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Abstract Highway–rail grade crossings (HRGCs) are one

of the most dangerous segments of the transportation net-

work. Every year numerous accidents are recorded at

HRGCs between highway users and trains, between high-

way users and traffic control devices, and solely between

highway users. These accidents cause fatalities, severe

injuries, property damage, and release of hazardous mate-

rials. Researchers and state Departments of Transportation

(DOTs) have addressed safety concerns at HRGCs in the

USA by investigating the factors that may cause accidents

at HRGCs and developed certain accident and hazard

prediction models to forecast the occurrence of accidents

and crossing vulnerability. The accident and hazard pre-

diction models are used to identify the most hazardous

HRGCs that require safety improvements. This study pro-

vides an extensive review of the state-of-the-practice to

identify the existing accident and hazard prediction for-

mulae that have been used over the years by different state

DOTs. Furthermore, this study analyzes the common fac-

tors that have been considered in the existing accident and

hazard prediction formulae. The reported performance and

implementation challenges of the identified accident and

hazard prediction formulae are discussed in this study as

well. Based on the review results, the US DOT Accident

Prediction Formula was found to be the most commonly

used formula due to its accuracy in predicting the number

of accidents at HRGCs. However, certain states still prefer

customized models due to some practical considerations.

Data availability and data accuracy were identified as some

of the key model implementation challenges in many states

across the country.

Keywords Highway–rail grade crossings � Accident
prediction methods � Hazard prediction methods � Resource
allocation � Critical review

1 Introduction

A highway–rail grade crossing (HRGC) is a segment of the

transportation network, where the highway and the rail

tracks intersect at the same elevation (Fig. 1). HRGCs can

be found on both public and private highways in the USA.

Over the past decades, several factors, including an

increase in the demand for freight and passenger trans-

portation, urbanization, and growing road and rail network,

have led to an increase in the number of HRGCs in the

USA. The public and private HRGCs in the USA were in
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excess of 250,000 in the year of 2015 [1]. In the meantime,

safety at HRGCs has been posing a major challenge over

the past years [2]. At every HRGC, there is a likelihood of

train–vehicle, vehicle–vehicle, and vehicle–warning device

accidents. The Federal Railroad Administration (FRA)

defines an HRGC accident as ‘‘any impact between a rail

and highway user (both motor vehicles and other users) of

the crossing at a designated crossing site, including walk-

ways, sidewalks, etc., associated with the crossing’’ [3].

HRGC accidents may result in severe injuries, fatalities,

and cause substantial property damage. A total of 6242

HRGC accidents involving trains and vehicles were

reported in the USA from 2015 to 2017, which resulted in

895 deaths and 2745 injuries [4]. Therefore, quite a sig-

nificant portion of the HRGC accidents in the USA cause

fatalities. Such a pattern has been observed in the previous

years as well (Table 1).

HRGC accidents have received a lot of attention from

the research community and state Departments of Trans-

portation (DOTs) over the last decades [5–10]. Although

accidents at HRGCs have been extensively investigated in

the state-of-the-art, recent trends have shown that safety at

HRGCs remains a major source of concern for the state

DOTs. Severe injuries, fatalities, and substantial property

damages are reported in each state of the USA every year

[4]. Researchers and state DOTs have used various meth-

ods to predict accident occurrence and severity at HRGCs.

Several studies have investigated different factors that may

influence the occurrence of accidents at HRGCs and

developed the accident and hazard prediction models for

HRGCs [11, 12]. The accident prediction models rely on

Fig. 1 A schematic illustration of an HRGC
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certain operational and physical HRGC characteristics

(e.g., average daily traffic volume, train type, average daily

train volume, highway vehicular speed, train speed, num-

ber of rail tracks, and type of warning devices used) as well

as the accident history in order to estimate the predicted

number of accidents for a specific period of time (gener-

ally, a 1-year period is considered). Unlike the accident

prediction models, the hazard prediction models do not

estimate the actual predicted number of accidents. The

hazard prediction models assess vulnerability of HRGCs to

potential accidents based on certain operational and phys-

ical HRGC characteristics as well as the accident history.

Some of the accident and hazard prediction models are

nationally recognized and adopted by a number of states.

On the other hand, certain states have developed their own

accident and hazard prediction models for HRGCs [11, 12].

The models are used to identify the most dangerous

HRGCs in each state and to prioritize them for safety

improvement projects based on the available budget. Cer-

tain studies in the state-of-the-art have used customized

statistical models (such as the Poisson model, the negative

binomial model, the gamma model, the Conway–Maxwell–

Poisson model, the Bernoulli model, and the zero-inflated

Poisson model among others) to examine the relationship

between accidents at HRGCs and contributing factors

[6, 10, 13]. Considering a strong emphasis of public

agencies on the safety aspects of transportation networks

[14–18], the present study aims to conduct a comprehen-

sive review of the existing accident and hazard prediction

formulae. The formulae that have been used by different

state DOTs in the USA to estimate the expected number of

accidents or safety hazard at HRGCs and rank HRGCs for

safety improvements will be of a primary interest. Fur-

thermore, a detailed analysis will be performed to identify

the common factors (accident or hazard predictors) that are

considered in the existing accident and hazard prediction

formulae. Last but not least, this study will discuss the

reported performance of the accident and hazard prediction

models as well as the implementation challenges of these

models.

The rest of this paper is structured as follows: The next

section provides a concise overview of the state-of-the-art

and the state-of-the-practice with a primary emphasis on

the state DOT studies that evaluated and/or developed

certain accident and hazard prediction formulae. Section 3

categorizes the identified models into two major groups

(i.e., accident and hazard prediction formulae). Section 4

analyzes the common factors (i.e., predictors) that have

been considered in the existing accident and hazard pre-

diction formulae. Section 5 focuses on the reported per-

formance of the identified accident and hazard prediction

models. Moreover, the major implementation challenges of

the models are discussed in the fifth section as well. The

final section provides the necessary conclusions and out-

lines possible future research directions.

2 Literature review

This section provides a detailed review of the research

efforts, undertaken by the state DOTs to predict accident

occurrence and improve safety at HRGCs. Also, a concise

review of the relevant state-of-the-art studies, which eval-

uated various accident and hazard prediction models and/or

proposed certain statistical models for identifying the fac-

tors that may cause accidents at HRGCs, is presented in

this section as well.

2.1 Previous research efforts by the state DOTs

Different state DOTs have made a number of research

attempts to predict the occurrence of accidents at HRGCs.

Throughout the literature search, ten state DOT reports

were identified. The reports were prepared by the States of

Virginia (1986), Alabama (1994), Illinois (2000), Missouri

(2003), Tennessee (2012), Texas (2013), Iowa (2015),

Nevada (2017), Ohio (2017), and Florida (2020). This

section summarizes findings from the previous research

efforts, undertaken by the state DOTs.

Faghri and Demetsky [19] conducted a study for the

Virginia Highway & Transportation Research Council to

evaluate the existing accident and hazard prediction models

based on their ability to forecast accident occurrence and

estimate hazard indexes for HRGCs. A survey was con-

ducted among 45 state DOTs to determine the strategies

used for identifying hazardous HRGCs. Throughout the

study, a total of 13 accident and hazard prediction models

were discovered. The analysis of the survey results

Table 1 Number of train–vehicle accidents, injuries, and fatalities in

the USA between 2008 and 2017

Year Accidents Injuries Fatalities

2008 2429 993 291

2009 1933 744 248

2010 2052 888 263

2011 2064 1051 271

2012 1988 982 273

2013 2104 983 290

2014 2296 882 295

2015 2078 1046 287

2016 2047 858 300

2017 2117 841 308
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indicated that 32% of the states developed their own

models, and 30% of the states used the US DOT Accident

Prediction Formula. A set of statistical analyses were

performed in the study to evaluate the top five most fre-

quently used formulae based on their ability to rank the

most hazardous HRGCs in the State of Virginia. The

results confirmed that the US DOT Accident Prediction

Formula performed better than other four formulae [19].

Bowman [20] performed a study to enhance the rail–

highway safety program in the State of Alabama. The

survey that was conducted in the study identified that the

states had been primarily using the US DOT Accident

Prediction Formula and the custom accident and hazard

prediction formulae. Additionally, the survey responses

revealed that four states were not using any accident and

hazard prediction formulae. These states established a

priority schedule using public complaints, feedback from

railroad companies, accident history, and field inspections

of HRGCs.

Elzohairy and Benekohal [11] performed a survey

among 49 states in the USA to identify the techniques used

by the state DOTs to rank HRGCs for safety improvement

projects. The following criteria were identified as important

for raking HRGCs [11]: (i) higher hazard indexes and

higher number of predicted accidents; (ii) site review of

vehicle types (mass transit, school buses); (iii) benefit–cost

analysis; (iv) public concerns and complaints; (v) engi-

neering judgment and HRGC geometry; (vi) sight distance;

and (vii) service condition. A new model (referred to as the

Illinois Hazard Index Formula) was developed for pre-

dicting potential hazard of the HRGCs in the State of

Illinois. The Missouri DOT conducted a study jointly with

the University of Missouri—Columbia/Rolla [21]. A

number of different accident and hazard prediction models

were evaluated for the HRGCs in the State of Missouri.

The Illinois Hazard Index Formula was found to be the

most accurate for active HRGCs. On the other hand, the

California Hazard Rating Formula outperformed the other

models for passive HRGCs. The Tennessee DOT and the

University of Memphis conducted a study to improve the

HRGC safety in the state [22]. A total of two optimization

models were designed as a part of the study to assist with

efficiently allocating monetary resources for safety

improvement projects based on the US DOT resource

allocation procedure [23].

Weissmann et al. [24] proposed a Revised Texas Priority

Index for ranking public HRGCs in the State of Texas for

safety improvement projects. The canonical Texas Priority

Index Formula and the Revised Texas Priority Index For-

mula were evaluated for 9108 HRGCs, located in the State

of Texas, using the 2011 accident data. The results revealed

that the Revised Texas Priority Index Formula was able to

identify more hazardous HRGCs as compared to the Texas

Priority Index Formula. The Iowa State University and the

Iowa DOT conducted a study to design a methodology for

ranking the HRGCs in the State of Iowa and to effectively

conduct resource allocation [25, 26]. The benefit–cost

analysis has been used in the State of Iowa for allocation of

the available monetary resources among the existing

HRGCs. Hans et al. [26] suggested a weighted index

method and a supplementary Microsoft Excel spreadsheet-

based tool for ranking the HRGCs, which can serve as an

addition to the existing procedures in the State of Iowa.

Ryan and Mielke [27] discussed the conventional methods

that are frequently used to prioritize HRGCs and proposed

a new model for raking the HRGCs in Nevada. The for-

mula accounted for the daily train volume, average daily

highway traffic, near misses within the past 3 years,

number of accidents within the past 5 years, existing pro-

tection, train speed, and highway speed.

Sperry et al. [28] reported that 110 accidents were

recorded on average every year between 2005 and 2010 at

the HRGCs in the State of Ohio. The analysis of the

accident data showed that the HRGCs where accidents

occurred had higher train speeds, higher train volumes, and

more tracks. The study recommended that the State of Ohio

should keep using the US DOT Accident Prediction For-

mula for ranking the HRGCs for safety improvement

projects. The North Carolina Investigative Index and the

Missouri Exposure Index were recommended for ranking

passive HRGCs upon completion of the initial prioritiza-

tion. The Florida DOT conducted a study in 2020, aiming

to improve the HRGC safety in the State of Florida [12].

The Modified Texas Priority Index Formula, which unlike

the canonical Texas Priority Index Formula accounted for

the warning device upgrades in the accident history esti-

mations, was found to be the most accurate in ranking the

state HRGCs. Furthermore, two optimization models were

developed as a part of the study to minimize the overall

HRGC hazard and to minimize the overall HRGC hazard

severity. A set of heuristic-based algorithms were devel-

oped to solve the optimization models. Moreover, a stan-

dalone decision support tool was designed to assist the

FDOT personnel by assessing the overall hazard of the

HRGCs in the State of Florida as well as resource alloca-

tion among the state HRGCs. A set of illustrative examples

were presented to demonstrate applicability of the devel-

oped decision support tool.

A summary of the state DOT efforts in terms of the

conducted activities is presented in Table 2. It can be

observed that most of the previous state DOT studies

conducted interviews or surveys among the appropriate

representatives regarding the safety aspects at HRGCs,

provided a detailed review of some of the existing accident

and hazard prediction models, as well as evaluated some of

the existing accident and hazard prediction models for the

254 O. F. Abioye et al.

123 Rail. Eng. Science (2020) 28(3):251–274



HRGCs in a particular state. However, only several studies

developed new models for accident and hazard prediction

at HRGCs as well as designed decision support tools that

could be used to improve safety at HRGCs.

2.2 Other relevant studies

Similar to the state DOT efforts, some state-of-the-art

studies have also evaluated various accident and hazard

prediction models for HRGCs (including the US DOT

Accident Prediction Formula, the Peabody–Dimmick For-

mula, the Coleman–Stewart Model, the NCHRP Report 50

Accident Prediction Formula, and others). Austin and

Carson [5] underlined that some of the accident and hazard

prediction models, including the Peabody–Dimmick For-

mula, the NCHRP Report 50 Accident Prediction Formula,

and the New Hampshire Hazard Index Formula, lack

descriptive capabilities because they consider a limited

number of explanatory variables. Furthermore, the authors

stated that the accuracy of the US DOT Accident Predic-

tion Formula in predicting accidents might significantly

reduce over time due to the model complexity. The study

developed an alternative HRGC accident prediction model

that was based on the negative binomial regression.

Oh et al. [13] used various statistical models to examine

some of the factors that cause accidents at HRGCs. A total

of four statistical models, including the gamma probability

model, the Poisson model, the negative binomial model,

and the zero-inflated Poisson model, were considered.

Also, four nationally recognized HRGC accident and

hazard prediction models were evaluated, namely the

Peabody–Dimmick Formula, the New Hampshire Hazard

Index Formula, the NCHRP Report 50 Accident Prediction

Formula, and the US DOT Accident Prediction Formula.

The HRGC accident data, obtained for 162 HRGCs in

Korea, were used to evaluate the models. The results from

the analysis of the models revealed that the gamma prob-

ability model fit the data best. However, the authors

pointed out that the US DOT Accident Prediction Formula

was more comprehensive and descriptive in terms of the

number of predictors considered as compared to the other

accident and hazard prediction models. Chadwick et al. [8]

performed a comprehensive review of the literature to

identify the challenges of shared high-speed passenger and

freight railroads. A number of accident and hazard pre-

diction models were described, including the Peabody–

Dimmick Formula, the New Hampshire Hazard Index

Formula, the NCHRP Report 50 Accident Prediction For-

mula, the US DOT Accident Prediction Formula, and the

Transport Canada Accident Model. Other accident and

hazard prediction models were mentioned in the study as

well, including the Poisson regression model, the negative

binomial regression model, the gamma probability model,

and the Bayesian model. The US DOT Accident Prediction

Formula was reported to be the most commonly used

model by the state DOTs to rank HRGCs.

Some studies specifically focused on the development of

custom statistical models for safety improvement at

HRGCs. For example, Hu et al. [6] proposed a generalized

logit model with stepwise variable selection to analyze

accident severity at the HRGCs in Taiwan. Highway sep-

aration, number of daily trains, obstacle detection device,

number of daily trucks, and presence of HRGC markings

were found to be statistically significant factors that influ-

enced accident severity. Yan et al. [7] applied a hierar-

chical tree-based regression model for predicting the train-

vehicle accidents at passive HRGCs. The FRA accident

history database was used in the analysis for a time period

between 1980 and 2006. The study results highlighted that

stop signs could be considered as an effective

Table 2 Summary of the state DOT efforts

Study/conducted

activities

Interviews or

surveys

Detailed review of the existing

models

Evaluation of the existing

models

New model

development

Decision support

tools

Virginia (1986) [19] H H H

Alabama (1994)

[20]

H H H

Illinois (2000) [11] H H H H

Missouri (2003)

[21]

H H H H

Tennessee (2012)

[22]

H H H

Texas (2013) [24] H H H H

Iowa (2015) [25, 26] H H H

Nevada (2017) [27] H H H H

Ohio (2017) [28] H H H

Florida (2020) [12] H H H H

Accident and hazard prediction models for highway–rail grade crossings: a state-of-the… 255

123Rail. Eng. Science (2020) 28(3):251–274



countermeasure for passive HRGCs. Hao and Daniel [29]

developed the ordered probit model to study the driver

injury severity at the HRGCs with different types of

warning devices (active vs. passive) in the USA. It was

found that visibility, train speed, motor vehicle speed,

driver’s age, traffic volume, area type, and highway

pavement could significantly affect the injury severity for

both active and passive HRGC types in the USA. A similar

study was conducted by Hao et al. [30], which aimed to

investigate the driver injury severity levels for the truck

and non-truck involved accidents at the HRGCs in the

USA. The study concluded that speed control for truck

drivers could substantially decrease the injury severity of

truck drivers.

Lu and Tolliver [10] evaluated a wide range of different

statistical models for accident prediction at HRGCs,

including the Poisson model, the negative binomial model,

the Conway–Maxwell–Poisson model, the gamma model,

the Bernoulli model, the Poisson–Hurdle model, and zero-

inflated Poisson model. The analysis, conducted for the

HRGCs in North Dakota, demonstrated that the Poisson

model was the most promising one. Hao et al. [31] inves-

tigated the effects of foggy conditions on injury levels for

the HRGCs in the USA. It was found that older drivers

typically suffered severe injuries in foggy conditions pri-

marily due to longer reaction times and a decline in vision.

Furthermore, the study highlighted that some drivers were

still driving at fairly high speeds when approaching to the

HRGCs despite foggy conditions.

Khan et al. [32] conducted a study for the HRGCs in

North Dakota. A binary logistic regression model was

developed to determine the factors that influence accident

occurrence at the HRGCs. The study results showed that

the accident likelihood was substantially affected by the

number of daily trains, maximum speed of trains, number

of through railroad tracks, and number of highway lanes.

Moreover, the presence of pavement markings and

the presence of populations within five miles of the

HRGCs also could influence accident occurrence at the

considered HRGCs. Some other studies focused on

improving safety of roadway travelers at HRGCs in other

countries as well, including Canada [33, 34], Great Britain

[35, 36], Hungary [37], Finland [38], France [39, 40], and

Australia [41–43].

2.3 Literature summary and contribution

A detailed review of the literature revealed that safety

issues at HRGCs have received significant attention from

the research community over the last decades. A number of

state DOTs conducted various research projects, which

aimed to reduce accident occurrence at HRGCs. Several

studies have developed a variety of formulae to predict the

number of accidents or estimate a hazard index that was

further used in ranking HRGCs for safety improvement

projects. It was found that many state DOTs have been

using the following accident and hazard prediction for-

mulae [11, 12, 20]: (a) the US DOT Accident Prediction

Formula; (b) the New Hampshire Hazard Index Formula;

(c) the NCHRP Report 50 Accident Prediction Formula;

and (d) the Peabody–Dimmick Formula. Certain state

DOTs developed accident and hazard prediction models

that are customized for their state needs and compared the

performance of those models with the existing models that

are nationally recognized.

Furthermore, some scientific studies developed alterna-

tive statistical models (such as the Poisson model, the

negative binomial model, the Conway–Maxwell–Poisson

model, the gamma model, the Bernoulli model, and the

zero-inflated Poisson model among others) to evaluate the

relationship between accidents at HRGCs and contributing

factors [6, 10, 13, 29–32]. Typically, these statistical

models are based on the same predictors as the ones that

are adopted for the accident and hazard prediction formulae

that have been used by the state DOTs. However, such

statistical models are not generally used by the state DOTs

for accident and hazard prediction at HRGCs due to their

complexity. The main contributions of this study to the

state-of-the-art and the state-of-the-practice include the

following:

• Conduct a detailed up-to-date review of the nationally

recognized accident and hazard prediction formulae

that have been used by the state DOTs to rank the

HRGCs in the USA for safety improvement projects.

• Conduct a detailed up-to-date review of the state-

specific accident and hazard prediction formulae that

have been used by the state DOTs to rank the HRGCs

in the USA for safety improvement projects.

• Perform a comprehensive analysis of the major factors

that are being considered in the existing accident and

hazard prediction formulae.

• Discuss the reported performance of the identified

accident and hazard prediction formulae as well as the

reported implementation challenges.

• Suggest future research directions based on the existing

challenges that are associated with implementation of

the existing accident and hazard prediction formulae.

3 Categorization of the identified models

A detailed review of the relevant studies identified a total

of 21 accident and hazard prediction formulae. The dis-

covered formulae were classified into the following two

major groups: (i) accident prediction formulae that can be
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used to calculate the expected number of accidents at

HRGCs for a particular time period and (ii) hazard pre-

diction formulae that can be used to assess hazard or a

safety index value for a given HRGC, which can be further

considered throughout the safety improvement project

selection. A distribution of the identified accident and

hazard prediction formulae is presented in Fig. 2.

Approximately 71% of the formulae (15 formulae out of 21

formulae) are the hazard prediction formulae, while the

remaining 29% of the formulae (6 formulae out of 21

formulae) can be classified as the accident prediction for-

mulae. A higher percentage of the hazard prediction for-

mulae among the identified formulae can be explained by

the fact that it is more difficult to forecast the expected

number of accidents at HRGCs with a high degree of

accuracy due to a large variety of factors (including human

behavior that is difficult to emulate). Thus, the majority of

the identified formulae aim to calculate the hazard index

for HRGCs instead of the predicted number of accidents.

The following accident prediction formulae were dis-

covered after a detailed state-of-the-practice review:

(1) The Coleman–Stewart Model

(2) The Iowa Accident Prediction Formula

(3) The Jaqua Formula (developed by the State of

Oregon)

(4) The NCHRP Report 50 Accident Prediction Formula

(5) The Peabody–Dimmick Formula

(6) The US DOT Accident Prediction Formula

The following hazard prediction formulae were dis-

covered after a detailed state-of-the-practice review:

(1) The Arkansas Hazard Rating Formula

(2) The California Hazard Rating Formula

(3) The Connecticut Hazard Rating Formula

(4) The Florida Accident Prediction and Safety Index

Formula

(5) The Illinois Hazard Index Formula

(6) The Kansas Design Hazard Rating Formula

(7) The Michigan Hazard Index Formula

(8) The Missouri Exposure Index Formula

(9) The Nevada Hazard Index Formula

(10) The New Hampshire Hazard Index Formula

(11) The New Mexico Hazard Index Formula

(12) The North Carolina Investigative Index Formula

(13) The Revised Texas Priority Index Formula

(14) The South Dakota Hazard Index Formula

(15) The Texas Priority Index Formula

Certain states, including Alaska, North Dakota, and

Washington, have been mostly utilizing customized

spreadsheets without application of any particular accident

or hazard prediction formulae to rank HRGCs for safety

improvement projects. A number of hazard prediction

formulae, such as the Connecticut Hazard Rating Formula,

the Texas Priority Index Formula, and the New Mexico

Hazard Index Formula, are inspired by the nationally rec-

ognized New Hampshire Hazard Index Formula. Certain

state DOTs modified the canonical New Hampshire Hazard

Index Formula and included some additional factors in the

hazard prediction to improve the formula accuracy (such as

train speed, type of train, sight distance, vehicle speed,

highway–rail grade crossing angle, number of school

buses, presence of the nearby intersection, and number of

accidents among others). Moreover, the US DOT Accident

Prediction Formula has been used by many states over the

years (e.g., Alabama, Idaho, Indiana, Maine, Maryland,

Ohio, South Carolina, Utah, Virginia, and Wisconsin).

A detailed description and formulation of the identified

nationally recognized accident and hazard prediction

models is presented in the following sections of this paper.

The nationally recognized accident and hazard prediction

models include the Coleman–Stewart Model, the NCHRP

Report 50 Accident Prediction Formula, the New Hamp-

shire Hazard Index Formula, the Peabody–Dimmick For-

mula, and the US DOT Accident Prediction Formula

[8, 27]. Moreover, the other accident and hazard prediction

models and resource allocation procedures used by the

state DOTs are comprehensively described in ‘‘Appendix’’

of this paper. Note that the description of the accident and

hazard prediction formulae was prepared using the avail-

able HRGC safety literature and the reviewed studies

[11, 12, 19–28, 44–46].

3.1 Coleman–Stewart Model

The Coleman–Stewart Accident Prediction Model assesses

the relationship between the observed accident rates and

some factors that may cause accidents at HRGCs (e.g.,

daily train movements, daily vehicular movements, and

Accident

Hazard

Fig. 2 A distribution of the identified accident and hazard prediction

formulae
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existing protection). Moreover, the model assumes that

HRGCs are identical if they have similar characteristics,

including the warning device type, location, number of

tracks, and highway and traffic volumes. The model can be

expressed as follows [11, 45]:

lgA ¼ B0 þ B1lgC þ B2lg Tcs þ B3 lg Tcsð Þ2; ð1Þ

where A is the average number of accidents per HRGC per

year; C are the average daily vehicular movements (if

C = 0, use 0.5 instead); Tcs are the average daily train

movements (if Tcs = 0, use 0.5 instead); B0, B1, B2, and B3

are the coefficients of the accident prediction equation

(Table 3).

Although the variation among a collection of HRGCs in

a given location may affect accident prediction at indi-

vidual HRGCs, the Coleman–Stewart Model does not

account for such a variation.

3.2 NCHRP Report 50 Accident Prediction

Formula

The National Cooperative Highway Research Program

(NCHRP) Report 50 proposed a formula for predicting

accidents at HRGCs. The formula considers a number of

factors, including the number of trains per day, existing

warning devices, number of highway vehicles per day, and

location (urban/rural). The NCHRP Report 50 Accident

Prediction Formula can be expressed as follows

[8, 11, 23, 27, 45]:

N ¼ A� B� Tnc; ð2Þ

where N is the number of accidents per year; A is the factor

based on the number of highway vehicles per day; B is the

factor based on the existing warning devices and urban/

rural classification; Tnc is the current train volume per day.

The values of A and B can be found in Table 4 and

Fig. 3 [23, 45].

3.3 New Hampshire Hazard Index Formula

The New Hampshire Hazard Index Formula presents a

fairly simple approach for estimating the hazard indexes at

HRGCs. The hazard indexes are further used to rank

HRGCs based on the probability of accidents. The formula

states that the hazard index is dependent on the average

daily volume of trains, average daily volume of vehicles,

and type of warning devices installed at a given HRGC.

The New Hampshire Hazard Index Formula can be

expressed as follows [8, 27, 45]:

NHHI ¼ V � Tnh � PF; ð3Þ

where NHHI denotes the New Hampshire Hazard Index; V

is the annual average daily traffic; Tnh is the average daily

volume of trains; PF is the protection factor (1.00 for stop

signs, 0.60 for flashing lights, and 0.10 for gates).

Although a number of state DOTs have used the

canonical New Hampshire Hazard Index Formula, certain

states have customized the formula with the introduction of

some variables in order to improve the accuracy of the

formula in predicting safety hazard at HRGCs. Some of the

additional variables include the train speed, sight distance,

vehicle speed, HRGC width, HRGC angle, type of train,

Table 3 Coleman–Stewart Model coefficients

Item B0 B1 B2 B3 Item B0 B1 B2 B3

Single-track urban Multiple-track urban

Automatic gates - 2.17 0.16 0.96 - 0.35 Automatic gates - 2.58 0.23 1.30 - 0.42

Flashing lights - 2.85 0.37 1.16 - 0.42 Flashing lights - 2.50 0.36 0.68 - 0.09

Crossbucks - 2.38 0.26 0.78 - 0.18 Crossbucks - 2.49 0.32 0.63 - 0.02

Other active - 2.13 0.30 0.72 - 0.30 Other active - 2.16 0.36 0.19 0.08

Stop signs - 2.98 0.42 1.96 - 1.13 Stop signs - 1.43 0.09 0.18 0.16

None - 2.46 0.16 1.24 - 0.56 None - 3.00 0.41 0.63 - 0.02

Item B0 B1 B2 B3 Item B0 B1 B2 B3

Single-track rural Multiple-track rural

Automatic gates - 1.42 0.08 - 0.15 0.25 Automatic gates - 1.63 0.22 - 0.17 0.05

Flashing lights - 3.56 0.62 0.92 - 0.38 Flashing lights - 2.75 0.38 1.02 - 0.36

Crossbucks - 2.77 0.40 0.89 - 0.29 Crossbucks - 2.39 0.46 - 0.50 0.53

Other active - 2.25 0.34 0.34 - 0.01 Other active - 2.32 0.33 0.80 - 0.35

Stop signs - 2.97 0.61 - 0.02 0.29 Stop signs - 1.87 0.18 0.67 - 0.34

None - 3.62 0.67 0.22 0.26 None – – – –
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population, surface type, number of school buses, number

of buses, surface condition, number of tracks, presence of a

nearby intersection, vertical alignment, functional class of

highway, horizontal alignment, number of hazardous

material trucks, number of accidents, number of passen-

gers, etc. [23].

3.4 Peabody–Dimmick Formula

The Peabody–Dimmick Formula was developed by the US

Bureau of Public Roads using the data obtained from 3563

rural HRGCs in 29 states. The formula computes the

expected number of accidents for 5 years based on some

factors, including the average daily train traffic, annual

average daily traffic, and protection coefficient (dependent

on the warning device type) using the following equation

[8, 23, 27, 45]:

A5 ¼ K þ
1:28V0:170 � T0:151

pd

P0:171
; ð4Þ

where A5 is the expected number of accidents in 5 years; V

is the annual average daily traffic factor; Tpd is the average

daily train traffic factor; P is the protection coefficient; K

is the additional parameter.

In order to estimate the additional parameter K, an

unbalanced accident factor (lu) is required that can be

calculated as follows [23]:

lu ¼ 1:28
Va � Tb

Pc
; ð5Þ

where Va, Tb and Pc are the accident factors (i.e., the

annual average daily traffic factor, the average daily train

traffic factor, and the protection coefficient).

The expected number of accidents in 5 years (A5) can be

identified using a set of charts, which are presented in

Figs. 4, 5, 6 and 7.

Table 4 A values based on 10-year annual average daily traffic (AADT)

Vehicles per day (10-year AADT) A Vehicles per day (10-year AADT) A

250 0.000347 9000 0.011435

500 0.000694 10,000 0.012674

1000 0.001377 12,000 0.015012

2000 0.002627 14,000 0.017315

3000 0.003981 16,000 0.019549

4000 0.005208 18,000 0.021736

5000 0.006516 20,000 0.023877

6000 0.007720 25,000 0.029051

7000 0.009005 30,000 0.034757

8000 0.010278

Fig. 3 B values based on the existing protection and location classification
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Fig. 4 Relationship between highway traffic and accident factor Va

Fig. 5 Relationship between railroad traffic and accident factor Tb

Wigwag and bells

Flashing lights

Wigwag and flashing lights

Wigwag, flashing lights and bells

Watchman, 8 hours

Watchman, 16 hours

Watchman, 24 hours

Gates, 24 hours

Gates, automatic

Flashing lights and bells

Fig. 6 Relationship between warning device type and accident factor Pc
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3.5 US DOT procedure for accident prediction

and resource allocation

The expected number of accidents at an HRGC over a

defined time period can be forecasted using an accident

prediction model. Generally, accident prediction models

take into account operational and physical characteristics

of HRGCs to forecast accident occurrence. The US DOT

developed an accident prediction model that would be able

to assist the states with satisfying certain requirements

under the Federal-Aid Policy Guidelines (FAPG) [44]. The

US DOT Model uses a total of three equations to predict

accidents at HRGCs. The first equation, which is referred

to as the initial accident prediction formula, predicts the

accident frequency per year at HRGCs using their opera-

tional and physical characteristics. The initial accident

prediction formula is presented as follows

[8, 21, 23, 27, 45]:

a ¼ K � EI �MT � DT � HP�MS� HT � HL; ð6Þ

where a denotes the initial accident prediction, accidents

per year at an HRGC; K is the formula constant; EI is the

factor for exposure index based on the product of highway

and train traffic; MT is the factor for the number of main

tracks; DT is the factor for the number of through trains per

day during daylight; HP is the factor for highway paved

(yes or no); MS is the factor for maximum timetable speed;

HT is the factor for highway type; HL is the factor for the

number of highway lanes.

The values for the factors of the initial accident pre-

diction formula can be found in Table 5. The second

accident prediction formula captures the accident history

recorded for a given HRGC over a defined time period. A

major assumption in the formula is that the future accidents

are expected to occur at the same rate as the past accidents.

Hence, the formula is expected to give the most accurate

results when the available accident history of up to 5 years

is considered. However, the accident data, collected for the

time period that exceeds 5 years, may produce misleading

results, as substantial changes in operational and physical

HRGC characteristics may occur over such a time period.

The second accident prediction can be estimated as follows

[8, 21, 23, 27, 45]:

B ¼ T0

T0 þ Ty
ðaÞ þ T0

T0 þ Ty

N

Ty

� �

; ð7Þ

where B denotes the second accident prediction (measured

in accidents per year at an HRGC); a is the initial accident

prediction (measured in accidents per year at an HRGC); N
T

is the accident history prediction (measured in accidents

per year at an HRGC), and N is the number of accidents

that were observed in Ty years at an HRGC; T0 is the

formula weighting factor, T0 = 1
0:05þa

.

The final accident prediction is further estimated by

applying a normalizing constant (A) to the second accident

prediction for each HRGC category. The HRGC categories

are differentiated based on the protection type into the

following groups: (a) passive HRGCs, (b) HRGCs with

flashing lights, and (c) HRGCs with gates. Application of

normalizing constants ensures that the procedure is trans-

formed from the past accident trends to the current accident

trends. Thus, the normalizing constants have to be updated

regularly. The normalizing constant can be estimated by

equating the sum of the predicted accidents multiplied by

the corresponding normalizing constant to the most recent

number of accidents for each HRGC category over a

specific time period [23, 46]. The final accident prediction

Fig. 7 Relationship between K-factor and unbalanced accident factor lu
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can be used afterward to rank HRGCs for resource allo-

cation. The periodic updates used for accident prediction as

well as the normalizing constants for resource allocation

procedure are presented in Table 6.

4 Key factors considered in the identified models

Table 7 presents the list of the factors (or predictors)

considered by the identified accident and hazard prediction

formulae. A detailed review of the 21 accident and hazard

prediction formulae, which were identified in the literature,

revealed a total of 20 unique predictors that may directly

influence the expected number of accidents at HRGCs. A

distribution of the factors considered by the identified

accident and hazard prediction formulae is presented in

Fig. 8. The analysis results indicate that all the identified

accident and hazard prediction formulae directly account

for the number of vehicles per day and the number of trains

per day. Such a finding can be supported by the fact that the

number of vehicles per day and the number of trains per

day are the key factors that determine exposure of a given

HRGC to highway and railway traffic. A total of 19 acci-

dent and hazard prediction formulae consider the protec-

tion type at HRGCs (i.e., type of warning devices used).

Some other predictors that are commonly used by the

identified accident and hazard prediction formulae include:

(i) accident history—captured in 12 formulae; (ii) train

speed—captured in 11 formulae; (iii) number of tracks—

captured in 10 formulae; (iv) sight distance—captured in 8

formulae; and (v) number of traffic lanes—captured in 6

formulae.

Table 5 Highway–rail grade crossing characteristic factors for the Initial US DOT Accident Prediction Formula

Crossing

category

Formula

constant K

Exposure

index factor

EI

Main tracks

factor MT

Day thru trains

factor DT

Highway

paved factor

HP

Maximum

speed factor

MS

Highway type

factor HT

Highway

lanes factor

HL

Passive 0.002268 ctþ0:2
0:2

� �0:3334 e0:2094mt dþ0:2
0:2

� �0:1336 e�0:6160ðhp�1Þ e0:0077ms e�0:1000ðht�1Þ 1.0

Flashing

lights

0.003646 ctþ0:2
0:2

� �0:2953 e0:1088mt dþ0:2
0:2

� �0:0470 1.0 1.0 1.0 e0:1380ðhl�1Þ

Gates 0.001088 ctþ0:2
0:2

� �0:3116 e0:2912mt 1.0 1.0 1.0 1.0 e0:1036ðhl�1Þ

c denotes the annual average number of highway vehicles per day (total in

both directions); t is the average total train movements per day; mt is the

number of main tracks; d is the average number of thru trains per day

during daylight; hp is the highway paved (1.0 for paved and 2.0 for

unpaved); ms is the maximum timetable speed in mph; ht is the highway

type factor value; hl is the number of highway lanes

Highway type Inventory

code

ht

Rural

Interstate 01 1

Other principal arterial 02 2

Minor arterial 06 3

Major collector 07 4

Minor collector 08 5

Local 09 6

Urban

Interstate 11 1

Other freeway and expressway 12 2

Other principal arterial 14 3

Minor arterial 16 4

Collector 17 5

Local 19 6

Table 6 Values of the normalizing constants for the accident prediction and resource allocation procedure

Warning device groups New Prior year constants

2010 2007 2005 2003 1998 1992 1990 1988 1986

Passive 0.4613 0.6768 0.6407 0.6500 0.7159 0.8239 0.9417 0.8778 0.8644

Flashing lights 0.2918 0.4605 0.5233 0.5001 0.5292 0.6935 0.8345 0.8013 0.8887

Gates 0.4614 0.6039 0.6513 0.5725 0.4921 0.6714 0.8901 0.8911 0.8131

This table was prepared using the data reported by FRA [46]
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Certain predictors have been captured only by a very

limited number of accident and hazard prediction formulae.

For instance, only the Jaqua Formula, which has been

deployed by the Oregon DOT, directly accounts for the

number of cars in a train, approach gradient, and different

roadway geometric features (e.g., existence of entrances

and exits to the streets as well as the street intersections

near an HRGC, and curvature of the roadway). Further-

more, the Florida Accident Prediction and Safety Index

Formula and the North Carolina Investigative Index For-

mula are the only hazard index formulae that capture the

number of school buses, which traverse a given HRGC on a

daily basis. The Revised Texas Priority Index Formula is

the only hazard index formula that explicitly considers

presence of a nearby highway intersection throughout

estimation of a hazard index for a given HRGC. Consid-

eration of the additional predictors (i.e., number of cars in a

train, approach gradient, different roadway geometric fea-

tures, number of school buses, presence of a nearby high-

way intersection) is expected to improve the performance

of the accident and hazard prediction formulae. However,

the existing HRGC inventory databases may not have any

information regarding the additional predictors, and sup-

plementary field reviews will have to be conducted in order

to collect the required data.

5 Performance of the identified models

and implementation challenges reported

Many of the reviewed studies investigated the performance

of the existing accident and hazard prediction models. A

review of some accident and hazard prediction models,

which was conducted by Chadwick et al. [8], revealed that

Table 7 Factors considered by the identified accident and hazard prediction formulae

Accident/hazard prediction formulae Factors considered

Arkansas Hazard Rating Formula Trains per day; vehicles per day; accident history; number of tracks

California Hazard Rating Formula Trains per day; vehicles per day; accident history; existing protection

Coleman–Stewart Model Trains per day; vehicles per day; number of tracks; location; existing protection

Connecticut Hazard Rating Formula Trains per day; vehicles per day; accident history; existing protection

Florida Accident Prediction and Safety

Index Formula

Trains per day; vehicles per day; number of traffic lanes; train speed; sight distance; highway vehicular

speed; school buses; accident history; existing protection

Illinois Hazard Index Formula Trains per day; vehicles per day; train speed; number of traffic lanes; number of tracks; existing

protection; accident history

Iowa Accident Prediction Formula Trains per day; vehicles per day; time of day; daylight thru trains per day; existing protection; train

speed; number of tracks; highway pavement type; accident history; number of traffic lanes

Jaqua Formula Trains per day; number of cars in a train; type of train; train speed; number of tracks; vehicles per day;

highway vehicular speed; sight distance; number of traffic lanes; approach gradient; angle of

crossing; other roadway geometrics; location; existing protection

Kansas Design Hazard Rating Formula Trains per day; vehicles per day; type of train; sight distance; angle of crossing; number of tracks

Michigan Hazard Index Formula Trains per day; vehicles per day; existing protection

Missouri Exposure Index Formula Existing protection; vehicles per day; sight distance; highway vehicular speed; trains per day; train

speed; type of train

NCHRP Report 50 Accident Prediction

Formula

Trains per day; vehicles per day; location; existing protection

Nevada Hazard Index Model Trains per day; vehicles per day; existing protection; accident history; highway vehicular speed;

number of tracks; train speed; angle of crossing

New Hampshire Formula Trains per day; vehicles per day; existing protection

New Mexico Hazard Index Formula Trains per day; vehicles per day; existing protection; sight distance; accident history; train speed

North Carolina Investigative Index

Formula

Existing protection; school buses; vehicles per day; trains per day; type of train; number of tracks; train

speed; sight distance; accident history

Peabody–Dimmick Formula Trains per day; vehicles per day; existing protection

South Dakota Hazard Index Formula Trains per day; vehicles per day; sight distance; existing protection

Texas Priority Index Formula Trains per day; vehicles per day; existing protection; accident history; train speed

Revised Texas Priority Index Formula Existing protection; location; highway pavement type; number of traffic lanes; sight distance; number

of tracks; train speed; trains per day; vehicles per day; highway vehicular speed; presence of a

nearby highway intersection; accident history

US DOT Accident Prediction Formula Existing protection; trains per day; vehicles per day; daylight thru trains per day; highway pavement

type; number of tracks; train speed; number of traffic lanes; location; accident history
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the US DOT Accident Prediction Formula is the most

commonly used model by the state DOTs for prioritizing

HRGCs for safety improvements. Moreover, the research

efforts that were conducted by the States of Alabama,

Virginia, and Ohio concluded that the US DOT Accident

Prediction Formula outperformed the alternative accident

and hazard prediction formulae for the HRGCs in the

respective states and returned more accurate ranking of the

HRGCs [19, 20, 28]. The Illinois Hazard Index Formula

was found to be the most accurate formula for ranking the

HRGCs in the State of Illinois [11]. Moreover, the Illinois

Hazard Index Formula was found to be the most accurate

for active HRGCs in the State of Missouri, while the

California Hazard Rating Formula outperformed the other

models for passive HRGCs [21]. The original Texas Pri-

ority Index Formula was outperformed by the Revised

Texas Priority Index Formula when ranking the HRGCs in

the State of Texas [24].

Austin and Carson [5] highlighted that some accident

and hazard prediction formulae (including the New

Hampshire Hazard Index Formula, the NCHRP Report 50

Accident Prediction Formula, and the Peabody–Dimmick

Formula) lack descriptive capabilities because they con-

sider only a limited number of explanatory variables. For

instance, the Texas Priority Index, which is an extension of

the New Hampshire Hazard Index Formula, does not cap-

ture certain important predictors, such as transport of

hazardous materials, school bus usage, train speeds, and

urban/rural distinction [27]. Furthermore, another issue

with the Texas Priority Index consists in the fact that it

does not allow differentiating between two HRGCs with

the same operational and physical features, which have one

accident and no accidents over the past 5 years, respec-

tively. In particular, both HRGCs will have exactly the

same values of the Texas Priority Index despite substantial

differences in the past accident history [27].

On the other hand, some other formulae (e.g., the US

DOT Accident Prediction Formula) have a significant

number of explanatory variables. However, there is a need

to update the parameters in the US DOT Accident Pre-

diction Formula to prevent a decline in accuracy of the

model [5]. The normalizing constant values that are used in

the US DOT Accident Prediction Formula significantly

affect its accuracy and have to be adjusted over time.

Moreover, the survey conducted by Bowman [20], which

involved the state highway–rail program coordinators

across the USA, revealed that the US DOT Accident Pre-

diction Formula still fails to account for some important

factors (such as roadway approach characteristics and

quadrant sight distance) and is significantly dependent on

the accident history. Several studies pointed out that the

data availability is one of the major challenges that affect a

successful implementation of accident and hazard predic-

tion formulae [11, 20, 21, 28]. Certain predictors may not

be available in the existing FRA and state HRGC databases

(e.g., daily average train movements by type of train,

number of school bus passengers, number of blind quad-

rants, and speed of each type of train). Field reviews will be

required in order to collect the necessary data for imple-

mentation of certain accident and hazard prediction

Fig. 8 A distribution of the factors considered by the identified accident and hazard prediction formulae
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formulae. Moreover, the state DOT representatives may

have to contact railroad companies directly to obtain

specific data.

Some accident and hazard prediction formulae (e.g., the

US DOT Accident Prediction Formula, the California

Hazard Rating Formula, and the New Hampshire Hazard

Index Formula) generally give a higher priority value to the

HRGCs with high exposure and may not accurately capture

vulnerability of the HRGCs with low exposure [24, 27].

Aiming to address the latter challenges, Ryan and Mielke

[27] proposed a new hazard index formula (named as ‘‘the

Nevada Hazard Index Formula’’) that accounted for several

factors, including the daily train volume, average daily

highway traffic, number of accidents within the past

5 years, protection factor, highway speed factor, number of

near misses within the past 3 years, rail speed factor,

HRGC angle factor, and track configuration factor. The

Nevada Hazard Index Formula uses the square root of

exposure to prevent the assignment of ‘‘too much weight’’

to the train and roadway traffic volumes. Another important

issue that was pointed out by some of the studies consists in

the fact that AADT and train counts may not be updated

regularly by certain state DOTs [20, 26, 28]. The latter can

further result in errors throughout accident and hazard

prediction for HRGCs as well as misleading resource

allocation.

Table 8 summarizes the implementation challenges that

were identified throughout a detailed review of the state

DOT efforts and proposes potential solutions to address

these challenges. The issue of insufficient descriptive

capabilities can be addressed by introducing additional

factors in the accident and hazard prediction formulae,

including train speed, sight distance, vehicle speed, HRGC

width, HRGC angle, type of train, surface type, and

number of school buses [23, 27]. A periodic calibration of

the model parameters is required to prevent a decline in

their accuracy that may occur over time [5]. The issue of

overreliance of certain models on the accident history can

be addressed by considering the number of near misses in

the models along with the number of past accidents [27].

Furthermore, the number of warrants met should be

accounted for when ranking passive HRGCs [24]. Periodic

field reviews are required in order to resolve the issue of

the data unavailability. In certain cases, the state DOT

representatives may have to contact railroad companies or

other relevant stakeholders directly to obtain specific data.

The use of the square root of exposure rather than the base

exposure value can effectively resolve the issue of

assigning ‘‘too much weight’’ to the train and roadway

traffic volumes [27]. Periodic reviews of the HRGC data-

bases based on the feedback from the appropriate stake-

holders are required to resolve the data inconsistency

issues. Furthermore, the information regarding operational

and physical HRGC features should be updated in the

HRGC databases with a sufficient frequency to ensure

accurate accident and hazard prediction.

6 Concluding remarks and future research needs

Highway–rail grade crossings (HRGCs) are considered as

one of the most dangerous segments of the transportation

network. At every HRGC, there is a risk of an accident

between a highway vehicle and a train. Other types of

accidents, such as rear-end accidents between highway

vehicles and collisions of vehicles with warning devices,

may also occur at HRGCs. Although there has been a

decline in the number of accidents at HRGCs over the past

Table 8 Implementation challenges identified and potential solutions proposed

Implementation challenges Potential solutions

Lack of descriptive capabilities Introduce additional factors in the model (e.g., train speed, sight distance, vehicle speed,

HRGC width, HRGC angle, type of train, surface type, number of school buses)

Decline in accuracy of the model constants Conduct periodic calibration of the model parameters with a sufficient frequency depending

on the changes in operational and physical HRGC features

Overreliance of certain models on the accident

history

Consider the number of near misses in the model along with the number of past accidents;

account for the number of warrants met when ranking passive HRGCs

Unavailability of the data required to apply the

models

Perform periodic field reviews to collect the necessary data; contact railroad companies or

other relevant stakeholders directly as needed to obtain specific data

Assignment of ‘‘too much weight’’ to the train

and roadway traffic volumes

Apply the appropriate modifications in the model (e.g., use the square root of exposure rather

than the base exposure value)

Inconsistencies and outdated information in the

HRGC databases

Conduct periodic reviews of the HRGC databases to resolve the inconsistency issues based

on the feedback from the appropriate stakeholders and update the information regarding

operational and physical HRGC features with a sufficient frequency

Accident and hazard prediction models for highway–rail grade crossings: a state-of-the… 265

123Rail. Eng. Science (2020) 28(3):251–274



years, thousands of accidents are still recorded annually in

the USA, which result in fatalities, injuries, and staggering

costs in property damages. Numerous studies have inves-

tigated the factors that may influence accident occurrence

and developed various models to estimate the expected

number of accidents at HRGCs as well as to assess the

HRGC hazard. This paper presented a comprehensive

review of the existing accident and hazard prediction for-

mulae that have been used by the state Departments of

Transportation (DOTs) over the years to prioritize the

HRGCs for safety improvement projects in the USA. From

an extensive literature review, a total of 21 accident and

hazard prediction formulae were identified, five of which

are nationally recognized accident and hazard prediction

formulae. Furthermore, a number of customized accident

and hazard prediction models, developed by certain state

DOTs, were identified and evaluated as well.

The identified accident and hazard prediction formulae

were divided into two categories based on the measure

used in ranking HRGCs, which include: (i) accident pre-

diction formulae (6 out of 21 formulae) that can be used to

calculate the expected number of accidents at HRGCs for a

particular time period; and (ii) hazard prediction formulae

(15 out of 21 formulae) that can be used to assess hazard or

a safety index value for a given HRGC, which can be

further considered throughout the safety improvement

project selection. A higher percentage of the hazard pre-

diction formulae among the identified formulae can be

explained by the fact that it is more difficult to forecast the

expected number of accidents at HRGCs with a high

degree of accuracy. A detailed analysis of the identified

accident and hazard prediction formulae indicated that all

the formulae directly accounted for the number of vehicles

per day and the number of trains per day that determine

exposure of a given HRGC to highway and railway traffic.

A total of 19 accident and hazard prediction formulae

considered the protection type at HRGCs (i.e., type of

warning devices used).

Furthermore, this study discussed the reported perfor-

mance and implementation issues, associated with the

identified accident and hazard prediction formulae. The US

DOT Accident Prediction Formula was found to be the

most preferential among the state DOTs for prioritizing

HRGCs for safety improvements. The key issues, associ-

ated with implementation of the identified accident and

hazard prediction formulae, include: (a) limited number of

explanatory variables in certain formulae (e.g., the NCHRP

Report 50 Accident Prediction Formula, the New Hamp-

shire Hazard Index Formula, and the Peabody–Dimmick

Formula) causing a lack of descriptive capabilities; (b) de-

cline in accuracy of the model constants (e.g., the US DOT

Accident Prediction Formula normalizing constants have to

be adjusted over time); (c) overreliance of certain accident

and hazard prediction formulae on the accident history;

(d) unavailability of the data required to apply the models

(such as sight distance, number of blind quadrants, angle of

the intersection between the roadway and the track);

(e) assignment of ‘‘too much weight’’ to the train and

roadway traffic volumes (exposure value), which results in

higher priority values for the HRGCs with higher traffic

volumes as compared to the lower-volume HRGCs; and

(f) inconsistencies and outdated information in the HRGC

databases maintained by some state DOTs.

Future research can be extended in the following

directions: (i) there is a need to evaluate the effects of

improvement in technology on the performance of existing

accident and hazard prediction models; (ii) there is a need

for future studies to investigate the effects of driver

behavior on accident occurrence at HRGCs; (iii) future

studies may include additional driver and roadway geo-

metric characteristics into the existing accident and hazard

prediction models (for instance, the effects of driver fati-

gue, level of frustration, time of accident, age of driver,

population distribution, etc. may directly influence accident

occurrence at HRGCs); (iv) there is a need for practitioners

to develop new procedures for creating HRGC databases

that will address the existing data availability and incon-

sistency issues; (v) conduct a survey among the state DOT

representatives to identify any changes in the accident and

hazard prediction procedures that have occurred over the

years; and (vi) compare the identified accident and hazard

prediction formulae against customized statistical models

(e.g., the Poisson model, the negative binomial model, the

gamma model) for a group of selected HRGCs in the US

and other countries as well.
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Appendix: Other accident and hazard prediction

models for highway–rail grade crossings

and resource allocation procedures used

by the state DOTs

A number state DOTs have developed their own accident

and hazard prediction formulae to achieve the following

objectives: (i) estimate the number of accidents at HRGCs;

(ii) assess potential hazard at HRGCs; and (iii) prioritize

HRGCs for safety improvement projects. The models used

by the state DOTs that were identified throughout the

review of the literature include: (1) the Arkansas Hazard

Rating Formula; (2) the California Hazard Rating Formula;

(3) the Connecticut Hazard Rating Formula; (4) the Florida

Accident Prediction and Safety Index Formula; (5) the

Illinois Hazard Index Formula; (6) the Iowa Accident

Prediction Formula; (7) the Kansas Design Hazard Rating

Formula; (8) the Michigan Hazard Index Formula; (9) the

Missouri Exposure Index Formula; (10) the Nevada Hazard

Index Formula; (11) the New Mexico Hazard Index For-

mula; (12) the North Carolina Investigative Index Formula;

(13) the Jaqua Formula (used by the State of Oregon); (14)

the South Dakota Hazard Index Formula; (15) the Texas

Priority Index Formula; and (16) the Revised Texas Pri-

ority Index Formula. The state-specific accident and hazard

prediction formulae that were identified in the reviewed

literature are presented in the following sections of the

manuscript.

Arkansas Hazard Rating Formula

A hazard rating index and field diagnostic team reviews

have been used by the Arkansas Highway and Trans-

portation Department (AHTD) to identify the HRGCs that

require safety improvements. Moreover, the AHTD does

not set any specific thresholds throughout resource allo-

cation. HRGCs are selected for safety improvements based

on the hazard rating index and available budget. The

Arkansas Hazard Rating Formula is expressed as follows

[11]:

AHR ¼ HTP� RTP� ARP; ð8Þ

where AHR is the Arkansas Hazard Rating of an HRGC;

HTP denotes the highway traffic points, 5 points maximum

(depending on ADT). RTP denotes the railway traffic

points, 5 points maximum. Up to 75% of the railway traffic

points are dependent on the number of trains. The rest of

the railway traffic points depend on the number of side and

main tracks at an HRGC. ARP denotes accident record

points, 4 points maximum (depending on the number of

accidents over the past 15 years).

California Hazard Rating Formula

The California Hazard Rating Formula estimates the haz-

ard index of a given HRGC, which is a representative of

the number of accidents. The formula requires the 10-year

accident history for the HRGCs. The California Hazard

Rating Formula is expressed as follows [11, 21]:

CaHI ¼ V � T � PF

1000
þ AH; ð9Þ

where CaHI is the California Hazard Index; V is the

number of vehicles; T is the number of trains; PF is the

protection factor (1.00 for stop signs or crossbucks, 0.67

for wigwags, 0.33 for flashing lights, and 0.13 for gates);

AH is the accident history (the total number of accidents in

the last 10 years multiplied by a factor of ‘‘3’’).

Connecticut Hazard Rating Formula

The rating formula that has been used by the State of

Connecticut is similar to the one used by the State of

California as both formulae estimate the hazard index, not

the number of accidents. However, the formulae differ

based on the fact that the Connecticut Hazard Rating

Formula requires the 5-year accident history, while the

California Hazard Rating Formula considers the 10-year

accident history. The Connecticut Hazard Rating Formula

is expressed as follows [11, 21, 45]:

CoHI ¼ ðT þ 1ÞðAþ 1Þ � AADT � PF

100
; ð10Þ

where CoHI is the Connecticut Hazard Index; AADT is the

annual average daily traffic; T is the number of trains per

day; PF is the protection factor (1.25 for passive warning

devices, 1.00 for stop sign control, 0.75 for stop signs and

protect control, 0.75 for manually activated traffic signals,

0.25 for railroad flashing lights, 0.25 for traffic signal

control with preemption, 0.01 for gates with railroad

flashing lights, and 0.001 for inactive rail line); A is

the accident history (the total number of accidents in the

last 5 years).

Florida Accident Prediction and Safety Index

Formula

The Florida DOT developed an accident prediction for-

mula, which has been used to prioritize the HRGCs for

safety improvement projects and estimate safety index at

the HRGCs in the State of Florida. The Florida Accident

Prediction and Safety Index Formula is expressed with the

following equations [23]:
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tp ¼ �8:075þ 0:318 ln St þ 0:484 ln T þ 0:437 lnAþ 0:387 lnVV

þ 0:28� 0:28
MASD

RSSD

� �

þ 0:33� 1:23
MCSD

RSSD

� �

þ 0:15Nxbucks;

ð11Þ

y ¼ eð0:968tpþ1:109Þ=4; ð12Þ
ta ¼ �8:075þ 0:318 ln St þ 0:166 ln T þ 0:293 lnAþ 0:387 lnVV

þ 0:28� 0:28
MASD

RSSD

� �

þ 0:225ðL� 2Þ � 0:233Pg;

ð13Þ

y ¼ eð0:938taþ1:109Þ=4; ð14Þ

where A denotes the vehicles per day or annual average

daily traffic; L is the number of lanes; MASD is the actual

minimum stopping sight distance along a highway; MCSD

is the clear sight distance (ability to see an approaching

train along a highway, recorded for the four quadrants

established by the intersection of the railroad tracks and

that highway); RSSD is the required stopping sight distance

on wet pavement; St is the maximum speed of a train; T

is the yearly average of the number of trains per day; ta
is ln of predicted number of accidents in a 4-year period at

HRGCs with active traffic control devices; tp is ln of pre-

dicted number of accidents in a 4-year period at HRGCs

with passive traffic control devices; VV is the posted

vehicle speed limit unless geometrics dictates a lower

speed; Nxbucks is the total number of crossbucks at an

HRGC; Pg is the gate presence indicator (1 if gated, and 0

if not); y is the predicted number of accidents per year at an

HRGC.

To account for the accident history, the number of

accidents predicted at an HRGC per year (y) is adjusted as

follows:

Y ¼ y

ffiffiffiffiffiffi

H

yP

s

; ð15Þ

where Y is the accident prediction adjusted for the accident

history; y is the accident prediction based on the regression

model; H is the number of accidents for the 6-year history

or since the year of last improvement; P is the number of

years of the accident history period.

Using the accident prediction formula, a safety/hazard

index approach was developed to rank the HRGCs in the

State of Florida. An HRGC with a safety index value of 70

is considered as safe and does not require any safety

improvements. Also, a safety index value of 60, which

shows that one accident occurred in 9 years, is considered

as marginal. The safety index is calculated using the pre-

dicted number of accidents per year that has been adjusted

for the accident history as follows [23]:

R ¼ X 1�
ffiffiffiffi

Y
p� �

; ð16Þ

where R is the safety index; Y is the adjusted accident

prediction value; X = 90 when less than 10 school buses

per day traverse an HRGC, X = 85 when 10 or more school

buses per day traverse an HRGC with active traffic control

devices without gates, and X = 80 when 10 or more school

buses per day traverse an HRGC with passive traffic con-

trol devices.

Illinois Hazard Index Formula

The Illinois Hazard Index Formula was developed from the

study that was performed by the State of Illinois, which

aimed to identify various factors that influence accident

occurrence at the HRGCs in the state. The Illinois Hazard

Index Formula is expressed as follows [11, 21, 45]:

IHI ¼ 10�6A2:59088B0:09673C0:40227D0:59262 15:59N5:60977 þ PF
� �

;

ð17Þ

where IHI is the Illinois Hazard Index;

A = lnðADT � NTTÞ; ADT is the average daily traffic;

NTT is the number of total trains per day; B is the maxi-

mum timetable speed, mph; C is the number of main and

other tracks; D is the number of highway lanes; N is the

average number of accidents per year (generally, a 5-year

period is considered); PF is the protection factor (86.39 for

crossbucks, 68.97 for flashing lights, and 37.57 for gates).

Iowa Accident Prediction Formula

The accident prediction formula that has been used by the

Iowa DOT was developed based on the US DOT Accident

Prediction Formula [25]. The accident prediction and

severity calculations are conducted in the following order:

(1) estimation of the exposure factor; (2) estimation of the

predicted number of accidents; and (3) accident severity

assessment. The exposure factor (EF) can be estimated as

follows [25]:
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EF ¼ AADT12 a:m:�6 a:m: � T12 a:m:�6 a:m:

þ AADT6 a:m:�12 p:m: � T6 a:m:�12 p:m:

þ AADT12 p:m:�6 p:m: � T12 p:m:�6 p:m:

þ AADT6 p:m:�12 a:m: � T6 p:m:�12 a:m:;

divided by the GREATER of

AADT12 a:m:�6 a:m:
� �2þ AADT6 a:m:�12 p:m:

� �2
h

þ AADT12 p:m:�6 p:m:
� �2þ AADT6 p:m:�12 a:m:

� �2
i

;

or

T12 a:m:�6 a:m:
� �2þ T6 a:m:�12 p:m:

� �2
h

þ T12 p:m:�6 p:m:
� �2þ T6 p:m:�12 a:m:

� �2
i

;

ð18Þ

E ¼ 1:35EF � AADT � T; ð19Þ

where AADT12 a:m:�6 a:m: is the percentage of AADT

between 12:00 a.m. and 6:00 a.m.; AADT6 a:m:�12 p:m: is the

percentage of AADT between 6:00 a.m. and 12:00 p.m.;

AADT12 p:m:�6 p:m: is the percentage of AADT between

12:00 p.m. and 6:00 p.m.; AADT6 p:m:�12 a:m: is the per-

centage of AADT between 6:00 p.m. and 12:00 a.m.;

T12 a:m:�6 a:m: is the percentage of trains between 12:00 a.m.

and 6:00 a.m.; T6 a:m:�12 p:m: is the percentage of trains

between 6:00 a.m. and 12:00 p.m.; T12 p:m:�6 p:m: is the

percentage of trains between 12:00 p.m. and 6:00 p.m.;

T6 p:m:�12 a:m: is the percentage of trains between 6:00 p.m.

and 12:00 a.m.; AADT is the annual average daily traffic; T

is the number of trains per day; E is the exposure of a

given HRGC.

The predicted number of accidents is dependent on the

existing warning devices at an HRGC. Moreover, the initial

number of predicted accidents is adjusted based on the 5-

year accident history. The number of predicted accidents at

HRGCs with passive warning devices can be estimated as

follows [25]:

PA ¼ 0:0006938 ðE þ 0:2Þ=0:2½ �0:37 ðd þ 0:2Þ=0:2½ �0:1781

eð0:0077msÞe �0:5966ðhp�1Þ½ �;

ð20Þ

PAadj ¼ 0:65
PA 1=ð0:05þ PAÞ½ � þ N5

1=ð0:05þ PAÞ½ � þ 5
; ð21Þ

where PA denotes the predicted accidents; d is the daylight

thru trains per day; ms is the maximum timetable speed;

hp = 1 if an HRGC is on a paved road, and hp = 2 if an

HRGC is on a dirt or gravel road; PAadj is the adjustment of

predicted accidents; N5 is the number of accidents in

5 years.

The number of predicted accidents at HRGCs with

flashing lights can be estimated as follows [25]:

PA ¼ 0:0003351 ðE þ 0:2Þ=0:2½ �0:4106 ðd þ 0:2Þ=0:2½ �0:1131

eð0:1917mtÞe 0:1826ðhl�1Þ½ �;

ð22Þ

PAadj ¼ 0:5001
PA 1=ð0:05þ PAÞ½ � þ N5

1=ð0:05þ PAÞ½ � þ 5
; ð23Þ

where mt is the number of main tracks, and hl is the

number of highway lanes.

The number of predicted accidents at HRGCs with

flashing lights and gates can be estimated as follows [25]:

PA ¼ 0:0005745 ðE þ 0:2Þ=0:2½ �0:2942 ðd þ 0:2Þ=0:2½ �0:1781

eð0:1512mtÞe 0:142ðhl�1Þ½ �;

ð24Þ

PAadj ¼ 0:5725
PA 1=ð0:05þ PAÞ½ � þ N5

1=ð0:05þ PAÞ½ � þ 5
: ð25Þ

HRGC accidents can be classified in terms of severity as

fatal, casualty, injury, and property-damage-only accidents.

A number of factors are used in evaluating the severity of

accidents at HRGCs, such as the number of tracks, train

speed, number of switching trains, number of through

trains, and type of location (rural or urban) [25]. The

predicted number of accidents by severity category can be

estimated as follows:

PAfat ¼ PAadj

1þ 440:9ms�0:9931ðT þ 1Þ�0:0873ðST þ 1Þ0:0872eð0:3571htÞ
;

ð26Þ

PAcas ¼ PAadj

1þ 4:481ms�0:343e0:1153mte0:2960ht½ � ; ð27Þ

PAinj ¼ PAcas � PAfat; ð28Þ

PAprop ¼ PAadj � PAcas; ð29Þ

where PAfat denotes the predicted fatal accidents; PAcas

is the predicted casualty accidents; PAinj is the predicted

injury accidents; PAprop is the predicted property accidents;

ST is the number of switch trains per day; ht = 1 if an

HRGC is located in urban settings; ht = 0 if an HRGC is

located in rural settings.

Kansas Design Hazard Rating Formula

The Kansas Design Hazard Rating Formula computes a

hazard index as a surrogate of the number of accidents at

HRGCs. The factors, considered in the formula, include the

number of highway vehicles, number of slow trains,

number of fast trains, angle of the intersection between the

roadway and the track, number of main tracks, and sight

distances for all four quadrants. Note that any negative

Accident and hazard prediction models for highway–rail grade crossings: a state-of-the… 269

123Rail. Eng. Science (2020) 28(3):251–274



hazard index value is reset to zero. The Kansas Design

Hazard Rating Formula is expressed as follows [11, 21]:

KDHR ¼ AðBþ C þ DÞ
4

; ð30Þ

where KDHR is the Kansas Design Hazard Rating;

A =
HT 2NFTþNSTð Þ

400
; HT is the highway traffic; NFT is the

number of fast trains; NST is the number of slow trains

(switch trains are not included); B = 2

ffiffiffiffiffiffiffiffiffi

8000
SMSD

3

q

; SMSD is the

sum of maximum sight distance 4 ways; C =

ffiffiffiffi

90
AI

q

; AI is

the angle of intersection; D = main track factor (1.00 for 1

track, 1.50 for 2 tracks, 1.80 for 3 tracks, and 2.00 for 4

tracks).

Michigan Hazard Index Formula

The Michigan Hazard Index Formula is based on the New

Hampshire Hazard Index Formula (described earlier in the

manuscript), which estimates an index to be used for

ranking HRGCs [11, 45]. However, the State of Michigan

has modified the protection factor (PF) values that have

been used in the canonical New Hampshire Hazard Index

Formula. The values of the protection factor, used by the

Michigan DOT, are shown in Table 9.

Missouri Exposure Index Formula

An exposure index has been used by the Missouri DOT,

taking into account the existing protection type at HRGCs.

A number of factors are considered in estimating the

exposure index, including the number and speed of vehi-

cles, number of freight and passenger trains, speed of

freight and passenger trains, number of switching move-

ments, required and actual sight distance. The Missouri

Exposure Index Formula is expressed as follows [11, 21]:

For passive to active upgrade:

MEI ¼ TI þ SDO� TI: ð31Þ

For active upgrade:

MEI ¼ TI; ð32Þ

where MEI is the Missouri Exposure Index; SDO is the

sight distance obstruction factor, SDO ¼ RSD�ASD
RSD

; RSD

is the required sight distance; ASD is the actual sight dis-

tance; TI is the traffic index,

TI =
ðVM�VSÞðFM�FSþPM�PSþ10SMÞ

10;000 ; VM are the vehicle

movements; VS is the vehicle speed; FM are the freight

train movements; FS is the freight train speed; PM are the

passenger train movements; PS is the passenger train

speed; SM are the switching movements.

Nevada Hazard Index Formula

Ryan and Mielke [27] developed a revised hazard index

model to rank the HRGCs for safety improvement projects

in the State of Nevada. Some of the factors, considered in

the model, include the daily train volume, average daily

highway traffic, number of accidents within the past

5 years, protection factor, highway speed factor, number of

near misses within the past 3 years, rail speed factor,

HRGC angle factor, and track configuration factor. The

Nevada Hazard Index Formula is expressed as follows

[27]:

NHI ¼
ffiffiffiffiffi

EI
p

� ANMF � PF � HSF � RSF � TCF

� CAF; ð33Þ

where NHI is the Nevada Hazard Index; EI is the exposure

index, written as the product of average daily highway

traffic and daily train volume, and ANMF is the accident

and near miss factor, ANMF ¼ 1:3Aþ
N
3 ; A is the number

of the accidents within the past 5 years; N is the number

of near misses within the past 3 years; PF is the protection

factor, 0.15 for 4 quad gate or gates with medians, 0.30 for

gates only, and 1.00 for flashing lights or passive; HSF

is the highway speed factor; 0.50 for 0 to 15 mph, 1.00 for

Table 9 Protection factor values used by the Michigan DOT

Protection type Factor

Flashing light signals with cantilever arms, half-roadway gates, and traffic signal interconnection 0.05

Flashing light signals with cantilever arms and half-roadway gates 0.08

Flashing light signals with half-roadway gates 0.11

Flashing light signals with cantilever arms and traffic signal interconnect 0.24

Flashing light signals with cantilever arms 0.27

Flashing light signals 0.30

Stop and flag procedures 0.75

Stop sign 0.80

Reflectorized crossbuck with or without a yield sign 1.00
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20 to 35 mph, 1.50 for 40 to 65 mph, and 2.00 for 70 mph

or above; RSF is the rail speed factor, 1.00 for 0 to 59 mph,

and 1.50 for 60 mph and above; TCF is the track config-

uration factor; 1.25 for 1 siding/other track; 1.50 for 2

siding/other tracks; and 2.00 for 3 or more siding/other

tracks; CAF is the HRGC angle factor, 2.00 for 0� to 30�,

1.50 for 30� to 60�, and 1.00 for 60� to 90�.

New Mexico Hazard Index Formula

A hazard index formula has been used by the New Mexico

State Highway and Transportation Department. The for-

mula was developed from the Modified New Hampshire

Hazard Index Formula. The formula estimates a hazard

index, which is used to prioritize the HRGCs for safety

improvements in the State of New Mexico. The New

Mexico Hazard Index Formula is expressed as follows

[11]:

NMHI ¼ TADT � VADT � PF

100
SDf � Ts � AHf ; ð34Þ

where NMHI is the New Mexico Hazard Index; TADT

is the train ADT; VADT is the highway vehicle ADT; PF

is the protection factor, 0.11 for gates, 0.20 for lights, 0.34

for wigwags, 0.58 for signs, 1.00 for crossbucks, and 2.00

for no protection; SDf is the sight distance factor, 1.0 for

no restrictions, 1.2 for restrictions at one quadrant, and 1.5

for restrictions at more than one quadrant; Ts is the train

speed in mph; AHf is the accident history factor,

AHf ¼ Aþ Bþ C; A = 0.10 for each property damage

only accident; B = 0.20 for each injury accident; C = 0.30

for each fatal accident.

North Carolina Investigative Index Formula

The Investigative Index Formula has been used by the

North Carolina DOT to rank the HRGCs for safety

improvement projects in the State of North Carolina. The

formula considers three main factors, which include the

accident history, exposure, and sight distance. The North

Carolina Investigative Index Formula is expressed as fol-

lows [11]:

NCII ¼ PF�ADT � TV � TSF� TF

160
þ ð70A=YÞ2 þ SDF;

ð35Þ

where NCII is the North Carolina Investigative Index; PF

is the protection factor, 1.0 for no warning devices or

crossbucks, 0.50 for traffic signals, 0.20 for flashing lights,

and 0.10 for gates; ADT is the average daily traffic. When

school buses use an HRGC, add Np/1.2 (Np denotes No. of

school bus passengers) to ADT . When passenger trains use

an HRGC, multiply ADT by the average vehicle

occupancy, which is 1.2; TV is the train volume; TSF is the

train speed factor, TSF = Vma/50 ? 0.8, and Vma is the

maximum allowable train speed; TF is the track factor,

which depends on the number of through tracks and the

number of total tracks; A=Y is the number of train-vehicle

accidents per year, and a 10-year accident history is

required for the model; SDF is the sight distance factor,

SDF = 16
P

ðSDFn=4Þ; SDFn is the sight distance factor

for quadrant n (0 for clear sight, 2 for average sight, and 4

for poor sight).

Oregon

The Jaqua Formula has been used by the Oregon DOT to

predict the number of accidents at the HRGCs in the State

of Oregon. The Jaqua Formula is expressed as follows [11]:

ACC5 ¼ ABC

1610
; ð36Þ

A ¼
X

n

i¼1

Ti
CiV

3Si
þ V

� �

; ð37Þ

where ACC5 denotes accident prediction for the next

5 years; A is the exposure factor; n is the number of train

types; Ti is the number of trains of type i; Ci is the number

of cars in a train of type i; Si is the speed of a train of type

i; V is the AADT; B is the hazard rating, which depends on

the number of tracks, speed of vehicles and trains, number

of blind quadrants, number of lanes, angle of intersection,

approach grade, curvature of the roadway, existence of

entrances and exits to the streets as well as the street

intersections near an HRGC; C is the protection factor,

which depends on the type of area (urban vs. rural) and the

type of existing warning devices at the HRGCs.

South Dakota Hazard Index Formula

The State of South Dakota developed a hazard index for-

mula to prioritize the HRGCs for safety improvement

projects. The factors, considered in estimating the hazard

index of candidate HRGCs, include the average daily

highway traffic, train traffic, obstruction factor, and HRGC

protection factor. The South Dakota Hazard Index Formula

is expressed as follows [11]:

SDHI ¼ TV � ADT � PF � OF

5
; ð38Þ

where SDHI is the South Dakota Hazard Index; TV is the

number of trains per day; ADT is the average daily high-

way traffic; PF is the HRGC protection factor; OF is the

obstruction factor.
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Texas Priority Index Formula

Several states have adopted the Texas Priority Index. The

formula is similar to the New Hampshire Hazard Index

Formula. However, unlike the New Hampshire Hazard

Index Formula, the Texas Priority Index Formula considers

certain additional factors, such as accident history and train

speed. Moreover, the formula distinguishes between the

cantilever and mast-mounted flashing lights. Despite the

fact that the 5-year accident history is considered, the

priority index remains the same if no accidents or one

accident are recorded for an HRGC. The Texas Priority

Index Formula is expressed as follows [11, 27, 45]:

TPI ¼ V � T � 0:1S� PF � 0:01A1:15; ð39Þ

where TPI is the Texas Priority Index; V is the average

daily traffic volume; T is the average daily train volume; S

is the train speed; PF is the protection factor (1.00 for

passive, 0.70 for mast-mounted flashing lights, 0.15 for

cantilever flashing lights, and 0.10 for gates); A are the

train accidents in the past 5 years (default = 1).

Revised Texas Priority Index Formula

Researchers and practitioners found that the original Texas

Priority Index Formula gives a higher priority ranking to

the HRGCs with high traffic volume based on the accident

history. In 2013, the Texas DOT performed a study in

collaboration with the Texas A&M Transportation Institute

and the University of Texas at San Antonio, aiming to

address the existing drawbacks of the original Texas Pri-

ority Index Formula. The study proposed a new formula,

called ‘‘the Revised Texas Priority Index Formula.’’ The

Revised Texas Priority Index Formula is expressed as

follows [24]:

TPIrev ¼ 1000l̂ A5 þ 0:1ð Þ; ð40Þ
l̂ ¼ exp �6:9240þ PF þ 0:2587hp� 0:3722ht½

þ0:0706hlþ 0:0656tt þ 0:0022ASDþ 0:0143mstmax

þ0:0126mstmin þ 1:0024lgðT þ 0:5Þ
þ0:4653lgðAADTÞ � 0:2160NIPþ 0:0092msv�;

ð41Þ

where TPIrev is the Revised Texas Priority Index; l̂ is the

predicted number of accidents per year at an HRGC; PF

is the protection factor (0.5061 for flashing lights,

- 0.2006 for gates, and 0.0000 for passive); hp is the

highway pavement factor (1 for paved; 2 for unpaved); ht

is the urban/rural designation factor (1 for urban and 2 for

rural); hl is the number of traffic lanes; tt is the number of

the main and other tracks; ASD is the actual sight distance,

approach 1; mstmax is the maximum train speed (through

trains); mstmin is the minimum train speed (switching

trains); T is the daily train volume; AADT is the vehicular

AADT; NIP is the nearby roadway intersection presence (1

if present and 2 if not present); msv is the higher roadway

speed limit between approach 1 and approach 2; A5 is

the number of accidents in the last 5 years at an HRGC.

In order to reduce the bias in ranking both passive and

active HRGCs, an adjustment factor for the Revised Texas

Priority Index was developed (since active HRGCs are

likely to receive a higher priority ranking due to a higher

accident record over a 5-year time period). The adjustment

factor for a given warranted passive HRGC can be esti-

mated using the following equation [24]:

AFpas ¼ 1:5ðnwþ cÞ; ð42Þ

where AFpas is the adjustment factor for warranted passive

HRGCs; nw is the number of warrants met; c is the number

of accidents in the most recent 5-year period.

Other states

A review of the literature revealed that the States of

Alaska, North Dakota, and Washington developed their

state-specific procedures for accident and hazard prediction

at HRGCs as well as resource allocation. Specifically, the

Alaska Department of Transportation and Public Facilities

has been using the Accident Prediction Value (APV)

computational methods, described in the Railroad-High-

way Grade Crossing Handbook [11]. A sufficiency rating

system, which is called ‘‘Performance Appearance Rating

(PAR),’’ has been used by the North Dakota DOT to pri-

oritize the HRGCs for safety improvement projects. The

PAR value is estimated based on visibility, exposure,

railroad conditions, and highway conditions. The HRGCs

with the lowest PAR rating are selected for safety

improvements [11]. A priority matrix and a field review

matrix have been used by the State of Washington to rank

the HRGCs for safety improvement projects [11]. The

matrices account for a number of factors, including the

accident history, sight distance, number of vehicles per

day, crossing angle, number of tracks, heavy truck per-

centage, bus presence, and train speed.

The States of Alabama, Idaho, Indiana, Maine, Mary-

land, Ohio, South Carolina, Utah, Virginia, and Wisconsin

have been using the US DOT Accident Prediction Formula

[11, 28]. The US DOT Accident Prediction Formula has

been used by the State of Indiana. Nevertheless, the state

does not apply any threshold values for prioritization of the

HRGCs for safety improvement projects. A benefit–cost

analysis has been also used by the State of Indiana in order

to accurately select the HRGCs for upgrading [11]. Ryan

and Mielke [27] highlighted that the State of Arizona has

been using the Texas Priority Index for ranking the existing
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HRGCs. A Modified New Hampshire Hazard Index For-

mula has been used for the HRGCs in the State of

Louisiana [11]. The New Jersey DOT does not use any

particular formula for predicting the number of accidents or

the hazard index at the HRGCs. The state DOT primarily

relies on the accident history throughout recourse alloca-

tion among the HRGCs [11].

The South Carolina DOT has been using the US DOT

Accident Prediction Formula along with various criteria

(including school bus crossings, hazardous material haul-

ing on the roadway, sight distance, passenger rail service,

and implementation feasibility) for prioritization of the

HRGCs [11]. The US DOT Accident Prediction Formula

has been used by the Virginia DOT along with some

additional factors (i.e., sight distance, vehicle type, road-

way geometric characteristics, and adjacent land use

development) in order to identify the HRGCs that require

safety improvements [11]. The Wisconsin DOT has been

also using the US DOT Accident Prediction Formula for

prediction of the expected number of accidents at the

HRGCs in the State of Wisconsin. Both maintenance and

installation costs for the selected countermeasures are

generally considered throughout recourse allocation among

the HRGCs. The Wisconsin DOT typically gives a serious

consideration to the HRGCs that experienced more than

one accident in past 10 years [11].
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