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Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the
massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state
is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal,
which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the
quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by
rigorous representation theory of groups. Using~k:~pmethod, a reduced Hamiltonian is obtained to describe
the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the
simulation results. Near such accidental degeneracy, we observe some unique properties in wave
propagating, such as defect-insensitive propagating character and the Talbot effect.

M
any unique phenomena in graphene such as quantum Hall effect, Zitterbewegung, Klein paradox and
pseudo-diffusion, are attributed to the unique dispersion relation of massless quasiparticles solved by
Dirac equation1–5. The eigen-energy E is linearly proportional to the wave vector k at the six corners of

the hexagonal boundary of the Brillouin zone (BZ). The upper and lower bands near the K point act as two cones
touching at one degenerate point, which is the so-called Dirac point and such conical dispersion is called a Dirac
cone. Compared to Dirac cone dispersion at the corner of the BZ in graphene or photonics and phononics6–10, the
recent observation of Dirac cones at the center of the BZ in photonic and phononic crystals (PC) has also attracted
much attention. Under certain circumstances, those Dirac cones can be mapped into a zero-refractive-index
material, whose parameters (e.g. permittivity and permeability in electromagnetics, effective mass density and
reciprocal of bulk modulus in acoustics) are both vanishing11–15. It provides a new method to achieve zero-index
materials with simple photonic and phononic crystals so that many interesting properties such as wave shaping
and cloaking are easily demonstrated12,13,16,17.

Linear dispersion is a key feature of a Dirac cone. However, the linear dispersion at a finite frequency is in
general forbidden at the center of the BZ, because of time-reversal symmetry18,19. The previouslymentioned linear
dispersion relations at the center of the BZ in classical wave systems are achieved by accidental degeneracy. In 2D
photonic and phononic crystals with C4n symmetry11–13, it has been demonstrated that the accidental degeneracy
of a monopolar state (or a quadrupolar state) and a double-degenerate dipolar state can lead to three-folded
degeneracy showing linear dispersion in the vicinity of the C point. In addition to the linear bands, there is a flat
band intersecting with them at the Dirac point. This is a major difference from the Dirac cones observed in
graphene system, in which only two linear bands touch at the Dirac point. From a perturbation theory, it has been
demonstrated that the Dirac cone induced by the triple-degenerated states at the center of the BZ is not a truly a
Dirac cone because the reduced Hamiltonian cannot be casted into a Dirac equation (corresponding to three
states) and the Berry phase equals to zero. Therefore, to be more precise, it is called a Dirac-like cone20. Recently,
the double Dirac cone degeneracy at the BZ center has been predicted in triangular-lattice metamaterials withC6n

symmetry21. However, to the best of our knowledge, such quadruple-degenerate linear dispersion is still not
realized in ordinary dielectric photonic crystals or phononic crystals, and furthermore, the underlying physics,
such as the reduced Hamiltonian and the Berry phase, still remains unexplored. Meanwhile, such quadruple-
degenerate Dirac-like cone states may also be expected to have rich physics that give rise to unique wave
propagating properties to be explored.

In this paper, we demonstrate that a quadruple-degenerate state can be created at the BZ center by accidental
degeneracy of E1 and E2modes in a two-dimensional phononic crystal with honeycomb lattice. In the vicinity of

OPEN

SUBJECT AREAS:

APPLIED PHYSICS

ELECTRONICS, PHOTONICS AND
DEVICE PHYSICS

Received
12 February 2014

Accepted
4 March 2014

Published
9 April 2014

Correspondence and

requests for materials

should be addressed to

M.-H.L. (luminghui@

nju.edu.cn)

SCIENTIFIC REPORTS | 4 : 4613 | DOI: s10.1038/srep04613 1



the quadruple-degenerate state, the dispersion relation is linear, with
four cones touching at their vertices. Different from the Dirac-like
cone induced by triple-degenerate state, there is no flat branch. We
perform a symmetry analysis to prove the linearity of the dispersion

relation and employ a~k:~p method to accurately predict the slope of

the linear dispersion. The results of the~k:~p method also unambigu-
ously reveal that the reduced Hamiltonian can be mapped into a
4 3 4 massless Dirac equation but the Berry phase cancels out due
to the absence of imaginary part in Dirac equation. Moreover, based
on such quadruple Dirac-like degeneracy, a novel defect-insensitive
propagating phenomenon and the Talbot effects in such phononic
crystals are well described with the acoustic field distribution
obtained by the finite element simulation.

Results
The 2D PC considered here is composed of a honeycomb array of
iron cylinders embedded in water (r1 5 1000 kg/m3, c1 5 1490 m/s
and r2 5 7670 kg/m3, c2 5 6010 m/s, where r and c denote mass
density and velocity of sound and subscripts 1 and 2 correspond to
water and iron, respectively). The distance between two cylinders in

one unit cell is d 5 1 m, the lattice constant is a~
ffiffiffi

3
p

m and the
radius of the cylinder is r5 0.3710 m. Because of the large difference
in sound velocities between iron and water, the shear modes inside
the iron cylinders can be ignored22,23.
Figure 1(a) shows the band structure of the PC. It exhibits four

bands touching linearly at one point at the frequency v0 5

892.77 Hz at the center of the BZ, forming four cones. Such double
Dirac cones are resulted from accidental degeneracy, which is clearly
demonstrated in Fig. 1(b) when the radii of the cylinders are changed
to r5 0.32 m. The quadruple-degenerate state shown in Fig. 1(a) is
splitted into two double-degenerate states and the linear dispersion
disappears. Since we are interested in the linear dispersion near theC
point, we choose a region denoted by the red rectangle shown in
Fig. 1 as our focus. Different from the triply degenerate case11, there
is no flat branch intersection in our model. Four cones are formed by
the linear branches and touches at one point at the frequency ofv05

892.77 Hz with tolerance of 1026.These four eigen degenerate states
are shown in Figs. 2(a–d).
Firstly, we employ the group theory to analyze the band structure.

By examining the symmetry of the eigenstates at the degenerate
point, one can check whether the dispersion near that point is linear
or not24. According to the group theory, the Bloch states at C point
with C6n symmetry can be described as the basis of the irreducible
representation based on the symmetry properties of the states25. The
four eigen states match well with the four Bloch basis functions as
shown in Table 1. The two double-degenerated states which result in
the quadruple-degenerate state when they meet together correspond
to E1 and E2 irreducible representations respectively. When any
symmetry operation of C6n is performed, the eigenfunction of E1
state transforms like x and y, and E2 state transforms like 2xy and

Figure 1 | (a) Band structures of a 2D honeycomb lattice PC consisting of iron cylinders (radius r5 0.3710d) in water. Four linear bands intersect at one

point of v0 5 1.0378?(2pc/a) in red rectangle region. (b) Band structure with cylindrical radius r 5 0.32 d, the degeneracy is lift.

Figure 2 | (a–d) Pressure field distributions of four degenerate Bloch
states at C point as indicated in Fig. 1(a) corresponding toy1,y2,y3 and
y4 from low band to high, respectively. Dark red and dark blue colors

denote the positive and negative values.

Table 1 | Four states at C point corresponding to four Bloch bases
classified under different symmetry operation of C6n group. y1–y4

correspond to field distributions in Figs. 2(a–d), respectively

C6n Basis sx sy

E1 y3, x 21 1
y4, y 1 21

E2 y1, xy 21 21
y2, x2 2 y2 1 1
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x2 2 y2. The wave functions near the degenerated point can be
expressed as linear combinations of the degenerate states. (These

linear combination wave functions are also adopted in~k:~p method
in the next section.) It should be noted that even under the same
operation, the transformation of the Bloch state constructed of E1 is
different from that of E2. Under the symmetry operations of sx and
sy, E1 and E2 representation can further be classified into four states.
Consequently, the double Dirac cone induced by the accidental
degeneracy shown in Fig. 1(a) is supported by the group theory
analysis21. The states near the Dirac point are linear combinations
of the Bloch states with parity of sx or sy, and the wave equation
should possess the same parity. Moreover, considering the compat-
ibility relation alongCK andCM directons, E15A1 B, E25A1 B,
where A is full symmetry representation which indicates the exist-
ence of isotropic linear dispersion25.

Then, we resort to the well-known~k:~p method in electronics to
analyze our phononic model20. We can rewrite the Bloch functions

near ~k0 as linear combinations of four ~k0 states. Substituting such
function into wave equation with periodic boundary conditions, we
can get20

det H{

v2

n~k
{v2

j0

c21
I

�

�

�

�

�

�

�

�

�

�

~0, ð1Þ

where n denotes the band index,~k is the Bloch wave vector, andH is

the reduced Hamiltonian matrix with elementHij~i~k:~Lij, i and j are

subscripts of matrix elements. Here,~Lij is a real vector in x-y plane.

The x component of~Lij can be numerically calculated from the Bloch

states as,

Lij(x)~
(2p)2

V
(

ð

unitcell

y�
i~k0

(~r)|
2
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j~k0

(~r)
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where rr(~r)~r(~r)=r1, h is the integration variable. The y component

of~Lij can be calculated using the same process. In Eq. (2), only eight

vectors are nonzero. Considering the anti-symmetrical property:
~Lij~{~Lji, only four vectors are independent, and the relationships

of these four vectors can be described as [shown in Fig. 3(a)]

~L13~{~L24,~L23~~L14,~L13:~L23~0

~L13~({0:03768,4:0005),~L14~(4:0009,0:03768)

~L23~(4:0011,0:03766),~L24~(0:03766,{4:0014):

ð3Þ

Thus, the reduced Hamiltonian H can be casted into:

H~

0 0 i~k:~L13 i~k:~L14
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For the Bloch state at ~k in the vicinity of the C point, the angle

between the Bloch wave vector and ~L13 is h, by using Eq. (1), we
can get dispersion relations of two Dirac cones

Dv

Dk
~+

~L
�

�

�

�c21
2v0

, ð5Þ

Dv 5 v 2 v0 and Dk 5 k 2 k0. Eq. (5) is linear in Dk and is
independent of h indicating the isotropy of the dispersion relation,
which could be confirmed by the numerical simulations shown by
solid dots in Fig. 3(b), and the isotropic equi-frequency contours
(EFCs) shown in Figs. 4(b1) and (b2) result from the coupling of
the degenerate Bloch state21, which match well with the prediction of
the group theory.

Knowing the length of ~L13, we can analytically calculate the dis-
persion relations from Eq. (5) as the red lines shown in Fig. 3(b),
which overlaps with the solid dots well in the BZ center. It should be
noted that although Eq. (5) exhibits only two roots, there should be
four solutions to Eq (1), whichmeans each root represented in Eq. (5)
corresponds to two identical (degenerate) solutions. This is an
important result, as it indicates that rather than having Dirac cones
with different linear slopes, the Dirac cones produced here by the
quadruple-degenerate state have identical slopes. This theoretical
prediction is consistent with the simulated band structure [shown
in Fig. 3(b)]. The equivalent frequency contours (EFCs) of these four
bands are plotted in Fig. 4. Near the Dirac point, there is only one
circle in the EFCs, verifying the isotropic property [Figs. 4(b1) and
4(b2) are identical]. Away from the Dirac point, apparently seen
from Figs. 4(a) and 4(c), the EFCs for different bands are different
and their hexagonal shapes indicate the anisotropy of the dispersion.
The linear dispersion at theC point described above is very similar

to the Dirac point at the BZ corner studied earlier5. It has been
reported that in a phononic crystal the Dirac point at the corner of
the BZ carries nonzero Berry phase26, while the Dirac-like point with
triple degeneracy atC point carries zero Berry phase20. Now, we have
achieved double Dirac cone at the C point by quadruple-degenerate
state, does it carry zero or nonzero Berry phase? To answer this
question, we perform the following analysis.

Figure 3 | (a) The relations of four vectors [seen in Eq.3] in real space calculated by field distribution in Fig. 2. These four real vectors have the same length.

(b) Dirac dispersion relation. Dots and solid lines represent the simulation results and~k:~p method results, respectively.

ð2Þ
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The eigenfunction of the H near~k0 is
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We can calculate the Berry phase as,
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þ
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Taking Q1(
~k) as an example, we can write sin h~

ukx{vky

k
,

cos h~
vkxzuky

k
, where u2

1 n2 5 1. Substituting Q1(
~k) into Eq.
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The same result can be obtained if we use any Qi(
~k) in Eq. (7), which

means the Berry phase for our system at C point is zero.
In other words, the H of our system can be written as

H~{~L14:~ksy6tx{~L13:~ksy6tz: ð9Þ

sy, tx, tz are all Pauli matrices and two Kronecker product matrices
satisfy the anti-commutation relations. Although Eq. (9) is in the

form of a massless Dirac equation,~L14:~k and~L13:~k contain no ima-
ginary parts indicating the zero Berry phase, which is different from
the Dirac cone at the corner of the BZ.

Figure 4 | TwoEFCs corresponding to different bands at the frequencies of 840 Hz, 892 Hz, 930 Hz. (a1) and (a2) are EFCs of 840 Hz. (b1) and (b2) are

EFCs of 892 Hz near Dirac points. (c1) and (c2) are EFCs of 930 Hz.

www.nature.com/scientificreports
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Finally, we analyze the wave propagating properties in our system
near our concerned frequency. Figure 5 shows the numerical simula-
tions of the wave propagating properties in the PC. In panels a1 and
a2, we set the operating frequency to be v1 5 0.9409v0 below the
frequency of Dirac point, v25 0.9991v0 is used in panels b1 and b2
near v0, v3 5 1.0417v0 is used in panels c1 and c2. The incident
wave is along CM direction. Figure 5(a1) shows that the outgoing
wave preserves the plane wave front, while Fig. 5(b1) shows the
Talbot effect27. The Talbot effect is a near-field diffraction effect
which was first observed in the year of 183628, and in this effect a
plane wave transmits through a grating or other periodic structures
with the resulting wave fronts propagating in such a way that

replicates the structure. According to the field distribution shown
in Fig. 5(b1), 5(c1), the wave fronts out of the PC share almost the
same shape, while only Fig. 5(a1) returns into a plane wave after
propagating about 2.3 wavelengths distance. Noted that the widely
used effective medium theory is no longer applicable at such high
frequency, and we cannot expect a plane wave at frequencyv2 in the
PC with C6n symmetry. Here, v1 is a threshold frequency to recon-
struct the plane wave. For a slight blue shift of frequency v1, we can
find Talbot effect in our system as shown in Fig. 5(c1).
The defect insensitivity of the Talbot effect in our PC is also inves-

tigated and the results are shown in Figs. 5(a2), 5(b2) and 5(c2).
Comparing with Dirac point atK point or Dirac-like point atC point

Figure 5 | Transmission patterns with plane incidence source.Operation frequencies are set at (a)v1, (b)v2 (c)v3. The suffix 1 or 2 represents the case

of PC without or with defect, respectively. (b1) and (c1) exhibit the Talbot effect. (b2) shows the defect-immune property.

Figure 6 | Transmission patterns with cylindrical incidence source.Operation frequencies are set at (a)v1, (b)v2, (c)v3. The suffix 1 or 2 represents the

case of PC without or with defect. (b1) and (c1) exhibit the Talbot effect. (b2) shows the defect-immune property.

www.nature.com/scientificreports
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in triangular lattice, the propagation of wave in our PC at Dirac cone
frequency is more insensitive to defects. At the frequency of v2, the
defect cannot be detected from the transmitted pattern, while it can
be easily found at the frequencies ofv1 andv3. According to the field
distributions shown in Fig. 5(a2) and 5(c2), more than one mode are
excited in the PC at the frequencies ofv1 andv3. Thesemodes are all
attributed by the scattering of the defect, which would provide vari-
ous scattering wave vectors. As the EFC shown in Figs. 3(b1) and
3(b2), it is a circle near the frequency v0 compared to two big hexa-
gons at the frequencies ofv1 andv3. Considering the incident angle
dependence, one wave vector of incident waves would often excite
two outgoing modes near v0, however, such two outgoing modes
would share the same Bloch wave vector due to the double degen-
eracies [shown in Fig. 1]. Furthermore, the existence of defect con-
tributes to wave vectors with various directions. Thus, we can
conclude that these two states near v0 are insensitive to incidence
direction of wave vectors29. But, at the frequencies of v1 and v3, two
non-degenerated modes are excited corresponding to two different
Bloch wave vectors, which are dependent on the incidence angle.
To check the angle dependent propagation properties in our sys-

tem, we employ a cylindrical incidence source which can provide
various wave vectors [shown in Fig. 6]. Similar to the case with the
plane-wave incidence source, Fig. 6(b1) also shows a Talbot effect.
The defects in this system cannot be detected at the frequencies near
v0 [shown in Fig. 6(b2)], which can be regarded as a type of cloak-
ing11,12. The negative refraction also can be realized in Fig. 6(a1)30,31.
Moreover, the Talbot effect is immune to various types of defects

instead of special cases. Figure 7(a) shows the case of a random
distribution with several defects, and the transmission pattern is
similar to Fig. 5(b1). With metallic defects (r2 5 7670 kg/m3, c2 5
6010 m/s, r 5 1 m in Fig. 7(b) and r 5 1.3 m in Fig. 7(c)), the
scattering of the cylinder is well suppressed. To further demonstrate
the ability to reduce the scattering cross section, we introduce an air
bubble (r 5 1.3 m) which has a strong scattering field in usual

underwater acoustic system shown in Fig. 7(d). The scattering of
the air bubble is also effectively suppressed.

Discussion
In summary, we have designed a two-dimensional phononic hon-
eycomb lattice to achieve a quadruple-degenerate state at C point
which is constructed by the accidental degeneracy of two double-
degenerate states. In the vicinity of the quadruple-degenerate state,
there exist double isotropic linear Dirac cones. The linear dispersion
induced by the accidental degeneracy is rigorously analyzed by the

group representation theory. By using the ~k:~p method, a 4 3 4
reduced Hamiltonian is obtained to describe the massless Dirac lin-
ear dispersion relation. The Berry phase of such double Dirac cones
cancels out due to the absence of the imaginary part. Although there
is no flat band in our system, and it neither satisfies long wave
approximation nor is regarded as effective zero-index medium, a
new kind of novel Talbot effect can still be found in this phononic
crystal near the quadruple degenerate point due to the linear and
isotropic dispersion, which is insensitive to various types of defects
and wave source. The Zitterbewegung is also expected for such quad-
ruple-degenerate state associated with the Dirac equation32,33. The
enhancement of the nonlinearity is also prospective for the phase
matching effect in our system34,35.

Methods
Throughout the paper, the Finite Element Method (FEM) based on commercial
software COMSOLMultiphysics is employed for the numerical computations and the
simulations. The materials applied in simulations are water and steel. Plane wave
radiation boundary conditions are set on the outer boundaries of simulation domain
so there will be no interference from the reflected acoustic wave and the periodic
boundary condition are employed in the left and right boundaries to simulate the PC
with infinite size. The largest mesh element size is set lower than 1/20 of the shortest
wavelength.
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