive.
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