
Accessing a Relational Database through an
Object-Oriented Database Interface

(extended abstract)

J. A. Orenstein
Object Design, Inc.

jack@odi.com

D. N. Kamber
Credit Suisse

David.Kamber@ska.com

Object-oriented database systems (ODBs) are
designed for use in applications characterized by complex
data models, clean integration with the host
programming language, and a need for extremely fast
creation, traversal, and update of networks of objects.
These applications are typically written in C or C++, and
the problem of how to store the networks of objects, and
update them atomically has been difficult in practice.
Relational database systems (RDBs) tend to be a poor fit
for these applications because they are designed for
applications with different performance requirements.
ODBs are designed to meet these requirements and have
proven more successful in pioviding”persistence for
applications such as ECAD and MCAD.’

Interest in ODBs has-spread be$ond the CAD
communities, to areas such as finance and
telecommunications. These applications have many
similarities to CAD applications. For example, in
financial applications, the data structures describing a
mutual fund’s portfolio can be quite complex,
applications are written in C or C++, and fast traversal
of the data structures is important.

These application areas often have an additional
requirement - the need to make use of “legacy” data
stored in relational database systems (RDBs). For years,
the developers of these applications have worked in
non-object-oriented languages; and have had to deal
with the problem of turning tuple streams into the
complex data structures manipulated by their
applications. Now, the developers who have started
using object-oriented languages and database systems
would like to continue the transition by insulating
themselves from the relational model and SQL.

Permission to copy without fee all or part of thiu material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that ‘copying is
by permission of the Very Large Data Bsse Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedinga of the Slat VLDB Conference
Zurich, Switzerland, 1905

Typically, their goal is not to migrate data from
relational databases into object-oriented databases.
ODBs and RDBs are likely to have different
performance characteristics for some time, and it is
therefore unlikely that one kind of system can displace
the other. Instead, the goal is to provide access to legacy
databases through object-oriented interfaces.

For this reason, we designed and developed, in
conjunction,with the Santa Teresa Labs of IBM, the
ObjectStore Gateway, a system which provides access to
relationaldatabases through the ObjectStore application
programming interface (API). ObjectStore queries,
collection and cursor operations are translated into SQL.
The tuple streams resulting from execution of the SQL
query are turned into objects; these objects may be either
transient, or persistent, stored in an ObjectStore
database. The main design goal of the Gateway was to
insulate application developers from SQL and the
relational schema, and to permit them to work entirely
in an object-oriented paradigm.

In this abstract we describe how we adapted the
ObjectStore API to the purposes of the Gateway, and
how we extended the API when there were no
equivalent concepts with no equivalent in ObjectStore.
We assume the reader is familiar with ObjectStore
LAMB9 1; OREN92] .,The accompanying presentation
will discuss the use of the Gateway in an application
developed by Credit Suisse to. yield enhanced
concurrency in both worlds and requiring only a
minimal coupling between the object-oriented model
and the ER model.

Overview of the &tqway’s L&sigh
The main design goal of the Gateway was to

support the developers of ObjectStore applications that
need access to legacy data, whiIe insulating these
developers from all aspects of the RDB: the schema of
the RDB being accessed; the programming interface to
the RDB; and SQL. Because of the need to provide
access to existing databases, we cannot control the
relational schema. For example, it would be convenient
to dictate the typesand values of primary and foreign
keys as this would simplify the export of object ids and

702

pointers. However, this approach cannot be used with
legacy RDBs.

There is little point in eliminating SQL and the
relational schema from view if the alternative is a
completely new and unfamiliar interface. For this
reason, another important design goal was to allow
developers to use the existing ObjectStore data model
and API. For example, application developers should be
able to use pointers, embedded collections, and
relationships as they do normally. It should not be
necessary to introduce similar but different constructs,
nor should it be necessary to work with a relational style
of schema, (i.e. no pointers, no embedded collections),
dressed up as C++. We found it necessary to balance
this design goal against performance goals. In a number
of situations it was necessary to compromise the
Gateway’s API to avoid introducing serious
performance problems.

These design goals motivate the central piece of
the Gateway’s design, the schema mapping. A schema
mapping captures the correspondences between a
relational schema and an ObjectStore schema. For
example, a schema mapping would record the fact that a
foreign key corresponds to the two data members in an
ObjectStore schema that represent a relationship. A
schema mapping is created using a declarative
language. Once this has heen’done; Gateway
applications can be built by identifying the schema
mapping and linking with Gateway libraries. The
Gateway uses the schema mapping to translate
ObjectStore operations into SQL, and to materialize
objects from the resulting tuple streams and status
indicators. (The schema mapping is also used as the
foundation for ObjectStore SQL Client T a product
which provides access to ObjectStore databases via
SQL.1
Schema mapping ’

There are three inputs to a schema mapping, 1) a
relational schema, 2) an ObjectStore schema, and 3) a
declarative ~specification of the connections between the
two schemas. All three parts are specified in SML
(Schema Mapping .Language). The schemas are
imported from relational and ObjectStore databases
named in the SML specification.

The bulk, of an SML specification is in the
description of the connections. This part of the language
is based on the premise that various modeling constructs
are. expressed by common “idioms” in each data model.
For example, a join between a foreign key and a primary
key is often used to represent one-to-one and one-to-
many relationships; two such joins through a “junction
table” represent a many-many relationship (but can also

be used for one-to-one and one-to-many relationships).
There are a few ways to represent relationships in
ObjectStore’. SML supports all combinations of these
relational and ObjectStore representations. If a
relational schema uses modeling techniques not
supported by SML, then the user should create an SQL
view. Over time, SML will be enhanced to support more
modeling methodologies.

C++ functions can be associated with mappings
between tables and classes, and,between columns and
data members. Examples:

Run the function Employee::
initialize whenever an Employee
object is generated from an EMP tuple. ’

Run the function Name : : import whenever
three CHAR columns are mapped to a data
member of type Name, (the, three CHAR
columns represent first, middle and last
IUUWS).

Run the function Name : : export, which
turns a Name into three strings, whenever a
Name is written back to. the relational
database.

Connecting to a relational database
In or&r to connect to an RDB, the user id and

password must be supplied. This is done via an object
representing the databasez

os-gw-database& empdb =
os-w-gateway::
get-database("EMPDB");

empdb.set-userid("henry"1;
empdb.setgassword("eraserhead");

EMPDB is the logical name of the RDB beii accessed;
this name was given-in SML. empdb is an object
representing this database. In addition to setting the
user id and password, various RDB-specific properties
can be controlled using a function of
os-gw-databasethattakes keywordsandvalues.

Once the user id and password have been supplied,
the relational database is accessible from the
application.

ObjectStore functions that are
t&slated to SQL

-The Gateway translates ObjectStore collection
methods (including queries) and cursor methods into
SQL. When one of these methods is applied to a

’ Either with or without the relationship wrappers: the “many”
side of a relationship can be.a type-safe collection, e.g.
os~Set&nploy&>, or type-unsafe, e.g. 08-s&

703

collection representing a table, a semantically
equivalent set of SQL commands is generated and
submitted to the RDB. In addition to query translation,
ObjectStore cursors operations are translated into SQL
cursor operations, and insertions to and removals from
ObjectStore collections are translated into SQL INSJZRT
and DELETE statements.

There is no function call required by ObjectStore
to either express an update to an object, or to note that
an update has occurred. For example, the age of a
person p can be incremented using this C statement:

p->age = p->age + 1;
Read and write sets are formed by intercepting read-
and write-protect violations [LAMB9 11. This
mechanism is completely transparent. However, because
there is no layer of ObjectStdie software involved in the
update, (except in case of the first read or write to a
page), it is impossible for the Gateway to know when an
update to the RDB should be issued. We themfore found
it necessary to introduce a function indicating that an
object has been modified. When an application invokes
this function, a SQL UPDATE statement is issued.

Prefetch paths
Consider how this query might be translated into

SQL2:
employees[: salary B !jOOOO t]

This query yields a set of Employee object ids. What
should the target list of the SQL query contain? Aliteral
translation of the Objects tore query would retrieve. only
the primary key columns, i.e., enough information to
produce object ids.

SELECT id
FROM EMP
WHERE salary > 50000

Another possibility is to retrieve the entire Employee
object. The SQL query would then be this:

SELECT id, last-name,
first-name, middle-initial,

ss-number, salary,
department
FROM EMP
WHERE salary > 50000

This isn’t really correct. If the application is going to
navigate from the Employee to a Department via
Employee::depaytmenl, (a pointer in,the
ObjectStore schema), then the Department .@cI better
be present. This means that the query has to be extended
to retrieve matching Departments, or there needs-do
be a second query to retrieve those Departments. In
general, a query might need to retrieve a large fraction

2 ‘I)ML” wtation is used fot clatiiy. The Gatcwy cimntly suppoe
only queries submiacd through tbc hmUioa cd in*.

of a database inorder to support any navigation that the
application might perform following the query. This is
clearly impractical.

Another possibility is to retrieve just the primary
key columns and turn these into object identities or
pointers. When the application tries to dereference one
of these pointers, another query is generatedto retrieve
the pointed-to object. As with updates, not all pointer
dereferences are visible to ObjectStore, (only the fast to
a given page is noted), so .it is impossible to know when
a SQL query implementing the dereference should be
generated. Second, suppose that wecould intercept all
dereferences. What SQL query would be generated? All
that is known is the identity and probably the type of the
object to .be retrieved. This would allow us to construct a
simple SQL query which fetches a single tuple given its
primary key, (assuming we have a table that maps object
ids to keys). This is clearly going to result in very poor
performance, compared to the SQL,queries given above.
Using an RDB as an object server which returns one
object with each query is not a good idea. The only
advantage of this schemeis transparency - the
application can navigate freely, and the Gateway
guarantees that the required objects are always
hilable. ,,I

We dealt with this issue by requiring the

.

application to indicate what objects to retrieve. A graph
of related objects is’described using “prefetch paths”. A
prefetch path is simply a description of a path. It starts
on an ob#t of one class and navigates through pointer-
and set-valued data members. ObjectStore aheady has
an objtitdescribing paths, OS-index-path, used for
naming path indexesi,They are reused by Gateway to
support prefetch ’ “’

Object haterialization
- The Gateway generates objects to represent data

retrieved from an RDB. Object identity is determined by
primary keys. If the materialize&objects are all
transient, then it isclear that object identIty should be
determined+vithin the context of a single process. E.g.,
if the Employee with id 419 is retrieved, that can be a
distinct object from the Employee with id 419 retrieved
bya different execution of the same application, (or by a
different application). However, if objects are
materialized persistently, into an Object&ore database,
in what contextshouldobjecf identity be determined?
The dambaseitself’could provide the context. That is, if
Employee 4 19 has been materialized into a particular
database, then a second attempt to+ do so will’fail, but if
the second retrieval materializes an object in a second
database, that will succeed. This isn’t a satisfactory
solution, because an application may access multiple

704

ObjectStore databases within the same transaction: It
would therefore be possible for the application to see
two objects with the same value for Employee::id.
Another reason this approach fails is that it might be
desirable to have multiple materialization contexts
within the same ObjectStore database.

We solved this problem by realizing that the
context of materialization needs to be explicitly
controlled by the application. For this reason, the
concept of a snapshot has been added to the Gateway.
Object materialization always takes place in the context
of a snapshot. It’is‘possible to use different snapshots
during the execution of ‘an application, but there is
always exactly one snapshot “in effect” at a given time.
At the Gateway interface, a snapshot is represented by
its name, and a snapshot is selected by specifying the
Ilam& I

In concrete terms, a snapshot is little morethan a
mapping from primary key to abject identity. The
Gateway must deal with the situation in which objects
are retrieved multiple times and change between the
retrievals. The application controls the Gateways actions
by selecting one of four behaviors: 1) Use the, value in
the object and ignore the tuple; 2) Update theobject
with non-key values from the tuple; 3) Raise an
exceljtion; and 4) ignare the fact that ti “object has
already been materialized, ~d’m&rialize another one.
(4) is potentially dangerous, but in apljlications where
the absence of object identity is known to be safe, tis’
mode leads to a tieiformance improvement since the
tables mapping keys to objectids do not have to be
maintained.

. .
, ’

Transaction management
Objects tore provides serializable transactions and

two-phase commit. An attempt is made to coordinate
RDB transaction boundaries with ObjectStore
transaction boundaries, but two-phase commit between
ObjectStore and RDBs is not yet supported.
By default, a gateway application can execute any
number of RDB transactions, and these are run using
“cursor stability” semantics. Repeatable read is an
option. Inconsistencies due to lack of serializability are
dealt with as discussed above.

References

[LAMB911 Lamb, C., Landis, G., Orenstein, J., and
Weinreb, D.
‘The GbjectStore Database System”, Comm. ACM 34,lO
oqober 1991. ,

‘[ORENi)2] Oreqstein, J.; Haradhvala, S, Margulies, B.,
and Sakahara, D.
“Query Processing in the Objectstore Database System”,
Proceedings of the ACM SIGMOD Conference, San
Diego; Californiia;‘June 1992.

705

