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Accessing the degree of Majorana 
nonlocality in a quantum 
dot‑optical microcavity system
L. S. Ricco1*, V. K. Kozin1,2, A. C. Seridonio3,4 & I. A. Shelykh1,2

We explore the tunneling transport properties of a quantum dot embedded in an optical microcavity 
and coupled to a semiconductor‑superconductor one‑dimensional nanowire (Majorana nanowire) 
hosting Majorana zero modes (MZMs) at their edges. Conductance profiles reveal that strong 
light‑matter coupling can be employed to distinguish between the cases of highly nonlocal MZMs, 
overlapped MZMs and MZMs with less degree of nonlocal feature. Moreover, we show that it is 
possible to access the degree of Majorana nonlocality (topological quality factor) by changing the dot 
spectrum through photon‑induced transitions tuned by an external pump applied to the microcavity.

Over the past decade, a huge effort in both theoretical and experimental fields has been performing in the quest 
for an unquestionable signature of exotic ‘half-fermionic’ states, the so-called Majorana zero-modes (MZMs) in 
quasi-one dimensional hybrid semiconductor-superconductor nanowires with strong spin-orbit coupling sub-
ject to external magnetic field, termed as Majorana  nanowires1–5. In such devices, each isolated ‘half-fermionic’ 
MZM appears at one of the opposite nanowire ends when the bulk of the system undergoes a topological phase 
 transition6–8.

In tunneling spectroscopy measurements performed through a Majorana  nanowire4,8–15, the emergence of 
a quantized zero-bias peak (ZBP) robust to changing of relevant system parameters such as magnetic field and 
gate voltages is considered as a strong evidence supporting the emergence of the isolated MZMs. However, it 
has been extensively demonstrated that other physical mechanisms such as the formation of trivial zero-energy 
Andreev bound state (ABS) at wire ends due to inhomogeneous smooth confining  potentials16–25 and disorder-
induced bound  states22,25–27 can produce a robust quantized ZBP, leading to an ambiguity of the MZM signature.

The emergence of a trivial zero-energy ABS can be mathematically described as resulting from two half-
fermionic states with some spatial separation between them. In this scenario, a quantized ZBP may arise if one 
of these half-fermionic states couples to a tunneling spectroscopy probe stronger than the  other15,20,21. This kind 
of trivial ABS formed by two half-fermionic states with small spatial separation between them has been dubbed 
as partially separated ABS (ps-ABS)20 or quasi-Majoranas (quasi-MZM)21. Despite some recent advances, dis-
tinguishing ZBPs resulting from genuine topological MZMs, trivial quasi-MZMs and disorder still remains a 
 challenge15,22–25.

From the perspective of Majorana-based  qubits28, the possibility of performing decoherence-free quantum 
computing operations lies on the ability of storing the information  nonlocaly21,29–31, once each MZM is far apart 
from each other for the ideal situation of longer and pristine nanowires. Hereupon, it is crucial to obtain the 
information about the spatial localization of the wave functions corresponding to these MZMs. This can be 
achieved by measuring the so-called degree of Majorana  nonlocality31,32, which indirectly quantifies the infor-
mation about the localization of the MZMs wavefunctions along the nanowire. This quantity can be accessed by 
means of a quantum dot (QD) working as a local tunneling spectroscopy probe at one of the ends of a Majorana 
 nanowire12,13,33–35. The degree of Majorana nonlocality is defined as η2 = (�c,R/�c,L) for weakly overlapped MZMs 
( εM ≪ �c,R ), where �c,L and �c,R are the coupling between the dot and the left and right MZMs, respectively (see 
Fig. 1a). Equivalently, this quantity provides a topological quality factor q = 1− (�c,R/�c,L) of the  nanowire36,37. 
Highly nonlocal MZMs are characterized by η → 0 ( q → 1 ), while η → 1 ( q → 0 ) indicates MZMs with cor-
responding wavefunctions not well-localized at the nanowire ends.  Experimentally13,32, the degree of Majorana 
nonlocality (quality factor) can be accessed by measuring the corresponding energies of anticrossing patterns 
appearing in tunneling conductance profiles as functions of both applied bias-voltage through the QD-nanowire 
and QD gate-voltage.
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In the present work, we show that light-matter coupling can be employed as an alternative to probe the degree 
of Majorana nonlocality through tunneling conductance experiments. We consider the system schematically 
shown in Fig. 1a: a QD placed inside a single-mode optical cavity with frequency ω0 , which is tuned in resonance 
with valence-to-conduction band optical transition, i.e, � = ω0 , see Fig. 1b. The conductance through the dot can 
be accessed by metallic source-drain leads. Moreover, the QD couples with both left and right MZMs hosted at 
the edges of the Majorana nanowire. We demonstrate, that conductance profiles through the QD as functions of 
both bias voltage and mean photon occupation adjusted by external pump reveal distinct patterns for the cases 
of highly nonlocal MZMs, overlapped MZMs and not so well localized MZMs. We also show that it is possible 
to access the degree of Majorana nonlocality (topological quality factor) in conductance profiles by tuning the 
mean photon occupation instead of the QD gate-voltage as in the Prada’s original  proposal31,32,36.

To the best of our knowledge, experimental setups which combine optical and electrical methods to explore 
the underlying physics of MZMs have not been considered previously. However, QDs in microcavity quantum 
electrodynamics (QED) devices are routinely studied in optical  experiments38,39 and, in recent years, some 
theoretical works have employed cavity QED for studying  MZMs40–43. In such theoretical proposals, the whole 
Majorana nanowire is placed in a (microwave) cavity, whereas in our approach only the QD is sandwiched 
between the mirrors that form an optical microcavity. Moreover, in our theoretical approach we introduce a new 
(optical) degree of freedom in the system such that, on the one hand, it affects only a small part of the full system 
in contrary to the previous approaches, and on the other hand, allows one optical manipulation of the electrical 
conductance, thus providing an alternative to access degree of Majorana nonlocality via optical means. It’s worthy 
noticing that the bridging between cavity QED and topological superconductors supporting Majorana excita-
tions not only opens new possibilities for MZMs detection schemes, but also can pave a new way for performing 
quantum computing operations with  photons43–45 in Majorana based qubit schemes.

Results and discussion
In what follows, we analyze the conductance through the QD [Eq. (6)] as a function of bias-voltage eV, in pres-
ence of a photonic field in the cavity (Fig. 1a). We take the effective broadening Ŵ = 40µeV as the energy  unit34,46. 
We also use typical parameters for QDs embedded in  microcavities47, taking ωv ≪ EF , ωc = 100Ŵ ≈ 968GHz , 
�R = 2.5Ŵ = 0.1meV ( ≈ 24GHz ). The energy of a cavity mode is taken in resonance with the excitonic transi-
tion in the QD, ω0 = � = 35.1× 103Ŵ ≈ 1.4 ev ( 338 THz).

Figure 2 describes the conductance as a function of eV when the QD is coupled only with the left MZM 
( �c,L = 40Ŵ ), corresponding to the situation of highly nonlocal MZMs ( �c,R = εM = 0 , η = 0 ), for several val-
ues of 〈ν〉 . This ideal condition of true topological MZMs is expected for clean disorder-free  nanowires25,27, long 
enough to avoid the overlap between the Majorana wavefunctions located at the opposite  ends23. In absence of 
the cavity photons ( �ν� = 0 ), a robust ZBP with G(0) = 0.5e2/h appears, as it is shown by the red dashed lines 
in Fig. 2a,b, characterizing the ‘half-fermionic’ nature of an isolated MZM leaking into the  QD12,34,46,48.The 
conductance peak localized at eV ≈ 100Ŵ corresponds to the conduction level of the dot renormalized by the 
finite QD-left MZM coupling.

Figure 1.  (a) The sketch of the considered system: A quantum dot (QD) embedded inside a single-mode optical 
cavity with frequency ω0 . An electron in the conduction level of the dot couples with both the left ( γR ) and the 
right ( γL ) Majorana zero-modes (MZMs) located at the opposite ends of the Majorana nanowire, with strengths 
�c,L and �c,R , respectively. The overlap between the wavefunctions of MZMs is given by εM . The tunneling 
conductance through the QD can by probed by means of source and drain metallic leads symmetrically coupled 
( V ) to the dot. The energy of the cavity photons is brought in resonance with interband transition in the dot 
� . (b) The scheme of a QD energy levels: the valence level ωv is far below the Fermi level EF = 0E while the 
conduction level ωc is above EF . Strong coupling with cavity photons results in a Rabi splitting of the levels �R , 
which is determined by the oscillator strength of the optical transition and the geometry of the cavity.
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For a finite photon occupation �ν� = 500 (solid blue line, Fig 2a), optically-induced transitions between 
valence and conduction levels of the QD come into play, splitting the single peak associated with the QD conduc-
tion level into two polariton peaks located at eV ≈ 50Ŵ and eV ≈ 150Ŵ . The higher is the value of 〈ν〉 , the bigger 
is the distance between the polariton peaks (Fig. 2a, dash-dotted green and dotted black lines). This behavior 
resembles the Rabi splitting for an individual dot inside a cavity, for which 2�R

√
�ν�49 (Fig. 1b). Note, however, 

that for sufficiently high values of 〈ν〉 additional polariton peaks stemming from indirect MZM to photon cou-
pling of lower amplitude appear (see black and magenta curves).

The amplitude of the peak at zero-bias remains unchanged with increase of the number of the photons 
(Fig. 2b). This robustness is characteristic for the situation of highly-nonlocal  MZMs22,23,25,32. In the same time, 
the width of the ZBP is monotonously increasing with increase of the number of the cavity photons, which means 
that the latter affect the effective lifetime of the electronic states of the dot and MZMs.

In Fig. 2c, the conductance behavior at zero-bias as a function of 〈ν〉 is shown for several values of �c,L . A 
well-defined plateau of 0.5e2/h , independent on the mean photon occupation, characterizes the robustness of 
the ZBP for the cases of strong QD-nanowire coupling �c,L � Ŵ (magenta stars and red circles). For smaller 
values of �c,L , the plateau is destroyed, as can be seen in the green line with triangles of Fig. 2c, corresponding to 
�c,L = 10−2Ŵ . When the QD is totally decoupled from the Majorana nanowire (solid purple line, �c,L = 0 ), the 
conductance at eV = 0 exhibits a single resonance at �ν� = 1600 , which corresponds to the crossing between 
the photon-induced lower polariton peak and Fermi energy.

The colormap of Fig. 2d summarizes the conductance behavior as a function of both eV and 〈ν〉 , correspond-
ing to a range of bias-voltage within the gray region of Fig. 2a. One can notice that the photon-induced peak 
above eV = 0 have its amplitude reduced with the co-emergence of a conductance peak symmetrically localized 
below eV = 0 and a ZBP with unchanged 0.5e2/h height pinned at zero-bias. Direct comparison between profile 
of Fig. 2d and the corresponding results for highly nonlocal MZMs found by Prada et al.32 and  others12,13,36,50 
shows that the increasing of the mean photon occupation (i.e. increasing the pump intensity) is a fast indirect 
way of tuning the QD energy without applying any gate-voltage due to renormalization of the QD spectrum in 
the strong light-matter coupling regime, which bridges Quantum Optics and the physics of MZMs.

It is worth noticing that the quantized ZBP Majorana amplitude of 0.5e2/h33,34,48 shown in the conductance 
profiles of Fig. 2 is distinct from the 2e2/h quantized Majorana conductance, expected for typical tunneling 
experiments with Majorana  nanowires22,25. This difference comes from the underlying mechanism of electronic 
transport for each case. For characteristic setups of tunneling spectroscopy  experiments4,8,15, the 2e2/h quantized 
conductance is a result of a perfect resonant zero-energy Andreev reflection in the normal lead-Majorana nanow-
ire  interface3. In our proposal otherwise (Fig. 1a), the transport occurs by normal electron tunneling through the 
QD due to an applied voltage eV between the source-drain metallic leads, where the quantum of conductance is 
e2/h [Eq. (6)] per spin channel. Hence, for an isolated MZM which has leaked into the QD  level34,48, the amplitude 
of the ZBP is half of the quantum of conductance for an ordinary spinless electron, indicating the half-fermionic 
nature of a Majorana mode at zero-energy.

Figure 3 shows the profiles of conductance through QD coupled to the Majorana nanowire for the case of 
MZMs still localized at opposite wire ends, but with finite overlap between them ( εM = 10Ŵ ≫ �c,R ), which may 
describe the situation of shorter  nanowires23. For a null photon occupation, G(eV) [Eq. (6)] is characterized by 
two near zero-energy peaks at eV ≈ ±εM (Fig. 3a,b, dashed red lines) coming from the ZBP splitting due to the 
finite  overlap33 and a third peak at eV ≈ 100Ŵ , corresponding to the QD conduction level renormalized by the 

Figure 2.  (a) Conductance through the QD [Eq. (6)] as a function of bias-voltage eV describing the case of 
highly nonlocal MZMs ( εM = �c,R = 0 , η = 0 ) for increasing number of the excitations in the system 〈ν〉 , which 
can be tuned by external pump (the curves are offset along the y axis for the better viewing). One clearly sees 
the appearance of additional peaks due to the Rabi splitting. (b) Zoom of the conductance around eV = 0 . (c) 
Conductance through the QD at zero-bias eV = 0 for increasing 〈ν〉 . (d) Colormap showing the conductance 
behavior as a function of both the eV and 〈ν〉 , for a range of eV corresponding to gray region of (a).
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QD-nanowire coupling (Fig. 3a, dashed red line). As the mean photon occupation is increased, in analogy to 
what happened for nonoverlapped MZMs, the peak corresponding to the QD conduction level splits into two 
polariton peaks (Fig. 3a, solid blue line), with the value of this splitting depending on 〈ν〉 . It can be seen that 
the increase of the mean photon occupation strongly affects the pattern of near zero-energy peaks associated 
with overlapped MZMs (see Fig. 3b). First, they become closer to each other, and coalesce into a single peak 
at zero-bias with height of e2/h for �ν� = 1600 . Further increase of the number of cavity photons leads to the 
reappearance of the splitting.

The conductance profile at eV = 0 as a function of the mean photon occupation is shown in Fig. 3c. One 
can notice that the zero-bias conductance plateau corresponding to nonverlapped and highly nonlocal MZMs 
(solid red line) is destroyed even by a small overlap (dashed blue line). For bigger values of the overlap strength 
εM , G(eV = 0) as a function of 〈ν〉 , exhibits a single peak at �ν� = 1600 , showing the behavior similar to those 
corresponding to a QD embedded in an optical cavity and decoupled from the nanowire (Fig. 2a, solid purple 
line). This similarity characterizes the single-fermion nature of the state formed from the overlap between the 
two half-fermionic MZMs.

The conductance through the QD as a function of both eV and photon occupation, corresponding to the eV-
range within the gray area in Fig. 3a, is shown in Fig. 3d. One can see that the photon-induced transitions in the 
QD renormalize its spectrum, giving rise to a ‘bowtie-like’ shape, which resembles those found by Prada et al.32.

In Fig. 4 we display the case in which the MZMs have lost their nonlocal feature ( η → 1 ). This situation quali-
tatively describes a scenario where the right MZM is displaced towards to left edge of the nanowire, leading to 
a partial separation between the MZMs and hence a finite overlap between the wavefunction of the right MZM 
and the QD ( �c,R ≫ εM)31,32,36. The emergence of this MZMs with partial separation can result from inhomo-
geneous confining potentials in the  nanowire22,23,25,31. Similarly to Fig. 3a,b, we can notice two near-zero-energy 
conductance peaks at eV ≈ ±�c,R for the case of zero photon occupation (Fig. 4a,b, dashed red line), which 
points that the left and right MZMs leak into the dot with different intensities ( �c,L ≫ �c,R ) and form a state of 
a regular fermionic character.

The peak corresponding to the QD conduction level at eV ≈ 100Ŵ is again splitted into two polariton peaks in 
presence of cavity photons, which also affects the position of the near-zero-energy conductance peaks (Fig. 4b). 
But distinct from the previous case of overlapped MZMs localized at the nanowire edges (Fig. 3b), there is no 
coalescence into a single peak at eV = 0 for certain value of 〈ν〉.

Figure 4c displays the evolution of zero-bias conductance as a function of 〈ν〉 for increasing values of coupling 
between the right-MZM and the QD. For the ideal situation of highly nonlocal MZMs (solid red line), one can 
see a ZBP plateau associated to the isolated MZM which has leaked into the dot. A plateau is still present for a 
tiny value of �c,R (dashed orange line), but with a reduction of the ZBP height ( G(eV = 0) < 0.5e2/h ). However, 
a little enhancement of �c,R (dotted green and dash-dotted blue lines) drops the zero-bias conductance to almost 
zero for any value of 〈ν〉.

The behavior of the conductance through the QD as a function of eV and photon occupation 〈ν〉 is shown in 
Fig. 4d. One can clearly notice that the near-zero-energy peaks corresponding to these MZMs with less degree 
of nonlocality slightly move away from each other as photon-induced peak (upper branch in Fig. 4d) is driven 
towards eV = 0 and then start to approach each other again as the photon occupation is increased. This behavior 
yields a pattern that resembles the ‘diamond-like’ profile reported by Prada et al.32. In this work, it was suggested, 

Figure 3.  (a) Conductance through the QD [Eq. (6)] as a function of bias-voltage eV describing the case of 
overlapped MZMs localized at the nanowire ends ( εM = 10Ŵ , �c,R = 0 ) for increasing numbers of photon 
occupation 〈ν〉 . For a better viewing, the curves are offset along the y axis. (b) Same curves depicted in (a), but 
considering eV only near zero-bias without offset along y axis. (c) Conductance through the QD at zero-bias 
eV = 0 for increasing number of 〈ν〉 . (d) Colormap showing the conductance behavior as a function of both the 
eV and 〈ν〉 , for a range of eV corresponding to gray region of (a).
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that the degree of Majorana nonlocality can be extracted from the anticrossing points between the QD level and 
the near-zero energy levels corresponding to MZMs by application of a QD-gate  voltage13,32.

Similarly, in the geometry considered by us, one can also extract the information about the degree of Majorana 
nonlocality from the photon-induced conductance profile of Fig. 4d. The dot spectrum now is optically, and 
not electrically, and the corresponding anticrossing points ǫ+QD and ǫ+

MZM
 are indicated by dashed green lines. 

As originally proposed by Prada et al.32, the degree of Majorana nonlocality in tunneling conductance  profiles13 
is given by �2

M ≈ η2 = ǫ+
MZM

/ǫ+QD , valid when εM ≪ �c,L, �c,R . For the parameters corresponding to Fig. 4d, 
�M ≈ 0.35 , or equivalently, a topological quality factor of ≈ 0.8836,37, thus indicating that the MZMs are not 
well-localized at the nanowire edges.

Once we cannot extract the information about the wavefunctions of the Majorana nanowire within the 
effective model employed here, we are not able to do a detailed numerical analysis of the degree of Majorana 
nolocality as done by Prada et al32. However, in Sec. II of the supplementary information we performed a theo-
retical analysis of the effective spinless Hamiltonian considered throughout this work, showing the matching 
between the anticrossing points ǫ±

QD,MZM
 analytically obtained to extract �M within our proposal and those ones 

originally proposed in Ref.32.

Conclusions
In summary, we have theoretically explored the effects of strong light-matter coupling on transport properties 
of the hybrid device, consisting on quantum dot embedded inside a single-mode optical cavity and coupled to a 
Majorana nanowire. Conductance profiles as functions of the bias-voltage and mean photon occupation num-
ber controlled by an external pump revealed distinct shapes for the cases of highly nonlocal MZMs, overlapped 
MZMs localized at opposite nanowire edges and MZMs which are not perfectly nonlocal. This makes possible 
to access the degree of Majorana nonlocality (topological quality factor) all optically, by means of the tuning of 
the polariton energies in the dot.

Methods
The full Hamiltonian which describes the system of Fig. 1 reads ( � = 1):

where Hph = ω0c
†c, is the Hamiltonian of a single-mode optical cavity, with c†, (c) being creation and annihila-

tion operators of the cavity photons with energy ω0 . The Hamiltonian of the QD reads HQD = ωcd
†
c dc + ωvd

†
v dv , 

where dv and dc describe the spinless electrons in the valence and conduction levels of the QD with energy ωc 
and ωv , respectively, and � = ωc − ωv is the energy difference between these levels. The spinless situation can 
be reached in the regime of large magnetic fields, where only either the spin up or down channel is accounted. 
In this regime, only single occupancy is allowed at each QD level and therefore the onsite Coulomb repulsion 
can be safely neglected in HQD . Otherwise, the assumption of both spin degrees of freedom with Coulomb 
interaction between electrons at each QD level lead to the appearance of extra peaks in the QD energy spectrum, 
known as Hubbard  peaks48,50,51. Moreover, the presence of such a Coulomb repulsion also can lead to Kondo-type 

(1)H = Hph +HQD +Hint +Hlead +HMZMs,

Figure 4.  (a) Conductance through the QD [Eq. (6)] as a function of bias-voltage eV describing the case of 
MZMs with less degree of nonlocality ( �c,R ≫ εM ) for increasing number of photon occupation 〈ν〉 . For a 
better viewing, the curves are offset along the y axis. (b) Same curves depicted in (a), but considering eV only 
near zero-bias without offset along y axis. (c) Conductance through the QD at zero-bias eV = 0 for increasing 
number of 〈ν〉 considering distinct values of �c,R . (d) Colormap showing the conductance behavior as a function 
of both the eV and 〈ν〉 , for a range of eV corresponding to gray region of (a). Dashed light-green lines indicate 
the energies ǫ+QD and ǫ+MZMs of anticrossing points employed to estimate the degree of Majorana nonlocality 
�2

M = ǫ+MZMs/ǫ
+
QD , as proposed by Prada et al.32. For the data shown in (d), �M ≈ 0.35.
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correlations for T < TK
52,53 or TK/�Nw � 0.632,54, where T is the system temperature, TK is the characteristic 

Kondo temperature and �Nw is the induced superconducting pairing in the Majorana nanowire.
The interaction between the cavity and the QD is given  by55

where �R is the Rabi splitting strength.
The source (S) and drain (D) metallic leads and their coupling with the QD are described by

where c†k,α ( ck,α ) creates (annihilates) an electron in the lead α = S/D , with wave-number k , energy εαk = ǫk − µα 
and chemical potential µα . The bias-voltage through the QD is defined as eV = µS − µD . The parameter Vl 
represents the coupling strength of the conduction ( l = c ) and valence ( l = v ) levels of the QD with the leads. 
Once we are considering the situation in which the valence level is far below the Fermi level (ωv ≪ EF ,EF = 0) 
(Fig. 1b), one can assume Vv = 0 and Vc = V in Eq. (3) without loss of generality. Introducing even and odd 
linear combinations of the states of the leads ck,e,ck,o , i.e. performing the unitary transformation according to 
ck,S =

(

ck,o + ck,e
)

/
√
2 and ck,D =

(

ck,e − ck,o
)

/
√
2, the odd states become decoupled from the dot, and the 

Hamiltonian of Eq. (3) transforms  into56:

The effective Hamiltonian which describes the ‘half-fermionic’ states corresponding to MZMs at the ends of 
the Majorana nanowire coupled to the QD  reads32,36:

where γL,R = γ
†
L,R represent the MZMs at the opposite ends of the Majorana nanowire with εM being the overlap 

strength between  them3. The hybridization between the left and right MZMs with the conduction level of the 
dot is given by �c,L and �c,R , respectively, and one can safely assume, that �v,L(R) = 0 for the situation of ωv ≪ EF 
considered by us, once the MZMs cannot overlap with QD valence level owing to the large energy separation 
between them. Moreover, the assumption of ωv far below the Fermi level and consequent zero coupling strength 
between the MZMs and the QD valence level ensures the resonance condition � = ωc − ωv = ω0 within a range 
of realistic parameters, i.e., � = ω0 ∼ eV47.

The Hamiltonian of Eq. (5) can be rewritten in terms of a fermionic operator f1,3 by considering the fermionic 
representation of Majorana operators γL = (f † + f )/

√
2 and γR = ı(f † − f )/

√
2 , where f obeys the standard 

fermionic anticommutation relations. Hence, Eq. (5) becomes into HMZMs = εMf †f + (tcdcf
† +�cdcf + h.c.), 

with tc = (�L − �R)/
√
2 and �c = (�L + �R)/

√
2.

The application of a bias-voltage eV between source and drain leads, leads to the onset of the current through 
the system, and, according to the Landauer-type  formula57,58, at low temperatures ( T → 0 ) the conductance 
through the QD reads:

where e2/h is the quantum of conductance and Ŵ = 2πV2ρ represents the effective broadening introduced by 
the coupling between the QD and the even conduction operator of the leads [Eq. (4)], with a constant density of 
states ρ58,59, valid within the the wide-band limit approximation. The local density of states of the dot is given  by58:

where ��dc; d†c ��ω ≡ Gc(ω) is the retarded Green’s function in the spectral domain ω60, which can be calculated 
by successive applications of equation-of-motion  technique58,60,61 together with an appropriate truncation scheme 
(see Sec. I of supplementary information for details concerning the equation of motion technique and the trun-
cation scheme adopted). This gives

where g0(ω) = 1/(ω + ıδ − ωc) is the bare Green’s function of the QD conduction  level58,62,63, with δ → 0+ . The 
term ıŴ describes the corresponding broadening introduced by the coupling with metallic leads and

is the self-energy associated to the valence-to-conduction band transition induced by the photonic field of the 
optical cavity, with �ν� = �nc� + Nph being the mean photon occupation, which depends on the number of 

(2)Hint = −�R(d
†
v dcc

† + d†c dvc),

(3)Hlead =
∑

k,α

εαk c
†
k,αck,α +

∑

k,α,l

Vl(c
†
k,αdl + h.c),

(4)Hlead =
∑

k,a=e,o

ǫkc
†
k,ack,a +

√
2V

∑

k

(c†k,edc + h.c).

(5)
HMZMs = ıεMγLγR + �c,L(dc − d†c )γL

+ ı�c,R(dc + d†c )γR ,

(6)G(eV) =
(

e2

h

)

πŴρc(eV)

(7)ρi(ω) = −
1

π
Im��dc; d†c ��ω ,

(8)Gc(ω) =
g0(ω)

1+ g0(ω)
[

ıŴ −�c
ph(ω)−�MZMs(ω)

] ,

(9)�c
ph(ω) =

�2
R�ν�

(ω + iδ − ω0 − ωv)
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excitations ( 〈nc〉 ) in the QD and photons ( Nph ) in the microcavity, which can be tunned by an external optical 
pump.

The part of the self-energy associated with the direct coupling between the QD conduction level and MZMs 
reads:

where κ0(ω) = [(ω + iδ + εM)−1 + (ω + iδ − εM)−1] , κ1(ω) = [t2c (ω + iδ − εM)−1 +�2
c (ω + iδ + εM)−1] , 

κ̃1(ω) = [�2
c (ω + iδ − εM)−1 + t2c (ω + iδ + εM)−1] , K(ω) = κ0(ω)/(ω + ıŴ + ωc − �̃c

ph(ω)− κ̃1(ω)) , with 
�̃c

ph(ω) = �2
R�ν�/(ω + ıδ + ω0 + ωv) . If the QD is decoupled from the optical cavity ( �R = 0 ), �̃c

ph(ω) = 0 
and Eq. (10) is reduced to the well-known expression for the self-energy associated to the leaking of a single 
MZM into the QD for �c,R = 012,33,34,64.

The presence of �̃c
ph(ω) in the expression for K(ω) in the self-energy defined in Eq. (10) means that the 

MZMs somehow ‘feel’ the photonic field, although there is no direct coupling between cavity photons and the 
Majorana nanowire.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 13 October 2021; Accepted: 4 January 2022

References
 1. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).
 2. Elliott, S. R. & Franz, M. Colloquium. Rev. Mod. Phys. 87, 137 (2015).
 3. Aguado, R. Majorana quasiparticles in condensed matter. Riv. Nuovo Cimento 40, 523 (2017).
 4. Lutchyn, R. M. et al. Majorana zero modes in superconductor-semiconductor heterostructures. Nat. Rev. Mater. 3, 52 (2018).
 5. Laubscher, K. & Klinovaja, J. Majorana bound states in semiconducting nanostructures. J. Appl. Phys. 130, 081101 (2021).
 6. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor 

heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
 7. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 

(2010).
 8. Zhang, H., Liu, D. E., Wimmer, M. & Kouwenhoven L. P. Quantum transport in majorana nanowire devices: next steps, arXiv 

e-prints (2019), arXiv: 1905. 07882 [cond-mat.mes-hall].
 9. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 

(2012).
 10. Krogstrup, P. et al. Epitaxy of semiconductor-superconductor nanowires. Nat. Mater. 14, 1476 (2015).
 11. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206 (2016).
 12. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557 (2016).
 13. Deng, M.-T. et al. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B 98, 085125 (2018).
 14. Zhang, H. et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 13, 1748 (2018).
 15. Zhang, H. et al. Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices (2021), arXiv: 2101. 

11456 [cond-mat.mes-hall].
 16. Liu, C.-X., Sau, J. D., Stanescu, T. D. & Das Sarma, S. Andreev bound states versus Majorana bound states in quantum dot-nanowire-

superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).
 17. Liu, C.-X., Sau, J. D. & Das Sarma, S. Distinguishing topological Majorana bound states from trivial Andreev bound states: Proposed 

tests through differential tunneling conductance spectroscopy. Phys. Rev. B 97, 214502 (2018).
 18. Hell, M., Flensberg, K. & Leijnse, M. Distinguishing Majorana bound states from localized Andreev bound states by interferometry. 

Phys. Rev. B 97, 161401 (2018).
 19. Lai, Y.-H., Sau, J. D. & Das Sarma, S. Presence versus absence of end-to-end nonlocal conductance correlations in Majorana 

nanowires: Majorana bound states versus andreev bound states. Phys. Rev. B 100, 045302 (2019).
 20. Moore, C., Stanescu, T. D. & Tewari, S. Two-terminal charge tunneling: Disentangling Majorana zero modes from partially sepa-

rated Andreev bound states in semiconductor-superconductor heterostructures. Phys. Rev. B 97, 165302 (2018).
 21. Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost 

Phys. 7, 61 (2019).
 22. Pan, H. & Das Sarma, S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 

(2020).
 23. Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires. Nat. Rev. Phys. 2, 

575 (2020).
 24. Pan, H., Cole, W. S., Sau, J. D. & Das Sarma, S. Generic quantized zero-bias conductance peaks in superconductor-semiconductor 

hybrid structures. Phys. Rev. B 101, 024506 (2020).
 25. Pan, H., Liu, C.-X., Wimmer, M. & Sarma, S. D. Quantized and unquantized zero-bias tunneling conductance peaks in Majorana 

nanowires: Conductance below and above 2e2/h (2021), arXiv: 2102. 02218 [cond-mat.mes-hall].
 26. Pikulin, D. I., Dahlhaus, J. P., Wimmer, M., Schomerus, H. & Beenakker, C. W. J. A zero-voltage conductance peak from weak 

antilocalization in a Majorana nanowire. New J. Phys. 14, 125011 (2012).
 27. Pan, H. & Sarma, S. D. Disorder effects on Majorana zero modes: Kitaev chain versus semiconductor nanowire (2020), arXiv: 2012. 

12904 [cond-mat.mes-hall].
 28. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).
 29. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 44, 131 (2001).
 30. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. 

Rev. Mod. Phys. 80, 1083 (2008).
 31. Peñaranda, F., Aguado, R., San-Jose, P. & Prada, E. Quantifying wave-function overlaps in inhomogeneous Majorana nanowires. 

Phys. Rev. B 98, 235406 (2018).
 32. Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 

085418 (2017).
 33. Liu, D. E. & Baranger, H. U. Detecting a Majorana-fermion zero mode using a quantum dot. Phys. Rev. B 84, 201308 (2011).

(10)�MZMs(ω) = κ1(ω)+ (tc�c)
2κ0(ω)K(ω),

http://arxiv.org/abs/1905.07882
http://arxiv.org/abs/2101.11456
http://arxiv.org/abs/2101.11456
http://arxiv.org/abs/2102.02218
http://arxiv.org/abs/2012.12904
http://arxiv.org/abs/2012.12904


8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1983  | https://doi.org/10.1038/s41598-022-05855-y

www.nature.com/scientificreports/

 34. Vernek, E., Penteado, P. H., Seridonio, A. C. & Egues, J. C. Subtle leakage of a Majorana mode into a quantum dot. Phys. Rev. B 89, 
165314 (2014).

 35. Ricco, L. S. et al. Topological isoconductance signatures in Majorana nanowires. Sci. Rep. 11, 17310 (2021).
 36. Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017).
 37. Ricco, L. S., Marques, Y., Sanches, J. E., Shelykh, I. A. & Seridonio, A. C. Interaction induced hybridization of Majorana zero modes 

in a coupled quantum-dot-superconducting-nanowire hybrid system. Phys. Rev. B 102, 165104 (2020).
 38. Albert, F. et al. Microcavity controlled coupling of excitonic qubits. Nat. Commun. 4, 1747 (2013).
 39. Kasprzak, J. et al. Up on the Jaynes-cummings ladder of a quantum-dot/microcavity system. Nat. Mater. 9, 304 (2010).
 40. Trif, M. & Tserkovnyak, Y. Resonantly tunable Majorana polariton in a microwave cavity. Phys. Rev. Lett. 109, 257002 (2012).
 41. Dartiailh, M. C., Kontos, T., Douu ̧ot, B. & Cottet, A. Direct cavity detection of Majorana pairs. Phys. Rev. Lett. 118, 126803 (2017).
 42. Méndez-Córdoba, F. P. M. et al. Rényi entropy singularities as signatures of topological criticality in coupled photon-fermion 

systems. Phys. Rev. Res. 2, 043264 (2020).
 43. Contamin, L. C., Delbecq, M. R., çot, B. D., Cottet, A. & Kontos, T. Hybrid light-matter networks of Majorana zero modes (2021), 

arXiv: 2103. 16679 [cond-mat.mes-hall].
 44. Barz, S. Quantum computing with photons: Introduction to the circuit model, the one-way quantum computer, and the funda-

mental principles of photonic experiments. J. Phys. B Atom. Mol. Opt. Phys. 48, 083001 (2015).
 45. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460. https:// doi. org/ 10. 1126/ scien ce. abe87 70 

(2020).
 46. Barański, J., Barańska, M., Zienkiewicz, T., Taranko, R. & Domański, T. Dynamical leakage of Majorana mode into side-attached 

quantum dot. Phys. Rev. B 103, 235416 (2021).
 47. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81 (2006).
 48. Ruiz-Tijerina, D. A., Vernek, E., Dias da Silva, L. G. G. V. & Egues, J. C. Interaction effects on a Majorana zero mode leaking into 

a quantum dot. Phys. Rev. B 91, 115435 (2015).
 49. Cummings, F. W. Stimulated emission of radiation in a single mode. Phys. Rev. 140, A1051 (1965).
 50. Ricco, L. S., de Souza, M., Figueira, M. S., Shelykh, I. A. & Seridonio, A. C. Spin-dependent zero-bias peak in a hybrid nanowire-

quantum dot system: Distinguishing isolated Majorana fermions from Andreev bound states. Phys. Rev. B 99, 155159 (2019).
 51. Hubbard, J. & Flowers, B. H. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 276, 238 

(1963).
 52. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540 (1998).
 53. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156 (1998).
 54. Lee, E. J. H. et al. Scaling of subgap excitations in a superconductor-semiconductor nanowire quantum dot. Phys. Rev. B 95, 180502 

(2017).
 55. Shore, B. W. & Knight, P. L. The Jaynes-Cummings model. J. Mod. Optics 40, 1195. https:// doi. org/ 10. 1080/ 09500 34931 45513 21 

(1993).
 56. Ricco, L. S., Campo, V. L., Shelykh, I. A. & Seridonio, A. C. Majorana oscillations modulated by Fano interference and degree of 

nonlocality in a topological superconducting-nanowire-quantum-dot system. Phys. Rev. B 98, 075142 (2018).
 57. Meir, Y. & Wingreen, N. S. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 

(1992).
 58. Bruus, H. & Flensberg, K. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford Graduate Texts 

(Oxford University Press, 2004).
 59. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41 (1961).
 60. Zubarev, D. N. Double-time green functions in statistical physics. Soviet Physics Uspekhi 3, 320 (1960).
 61. Haug, H. & Jauho, A. Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Sciences (Springer, 

2008).
 62. Dyson, F. J. The s matrix in quantum electrodynamics. Phys. Rev. 75, 1736 (1949).
 63. Odashima, M. M., Prado, B. G. & Vernek, E. Pedagogical introduction to equilibrium Green’s functions: Condensed-matter 

examples with numerical implementations. Rev. Bras. Ensino Físhttps:// doi. org/ 10. 1590/ 1806- 9126- rbef- 2016- 0087 (2017).
 64. Campo, V. L., Ricco, L. S. & Seridonio, A. C. Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality 

of the zero-bias conductance. Phys. Rev. B 96, 045135 (2017).

Acknowledgements
LSR, VKK and IAS acknowledge support from Icelandic Research Fund (project “Hybrid polaritonics”) and 
Russian Science Foundation (project 20-12-00224). ACS acknowledges support from Brazilian National Council 
for Scientific and Technological Development (CNPq), grant 305668/2018-8.

Author contributions
L.S.R., V.K.K. and I.A.S. conceived the project. L.S.R. carried out the calculations and plotted the figures, with 
contributions from V.K.K. L.S.R. and I.A.S. wrote the paper with contributions from A.C.S. and V.K.K. All 
authors revised the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 05855-y.

Correspondence and requests for materials should be addressed to L.S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/2103.16679
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1590/1806-9126-rbef-2016-0087
https://doi.org/10.1038/s41598-022-05855-y
https://doi.org/10.1038/s41598-022-05855-y
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1983  | https://doi.org/10.1038/s41598-022-05855-y

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Accessing the degree of Majorana nonlocality in a quantum dot-optical microcavity system
	Results and discussion
	Conclusions
	Methods
	References
	Acknowledgements


