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We explore the possibility to perform symmetry restoration with the variation after projection
technique on a quantum computer followed by additional post-processing. The final goal is to
develop configuration interaction techniques based on many-body trial states pre-optimized on a
quantum computer. We show how the projection method used for symmetry restoration can prepare
optimized states that could then be employed as initial states for quantum or hybrid quantum-
classical algorithms. We use the quantum phase estimation and quantum Krylov approaches for the
post-processing. The latter method combined with the quantum variation after projection (Q-VAP)
leads to very fast convergence towards the ground-state energy. The possibility to access excited
states energies is also discussed. Illustrations of the different techniques are made using the pairing
hamiltonian.

I. INTRODUCTION

The development of novel generations of nuclear many-
body forces has promoted ab-initio methods as a tool of
choice to describe microscopically atomic nuclei from the
underlying bare nucleon-nucleon interaction. Nowadays,
a large variety of approaches are being developed that,
depending on the underlying approximations, can be ap-
plied to certain regions of the nuclear chart. Among the
important challenges that should be considered for the
applicability of ab-initio theories, we mention the follow-
ing two. Firstly, methods treating exactly the many-
body systems face the problem of the exponential growth
of the Hilbert space size when the number of single-
particle states increases. This is for instance the case of
the Faddeev–Yakubovski [1–3], Green’s function Monte
Carlo [4–6] and No-Core Shell Model (NCSM) [7, 8] ap-
proaches that are restricted to rather light systems.

In view of this first difficulty, several approaches have
been proposed in the last 20 years that have a more ap-
propriate scaling (polynomial scaling generally) to tackle
up to medium-mass nuclei. Among these methods, we
mention the Many-Body Perturbation Theory (MBPT)
[9–11], Coupled Cluster (CC) [12], In–Medium Similarity
Renormalization Group (IMSRG) [13] or Self-Consistent
Green Function (SCGF) [14] methods.

Another important challenge that might be considered
in atomic nuclei, especially for the precise description
of open shell nuclei or medium/heavy systems, is the
possibility to take advantage of the symmetry break-
ing techniques followed by symmetry restoration [15–
19]. An intensive effort is now being made to extend
some of the approaches listed above in such a way that
they start from a symmetry-breaking trial state: the
Bogoliubov Many-Body Perturbation Theory (BMBPT)
[20, 21], the Gorkov Self-Consistent Green Function

∗Electronic address: ruiz-guzman@ijclab.in2p3.fr
†Electronic address: denis.lacroix@ijclab.in2p3.fr

(GSCGF) [22–24] and the Bogoliubov Coupled Cluster
(BCC) [25, 26]. We note that these techniques have
been sometimes supplemented by symmetry restoration
through projection techniques eventually followed by fur-
ther configuration-interaction (CI) diagonalization in a
reduced Hilbert space [31–33]. Among them, we mention
the Projected Bogolyubov MBPT [30], the Projected Bo-
goliubov Coupled Cluster (PBCC) [27, 28], the Projected
QRPA [29] or very recently the projected generator coor-
dinate method - Perturbation Theory (PGCM-PT) [34–
36]. Still, at present, the later methods have been mainly
tested in rather simple models. For a comprehensive re-
cent review, we recommend the reference [33].

In view of the current scientific emulation, we explore
here the possibility to follow a strategy of symmetry
breaking–symmetry restoration followed eventually by
further post-processing using quantum computers. We
believe that such exploration is particularly timely with
the current boost in building quantum devices. The cur-
rent status, called NISQ (Noisy-Quantum Intermediate
Quantum) period does not allow for performing compli-
cated many-body calculations. Nevertheless, an increas-
ing number of pilots applications are being nowadays
made in different fields of physics [37–50].

We consider here a long-term strategy to prepare fu-
ture applications beyond the NISQ period. We discuss
first below a method to prepare a many-body trial state
on a quantum computer that takes advantage of the
symmetry breaking–symmetry restoration technique. A
first milestone in that direction is achieved by optimiz-
ing a parametric state using the standard Variational
Quantum Eigensolver (VQE) technique [51–56] leading
to a method we call hereafter Quantum–Variation After
Projection (Q-VAP). We then explore the possibility to
use this state for further post-processing either directly
on the quantum computer or using hybrid quantum–
classical technologies.
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II. VARIATION AFTER PROJECTION ON A
QUANTUM COMPUTER

The strategy to perform the Variation After Projection
on a quantum computer follows closely the method that
is used in classical computers. We consider a quantum
many–body system that is mapped onto a set of N qubits
labelled by i = 0, N−1. A complete basis of the system is

then given by the states {
⊗N−1

i=0 |si〉} where |si = 0i, 1i〉
correspond to the two states associated to the ith qubit.
A wave–function can be written in the full Fock space as:

|Ψ〉 =
∑

si∈{0,1}

Ψs1,··· ,sN |s1, · · · , sn〉. (1)

Our first objective here is to obtain wave functions in a
quantum computer that can properly describe interacting
fermions under the action of a many–body Hamiltonian
H. One of the strategies used nowadays to approach this
problem on a quantum computer is to express the trial
state vector in terms of a set of parameters denoted as
{θi}i=1,...,Nθ . For recent reviews on the subject see for
instance [51–56].

In general, the trial state that is optimized during the
minimization of the energy is obtained from a set of uni-
tary operations starting from the vacuum, denoted here-

after simply as |0〉 ≡
⊗N−1

i=0 |0i〉, such that:

|Ψ({θi})〉 =

Nθ∏
k=1

Uk(θk)|0〉. (2)

By using the expectation of the Hamiltonian as the cost
function, variational methods are firstly targeted to re-
produce the ground state energy of the problem. The
precision on the energy will obviously intimately depend
on the transformations that are used in Eq. (2). One
of the issue for quantum computers is the possibility to
reduce the circuit depth by using the symmetry of the
underlying problem (see for instance [57–59]).

Here, we take a different point of view and suppose
that the trial state defined by Eq. (2) might breaks some
of the symmetries of the underlying Hamiltonian. This
technique where symmetry-breaking (SB) states is used
is rather standard in many fields of physics [15, 16] and
is known as a very accurate method to grasp complex
internal correlations when the system encounters spon-
taneous symmetry breaking. Typical examples are su-
perfluid systems where the U(1) symmetry associated to
the particle number conservation is broken by forming
Cooper pairs. As underlined in the introduction, atomic
nuclei are such complex systems where it can be advan-
tageous to break symmetries like particle number, parity
or rotational symmetry. The possibility to use SB states
in quantum computers has already been promoted for
instance in Refs. [60–63].

One pre-requisite to obtain precise meaningful descrip-
tion of the ground state energy is that the symmetries
that are initial broken are restored in a second step.

Symmetry restoration (SR) by projection is nowadays a
standard tool in atomic nuclei. One usually distinguishes
the projection after variation (PAV) and variation after
projection (VAP)[17–19]. Let us assume that a certain
symmetry S is broken by the state (2) and denote gener-
ically by PS the projector associated to the restoration
of this symmetry. In the PAV approach, the expectation
value of the energy of the SB state given by

ESB({θi}) = 〈Ψ({θi})|H|Ψ({θi})〉, (3)

is minimized. Then, the PAV energy is directly given by
the expectation value of the Hamiltonian after projection
of the trial state:

EPAV({θi}) ≡
〈Ψ({θi})|HPS |Ψ({θi})〉
〈Ψ({θi})|PS |Ψ({θi})〉

(4)

where we use the fact that P2
S = 0 and that [H,PS ] = 0.

The VAP approximation is more challenging and con-
sists in minimizing directly the energy given by Eq.
(4) for the projected state. This energy is denoted by
EVAP({θi}). Thanks to the use of the variational princi-
ple and because both PAV and VAP states belongs to the
same Hilbert subspace that respect the restored symme-
try, we automatically have the property EGS ≤ EVAP ≤
EPAV at the minimum of the VAP method. We denoted
by EGS the ground state energy.

A first milestone in transposing the SB-SR method-
ology on quantum computers has been reached in Ref.
[62] where a quantum algorithm was proposed to perform
symmetry restoration. In this reference, the Quantum-
Phase-Estimation (QPE) algorithm [52, 64–67] was used
to perform the projection. The QPE method is originally
designed to obtain the eigenvalues and eigenvectors of a
unitary operator using the Quantum Fourier Transform
(QFT) [64] together with a set of additional ancillary
qubits. Repeated measurements of the ancillary qubits
give access to the different eigenvalues. Provided that
the number of qubits is sufficient to separate each eigen-
value, the state after each measurement is projected onto
the set of eigenvectors associated to this eigenvalue.

The original idea that was proposed in Ref. [62] is that
the QPE method can be directly used as a projector for
symmetry restoration. For this, it is sufficient to use the
QPE with an operator with known eigenvalues such that
each eigenvalue is associated with subspaces of the total
Fock space having the proper symmetry. An illustration
was given in Ref. [62] where the U(1) symmetry was
restored using an operator proportional to the particle
number. Another example was given in [68] where the
method was applied to project spin states onto eigen-
states of the total spin S2.

Up to know, the technique proposed in [62] has only
been used for the SR and, as far as we know, has never
been combined with a variational method on a quan-
tum computer. Below, we give an example of use of the
projection technique used together variational quantum
methods. We then perform the equivalent of the PAV
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and VAP methods on a quantum computer. In analogy
with their counterparts in classical computers, we call the
two procedures Quantum-PAV (Q-PAV) and Quantum-
VAP (Q-VAP) respectively. In the following, as the first
step of our study, we consider a schematic illustration of
the methods Q- PAV and Q-VAP. We mention that pro-
jected states were used in [63], employing a completely
different projection technique that was supplemented by
an additional correlator (the so-called pair-hopper oper-
ator).

A. Application to the pairing Hamiltonian

As an illustration of application of the Q-PAV and Q-
VAP methodology, we consider here a pairing Hamilto-
nian [69–72]. The system is composed of fermions dis-
tributed on a set of doubly–degenerated single-particle
levels p = 0, N − 1. The two-body Hamiltonian of the
system is written in second quantized form as

H =
∑
p

εpN̂p − g
∑
pq

P̂ †p P̂q, (5)

where the operator entering in the Hamiltonian are re-
spectively the pair occupations and pair creations oper-
ators defined as:

N̂p = a†pap + a†p̄ap̄, P̂ †p = a†pa
†
p̄. (6)

(a†p, a
†
p̄) are creation operators of time-reversed single-

particle states associated to the energies εp.
This hamiltonian, that gives a schematic description

of superfluid systems, has already been used as a test-
bench for quantum computers algorithms using different
fermions to qubits mappings [62, 63, 66, 67, 73]. The
mapping can be made using the standard Jordan-Wigner
transformation (JWT) [43, 52, 74–77] either at the level
of the single-particle states [62, 66, 67] or directly at the
level of the pair creation operators [63, 73]. We con-
sider here the second method that has the advantage
to reduce by a factor 2 the number of qubits to encode
the problem and the shortcoming that only even systems
can be considered. For each qubit p, we introduce the
standard Pauli matrices denoted by (Xp, Yp, Zp) that are
completed by the identity Ip. Mapping directly the pairs
using the JWT method, we have the correspondence:

P̂ †p −→ P+
p =

1

2
(Xp − iYp) =

[
0 0
1 0

]
p

,

N̂p −→ Np = 1− Zp =

[
0 0
0 2

]
p

.

The JWT mapping gives the equivalent Hamiltonian act-
ing on the N qubits:

H =
∑
p

(εp − g/2) [1− Zp]−
g

2

∑
p>q

[XpXq + YpYq] .(7)

The pairing problem is an archetype of a problem
where it is advantageous to break a symmetry in or-
der to treat certain correlations. In this model, above
a certain threshold of the two-body interaction strength,
the system encounters a transition from a normal to a
superfluid phase. Then, the problem becomes highly
non-perturbative. The internal correlations can then be
treated while maintaining relatively simple trial states,
provided that the U(1) symmetry associated with the
particle number is broken. This is actually the essence of
the BCS and HFB theory [15, 72].

FIG. 1: Schematic view of the QPE method applied to the
operator V with nq ancillary qubits. The circuit shown here
and the ones in the following are made using the quantikz
package from Ref. [98].

1. Quantum BCS ansatz

As a starting wave-function, we consider the standard
BCS ansatz, that, with our method of directly encoding
the pairs and using the convention of Ref. [72], takes the
form:

|Ψ({θp})〉 =

N−1⊗
p=1

[sin(θp)|0p〉+ cos(θp)|1p〉] (8)

=

N−1∏
i=0

RpY (π − 2θp)

N−1⊗
p=0

|0p〉

with the convention RpY (ϕ) = e−iYpϕ/2. Given that the
quantum circuit used to prepare this state corresponds
to independent rotations of each qubit.

2. Particle number projection

The state (8) mixes different particle numbers. Here,
we follow [62, 68] and use the QPE to project the BCS
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state on a given number of particles. The QPE is rather
well documented [52, 64] and we only give here the useful
ingredients for the following discussion.

Assuming a unitary operator V with a set of eigenval-
ues written as e2πiϕα and associated with the eigenstates
|ϕα〉, the QPE is a practical way to obtain the phases
{ϕα} and the eigenstates with some precision, assuming
that all ϕα verifies:

0 ≤ ϕα < 1. (9)

The QPE method works as follows. The method uses a

set of ancillary qubits nq. A set of controlled-V 2j oper-
ations, with j = 0, nq − 1, is performed to transfer the
information about the eigenstates of V to the ancillary
qubits. The associated circuit is shown in Fig. 1. The
approximate values of ϕα and the projection onto the as-
sociated eigenstates are obtained from the measurement
of the ancillary qubits after performing an inverse Quan-
tum Fourier Transform on the nq quantum register. In
practice, the projection is performed by appropriately
selecting the operator V and the number of qubits. An
illustration of operator for the particle number projec-
tion was given in [62]. Here, we consider the following
operator:

V = exp

(
2πi

NP

2nq

)
=

N−1∏
p=0

(
1 0

0 eiπ/2
nq−1

)
p

, (10)

where we use the operator NP =
∑
pNp/2 that counts

the number of pairs. The operator NP has eigenvalues
0, · · · , N for N levels. We recognize on the right side of
(10) a simple product of phase operators. The condition
ϕα < 1 fixes the minimal number of ancillary qubits to
be used for properly resolving the different eigenvalues.
This gives the constraint:

nq >
lnN

ln 2
. (11)

In practice, the method we propose for the projection
works like a filter for the SB initial states. After each
measurement of the ancillary qubits, we obtain a binary
number δ1 · · · δnq that corresponds to the binary fraction
of one of the eigenvalues ϕα, or equivalently, to a given
number of pairs denoted as AP . After the measurement
of the ancillary qubits, the BCS state is projected onto
the corresponding symmetry restored state with exactly
AP pairs. It is worth noting that, event-by-event, differ-
ent values of AP can be obtained depending on the initial
mixing. The only way to influence the result of the mea-
surement is through the initial mixing in the BCS state.
Most often, we are interested in a precise value of AP as
the outcome of the quantum projection procedure. This
implies that part of the events are rejected after measure-
ments and only events with the targeted value of AP are
retained for further post-processing.

3. Illustration of Q-PAV and Q-VAP for the pairing
Hamiltonian

We show in Fig. 2 the results obtained using the BCS
ansatz for 8 particles, i.e., 4 pairs, on N = 8 doubly
degenerated levels and for various interaction strengths.
In this figure, we use the correlation energy Ec defined as
the total energy minus the reference Hartree-Fock energy
defined as the energy of the system when filling the N/2
least energetic doubly degenerated levels. The error is
then defined as [32]:

∆E

E
(%) =

∣∣∣∣Eapprox
c − Eexact

c

Eexact
c

∣∣∣∣× 100. (12)

In different applications, we consider the case of
equidistant single-particle levels with εp = p∆e (p =
1, . . . , N). We assume ~ = 1 and all quantities are shown
in ∆e units. The results shown in Fig. 2 have been
obtained using the Qiskit emulator [99]. In addition to
the BCS result, the hybrid quantum-classical methods Q-
PAV and Q-VAP were used to obtain the set of {θp}p=1,8

that minimizes the energy with an additional constraint
on particle number.

In the present implementation, the expectation values
of the Hamiltonian are obtained by first decomposing the
Hamiltonian as a sum of Pauli chains denoted by {Vl}
such that:

H =
∑
l

βlVl. (13)

Each Pauli chain Vl is composed of the product of
Pauli matrices. Then 〈H〉 is obtained by computing
each expectation value 〈Vl〉 separately using a standard
Hadamard test.

The different steps for the Hybrid Quantum-Classical
calculation are closely related to the standard way to
solve the BCS on classical computer except that some
of the tasks are performed by the quantum computer.
Explicitly, we use the following iterative procedure (i)
some initial values for the set of angles {θp} and for
the Fermi energy λ are chosen. (ii) While the condi-
tion |〈NP 〉 − AP | ≤ εtol is not satisfied (where εtol is a
tolerance parameter for the difference set manually with
a value in our case of 10−3), the following steps are per-
formed. (ii.i) The following cost function is minimized
respect to the set of parameters {θp}:

C({θp}) = 〈Ψ({θp})|H − λ(NP −AP )|Ψ({θp})〉 (14)

where AP is a constant that is fixed a priori. In the
present case, it is set toA/2 whereA is the number of par-
ticles of interest. The minimization is performed using
the COBYLA optimizer. The expectation value over H
is obtained using the decomposition (13) and computing
each 〈Ψ({θp})|Vl|Ψ({θp})〉 on a quantum computer. The
expectation over NP is calculated by a classical computer
using the formula 〈Ψ({θp})|NP|Ψ({θp})〉 =

∑
p cos2(θp).
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FIG. 2: Illustration of the precision in energy (using the quan-
tity defined by Eq. (12)) obtained using the BCS (green dot-
ted line), Q-PAV (blue dashed line) and Q-VAP (red solid
line) for the pairing problem with 8 particles on N = 8
equidistant levels for g/∆e ranging from 0.2 until 1.2 with
a 0.1 step. The black solid line indicates the exact result,
i.e., ∆E/E = 0. Results have been obtained using the Hy-
brid Quantum-Classical minimization procedure and projec-
tion procedure described in the text.

(ii.ii) Using the set of optimized parameters {θp}, we
compute the variation of the Fermi energy λ. (ii.iii)
Lastly, we use the new set of {θp, λ} to restart the process
at (ii.i).

The different calculations, i.e. BCS, Q-PAV and Q-
VAP use the same procedure but differs in the circuits
to construct the trial states. In the BCS case, the wave-
function (8) is used in the minimization and the cost func-
tion is the one shown in (14). The BCS energy shown in
Fig. 2 is computed using the decomposition (13). In the
Q-PAV case, the same minimization is performed but
after convergence, the BCS state is projected onto the
pair number A/2. The Q-PAV energy reported in Fig. 2
is computed using the decomposition (13) and the pro-
jected state. The Q-VAP case is more complex because
the projected state is directly used in Eq. (14) during the
iterative process which means in practice that the QPE
algorithm is used at each step to project onto a specific
particle number before calculating the expectation val-
ues.

The energies obtained in Fig. 2 using the Hybrid
quantum-classical algorithms have been compared to
their purely classical counterparts (not shown here). In
all cases, very good agreements were found validating the
combined projection-optimization methodologies.

III. QUANTUM AND HYBRID
CLASSICAL-QUANTUM POST-PROCESSING

The construction of symmetry-restored states is the
first step of a more ambitious goal, which is to obtain
eigenvalues of a complicated many-body problem. As a

first illustration of pure quantum post-processing, we ap-
ply the QPE technique we used above for restoring sym-
metries, but, this time, to obtain eigenvalues and eigen-
vectors of the many-body Hamiltonian. We then discuss
alternative methods that could reduce the quantum re-
sources.

A. Quantum Phase Estimation algorithm for
energy spectra

The use of the QPE algorithm for energy spectra is
quite demanding in terms of quantum resources and
is difficult to implement within the current NISQ pe-
riod. Nevertheless, it remains a good reference for meth-
ods that give access to both the eigenvalues and eigen-
states of the Hamiltonian. We note that it has already
been applied to the pairing Hamiltonian with a different
fermions–to–qubits encoding in Ref. [66, 67].

Here, we are interested in the eigenvalues of the Hamil-
tonian H. As discussed in [66, 67], the constraint (9) to
all eigenvalues is a serious limitation for the QPE appli-
cation. One possible way to satisfy this constraint is to
assume:

V = exp

{
−2πi

(
H − Emin

Emax − Emin

)}
, (15)

where Emin < Emax are two constants chosen so that all
eigenvalues of H verify Eα ⊂ [Emin, Emax[. As already
discussed in Ref. [66], one of the drawbacks of the QPE
is that it already requires approximate knowledge of the
eigenvalues boundaries to be applicable. In all the calcu-
lations presented here, we used Emin = 0. There is lots
of flexibility in the choice of Emax, the only constraint
being to be above all eigenenergies of H. Emax denotes
below the highest eigenvalue. For a fixed number of an-
cillary qubits, the closer Emax is to Emax, the better is the
precision on the eigenvalues. In general, the eigenvalues
are unknown and the default value proposed by Qiskit
is Emax =

∑
l |βl| that could be inferred from Eq. (13).

This default value can be considered as a canonical choice
and is equal to Emax =

∑
p |2εp− g|+ |g|N(N − 1)/2 for

the pairing Hamiltonian. In the illustration below, since
we have access to the true value of Emax, we simply used
Emax = Emax2nq/(2nq − 1).

We applied the QPE algorithm using three different
initial states with an appropriate number of particles (i)
The pure Hartree-Fock solution where the initial state is
the Slater determinant occupying the lowest N/2 single-
particle states. The corresponding energy is denoted EHF

; (ii) The Q-PAV state obtained directly by projecting
after the BCS minimization and; (iii) The Q-VAP trial
state that minimized the projected energy.

The QPE approach applied to the operator V requires
the quantum simulation of the propagator U(τ) = e−iτH

for various time intervals. Here, we follow the standard
Trotter-Suzuki method [54, 78] where we discretize τ into
small time steps ∆τ . The propagator over ∆τ is then
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FIG. 3: Illustration of the results obtained by the QPE method (blue histograms) for the pairing Hamiltonian for 8 particles
on 8 double degenerated single-particle levels and g/∆e = 0.5 using nq = 4 (left column), nq = 6 (middle column) and nq = 8
(right column) ancillary qubits. Shown from top to bottom are the results obtained with the Hartree-Fock (HF) (a-c), Q-PAV
(d-f) and Q-VAP (g-i) states. The HF state is the one obtained when only filling the N/2 lowest levels. The vertical green and
black solid lines indicate the ground state and the first excited state energies respectively. In the rightmost column, we show
the probabilities in logarithmic scale to resolve small components in the QPE. In this case, the horizontal dashed lines indicate
the exact eigenstates of the Hamiltonian. Note that, in each panel, the width of the histogram corresponds to the resolution of
the QPE method for a given nq (see text).

decomposed as U(∆τ) = Uε(∆τ)Ug(∆τ) with (for more
details see [73]):

Uε(∆t) =
∏
p

(
1 0
0 exp (−i (2εp − g) ∆t)

)
p

, (16)

and for the two-body interaction part:

Ug(∆t) =
∏
p>q

 1 0 0 0
0 cos(g∆t) i sin(g∆t) 0
0 i sin(g∆t) cos(g∆t) 0
0 0 0 1


pq

.(17)

In practice, we have used ∆τ∆e ≈ 10−2 that ensures
good precision for the Trotter-Suzuki method.

We show in Fig. 3 the results of the QPE method with
varying number of ancillary qubits nq = 4, 6 and 8 and
for the three initial states. We see in this figure, that
peaks appear rather rapidly as nq increases. As shown
in the figure, these peaks correspond to the eigenvalues,
denoted by {Eα}, of the many-body pairing Hamiltonian.

We denote by |α〉 the corresponding exact eigenstates and
assume that the initial state decomposes as follows:

|Ψ〉 =
∑
α

c(α)|α〉. (18)

For a non-degenerate state, the height of the peak cor-
responding to an eigenvalue Eα converges approximately
to |c(α)|2 for large values of nq. We have indeed checked
that this is the case for the ground state which is well iso-
lated from other eigenvalues in the pairing Hamiltonian.
Another conclusion that can be drawn by comparing pan-
els (b), (e) and (d) in Fig. 3 is that the probability pGS
of the peak corresponding to the ground state component

is such that pHF
GS < pQ−PAV

GS < pQ−VAP
GS . In other words,

the overlap between the Q-VAP state and the ”true” GS
is larger than for other initial states. In panel (i), we also
note that the Q-VAP approach has ”purified” the state
compared to the Q-PAV state, reducing the contribu-
tions from the excited states. It is interesting to mention
that the QPE algorithm, once applicable on real quan-
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tum platforms will be a formidable tool to scrutinize the
approximations that are standardly used in the nuclear
many-body problem.

1. QPE precision and convergence

The convergence of the QPE method in a perfect quan-
tum computer is rather well documented [64] and we give
below only an illustration of this aspect together with
some elements useful for the following discussions. We
focus here on the convergence for the ground state and
the first excited state and henceforth refer to EGS and
E1st as their energies.

For a given number of ancillary qubits, the accuracy
of the eigenenergies in Fig. 3 is directly illustrated by
the width of the histogram. An analytical expression for
this precision can be obtained following Ref. [64]. Let
us follow section II A 2 and assume that an eigenvalue
of V is written as e2πiϕ. We then introduce the binary
fraction of ϕ denoted by:

0.ϕ1ϕ2 · · · =
ϕ1

2
+
ϕ2

22
+ · · · (19)

The QPE method with nq qubits gives access to the ap-
proximated values of ϕ under the assumption that the
binary fraction is truncated at order nq. Denoting by
ϕ(nq) the approximation, we immediately obtain an up-
per bound on the error for the phases:

0 ≤ ϕ− ϕ(nq) ≤
1

2nq
. (20)

The error on the phase can be transformed into an error
on the energies. For this, we first note that the operator
V can be interpreted as the propagator of the Hamilto-
nian H ′ = (H − Emin) by rewriting it as V = e−iτQPEH

′

where we have defined:

τQPE = 2π/(Emax − Emin). (21)

From this, we deduce that the precision in energy is

δE =
π

(2nq−1τQPE)
.

An attractive aspect of the QPE is that each time an an-
cillary qubit is added, the bin size in energy is divided by
2. We illustrate in Fig. 4 the convergence and precision
for the ground state and first excited state energies.

This attractive feature should be moderated by the
fact that the number of operations to be performed in
the system circuit increases substantially when a single
qubit is added. From Fig. 1, we see indeed that applying
the QPE algorithm is equivalent to performing a series of
successive propagations of the system over times 20τQPE,
21τQPE, ..., 2nq−1τQPE. The use of nq qubits corresponds

to a propagation over a total time τQPE
tot given by:

τQPE
tot (nq) = τQPE + 2τQPE + · · ·+ 2nq−1τQPE

= (2nq − 1) τQPE. (22)

3 4 5 6 7 8 9
Number of ancillary qubits

12

14

16

18

20

E/
e

Exact GS
Exact 1st
QPE GS
QPE 1st

FIG. 4: Illustration of the ground state (blue filled circles)
and 1st excited energies (black filled squares) obtained with
the QPE method displayed in Fig. 3 for the HF initial state.
The showed energies correspond to the position of the center
of the peak if present. For the 1st excited state, we do not
show the energies for nq = 3 and 4 since no peak can be
identified. The error bars correspond to the bin size.

This shows that every time a qubit is added in the QPE,
the time evolution is essentially multiplied by a factor
of 2. The same scaling appears directly in the number
of operations on the system circuit required to perform
the QPE. Let us assume that we need Nop operations

or gates to perform the Controlled-V 20

in the circuit of
Fig. 1. This number of operations includes the propaga-
tion of the system up to τQPE using the Trotter-Suzuki
method as well as the controlled gate operations. Then,
2jNop operations are required for a given j to perform the

controlled-V 2j gate shown in Fig. 1. This implies that
the total number of operations for the QPE increases
rapidly with nq and also scales like Ntot = (2nq − 1)Nop.
This scaling is extremely demanding in terms of quantum
resources.

Finally, we would like to mention that the convergence
properties and, in particular, the precision are insensitive
to the initial state. This is true for the bin size, which
depends only on the τQPE and nq values in Eq. (22).
From this point of view, there is no clear advantage to
using a Q-VAP state instead of the simplified state HF.
We could even argue that using a simple HF state, which
has a smaller initial overlap with the ground state, pro-
vides a better starting point to obtain a larger number
of excited states, as can be seen in panels (c) and (i)
of Fig. 3. The HF state also has the clear advantage
of requiring far fewer quantum operations to prepare it.
We note that some new algorithms have been proposed
recently to achieve faster convergence compared to QPE
[79, 80] but again, we do not anticipate that these novel
algorithms will benefit from an improved preparation of
the initial state.

In the following, we explore alternative methods to ob-
tain the energy spectra with increasing accuracy, using
the optimization of the initial state as in the Q-VAP tech-
nique.
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FIG. 5: Illustration of the (a) Hadamard and (b) modified
Hadamard test used to calculated the real and imaginary
parts of the expectated value 〈Ψ|Ae−i∆τH |Ψ〉. In this circuit,
H is the standard Hadamard gate while R(φ) corresponds to
the phase gate where the angle is set to φ = −π/2. Note that
in both circuits the quantity of interest is obtained from the
difference p0 − p1 where p0 (resp. p1) is the probability of
measuring 0 (resp. 1) in the ancillary qubit. In the present
work, we identify the operator A with the identity for com-
puting the overlaps (25). For the Hamiltonian, we consider
the decomposition (13) and compute the desired quantities
for each operator Vl separately.

B. Quantum Krylov approach

A possible alternative to the QPE, is to use iterative
methods that start from an initial state |Ψ〉 and gradu-
ally construct a set of states leading to a subspace of the
Hilbert space where configuration interaction (CI) calcu-
lations can be achieved by diagonalizing the Hamiltonian
in the reduced space. Such techniques are widely used on
classical computers [81]. Among these techniques, we can
mention those based on the Krylov state defined by the
set of M states:

{|Ψ〉, H|Ψ〉, · · · , HM−1|Ψ〉}, (23)

like the widely used Lanczos and the Arnoldi iterative
methods. Quantum algorithms related to the Krylov
space have attracted recently special attention [73, 82–96]
(see also the recent survey [97]). The brute force mapping
of the Krylov based techniques using the reduced basis
(23) requires the precise estimates of the different expec-
tation values 〈HK〉 for K ≤ 2M − 1. However, because
the operators HK are not unitary, it is not straightfor-
ward to determine their expectation values on a quantum
computer. One possible way is to obtain a similar expres-
sion for HK as in Eq. (13) and compute each term in the
expansion separately. In this direct strategy, the number
of terms quickly becomes very large as K increases. In a
recent study [73], we explored the possibility of comput-
ing the moments of H directly by successive derivatives
of the generating function F (t) = 〈e−iτH〉. However,

the precision in the estimates decreases rapidly as the
order K increases. Here, we investigate the alternative
possibility of using the Quantum Krylov based methods
[82, 95, 96]. The starting point of the approach is to
replace the states (23) by the new set of states:

{|Ψ〉, e−iτ1H |Ψ〉, · · · , e−iτM−1H |Ψ〉}. (24)

In the following, we will simply write |Φn〉 ≡ e−iτnH |Ψ〉
for n = 0,M − 1, with the convention that τ0 = 0. Our
goal is to diagonalize the Hamiltonian in the reduced sub-
space formed by the non-orthogonal states (24). To this
end, we introduce the overlap and Hamiltonian matrix
elements:

Oij = 〈Φi|Φj〉 = 〈Ψ|e−i(τj−τi)H |Ψ〉, (25)

Hij = 〈Φi|H|Φj〉 = 〈Ψ|He−i(τj−τi)H |Ψ〉. (26)

Below, for the sake of compactness, we will sometimes
write ∆τji = τj − τi. To find approximate solutions to
the eigenvalue problem, we decompose the approximate
eigenstates:

|ξα〉 =
∑
n

cn(α)|Φn〉. (27)

Every eigenstate is solution of the generalized set of
eigenvalue equations:∑

n

cn(α)Hin = Eα
∑
n

cn(α)Oin, (28)

These equations correspond to standard eigenvalues
equations written in a non-orthonormal basis [15].

Here we consider a hybrid quantum-classical algorithm
where the computation of the Hamiltonian and overlap
matrix elements, given by (25) and (26), is made on a
quantum computer while the solution of the set of equa-
tions (28) is performed on a classical computer. The
circuits used to compute the real and imaginary parts of
the expectation values (25-26) correspond to the stan-
dard Hadamard or modified Hadamard tests shown in
Fig. 5.

The eigenvalue problem given by Eq. (28) is solved
using a standard technique. In practice, starting from a
set of times {τi}i=0,M−1, the various overlaps and ma-
trix elements of H are first computed using the circuits
shown in Fig. 5. This information is then transmitted to
a classical computer. The eigenvalues and eigenvectors
components in the reduced space are determined in two
steps. First, the overlap matrix is diagonalized, resulting
in a set of orthonormal states {|χi〉}i=0,M−1 and eigen-
values {λi}i=0,M−1 for the reduced Hilbert space. Note
that some of the states may not be retained for further
processing if the eigenvalues are below a certain thresh-
old λi ≤ ε. This happens when some of the states in the
set {|Φi〉} are a linear combination of the others. After
this step, the Hamiltonian is diagonalized in the basis
{|χi〉} leading to a set of J ≤M eigenvectors where J is
the set of states that are retained after the first step. In
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the following applications, we use ε = 10−6 and figures
will always present results as a function of the original
number of states M .

2 4 6 8 10
Number of states
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FIG. 6: Illustration of the energies obtained by the Quantum
Krylov method for the pairing problem with 8 particles on 8
levels and g/∆e = 0.5. The results are obtained using the
set of times τi = i∆τ for i = 0,M − 1 and starting from
the HF (blue circles), the Q-PAV (red squares) and Q-VAP
(orange diamonds). The approximate energies are plotted as
a function of M . For the present figure, we used ∆τ.∆e = 0.3
and a threshold ε = 10−6 for the rejection of states when
diagonalizing the overlap matrix. The horizontal black lines
indicate the exact eigenenergies.

1. Discussion on the Quantum Krylov method convergence

Some aspects and possible improvements concerning
the convergence of the quantum Krylov method were
discussed in Ref. [96]. In the following, we will focus
on the influence of the initial state optimization on the
convergence of the approach by comparing the different
methods to initialize the system.

We show in Fig. 6 the energy spectra obtained by the
Quantum Krylov method starting from the HF, Q-PAV
and Q-VAP states. In this figure, an increasing number of
states M is used and the states are generated with a con-
stant time steps τi = i∆τ for i = 0,M−1. When only one
state is used, i.e., when M = 1, the energy corresponds to
the energy of the initial state. We see in this figure that
the energies obtained with the Quantum Krylov method
converge towards some of the exact eigenvalues regard-
less of the initial conditions. The rapidity of convergence
clearly depends on the specific targeted energy and on
the initialization procedure. To illustrate this aspect, we
focus in Fig. 7 on the accuracy of the energy obtained
for the ground state and the first excited state using the
percentage of error defined in Eq. (12). For the ground
state shown in panel (a), the convergence for the Q-VAP
initial state is much faster, showing the net advantage
of using the optimization at the level of the symmetry

0

50

100 (a)HF
Q-PAV
Q-VAP

2 4 6 8 10
Number of states

0

200

400 (b)E/
E(

%
)

FIG. 7: Percentage of error defined by Eq. (12) obtained
with the Quantum Krylov method for the ground state (a)
and first excited state (b) starting from the different initial
states as a function of the number of states M . The horizontal
lines correspond to the exact energies. In this figure, the
precision displayed for M = 1 are those reported in Fig. 2 for
g/∆e = 0.5.

projected state. The rapid convergence observed for this
initial state can be directly attributed to the strong over-
lap between this initial state and the ground state, as also
shown in panel (g-i) of Fig. 3. The advantage of the Q-
VAP initial state clearly breaks down for the first excited
state. In this case, a simple HF initialization is able to
achieve the best convergence. As shown in Fig. 6, the
same conclusion holds for all excited states. Indeed, in
this figure, we see that the convergence towards excited
states is similar for the HF and Q-PAV state and in all
cases faster than for the Q-VAP initialization. We finally
mention that some excited states are not obtained in Fig.
6 because they are either not present in the initial state,
or their components are initially below the threshold ε,
or because the size of the Quantum Krylov basis is not
large enough.

2. Comparison between QPE and Quantum Krylov

We discuss here some aspects of the two methods used
for post-processing (QPE vs Quantum Krylov). First,
we note that the two post-processing strategies are dif-
ferent in nature since the QPE is purely quantum-based
while the Quantum Krylov method falls into the class of
hybrid quantum-classical computations. Moreover, the
results of the methods are also slightly different. In the
absence of noise and assuming that the number of qubits
that can be used is unlimited, the QPE approach gives
a priori access to the eigenstates and eigenvalues with
arbitrary precision in the full Fock space. The Quantum
Krylov method gives approximate eigenvalues and com-
ponents of the eigenstates in a reduced subspace of the
total Hilbert space. This difference in outcomes should
be kept in mind when comparing the two methods as we
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FIG. 8: Illustration of the time evolution τtot needed to ob-
tain a certain precision for the ground state energy using the
Quantum Krylov method for different initial states (HF, Q-
PAV and Q-VAP). These times are compared to the time
(22) necessary for the QPE method for nq = 3, 4, . . . , 9 (pur-
ple filled circles). The errorbars shown for the QPE case are
computed from the bin size of Fig. 3.

do below.
A first evident advantage in favor of the Quantum

Krylov method is the circuit length. The Quantum
Krylov only requires one extra ancillary qubits compared
to the QPE for which the number of extra qubits needed
varies with the desired accuracy. Another aspect is the
number of operations itself to reach this accuracy. Since
both methods require the controlled-U operation with
U(t) = e−itH , and since both are implemented here us-
ing the Trotter-Suzuki method, a compact way to com-
pare the number of operations is to compare the time
τtot over which the system should be evolved to reach a
certain precision on the energy. This time is given by Eq.
(22) for the QPE case. In this case, we have shown that
the precision is rather independent of the initial state.
For the Quantum Krylov method, the precision achieved
for instance on the ground state, depends on the opti-
mization and not on the initial state (see Fig. 7). For
the Quantum Krylov method, the maximum total time
needed is identified as the maximal value in the set of
times {τi}i=0,M−1. If we assume that the times are sorted

in ascending order, we have simply τQKtot = τM−1.
In Fig. 8 we compare the precision on the ground state

energy as a function of the total time of propagation in
the two methods. Regardless of the initial condition, we
see that the simulation time required to achieve a certain
precision for the ground state energy is at least an order
of magnitude smaller for the Quantum Krylov method
compared to the QPE approach.

3. Improving the convergence for excited states

The short simulation time required for the Quantum
Krylov approach is a major advantage over the QPE
method. This conclusion also holds for the first few low-

est excited states shown in Fig. 6, regardless of the initial
state. Nevertheless, this figure shows that the most opti-
mized initial state, i.e., the Q-VAP ground state, which
has the fastest convergence to the true ground state, is
the least effective for the excited states. Even the crude
HF approximation leads to fastest convergence in the lat-
ter case. Such feature probably stems from the strong pu-
rification of the Q-VAP ground state that leads to very
small overlaps of the projected state with the exact ex-
cited states as shown in Fig. 3-i.
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FIG. 9: Same as panel (i) of Fig. 3 where the QPE is applied
with nq = 8 ancillary qubits but using an initial 2QP or 4QP
state projected onto a given number of particles. The illustra-
tion is performed for 8 particles on 8 levels and g/∆e = 0.5.
The initial states used in the QPE correspond to states given
by Eq. (29) projected onto A = 8. Panel (a) uses a 2QP state
where the QP are those associated to the 3rd single-particle
level. Panel (b) is associated to a 4QP state with QPs states
associated to the 3rd and 4th single-particle states.

One can take advantage of our knowledged of the BCS
theory to improve the Q-VAP convergence. In the BCS
framework, starting from the ground state (8), excited
states are generated by quasiparticle (QP) excitations.
In the specific case we consider, where we assume no
pair breaking, i.e., zero seniority, the excited states cor-
respond to 2QP, 4QP, . . . excitations. Starting from the
state (8), a 2kQP excitation takes the form:

|Ψi1,··· ,ik({θp})〉 =

k⊗
m=1

[− cos(θim |0im〉+ sin(θim)|1im〉]⊗
p 6=(i1,··· ,ik)

[sin(θp)|0p〉+ cos(θp)|1p〉] .(29)

These states are associated to a mean-field energy given
by:

Ei1,··· ,ik = E0 + 2
∑
m=1,k

Eim (30)

where E0 is the BCS energy while Ei is the quasiparticle
energy. The latter energy is given in the present model
by Ei =

√
(εi − λ)2 + ∆2 where λ is the Fermi energy

and ∆ is the pairing gap. At the mean-field level, all
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excited states given by Eq. (29) are orthogonal to the
BCS ground state (8). Moreover, we see that the lowest
excited states are obtained by 2QP excitations associated
to the single-particle levels that are close to the Fermi
energy.

To improve the convergence for the excited state in
the Q-VAP approach, we tested the possibility of replac-
ing the Q-VAP ground state in the post-processing by
one of the 2kQP states given by Eq. (29). More pre-
cisely, we proceed as follows (i) The Q-VAP ground state
is found using the variational optimization discussed ear-
lier; (ii) After this optimization, we construct one of the
states given by (29) without changing the values of {θp}
obtained in step (i). Note that if we used directly the
state (29) in the optimization, one would converge to
the Q-VAP ground state since the QP excitation can
be identified with the original ansatz (8) provided that
θik → θik + π/2. Due to the last relation, the same cir-
cuits can be used to construct the symmetry-breaking
2kQP excited states by shifting some of the angles ac-
cordingly; (iii) the SB excited state is then projected
onto a given particle number and used for further post-
processing (QPE or Quantum Krylov).

The orthogonality between the QP states and the BCS
ground state is not preserved after projection. Neverthe-
less, one might expect the SR state constructed from QP
excitations to have smaller overlap with the true ground
state, while the contributions of the true excited states
increase compared to the original Q-VAP vacuum. The
QPE approach turns out to be a very useful tool to con-
firm this and to analyze the projected QP excited states.
We show in Fig. 9 the results of the QPE approach start-
ing from such states with 2QP and 4QP excitations. In
this figure, we clearly see the increase in the excited state
components for the multiple QP excitations.

An illustration of the results obtained with the Quan-
tum Krylov approach is shown in Fig. 10 for the initial
projected 2QP state used in panel (a) of Fig. 9. We
clearly see two consequences of using the modified ini-
tial states on the convergence. First, the use of 2QP
excited state instead of the ground state clearly worsens
the convergence towards the ground state. However, in
parallel, we also observe a clear improvement of the con-
vergence towards the first low-lying excited states. For
the first excited state, the convergence towards excited
states is significantly improved compared to the Q-VAP
results shown in Fig. 6. For this state, the convergence
is comparable to the HF case. A careful analysis shows
that it is even slightly better in the Q-VAP case. For
higher energy states, we clearly see that the convergence
is strongly improved in the Q-VAP case and, in all cases
it outperforms the HF or Q-PAV results. We have per-
formed systematic studies by changing the quasiparticles
that are used for the excitation or by performing increas-
ing number of QP excitations. We have always improved
the convergence of the quantum Krylov compared to the
case without QP excitations. However, we should men-
tion that the convergence speed depends on the type of
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FIG. 10: Same as figure 6 starting from an excited state used
in panel (a) of Fig. 9.

excitation and in general it is quite difficult to predict
the improvement a priori. Nevertheless, the result shown
in Fig. 10 is encouraging for future applications.

IV. CONCLUSION

In the present work, we first discuss how the standard
strategy consisting in breaking symmetries and restor-
ing them on a quantum computer can be formulated and
combined with quantum variational methods. This strat-
egy leads to highly entangled many-body states, which
are often very efficient to describe many-body quantum
systems with spontaneous symmetry breaking. We show
that these states can be used as optimized initial states
for further processing on a quantum computer. Such pro-
cessing is illustrated here using the QPE method and the
Quantum Krylov approach. Both techniques prove to be
very efficient in obtaining the ground state energy when
the initial state is the Q-VAP ground state. However, the
advantage of using this state compared to a crude sym-
metry preserving HF approximation is lost when deter-
mining the excited state energy. We show here that of use
of projected QP excited state can significantly improve
the convergence towards the excited states energies.

The use of projection in the variational method is quite
demanding in terms of quantum resources. When used
prior to the QPE, we find that the Q-VAP approach
strongly purifies the projected state towards the ground
state. An initial trial state that is very close to the ex-
act ground state is not necessarily an advantage in itself,
especially if one wants to gain insight into the excited
states, as shown in Fig. 3. We show here that the situ-
ation is different for the Quantum Krylov technique. In
this case, an optimized trial state significantly improves
the convergence and consequently reduces the quantum
resources needed for the propagation of the systems. In
this case, a clear advantage is observed in the use of pro-
jected optimized states.
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