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Abstract 

 

Supervised machine learning, where the goal is to predict labels of new instances by training on labeled data, 

has become an essential tool in biomedical data analysis. To make supervised machine learning more 

accessible to biomedical scientists, we have developed Galaxy-ML, a platform that enables scientists to 

perform end-to-end reproducible machine learning analyses at large scale using only a web browser. Galaxy-

ML extends Galaxy, a biomedical computational workbench used by tens of thousands of scientists across the 

world, with a machine learning tool suite that supports end-to-end analysis.  

Body 

 

Machine learning (ML) has become an essential tool in biomedicine to make sense of large, high-dimensional 

datasets such as those found in genomics, proteomics, and imaging1–3. In supervised machine learning, these 

datasets are used to build statistical models from high-dimensional feature sets that can predict continuous 

values (regression analysis) or discrete classes (classification). Example applications of ML to biomedicine 

include developing predictive models for drug metabolism rates using brain images4,5, genotype-phenotype 

associations3, and drug response in model systems6,7. Deep learning, which leverages multi-layer neural 

networks, has been used for prediction of splice sites8, protein structures9, and the presence of cancer from 

histopathology images10. 

 

Many software libraries, tools, and platforms have been developed to make machine learning easier to use. 

Software libraries such as scikit-learn11 and Keras27 provide programmatic abstractions that make it simpler to 

build machine learning pipelines for bioinformaticians or computational scientists. Selene12 and Ludwig 

(https://github.com/uber/ludwig) use higher-level abstractions in the form of configuration files and predefined 

building blocks like encoders and neural network architectures to simplify deep learning. Neural network 

visualization and development toolkits such as Tensorboard 

(https://www.tensorflow.org/guide/summaries_and_tensorboard) and Azure ML Studio 

(https://studio.azureml.net/) provide interactive interfaces for understanding and improving neural networks. 

 

Despite these successes, machine learning is often difficult to use in biomedicine. A successful application of 

machine learning to biomedical data must be able to integrate multiple analysis tools, be easily accessible, 

scale to large datasets, and reproduce results. Most ML tools lack a graphical user interface, reducing 

accessibility for scientists with limited informatics skills. As the size and number of biomedical datasets 

continues to grow, computational infrastructure such as workflow engines and job schedulers are needed for 

scaling and reproducing machine learning applications in biomedicine and for benchmarking multiple machine 

learning methods. Addressing these challenges requires an integrated software solution that (1) makes 
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machine learning accessible to biomedical scientists who have limited programming and informatics 

knowledge and (2) connects machine learning with the broader ecosystems of biomedical analysis tools and a 

scalable computational workbench.  

 

To meet this need, we have developed Galaxy-ML (Figure 1), an extension of the Galaxy platform 

(http://galaxyproject.org)13 that features a large and diverse suite of supervised machine learning tools. Galaxy 

is a user-friendly web-based computational workbench used by tens of thousands of scientists across the 

world for a wide variety of biomedical data analysis, including genomics, proteomics, metabolomics, 

cheminformatics, image processing, and flow cytometry. A key aspect of Galaxy is its web-based user 

interface, enabling anyone to use complex analysis tools and multi-tool workflows without any knowledge of 

programming. Galaxy-ML uses the Galaxy web interface to make machine learning tools and pipelines widely 

accessible. 

 

 
Figure 1.Panel A: The Galaxy-ML platform provides all the tools necessary to define a learner, train it, evaluate it, and visualize its 

performance. Panel B is a screenshot of the Galaxy tool to create a gradient boosted classifier. Panel C shows a Galaxy workflow to 

create a learner using a pipeline, perform hyperparameter search, and visualize the results. 

 

Galaxy-ML also provides benefits in scalability, reproducibility, and workflow development. Large machine 

learning analyses, such as optimising hyperparameters and model evaluation across many different datasets, 

can require executing tens of thousands of analyses. Galaxy-ML uses Galaxy’s workflow system to execute 

large-scale analyses by distributing them across one or more computing clusters and running them in parallel. 

Galaxy ensures reproducibility by recording all parameters and tools used, so all analyses, including those for 

machine learning, are completely reproducible. This is critical, as reproducibility continues to gain importance 

in machine learning research14. Galaxy-ML enables end-to-end machine learning analyses that begin with 

processing primary biological data and end with trained machine learning models that can make predictions of 

phenotypic attributes like demographics or prognosis. For instance, a tutorial15 is provided in which Galaxy-ML 
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is utilized to reproduce a study that uses RNA-seq data to predict an individual’s chronological age16,17. End-to-

end workflows are possible because Galaxy-ML’s machine learning tools can be connected to the more than 

7,800 tools available in the Galaxy ToolShed18 for analyzing genomics, proteomics, imaging, and other kinds of 

biomedical data. 

 

Galaxy-ML supports four major steps in machine learning—preprocessing, modeling, ensembling, and 

evaluation—by integrating six machine learning libraries (Table 1) together with additional visualization and 

conversion tools. Scikit-learn11 provides the foundation for Galaxy-ML with approaches for all four major steps; 

most scikit-learn methods are available in Galaxy-ML. Additional libraries are included to meet key needs for 

machine learning in biomedicine, including feature selection, approaches for working with imbalanced 

datasets, and modeling approaches using gradient boosted decision trees, deep learning, and ensembling. 

Using Galaxy-ML, tools from all these libraries can be connected together into complete machine learning 

pipelines and can be stored and reused as an executable workflow. An example pipeline for using RNA-seq to 

predict drug response will (1) normalize gene expression values to bring them into the same scale; (2) select 

genes that show the highest variance; (3) use the selected genes to create a predictive model such as logistic 

regression or gradient-boosted decision trees; (4) use grid search with cross validation to optimize model 

hyperparameters; and (5) visualize model performance from the grid search using a heatmap or parallel 

coordinates plot. Galaxy-ML can be used to create thousands of different machine learning pipelines. 

Documentation, along with tutorials, is available at https://galaxyproject.org/community/machine-learning/, and 

links to the Galaxy-ML code and tool repositories are available in the Methods section. 

 

Software Library Applications 

Scikit-learn11 Various approaches for preprocessing, modeling, ensembling, and evaluation 

Scikit-rebate19 Feature selection 

Imbalanced-learn20 Approaches for working with imbalanced datasets 

XGBoost21  Modeling using high-performance gradient boosting with decision trees or linear 
models 

Keras22 Modeling using deep learning 

Mlxtend23 Modeling using meta-ensembles 

LightGBM28 Modeling using gradient boosting with the LightGBM algorithm 

Table 1. Software libraries integrated into Galaxy-ML and their applications. 

 

We demonstrate the utility of Galaxy-ML in three use cases: (1) extending a machine learning benchmark 

experiment where 4,000 models were created and evaluated on 276 biomedical datasets24; (2) predicting drug 

response activity in cancer cell lines using gene expression datasets using stacked meta-ensembles; and (3) 

recreating deep learning models for genomics that predict, among other attributes, the functional impact of 

genetic variants. The Methods section provides links to complete analysis histories and results so that all 

analyses can be fully reproduced on any Galaxy server with the Galaxy-ML tool suite. All analyses were 

performed on a public Galaxy server at https://usegalaxy.eu and are listed at https://ml.usegalaxy.eu. All 

workflows, data and results can be accessed via a web browser and analyses can be reproduced directly. 

 

In the first use case, we used Galaxy-ML to extend an analysis of machine learning models across 276 

biomedical datasets24—164 classification datasets and 112 regression datasets25. The original analysis 

compared performance of 13 models on the 164 classification datasets. We applied 15 models to the 
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classification datasets and 14 models to the regression datasets, creating a total of 4,028 trained models with 

hyperparameters optimized using grid search. We evaluated all models using 10-fold cross-validation (CV). 

Because many datasets were imbalanced, F1 scoring rather than ROC AUC was used to evaluate 

performance of classification models, and Pearson’s R2 was used to evaluate performance of regression 

models. Performance of classification models are concordant with the initial publication: (a) boosted tree 

models perform best overall (Figure 2a) and (b) automated hyperparameter optimization improves 

performance for many models (Figure 2b). Performance of regression models are similar to those in 

classification, though boosted tree models only modestly outperform random tree models, and hyperparameter 

optimization often improves results most for models with low overall performance (see Methods section M.1.1 

for more details). 

 

 
Figure 2. Pairwise performance comparisons for use cases 1 and 2. Use case 1 pairwise comparisons for classification tasks on 164 

structured biomedical datasets24 show decision tree forests perform best (panel A) and hyperparameter optimization can improve the 

performance of most models (panel B). Use case 2 results for prediction using regression (panel C) and classification (panel D) show 

ensemble approaches that use stacking perform best, though linear-based gradient boosting also performs. In panels A, C, and D, 

heatmaps show the percentage of datasets for which the model listed along the row outperforms the model along the column. For 

instance, in panel A, XGBoost outperforms Gradient Tree Boosting (GTB) from scikit-learn on 38% of datasets, GTB outperforms 

XGBoost on 11% of datasets, and they perform equivalently on 51% of datasets. 

 

 

For the second use case, we implemented stacked meta-ensemble predictors in Galaxy-ML for drug response 

in cancer cell lines using high-throughput gene expression data from RNA-seq. Because cancer cell lines 

serve as models for patient tumors, accurate predictions of drug response can be used to improve 

understanding of cancer systems biology and potentially inform patient treatment recommendations. Gene 

expression and drug response data was obtained from DepMap26. There are two key challenges for this 
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dataset: (1) there are ~50,000 gene expression features but only ~1,000 cancer cell lines and ~700 drugs, so 

preventing overfitting is essential, and (2) the dataset is highly imbalanced because there is a small number of 

cell lines that respond to each drug. 

 

Using Galaxy-ML, we built a meta-ensemble as well as other learners for each drug. The meta-ensemble 

included a linear boosted model, tree boosted model, and k-nearest neighbor regression, and we use principal 

component analysis (PCA) for dimensionality reduction in several learners. Dimensionality reduction was used 

in an effort to address the challenge of using a dataset with a very large number of features. We developed 

predictors for both regression and classification; labels for classification were generated by thresholding drug 

response values and labeling cell lines as responders or non-responders to each drug using a cutoff of z-score 

< -1 for responders. Predictors were scored using average precision to address the challenge of assessing 

model performance on a highly imbalanced dataset, where the goal is to identify responders (true positives) 

amongst a very large number of non-responders. To compare regressors and classifiers, average precision for 

regressors was calculated using rank-ordered predictions, which has been done in past machine learning work 

in this space6. We evaluated each learner using nested CV, with 5-fold CV for 4 repetitions for the outer splits 

and 5-fold CV with two repetitions for the inner splits. Our results show that stacking regressors performed best 

for both regression (Figure 2c) and classification (Figure 2d). Linear boosting approaches also performed very 

well, with results that were on par with the meta-ensembles.  Successful completion of these two use cases 

shows that Galaxy-ML can support large and diverse machine learning experiments. 

 

In the third use case, Galaxy-ML was used to reproduce key results from Selene12, a deep learning toolkit for 

biological sequence data built on the PyTorch library. Using Galaxy-ML, we reimplemented two deep learning 

architectures originally implemented in Selene that model and predict regulatory elements, including 

transcription factor binding sites, DNase I hypersensitive sites, and histone marks. Results from these models 

are within 1% of those reported for Selene (Figure 3, and Methods Section M.3). Critical to this work was the 

implementation of data generators in Galaxy. Data generators meet two important needs: (1) producing new 

examples from existing data to increase the number of instances available for training, and (2) feeding small 

sets of examples to the deep learning model so that the entire training dataset does not need to be loaded into 

memory. This use case demonstrates that Galaxy-ML deep learning tools are general and powerful enough to 

support realistic use cases and that Selene results are reproducible across different deep learning 

implementations. 
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Figure 3. (A) Galaxy workflow to create and train a deep learning model, then use the model for visualization and prediction. (B) 

Precision-recall curve for a deep neural network trained to predict binding sites for a single transcription factor. (C) Precision-recall 

curves for a deep neural network that predicts 919 regulatory element binding profiles. 

 

In summary, Galaxy-ML helps accelerate biomedical research by making machine learning more accessible, 

scalable, and reproducible for all biomedical scientists. Galaxy-ML’s tools are completely generalizable and 

have applications well beyond these use cases. With Galaxy’s web-based user interface, an entire machine 

learning pipeline from normalization, feature selection, model definition, hyperparameter optimization, and 

cross-fold evaluation can be created and run on a compute cluster using a web browser. This makes scalable 

and reproducible machine learning accessible to biomedical scientists regardless of their informatics skills. By 

leveraging the more than 7800 analysis tools available in Galaxy, comprehensive end-to-end analyses can be 

performed, which begins with primary analysis of -omics, imaging, or other large biomedical dataset and 

continues to downstream machine learning tools that build and evaluate predictive machine learning models 

from features extracted from the primary data. The website https://galaxyproject.org/community/machine-

learning/ provides a hub for machine learning in Galaxy and access to all Galaxy-ML tools, workflows and 

tutorials. We anticipate that this hub will serve as a community starting point to foster accessible machine 

learning in biomedicine. 
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Methods 

The Galaxy tool wrappers for our machine learning suite are available at the following URLs: (1) main tools: 

https://github.com/bgruening/galaxytools/tree/master/tools/sklearn and (2) utilities and custom classifiers: 

https://github.com/goeckslab/Galaxy-ML, and the entire suite can be installed onto any Galaxy server through 

the Galaxy ToolShed at http://bit.ly/galaxy-ml-toolshed. 

 

Three use-cases are discussed in the parent manuscript: (1) PennML (see M.1), (2) DepMap Cancer Cell 

Lines (see M.2), and (3) deep learning for genomics using Selene (see M.3). For each of the use-cases we 

provide links to (a) publicly accessible input datasets, (b) Galaxy workflows to run the use-case, and (c) a 

Galaxy history that contains our results of running the workflow on the input datasets. 

M.1 Use Case 1: PennML benchmark 

For this benchmark we trained and evaluated a variety of supervised machine learning pipelines using 164 

classification datasets with both binary and multi-class classifications, and 112 datasets with real-values 

targets from the Penn Machine Learning Benchmark repository25 (Link: https://github.com/EpistasisLab/penn-

ml-benchmarks). Table M.1 provides links to Galaxy workflows and histories created, and all analyses can be 

precisely reproduced. The Penn ML benchmark analysis in Galaxy has two parts—classification and 

regression.  

 

For classification, two Galaxy histories are shared: (i) classification performance of 15 classifiers with default 

parameter values on 164 datasets and (ii) the same classification analysis but with optimised parameters. In 

this analysis, XGBoost classifier outperforms other classifiers (Figure 2) by obtaining the best performance on 

most of the 164 datasets. Links to the workflows for XGBoost classifier with the default and optimised 

parameters are listed in Table M.1. For example the workflow for XGBoost classifier to achieve the best 

performance has two steps: 

1. Preprocessing: scales all the datasets using scikit-learn’s RobustScaler. 

2. SearchCV: optimises the hyperparameters such as number of estimators, learning rate, and max_depth 

of XGBoost classifier. 

 

For regression analysis, we created one Galaxy history to measure the performance of 14 regressors with the 

default and optimised parameters on 112 datasets. Table M.1 lists this history and associated workflows. 

Similar to our classification results, the XGBoost regressor records the best performance (see Figure M.1). For 

example the XGBoost regressor workflow achieving the best performance has one step (named SearchCV) 

that optimises the hyperparameters such as number of estimators, booster and max_depth of XGBoost 

regressor. For each hyperparameter, a range of values is specified and using grid search, all parameter 

combinations are tried, and performance is reported with the optimal parameter settings. All the resulting 

datasets from running regression algorithms with and without parameter optimization is available from: 

https://usegalaxy.eu/u/kumara/h/pmlbregressionanalysisjune2020. Section M.1.1 has more discussion of our 

regression analyses. 
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Histories and 
Workflows 

Algorithm Parameters Links 

Default Best 

Classification Penn 
X  https://usegalaxy.eu/u/qiang_gu/h/penn-classification-default 

 X https://usegalaxy.eu/u/qiang_gu/h/penn-classification-best 

XGBoost X  https://usegalaxy.eu/u/kumara/w/xgbclassifierdefaultparams 

 X https://usegalaxy.eu/u/kumara/w/xgbclassifierbestparams 

Regression 
 

Adaboost  X  https://usegalaxy.eu/u/kumara/w/adaboostregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/adaboostregressor1905 

Bagging X  https://usegalaxy.eu/u/kumara/w/baggingregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/baggingregressor1905 

Bayesian
Ridge  

X  https://usegalaxy.eu/u/kumara/w/bayesianridgeregressor1905notunin
g 

 X https://usegalaxy.eu/u/kumara/w/bayesianridgeregressor1905 

Decision 
Tree 

X  https://usegalaxy.eu/u/kumara/w/decisiontreeregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/decisiontreeregressor1905 

ElasticNe
t  

X  https://usegalaxy.eu/u/kumara/w/elasticnetregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/elasticnetregressor1905 

Extra 
Tree 

X  https://usegalaxy.eu/u/kumara/w/extratreeregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/extratreeregressor1905 

Extra 
Trees 

X  https://usegalaxy.eu/u/kumara/w/extratreesregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/extratreesregressor1905 

Gradient 
Boosting 

X  https://usegalaxy.eu/u/kumara/w/gradientboostingregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/gradientboostingregressor1905 

Huber  X  https://usegalaxy.eu/u/kumara/w/huberregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/huberregressor1905 

KNN X  https://usegalaxy.eu/u/kumara/w/knnregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/knnregressor1905 

Linear X  https://usegalaxy.eu/u/kumara/w/linearregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/linearregressor1905 

Random 
Forest 

X  https://usegalaxy.eu/u/kumara/w/randomforestregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/randomforestregressor1905 

SVR X  https://usegalaxy.eu/u/kumara/w/linearsvrregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/supportvectorregressor1905 

XGBoost X  https://usegalaxy.eu/u/kumara/w/xgbregressor1905notuning 

 X https://usegalaxy.eu/u/kumara/w/xgbregressor1905 

 

Table M.1. A list of Galaxy histories and workflows used for the benchmarks discussed in sections M.1  Each 

history/workflow ensures that an analysis can be completely reproduced because it lists all analysis steps and 

parameters. Each algorithm runs with two parameter configurations: default and best. Default configuration is a 
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default value of parameters in Galaxy toolbox and best parameters are obtained by hyperparameter 

optimization.  

M.1.1 Regression analysis: Comparison of 14 regressors on 112 Penn regression 

datasets 

Using tools for data preprocessing, feature selection and regressors, we performed an aggregated analysis on 

112 regression datasets from Penn Machine Learning Benchmark repository. This repository contains 

numerous datasets for regression many of which are of biological importance. We applied 14 different 

regressors on 112 datasets from the collection and performed a detailed comparison of performances of these 

regressors (Figure M.1). To measure the accuracy of regression models, we used the r-squared metric (R2), 

which is common in regression analyses. This metric can be any real number to a maximum of 1.0. If it is 

negative, it suggests that the regression model is not good. If it is closer to 1.0, the model’s performance is 

good. We used 5-fold cross-validation for training and repeated it for 10 experiment runs to compute a mean r-

squared score for each dataset. We achieved a r-squared score of more than 0.80 for 3 regressors (xgboost, 

gradient boosting and extra trees) and close to 0.80 for 2 regressors (bagging and random forest). 

 

 
Figure M.1. Comparison of different regression models. In panels A and C, heatmaps show the percentage of 

datasets for which the model listed along the row outperforms the model along the column. 

 

 

Figure M.1 panel A shows a heatmap in which each square contains a number of datasets for which the 

regressor on the left (wins) performed better than the regressor on the bottom (losses). For example, by 

mapping the color of the square between adaboost (shown on y-axis) and linear regression (LR) shown on x-

axis to the adjacent color-scale, we conclude that the adaboost regressor performs better on 75-80 datasets 

(out of 112) than the linear regressor. The subplot also shows a comparison of different regressors (on y-axis). 

The ensemble regressors perform better on average than the other categories which include linear, tree and 

nearest neighbors regressors. 
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Figure M.1 panel B shows a comparison between the running time and accuracy of different regressors. We 

compute an average running time of each regressor over all 112 datasets. The running time of a regressor on 

a dataset is the sum of the training and validation times for the best regression model. The regressors such as 

xgboost, gradient boosting and extra trees achieve > 0.80 r-squared score, but extra trees regressor requires 

significantly more time to finish compared to the other two regressors. Regressors such as linear regression, 

huber and elastic net are fast, but their accuracy is low. Decision and extra tree regressors are also fast, but 

their accuracy is better (> 0.7 r-squared score) than the linear regressors. 

 

Figure M.1 (C) shows the r-squared scores of each regressor for all datasets. The linear regressors at the 

bottom-left of the subplot achieve lower scores than the ensemble regressors such as xgboost, gradient 

boosting at top-left of the subplot. We can also see that for a few datasets, none of the regressors perform 

well. 

 

Figure M.1 (D) shows the importance of tuning the hyperparameters of the regressors for each dataset. It is not 

recommended to compute the performance of predictive algorithms over multiple datasets using the same or 

default values of their hyperparameters. The performance of a regressor varies for different values of 

hyperparameter for a dataset. Therefore, we computed the best set of values of hyperparameters for each 

dataset using an exhaustive search strategy (grid-search). The figure shows an improvement in r-squared 

scores for each regressor due to hyperparameter optimisation. Regressors such as elastic net, k nearest 

neighbours, decision tree and linear svr show higher improvements than bagging, random forest, adaboost, 

gradient boosting, xgboost, extra trees, linear regression, huber and gradient boosting in their respective r-

squared scores averaged over all 112 datasets. 

M.2 Use Case 2: DepMap Cancer Cell Lines 

In our second analysis, we analyzed cancer cell lines gene expression and drug response datasets from the 

Cancer Dependency Map Project26 (https://depmap.org/). This dataset includes more than 50,000 gene 

expression values for over 1000 cancer cell lines obtained from bulk RNA-seq as well as drug response data 

for 265 drugs. Both gene expression data and drug response targets are continuous data. We had several 

goals in mind when performing this analysis. We wanted to assess how well supervised learning performed on 

a dataset with a very large number of features and a relatively small and imbalanced number of examples. 

These challenges are common when machine learning is applied to molecular datasets. We also wanted to 

compare performance of meta-ensemble (stacking) approaches with traditional single-model methods. 

 

● Galaxy History URLs: 

○ Regression: https://usegalaxy.eu/u/qiang_gu/h/depmap-regression 

■ Example workflow: https://usegalaxy.eu/u/kumara/w/stackingensembleregressorpcaknr  

○ Classification: https://usegalaxy.eu/u/qiang_gu/h/depmap-classification 

■ Example workflow: https://usegalaxy.eu/u/kumara/w/stackingclassifierdrugprna2 

 

Because target values for this analysis—cell line drug response data—was continuous, we developed a 

strategy to binarize the data so that classification approaches could be used. Drug response values were 

standardized/z-scored, and: 

● cell lines with a standardized value of less than -1 were labeled responders; 

● cell lines with a standardized value between -1 and 0 wer e labeled indeterminate; 

● cell lines with a standardized value greater than 0 were labeled nonresponders. 
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We implemented this strategy in two tools in the Galaxy-ML utils library, 

binarize_average_precision_scorer and binarize_auc_scorer, which report average precision 

and ROC AUC scores, respectively. 

 

We compared eight regression approaches and 11 classification approaches for this dataset. Some 

approaches used principal component analysis to reduce the number of features before training a model. 

Several approaches used meta-ensembles or stacking, and grid search was used to optimize hyperparameters 

for the meta-ensembles. Figure 2C and 2D summarizes the results of this analysis, and Table M.1 includes 

histories for both the classification and regression analyses. 

M.3 Use Case 3: Deep Learning for Genomics using Selene 

Using Galaxy-ML, we reproduced two deep learning models originally implemented in Selene, a deep learning 

library for biological sequence data12. The objective of the first analysis was to train an existing deep learning 

architecture using a novel dataset. Specifically, train the DeepSEA27 architecture to model a tissue-specific 

regulatory element for a single transcription factor not supported by DeepSEA (see 

https://github.com/FunctionLab/selene/tree/master/manuscript/case1). To reproduce this analysis, we used the 

DeepSEA architecture (https://github.com/FunctionLab/selene/blob/master/models/deepsea.py), which 

contains 3 convolutional layers, 2 pooling layers, one fully connected layer and a Sigmoid output layer, plus the 

dataset used by Selene. Both Galaxy-ML and Selene obtained the same results: a ROC AUC of 0.94 (Figure 

M.2 and Table M.2). The Galaxy history for this analysis used GPUs for training and evaluation, and it is 

available at  https://usegalaxy.eu/u/khanteymoori/h/sequencedlselenecase1v080522 

 

Another experiment run using Selene compared the performance of the DeepSEA architecture with an 

extended architecture that includes three additional convolutional layers (see 

https://github.com/FunctionLab/selene/blob/master/manuscript/case2/README.md). We reimplemented the 

extended architecture and then trained and evaluated this model using the Selene dataset (Figure M.3), which 

included data for 919 regulatory elements. Our results are nearly identical to those obtained by Selene (Table 

M.2). The Galaxy histories for this use-case are available from the following links: 

- https://figshare.com/articles/Galaxy-History-selene-case2_tar_gz/12398699 — fully trained over 100 

epochs using a private Galaxy server with acces to a GPU cluster; 

- https://usegalaxy.eu/u/qiang_gu/h/selene2  — online Galaxy history trained for only two epochs using 

CPU cluster. 
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Figure M.2. Visualized results obtained using the DeepSEA architecture to model regulatory elements for a 

single tissue-specific transcription factor. 

 

 
Figure M.3.  Visualized ROC curve results obtained from using the extended DeepSEA architecture to model 

919 regulatory elements: (A) average ROC for all elements and (B) individual ROC curves for each element. 

 

 

 

 Galaxy-ML Selene 

Analysis/ 
Case Study 

Balanced Accuracy ROC AUC AUPRC ROC AUC AUPRC 

1 0.68 0.94 0.62 0.94 N.R. 

2 0.62 0.928 0.365 0.938 0.362 

 

Table M.2. Performance results obtained using Galaxy-ML models fully trained using GPU and Selene models. 

All datasets used were obtained from Selene. AUPRC is the area under the precision-recall curve, and is also 

known as the average precision. “N.R.” means that the models did not report this information. 
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