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1 Introduction

The electroweak (EW) hierarchy puzzle suggests that new physics (NP) degrees of freedom

should appear around or not much above the EW scale. Hence the search for NP is a clear

target being vigorously pursued by the LHC experiments. On the other hand, indirect

searches for NP using flavor and CP violating observables have already probed NP scales
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up to 108GeV (cf. [1–3] for recent reviews). Thus, the overall excellent agreement with the

CKM paradigm predictions suggests a large mass gap above the EW scale. Perhaps even

more strikingly, searches for baryon (B) and lepton (L) number violating processes at low

energies suggest that these accidental quantum numbers of the standard model (SM) are

good symmetries of nature up to scales of the order of 1015GeV (cf. [2]).

Explicit models of TeV scale NP need to resolve the apparent conflict between these

two sets of expectations by postulating exact or approximate symmetries which in term

forbid or sufficiently suppress the most dangerous contributions to flavor changing neutral

currents, CP violation, as well as B and L changing processes. These include explicit

B, L or their anomaly free combinations, discrete space-time symmetries including C, P,

CP but also new internal symmetries like R-parity (or R-symmetry) in supersymmetric

(SUSY) extensions of the SM, KK-parity in extra-dimensional setups, as well as abelian or

non-abelian horizontal (flavor) symmetries.

At the heart of these problems is the fact that generically, extending the SM particle

content will either (i) break some of the SM accidental symmetries, and/or (ii) introduce

new sources of breaking of the approximate SM symmetries, which in general will not

be aligned with existing SM symmetry breaking directions. Examples of the first kind

include B and L. Flavor, CP and custodial symmetry of the Higgs potential fall into the

second category.

Consider the SM as the renormalizable part of an effective field theory (EFT)

L = L(d≤4)
SM +

∑

d>4

1

Λd−4
eff

L(d) , (1.1)

where only SM fields appear as dynamical degrees of freedom in L, and d denotes the

canonical operator dimension. Assuming O(1) coefficients in the EFT operator expansion,

currently all experimental evidence in particle physics can be accommodated by such a

generic theory with a very large cut-off Λeff ≈ 1015GeV.1 This particular scale is intriguing

since it can account for both the observed neutrino masses suggesting the presence of L

violating L(5), as well as null results of all flavor, CP and B violation probes constraining

L(d≥6). One may thus ask the following well defined question. Which extensions of the SM

particle content with masses close to the EW scale (i) form consistent EFTs with a cut-off

scale as high as 1015 GeV, (ii) automatically preserve the accidental and approximate sym-

metry structure of the SM and thus do not require the introduction of additional protective

mechanisms in order to remain viable LHC targets in light of negative search results of the

numerous indirect probes, and (iii) are cosmologically viable?

In the present paper we explore such possibilities by adding to the SM EW (and pos-

sibly color) multiplets, requiring that their SM gauge quantum numbers alone forbid all

renormalizable interactions which would break any of the SM approximate or accidental

symmetries. In particular, in the SM the global GF ≡ U(3)5 flavor symmetry of quarks

and leptons is only broken by their respective Yukawas (and the gauging of hypercharge).

1Cosmological observations suggest that most of the mass in the observable Universe cannot be accounted

for by known forms of matter. The possibility of particle dark matter within our setup is briefly discussed

below.
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Spin χ QLP Odecay dim(Odecay) Λ2−loop
Landau[GeV]

0 (1, 1, 0) 0 χHH† 3 ≫ mPl (g1)

0 (1, 3, 0)‡ 0,1 χHH† 3 ≫ mPl (g1)

0 (1, 4, 1/2)‡ -1,0,1,2 χHH†H† 4 ≫ mPl (g1)

0 (1, 4, 3/2)‡ 0,1,2,3 χH†H†H† 4 ≫ mPl (g1)

0 (1, 2, 3/2) 1,2 χH†ℓℓ, χ†H†ecec, Dµχ†ℓ†σµec 5 ≫ mPl (g1)

0 (1, 2, 5/2) 2,3 χ†Hecec 5 ≫ mPl (g1)

0 (1, 5, 0) 0,1,2 χHHH†H†, χW µνWµν , χ
3H†H 5 ≫ mPl (g1)

0 (1, 5, 1) -1,0,1,2,3 χ†HHHH†, χχχ†H†H† 5 ≫ mPl (g1)

0 (1, 5, 2) 0,1,2,3,4 χ†HHHH 5 3.5× 1018 (g1)

0 (1, 7, 0)⋆ 0,1,2,3 χ3H†H 5 1.4× 1016 (g2)

1/2 (1, 4, 1/2) -1 χcℓHH, χℓH†H, χσµνℓWµν 5 8.1× 1018 (g2)

1/2 (1, 4, 3/2) 0 χℓH†H† 5 2.7× 1015 (g1)

1/2 (1, 5, 0) 0 χℓHHH†, χσµνℓHWµν 6 8.3× 1017 (g2)

Table 1. List of new weak-scale uncolored states χ which can couple to SM fields at the renor-

malizable level without breaking GF , and which are compatible with cosmology and an EFT cut-off

scale of Λeff ≃ 1015 GeV. The possible electromagnetic charges of the LP in the multiplet are de-

noted by QLP, while Odecay denotes the lowest dimensional operators responsible for the decay of

χ. States with Y = 0 are understood to be real. In the last column, the Landau pole has been

estimated at two loops by integrating in the new multiplet at the scale of the Z boson mass mZ ,

while the symbol in the bracket stands for the gauge coupling, g1,2,3, triggering the Landau pole

and mPl = 1.22× 1019 GeV is the Planck mass. The states marked with ‡ and ⋆ are constrained by

EW precision tests and BBN, respectively, to lie possibly beyond the LHC reach.

In order not to introduce new sources of GF breaking, one should only consider GF sin-

glet operator extensions of the SM. In section 2 we list all d ≤ 3 operators involving

quark and lepton fields that transform nontrivially under GF and demand that the new

degrees of freedom do not couple to any of these at the renormalizable level. Since both

B and L are subgroups of GF the above prescription also automatically preserves these

accidental symmetries of the SM. Furthermore, in most cases this also ensures the absence

of new sources of breaking for both custodial and CP symmetries at the renormalizable

level. The exceptions where new breaking can arise in the scalar potential are discussed in

section 2.2.1.

The relevant Lagrangian is restricted only by imposing the SM gauge and Lorentz

invariance, not by new symmetries. Finally, such a theory is assumed to represent a

consistent description of nature up to the cut-off scale Λeff . In particular, we require that

all of the marginal couplings (in particular the SM gauge couplings) remain perturbative

up to Λeff . The physical idea behind this requirement is that a Landau pole might be

associated with the emergence of some new, generic dynamics that will break the accidental

symmetries of the SM at scales above the Landau pole. As we show in section 2.4, this

condition (together with the cosmological constraints on stable charged particles) limits

the size of the new representations and leads to a finite list of possible SM extensions.

Interestingly, it turns out that such SM extensions generically possess extended ac-

cidental symmetries which ensure the stability of the lightest particles (LPs) in the new
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Spin χ QLP Odecay dim(Odecay) Λ2−loop
Landau[GeV]

0 (3, 1, 5/3) 5/3
χ†Hqec, χH†ucℓ,

Dµχ†uc†σµec
5 ≫ mPl (g1)

0 (3, 2, 5/6) 1/3, 4/3

χ†Hqq, χ†Hucec, χH†qℓ,

χH†ucdc, χHucuc,

χ†H†dcec, Dµχq†σµuc,

Dµχ†q†σµec, Dµχdc†σµℓ

5 ≫ mPl (g1)

0 (3, 2, 11/6) 4/3, 7/3 χH†ucuc, χ†Hdcec 5 5.5× 1019 (g1)

0 (3, 3, 2/3) -1/3, 2/3, 5/3
χ†H†qec, χHucℓ,

χH†dcℓ, Dµχq†σµℓ
5 ≫ mPl (g1)

0 (3, 3, 5/3) 2/3, 5/3, 8/3 χ†Hqec, χH†ucℓ 5 3.2× 1017 (g1)

0 (3, 4, 1/6)
−4/3,−1/3,

2/3, 5/3
χH†qq, χ†Hqℓ 5 ≫ mPl (g2)

0 (3, 4, 5/6)
−2/3, 1/3,

4/3, 7/3
χ†Hqq, χH†qℓ 5 ≫ mPl (g2)

0 (6, 2, 1/6) -1/3, 2/3
χH†qq, χ†Hucdc,

χ†H†dcdc, Dµχ†q†σµdc
5 ≫ mPl (g1)

0 (6, 2, 5/6) 1/3, 4/3
χ†Hqq, χHucuc,

χH†ucdc, Dµχq†σµuc
5 ≫ mPl (g1)

0 (6, 2, 7/6) 2/3, 5/3 χ†Hdcdc 5 ≫ mPl (g1)

0 (8, 1, 0) 0

χHquc, χH†qdc,

DµχDνGµν , D
µχq†σµq,

Dµχuc†σµuc, Dµχdc†σµdc,

χGµνGµν , χG
µνBµν ,

χχχH†H

5 ≫ mPl (g1)

0 (8, 1, 1) 1
χH†quc, χ†Hqdc,

Dµχ†uc†σµdc, χχχ†H†H†
5 ≫ mPl (g1)

0 (8, 3, 0) 0,1

χHquc, χH†qdc,

χGµνWµν , D
µχq†σµq,

χχχH†H

5 ≫ mPl (g1)

0 (8, 3, 1) 0,1,2 χH†quc, χ†Hqdc, χχχ†H†H† 5 1.0× 1017 (g1)

1/2 (6, 1, 1/3) 1/3 χcσµνdcGµν 5 ≫ mPl (g1)

1/2 (6, 1, 2/3) 2/3 χσµνucGµν 5 ≫ mPl (g1)

1/2 (8, 1, 1) 1 χcσµνecGµν 5 4.0× 1016 (g1)

Table 2. Same as in table 1 but for colored states.
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multiplets at the renormalizable level. If these are charge- and color-neutral, they can form

viable dark matter candidates, a possibility, which has been throughly investigated in the

literature [4–7]. On the other hand, scenarios where the lightest component of the new

multiplet is charged and/or colored are in general constrained by cosmological observations

as well as by searches for exotic forms of matter on Earth and in the Universe. Taking also

these constraints into account, the final list of viable uncolored and colored weak represen-

tations are given in tables 1 and 2, respectively, which summarize the main results of our

investigation.

The details of the above sketched construction and analysis are contained in the rest

of the paper which is organized as follows. In section 2 we exploit accidental symmetries

beyond the SM to construct SM extensions with new degrees of freedom at the weak scale,

which are completely transparent to indirect low-energy probes. The way the set of all

possible extra states is made finite is discussed in this section as well. In section 3 we

estimate the new particles’ lifetimes. In turn in section 4 we consider bounds on possibly

long lived states coming from early Universe cosmology. In particular, the effects on big

bang nucleosynthesis (BBN) turn out to be the most important ones. Section 5 explores the

collider phenomenology of the viable weak-scale SM extensions and estimates the current

lower bounds on the new particles’ masses coming from existing LHC searches. We conclude

in section 6 while a more detailed technical discussion of the renormalization group (RG)

evolution of the gauge couplings and the SU(2)L decomposition of the effective operators

are relegated to the appendices.

2 Accidentally safe extensions of the SM

Our starting point is the classification of SM extensions which automatically preserve the

accidental and approximate symmetry structure of the SM without imposing additional

protective mechanisms (only SM gauge and Lorentz symmetries are required). For simplic-

ity, we will limit our discussion to the case where a single extra representation χ is added

to the SM field content. While simultaneously adding more than one representation from

our set is in principle possible, two additional restrictions need to be considered in that

case: (i) adding more matter representations will in general lower the scale of the EFT

validity (cf. section 2.4), (ii) additional SM gauge invariants may be constructed, poten-

tially breaking GF and/or the new accidental symmetry associated with χ stability at the

renormalizable level.

We start by listing all the d ≤ 3 operators made of SM fields. If χ is a fermion, we

require that the new state does not couple to SM fermions at the renormalizable level. In

this way, GF is automatically preserved and an extra accidental symmetry guarantees the

stability of the new particle at the renormalizable level. On the other hand, the case of extra

scalars is more involved since they can always couple to the Higgs field at the renormalizable

level without breaking GF and their stability depends on the allowed interactions with the

Higgs field.

A brief comment regarding larger Lorentz group representations is in order at this

point. The presence of extra Lorentz vectors (i.e. spin 1 bosons) requires either the ex-

– 5 –
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Spin SM field SU(3)c SU(2)L U(1)Y

0 H 1 2 +1/2

1/2 q 3 2 +1/6

1/2 uc 3 1 −2/3

1/2 dc 3 1 +1/3

1/2 ℓ 1 2 −1/2

1/2 ec 1 1 +1

Table 3. SM field content and quantum numbers.

tension of the SM gauge group or new strong dynamics. In the former case, accidental

preservation of GF requires the extended gauge symmetry to be a direct product of the

SM gauge group and possible new factors under which the SM fermions need to transform

trivially. Such setups have been thoroughly studied in the literature (cf. [8] for a recent

review) and we have nothing to add. On the other hand, new vectors due to some strong

dynamics at the TeV scale are incompatible with a large mass gap Λeff ≫TeV. The same ar-

gument applies to composite particles of higher spins. Finally, extra fundamental particles

with spins 3/2 and 2 can appear in theories of extended and gauged space-time symmetry

(cf. [9, 10]), but such constructions necessarily go beyond our EFT framework. We will

hence limit our discussion to the inclusion of either spin 0 or 1/2 extra representations.

In the following, we adopt a two-component notation where all the fermion fields are

Weyl spinors belonging to the same irreducible representation of the Lorentz group. The

accidental matter multiplets are collectively denoted by χ. We use the subscripts S and F to

denote the bosonic (spin 0) and fermionic (spin 1/2) SM gauge representations, respectively,

where appropriate to avoid ambiguity. The SM fermions are collectively denoted by ψSM

and their quantum numbers are fixed according to table 3. The list of all possible d ≤ 3

operators made of SM fields is provided in table 4.

2.1 New fermions

If a fermionic χ transforms under a complex or pseudoreal representation of the gauge

group (so that a Majorana mass term is forbidden), we introduce another field χc with

conjugate quantum numbers. In this way, the new state is vector-like and a mass term can

always be added.

According to our previous discussion, we want to forbid the interactions χψSM, χψSMH

and χψSMH
†.2 By inspecting table 4 we conclude that χ cannot have the following quan-

tum numbers:

χ 6= ψSM, (1, 1, 0), (1, 3, 0), (1, 3, 1), (1, 2, 3/2), (3, 2, 5/6), (3, 2, 7/6), (3, 3, 1/3), (3, 3, 2/3) .

(2.1)

If χ transforms under a real representations of the SM group, then we can also add a Ma-

jorana mass term and the most general Langragian reads (see e.g. [11] for two-component

2Notice that terms of the form χχH or χχH† are forbidden by SU(2)L invariance.

– 6 –
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OSM SU(3)c SU(2)L U(1)Y

qH(H†) 3 1⊕ 3 +2/3(−1/3)

ucH(H†) 3 2 −1/6(−7/6)

ψSMH(H†) dcH(H†) 3 2 +5/6(−1/6)

ℓH(H†) 1 1⊕ 3 0(−1)

ecH(H†) 1 2 +3/2(+1/2)

qq 3⊕ 6 1⊕ 3 +1/3

quc 1⊕ 8 2 −1/2

qdc 1⊕ 8 2 +1/2

qℓ 3 1⊕ 3 −1/3

qec 3 2 +7/6

ucuc 3⊕ 6 1 −4/3

ucdc 3⊕ 6 1 −1/3

ψSMψSM ucℓ 3 2 −7/6

ucec 3 1 +1/3

dcdc 3⊕ 6 1 +2/3

dcℓ 3 2 −1/6

dcec 3 1 +4/3

ℓℓ 1 1⊕ 3 −1

ℓec 1 2 +1/2

ecec 1 1 +2

HH 1 3 +1

H HH† 1 1⊕ 3 0

combinations HHH 1 4 +3/2

HHH† 1 2⊕ 4 +1/2

Table 4. List of all possible d ≤ 3 operators made of SM fields. Operators of the type ψ†
SMψSM

are not displayed since they couple to Lorentz vectors, which are not considered in our analysis.

notation)

L = LSM + iχ†σµDµχ+
1

2
M(χT ǫχ+ h.c.) , (2.2)

which is invariant under a Z2 transformation χ→ −χ. On the other hand, if χ transforms

under a complex or pseudoreal representations of the SM group, we introduce an extra

Weyl fermion χc with conjugate gauge quantum numbers with respect to χ, so that a

Dirac mass term is allowed, and get

L = LSM + iχ†σµDµχ+ iχc†σµDµχ
c +M(χT ǫχc + h.c.) , (2.3)

– 7 –
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Spin χ Odecay dim(Odecay) Stability

0 (1, 1, 0) χHH† 3 ×
0 (1, 3, 0) χHH† 3 ×
0 (1, 4, 1/2) χHH†H† 4 ×
0 (1, 4, 3/2) χH†H†H† 4 ×
0 (R, 2k, 1/2) χχH†H† 4 Z2

0 (R,n, 0) χχHH† 4 Z2

0 (C, n, Y ) χχ†HH† 4 U(1)

0 (C, 2k, 1/6) χχχH† 4 Z3

0 (R, 2k, 1/2) χχχ†H† 4 ×

Table 5. Extra scalar representations which can couple to the Higgs at the renormalizable level

without breaking GF . (C, n, Y ) denote generic quantum numbers under the SM gauge group which

are not already contained in the list of eq. (2.4). R stands for a real SU(3)c representation (i.e. R =

1, 8, 27, . . .) and 2k for an even SU(2)L representation. In the last column, we provide (when

appropriate) the symmetry responsible for the stability of χ. The cases denoted by a “×” lead

instead to the decay of χ at the renormalizable level.

which is invariant under a U(1) transformation χ → eiθχ and χc → e−iθχc. In both cases

an accidental symmetry implies stability of the new particles at the renormalizable level

and also requires that they are pair produced in high-energy particle colliders.

2.2 New scalars

For scalar χ, in order to preserve GF we have to avoid all couplings of the form χψSMψSM.

By inspecting table 4 we conclude that χ cannot have the following quantum numbers:

χ 6= (1, 1, 1), (1, 3, 1), (1, 1, 2), (1, 2, 1/2), (3, 1, 1/3), (3, 1, 2/3), (3, 1, 4/3), (3, 2, 1/6),

(3, 2, 7/6), (3, 3, 1/3), (6, 1, 1/3), (6, 1, 2/3), (6, 1, 4/3), (6, 3, 1/3), (8, 2, 1/2) . (2.4)

Analogously to the case of extra fermions in section 2.1, gauge interactions alone cannot

lead to the decay of χ at the renormalizable level, since the kinetic terms again exhibit a

Z2 or a U(1) invariance for the case of an extra real or complex scalar, respectively. The

decay of the new particle is however possible (depending on the quantum numbers of χ)

due to the presence of extra renormalizable interactions between χ and H, which are listed

in table 5.

2.2.1 Scalar potential, CP and custodial symmetry

In the presence of any new scalar multiplet χ the scalar potential can be written as (see

e.g. [12])

V (H,χ) = VSM + η
(

m2
χ |χ|2 + α |χ|2 |H|2 + β(χ†T a

χχ)(H
†T a

HH)
)

+
[

γ(χ†CχT
a
χχ

∗)(HTCHT
a
HH) + h.c.

]

+ . . . , (2.5)

– 8 –
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W+

γ

χ+ χ+

H+

χ0

H0
χ0

×

f f ′ f

Figure 1. Scalar loop contribution to the electron EDM.

where η is equal to 1(1/2) for a complex (real) representation, T a
R and CR denote respec-

tively the SU(2)L generators and conjugation matrices in the representation R (so, for

instance, T a
H = σa/2 and CH = iσ2 where σa for a = 1, 2, 3 are the Pauli matrices). We

take 〈H〉T = (0, v/
√
2) with v = 246 GeV. The ellipses in eq. (2.5) stand for extra terms,

like e.g. (χ†T a
χχ)

2, which do not sizeably affect the mass splitting of χ (see below). In addi-

tion, χ in specific weak representations might allow for additional renormalizable operators

listed in table 5.

The first accidental symmetry of the scalar potential that we wish to discuss is CP.

Generic sources of CP violation are severely constrained by the measurement of electric

dipole moments (EDMs) [13]. Among the accidental scalar matter extensions of tables 1–2,

it turns out that only (1, 4, 1/2)S explicitly violates CP. This can be seen by noticing that for

such a multiplet one can construct three non-hermitian invariants in the scalar potential

(cf. the third, fifth and last row in table 5) and that only one out of the three phases

associated with the corresponding complex couplings can be rotated away by a re-phasing of

χ and H. In this case the most significant experimental constraint comes from the searches

for an electron EDM (de), defined through the effective operator L ∋ −i(de/2)ē(σ ·F )γ5e .
The (1, 4, 1/2)S contributes at two loops through the diagram in figure 1, which corresponds

to the diagram in figure 12 of ref. [14] after replacing H1 → H and H2 → χ.

Taking into account the extra 〈χ〉 /v . 1% suppression due to EW precision constraints

(see below), assuming O(1) scalar couplings and mixing angles, and mχ ∼ v for the sake of

a very conservative estimate (see also [14, 15]), we obtain |de| . 7 × 10−29e cm. This has

to be compared with the recent experimental bound from the ACME collaboration [16] of

|dexpe | < 8.7×10−29e cm at 90% C.L.. While not constraining at the moment, interestingly,

future experimental improvements on the electron EDM might start to probe CP violation

in generic weak-scale scalar extensions of the SM involving the (1, 4, 1/2)S multiplet.

Another accidental symmetry of the SM scalar potential is the so-called custodial

symmetry. In the g′ → 0 limit the massive gauge bosons transform as a triplet of

an unbroken global SU(2)C , which is also responsible for the tree-level relation ρtree ≡
m2

W /m
2
Z cos2 θW = 1. New sources of SU(2)C breaking which cannot be accounted

– 9 –
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in the SM are described by the ρ0 ≡ ρ/ρSM parameter [17]. Experimentally, ρexp0 =

1.0004+0.0003
−0.0004 [17], which is compatible with the SM prediction ρ0 = 1. Thus the experi-

mental value of ρ0 can be used to constrain new sources of SU(2)C breaking due to the

extra scalar χ.

If χ gets a vacuum expectation value (VEV), there is a tree-level contribution [18]

ρtree0 − 1 =
{

η
[

j(j + 1)− Y 2
]

− 2Y 2
}

[

4
〈χ〉2
v2

+O
(

〈χ〉4
v4

)]

, (2.6)

where j is the total weak-isospin quantum number of χ and Y its hypercharge in the

Q = T 3+Y normalization. Apart for the safe representations yielding ρ0 = 1 for any value

of 〈χ〉: (1, 1, 0), (1, 2, 1/2), (1, 7, 2) [19], (1, 26, 15/2), etc., the 2σ-level saturated bound is

at the level of 〈χ〉 /v . 1%.

In general, whether a scalar field can develop a VEV depends on the choice of the

parameters in the scalar potential. However, “tadpole” couplings of χ to some H’s always

imply an induced VEV for χ. From table 5 we see that this is indeed the case for the states:

(1, 1, 0), (1, 3, 0), (1, 4, 1/2), (1, 4, 3/2). While the VEV of the former does not contribute

to ρ0, the remaining ones can be in principle dangerous. By looking at the generic shape

of the potential and its stationary equations, we estimate on dimensional grounds (for

O(1) couplings and barring fine-tunings), 〈χ〉 ∼ v2/mχ (triplet case) and 〈χ〉 ∼ v3/m2
χ

(quadruplet cases). Hence, 〈χ〉 /v . 1% corresponds to mχ & 100 v ≈ 20 TeV (triplet

case) and mχ & 10 v ≈ 2 TeV (quadruplet cases), which limits the visibility of these states

at the LHC, unless a moderate fine-tuning is allowed in the scalar potential.

Custodial symmetry also helps us to understand the properties of the theory beyond

the tree level. Indeed, a tree-level splitting within the components of χ originating from

the scalar potential in eq. (2.5) gives a radiative contribution to ρ0. In the following we

assume 〈χ〉 ≪ v to suppress the tree-level contribution to ρ0. Consequently 〈χ〉 itself cannot
sizably contribute to the mass splitting. Notice, also, that among the scalar states selected

in table 1, the coupling γ is relevant only for (1, 4, 1/2). However, since this state decays

through a renormalizable operator, the details of its mass spectrum are not of particular

interest.3 We are hence left with the contribution of β to the mass splitting, which yields

m2
I = m2

χ +
1

2
αv2 − 1

4
βv2I ≡M2 − δ2I , (2.7)

where −j ≤ I ≤ j denotes the T 3 eigenvalue of the (2j + 1)-dimensional representation χ

and we defined the parameter M2 ≡ m2
χ+

1
2αv

2 and δ2 ≡ 1
4βv

2. Using the general formula

for the one-loop correction in [20] and expanding the loop function for δ < M we find

ρ1−loop
0 − 1 =

ηNCαem

16π sin2 θWm2
W

[

2

9

δ4

M2
j(j + 1)(2j + 1) +O

(

δ8

M6

)]

, (2.8)

3The coupling γ induces mixing between the conjugate components of χ with the same |Q| 6= 0 and,

for the Q = 0 component, it splits its real and imaginary part. The contribution of γ to ρ1−loop
0 has been

considered for instance in [12].
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where NC is the dimensionality of χ under the color factor. Neglecting the higher-order

δ/M terms, we finally obtain

M & 72.5 GeV

(

0.001

ρexp0 − 1

)1/2

β
√

ηNC

√

j(j + 1)(2j + 1) , (2.9)

which is valid for M > δ ≈
√
β 123 GeV. For O(1) values of the coupling β the typical

bounds on M range in the few hundred GeV region, depending on the dimensionality

of the representation. We hence conclude that the mass bounds coming from loop-level

contributions to ρ0 are less general (they depend on the value of β) and not particularly

constraining when compared to existing direct searches limits (see section 5). This is,

however, not necessarily true for higher dimensional representations.

Alternatively, the information from ρ0 can be used to give an upper bound on the

mass splitting ∆m = mI+1 − mI ≈ − δ2

2M . As an example, let us mention that for the

case (1, 5, 2)S we get ∆m . 20GeV. This information is exploited in section 5.3 when

inferring collider bounds on the neutral state of such a multiplet by looking at the charged

component production and decays.

2.2.2 Bounds on Higgs portal coupling

The Higgs boson can couple to the new scalars via the portal coupling α of eq. (2.5).

This leads to two kinds of effects: (1) If some components of χ lie below half of the Higgs

mass, they can contribute to the Higgs total decay width. Taking into account other

existing collider constraints (see table 8) this is only possible for the neutral component

χ0. In particular, it contributes to the Higgs invisible decay branching fraction. The partial

decay width of the Higgs boson via the α coupling into a pair of χ0 states (for β = 0) is

found to be

Γinv =
ηα2v2

16π

1

mH

√

1−
4m2

χ0

m2
H

. (2.10)

In addition, (2) all charged components of χ will contribute at 1-loop level to the H → γγ

(and H → γZ) decays, while colored χ will affect Higgs boson production through gluon

fusion (GF) and also its decays to two gluons H → gg . Using the results of [21–23] we find

µγγ ≡ Γγγ

ΓSM
γγ

=
|A1(xW ) + (4/3)A1/2(xt) + ηαd(Rχ)

∑

iQ
2
i (v/mχi

)2A0(xχi
)|2

|A1(xW ) + (4/3)A1/2(xt)|2
, (2.11a)

µgg ≡ Γgg

ΓSM
gg

=
σGF

σSMGF

=
|(1/2)A1/2(xt) + ηαC(Rχ)

∑

i(v/mχi
)2A0(xχi

)|2
|(1/2)A1/2(xt)|2

, (2.11b)

where xi ≡ m2
H/4m

2
i , the sums

∑

i run over all χ weak multiplet components χi, d(Rχ)

is the dimension of the color representation of χ and C(Rχ) is the corresponding index

(C(3) = 1/2, C(6) = 5/2 and C(8) = 3). The relevant loop functions A1(xW ) ≃ −8.32,

A1/2(xt) ≃ 1.38 and A0(x) with limits A0(x→ 0) = 1/3, A0(x→ ∞) = −1/x + O(x−2)

can be found e.g. in [23]. The total decay width of the Higgs can thus be written as

ΓH = ΓSM
H

[

1 +BRSM
γγ (µγγ − 1) +BRSM

gg (µgg − 1)
]

+ Γinv , (2.12)
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Figure 2. Invisible branching fraction of the Higgs boson as a function of the new scalars mass

(real scalar) for different values of the portal coupling α. The red dashed line shows the CMS

exclusion limit of ref. [25].

where ΓSM
H = 4.07MeV, BRSM

γγ = 2.28× 10−3 and BRSM
gg = 8.57× 10−2 [24]. The invisible

branching ratio is then finally given by BRinv = Γinv/ΓH .

To analyze the resulting correlated effects in Higgs boson production and decays as

measured at the LHC, we follow closely the procedure described in [26] using also the same

set of experimental results [25, 27–36]. In particular, we find that in cases where the Higgs

boson can decay to χ0, the constraints on α are completely dominated by the bounds on

the extra invisible decay rate. In figure 2 the invisible branching ratio as a function of the

new scalar mass mχ is shown for different values of the portal coupling α. We used η = 1/2

in eq. (2.10), assuming a real scalar. The red dashed line shows the CMS limit of ref. [25].4

It can be inferred from the plot that for a portal coupling |α| = O(1), the new scalar states

are excluded up to the kinematic limit for this decay. However for values of |α| . O(0.01)

currently no limit on mχ0
can be given anymore.

Even if χi are heavy (mχi
> mH/2), their contributions to µγγ and µgg still lead

to constraints on α from the measurements of the Higgs signal strengths at the LHC. In

particular, the most sensitive channels involve GF produced Higgs bosons decays to photons

and W bosons, these being the two most precisely measured. Denoting the relevant signal

strenghts as

µGF
γγ ≡ σGF

σSMGF

BRγγ

BRSM
γγ

, µGF
WW ≡ σGF

σSMGF

BRWW

BRSM
WW

, (2.13)

the global fit of Higgs boson LHC data allowing for arbitrary contributions to µγγ and µgg
but keeping Γinv = 0 yields the 68% and 95% CL exclusion bounds shown in figure 3 . We

observe that up to 50% modifications in both observables are still allowed by the current

data. These should be compared with α induced modifications shown in figure 4 (assuming

degenerate χi). In particular, color-neutral χ predominantly affect µGF
γγ as shown in the left

panel. On the other hand, colored states can affect GF production and are thus constrained

4Indirect bound on BRinv coming from the global fit to all Higgs boson signal strenghts yields a slightly

stronger bound of BRinv . 0.2.
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Figure 3. Exclusion bounds on the µGF
γγ and µGF

WW LHC Higgs signal strengths allowing for arbitrary

contributions to µγγ and µgg but keeping Γinv = 0.
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Figure 4. Accidental scalar induced modifications to µGF
γγ and µGF

WW LHC Higgs signal strengths

as a function of mχ/
√

|α|. The un-colored and colored scalar effects in µGF
γγ are shown in the left

and middle panel, respectively. Single (complex) colored scalar effects in µGF
WW are shown in the

right panel. The shaded bands correspond to a scan |α| ∈ [0.1, 1].

also from µGF
WW as illustated in the right panel. The deviations in µGF

WW are shown for single

complex scalar in the given color representation. Finally, colored scalar effects in µGF
γγ are

also shown in the middle panel.

Asymptotically, χ effects in both observables decouple as α/m2
χ. The shaded bands in

figure 4 illustrate the amount of deviations from this limit as they correspond to a scan

of |α| ∈ [0.1, 1] . We observe that for mχ & 500GeV even |α| . O(1) can be consistent

with current Higgs data. Conversely mχ & 100GeV are perfectly allowed for small enough

|α| . O(0.1) Higgs portal couplings.

2.3 Mass spectrum

The phenomenology of the new EW states is dictated by the mass spectrum. Typically,

on top of a common mass term mχ, there is a radiative splitting within the SU(2)L mul-

tiplet and, for scalars only, a tree-level splitting due to the presence of non-trivial SU(2)L
invariants in the scalar potential. In the mχ ≫ v limit the radiative contribution takes the
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form [4, 37]

∆mrad = mQ+1 −mQ ≈ 166 MeV

(

1 + 2Q+
2Y

cos θW

)

, (2.14)

which holds both for fermions and scalars. Notice that if Y = 0 the LP in the multiplet is

always the one with the smallest |Q|. This is not necessarily true when Y 6= 0.5

Similarly, the tree-level splitting in eq. (2.7) can be expanded in the mχ ≫ v limit,

thus obtaining [4]

∆mtree = mI+1 −mI ≈ βv2

8mχ
≈ β × 7.6 GeV

(

1 TeV

mχ

)

. (2.15)

Notice that, while for fermions the mass spectrum is unambiguously fixed, for scalars it

depends on the values of β and mχ. Focussing on the mχ <TeV region (relevant for LHC),

if β = O(1) then the LP is always the one with the highest/lowest I, depending on the

sign of β. However, for β ∈ [10−3, 1] the tree-level splitting can be comparable with the

radiative one. In such cases it is possible to show (see below) that:

1. Any particle in the multiplet can be the LP for large domains of the model parameters,

i.e. without any fine-tuning.

2. If the LP has charge QLP, the next-to-LP has always charge QLP ± 1.

This latter fact turns out to be phenomenologically relevant, e.g. when setting bounds on

the neutral LP by looking at the decay of the next-to-LP.

For completeness, we provide here a proof of the two statements above: by combining

eq. (2.14) and eq. (2.15) one arrives at the expression mI = m−j + a + bI + cI2, where a

and b can have any sign (since they depend on ∆mtree), and c > 0. The minimum of mI is

obtained for Imin = − b
2c . Hence, by an appropriate choice of the ratio b/c, the smallest mI

can be anywhere in the range I ∈ [−j, j]. The fact that the next-to-LP has QLP±1 simply

follows from the convexity of mI as a function of I. A similar argument holds as well in

the mχ ≈ v regime, for which the full formula of the radiative splitting (see e.g. eq. (6)

in [4]) must be taken into account.

2.4 Validity of the EFT

Our working hypothesis is that the SM+χ renormalizable theory is a low-energy effective

description valid up to a cut-off scale Λeff . In the spirit of a generic EFT with O(1) cou-

plings and without any extra state beyond χ introduced at low energy, Λeff ≈ 1015GeV

is essentially fixed by neutrino masses through the d = 5 Weinberg operator. Moreover,

such a cut-off scale can automatically account for null results of all flavor, CP and B vi-

olating processes constraining d = 6 operators made of SM fields. In particular, when

the lowest-dimensional sources of breaking of the extra U(1) or Z2 symmetry associated

with the kinetic term of χ are the d = 5 operators involving χ and SM fields, any d = 6

operator involving only SM fields, generated by integrating out χ, will have two insertions

of such d = 5 operators and hence at least a 1/Λ2
eff suppression. The situation changes only

slightly if the extra U(1) or Z2 is broken at the renormalizable level in the scalar potential,

5E.g. the LP of the fermion multiplet (1, 4, 1/2)F has Q = −1.
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as in cases listed in table 5. Namely, the only additional effect arises for χ ∼ (1, 4, 1/2)S ,

(1, 4, 3/2)S where integrating out χ induces a ∆L = 2 operator of the form ℓℓHHHH†.

Being suppressed by 1/Λeffm
2
χ, it necessarily represents a subleading contribution to neu-

trino masses.

The infinite set of states preserving GF at the renormalizable level (see eq. (2.1) and

eq. (2.4)) can be reduced by requiring that the EFT remains weakly coupled up to Λeff ≈
1015GeV. The presence of extra matter multiplets drives the gauge couplings of the SM

towards the non-perturbative regime.6 Eventually, this might result in the presence of a

Landau pole below the cut-off scale of the EFT. If the Landau pole is associated with a

generic new dynamics, the accidental symmetries of the SM could be violated at that scale.

Hence, for the self-consistency of the EFT approach, we require the absence of Landau

poles below Λeff ≈ 1015GeV, which translates into an upper bound on the dimensionality

of the extra representations.

In light of stringent bounds on the inter-multiplet mass splittings (see section 2.3) we

can safely integrate in all multiplet components at a single scale, which we choose to be the

Z mass in our numerical analysis. We note however, that for mχ not much larger than the

TeV scale the resulting Landau pole estimates scale linearly with χ masses. The analysis

of the perturbativity bounds is detailed in appendix A and the results are summarized in

tables 9–10. They provide a useful reference for the estimate of the Landau poles at two

loops for the cases where the SM is extended with an extra multiplet charged under SU(3)c
and/or SU(2)L, and in particular for all the states considered in this work which can have

a non-zero hypercharge as well.

A crucial ingredient in order to make our list of extra states finite however, is given

by cosmology. In fact, the only reason why we can disregard multiplets with an arbitrary

hypercharge, e.g. Y = π, is because these states feature an absolutely stable charged LP

that cannot decay into SM particles because of electric charge conservation. The possibility

of having an infinitesimal hypercharge is instead briefly discussed in section 4.

A comment on the role of higher-order corrections in the RG equations is in order

here. The determination of the Landau pole is often carried out at the one-loop level (see

e.g. [4]). However, for the non-abelian gauge factors there is an accidental cancellation in

the one-loop beta function between matter and gauge contributions (cf. eq. (A.2)), so that

two-loop effects may become important. Interestingly, among the cases that we found to

be drastically affected by two-loop corrections there are the two minimal DM candidates:

a real (1, 7, 0) scalar and a Weyl (1, 5, 0) fermion [4].7 Following the results of [5] for the

calculation of the relic density, we integrate in the scalar septuplet at mχ = 25TeV and

the fermionic quintuplet at mχ = 10TeV. Hence we find, respectively

Λ1-loop
Landau = 1.9× 1041 GeV −→ Λ2-loop

Landau = 8.9× 1020 GeV ((1, 7, 0)S case) , (2.16)

Λ1-loop
Landau = 9.0× 1028 GeV −→ Λ2-loop

Landau = 4.0× 1021 GeV ((1, 5, 0)F case) . (2.17)

6We do not address here the question of the RG running of the scalar potential parameters, since it is

a model dependent issue which also involves the analysis of the vacuum stability.
7Another situation where the two-loop RG analysis of the gauge couplings could change the qualitative

UV behaviour of the theory is given by the Pati-Salam model presented in [38], where low-scale extensions

of the SM providing total asymptotic freedom are investigated.
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If we associate the Landau pole with the cut-off of a generic EFT, this also sets the scale

of the effective operator leading to the decay of the minimal dark matter candidate. Note

however, that even for a cut-off of the order of the Planck mass, the framework of minimal

DM is not endangered by d ≥ 6 operators, since the lifetime of DM is still comfortably

larger than the age of the Universe (and satisfies the indirect bounds on decaying DM).

For a discussion of d = 5 induced (1, 7, 0)S decays see section 3.3.2.

In the selection of our states, the two-loop criterium proved to be important for several

states. For instance, in the case of the real (27, 1, 0)S scalar multiplet we find that at one

loop Λ1-loop
Landau = 1.9× 1041 GeV, whereas at the two-loop level Λ2-loop

Landau = 1.3× 107 GeV, so

that we can exclude this state from our list of accidental matter candidates.

What about three-loop corrections then? As long as there are no accidental cancella-

tions in the two-loop beta function (as it can be explicitly verified), they are not expected

to drastically change the situation.8 It is then enough to rely on a two-loop estimate

of the Landau pole in order to set an upper bound on the dimensionality of the extra

representation.

3 Lifetimes

The new extra states will eventually decay due to operators present in the EFT. There are

essentially three classes of decays which we are going to consider in this section: i) Inter-

multiplet weak transitions where the heavier components within the SU(2)L multiplet decay

via cascades involving the emission of (virtual) W gauge bosons into the LP, ii) Decays

through renormalizable interactions (only for a specific class of new scalar states) and iii)

Decays through non-renormalizable d ≥ 5 operators. We analyze each class of decays in

turn below.

3.1 Inter-multiplet weak transitions

Heavier components within the SU(2)L multiplet can decay via EW transitions into lighter

ones, with rates suppressed by a small phase space factor. Denoting the component of

a total j-isospin representation with T 3-eigenvalue I as χj
I , for ∆m > mπ+ , we have the

decay width (generalizing the expression in ref. [37])

Γ(χj
I+1 → χj

I π
+) =

T 2
+G

2
FV

2
ud∆m

3f2π+

π

√

1−
m2

π+

∆m2
≈ T 2

+

7.5× 10−12 s

(

∆m

500 MeV

)3

, (3.1)

where T+ =
√

j(j + 1)− I(I + 1) and the approximation in the r.h.s. of eq. (3.1) is valid

for ∆m≫ mπ+ .

Formula (3.1) is a reasonable approximation of the total width in the range mπ+ .

∆m . 1 GeV. For mass splittings close to the kinematical threshold of the decay into a

pion, 3-body decays involving leptons become important as well, while for ∆m & 1GeV

8For instance, in the SM case where no strong cancellations are at play we find: Λ1-loop

Landau = 1.9×1041 GeV,

Λ2-loop

Landau = 5.2× 1040 GeV and Λ3-loop

Landau = 8.7× 1040 GeV.
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Figure 5. Lifetimes associated with inter-multiplet weak transitions as a function of the mass

splitting ∆m. The grading of the curves (from black to gray) corresponds to different values of T 2
+

(from 1 to 12), as it can be found in representations up to j = 3 (septuplet). The red dashed line

corresponds to the typical freeze-out time for colorless 1TeV-mass particles with weak interactions

in the early Universe (cf. section 4).

new hadronic channels open up (e.g. involving kaons and other heavier hadrons) and the

decay can be eventually computed at the partonic level, once quark-hadron duality sets in.

The typical lifetime of an SU(2)L multiplet component decaying via inter-multiplet

weak transitions is displayed in figure 5 as a function of the mass splitting and for different

values of the ladder operator T+, up to the j = 3 (septuplet) case.

Within high energy collider experiments, the inter-multiplet decays are essentially

prompt. On the other hand, the LP at the end of these inter-multiplet cascades is stable

on the detector scale, barring few exception which are discussed in the next subsection.

3.2 Decays through renormalizable interactions

There exists the possibility that the new extra scalars retain renormalizable interactions

with the SM Higgs which can induce their decay. These states are classified in table 5

and correspond to the cases (labelled with the symbol “×”) where no accidental symmetry

(e.g. U(1), Z2 or Z3) forbids χ to decay. Let us comment in turn on the various possibilities.

The case of the gauge singlet (1, 1, 0)S has been extensively studied in the literature

(see e.g. [39]) and we do not have much to add here. In the cases (1, 3, 0)S , (1, 4, 1/2)S ,

and (1, 4, 3/2)S , χ can couple linearly to Higgs operators. However, such “tadpole” cou-

plings also induce non-zero VEVs for χ, which are severely constrained by EW precision

observables. As already pointed out in section 2.2.1, unless a moderate fine-tuning is al-

lowed in the scalar potential, the bounds on such dimensionally estimated VEVs push the

masses of these states beyond the kinematic reach of the LHC. Other multiplets which can

possibly decay at the renormalizable level (those labelled with a “×” in table 5) are either

not considered here because they break GF by coupling to SM fermions (e.g. (8, 2, 1/2)S)

or they generate a Landau pole below Λeff ≈ 1015GeV (e.g. (1, 6, 1/2)S).
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3.3 Decays through d ≥ 5 effective operators

Let us consider now the case where the decay of the new state χ is due to effective operators.

Given an effective operator Odecay, we always absorb the Wilson coefficient in the definition

of the effective cut-off scale Λeff , e.g.

L ∋ 1

Λeff
Odecay + h.c. . (3.2)

The differential decay rate of an unstable particle χ into nf final states reads

dΓ =
1

2mχ

(

∏

f

d3pf
2π3

1

2Ef

)

|M(mχ → {pf})|2 (2π)4δ(4)
(

pχ −
∑

f

pf

)

. (3.3)

By assuming a constant matrix element and massless final states, the phase space factor

can be integrated in the rest frame of the decaying particle, yielding

PSnf
≡
∫

(

∏

f

d3pf
2π3

1

2Ef

)

(2π)4δ(4)

(

pχ −
∑

f

pf

)

=
1

2(4π)2nf−3

m
2nf−4
χ

(nf − 1)!(nf − 2)!
.

(3.4)

So, for example, the phase space factors up to nf = 4 are: PS2 = 1
8π , PS3 =

m2
χ

256π3 ,

PS4 =
m4

χ

24576π5 .

In the case of a dimension d effective operator, the amplitude squared for nf particles

in the final state can be estimated by naive dimensional analysis (NDA) as

|M(mχ → {pf})|2NDA =
( v√

2
)2nc

Λ
2(d−4)
eff

m
2d−2nf−2nc−6
χ , (3.5)

where we also included the possibility of nc condensations of the Higgs boson. Hence, by

putting eqs. (3.3)–(3.5) together, we get the following expression for the total width for

mχ ≫ v

ΓNDA =
1

4(4π)2nf−3

m2d−2nc−7
χ

(nf − 1)!(nf − 2)!

( v√
2
)2nc

Λ
2(d−4)
eff

. (3.6)

Unless differently specified, we compute the lifetimes of the states decaying through the

non-renormalizable operators in tables 1–2 using eq. (3.6). Whenever multiple operators

can be responsible for the decay of χ, we sum over the several widths assuming the operators

contribute with the same Wilson coefficient. What is missing in eq. (3.6) with respect to

the full decay width are the relevant SU(2)L Clebsch-Gordan coefficients, symmetry, color

and flavor factors, the kinematical dependence of the matrix element, the masses of the

final states and finally mixing effects induced when scalar χ obtain VEVs. In the region

mχ ≫ v all of these are expected to give O(1) corrections. When more accuracy is required,

for example when setting BBN bounds, we take all these factors into account, computing

the relevant decay widths explicitly.
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Spin χ QLP Odecay

0 (1, 2, 5/2) 3 χ†Hecec

0 (1, 5, 1) −1, 1, 2, 3 χ†HHHH†

0 (1, 5, 2) 1, 2, 3, 4 χ†HHHH

0 (3, 2, 11/6) 7/3 χH†ucuc + χ†Hdcec

0 (3, 3, 5/3) 8/3 χ†Hqec + χH†ucℓ

0 (3, 4, 1/6) 5/3 χH†qq + χ†Hqℓ

0 (3, 4, 5/6) 7/3 χ†Hqq + χH†qℓ

0 (6, 2, 7/6) 5/3 χ†Hdcdc

0 (8, 3, 1) 2 χH†quc + χ†Hqdc

Table 6. Extra states decaying through off-shell cascades.

3.3.1 Cascade decays

Whenever a Higgs doublet is contained in a SM-invariant operator, it can happen that

not all the SU(2)L components of the multiplet χ can directly decay through the effective

operator. This is easily understood by going to the unitary gauge, where some of the SU(2)L
contractions end up into the goldstone directions of the Higgs doublet. See appendix B

for a description of the SU(2)L decompositions of the relevant operators. Depending on

the mass spectrum, the cases where the LP cannot directly decay through the effective

operator are displayed in table 6.

It is possible, however, for the LP to cascade decay via off-shell heavier components

(which eventually decay through the effective operator) and W bosons, thus resulting in

lifetimes which are typically larger than in the case of the direct decay. Moreover, these

decay rates must be evaluated numerically since the NDA formula in eq. (3.6) cannot be

straightforwardly applied due to the strong momentum dependence of the matrix element.

For the computation of the decay width of the (1, 2, 5/2)S multiplet component with

Q = 3, χ+3, under the assumption that χ+3 is lighter than (or degenerate with) χ+2,

we take into account the decays into two leptons and into two leptons together with a

Higgs boson. The relevant Feynman diagrams are shown in figure 6. The numerical phase

space integration is performed with the help of RAMBO [40] and we neglect the effects of

lepton masses.

For the (1, 5, 1)S and (1, 5, 2)S multiplets, longer decay chains are possible for the

multiple charged components of the multiplet. In addition, for the neutral states within

these multiplets the effective operator induces a mixing with the Higgs boson which in

turn generates direct couplings to SM vector bosons. These contributions to the lifetimes

do not decouple for large mχ and hence need to be taken into account over the whole

considered mass range. For all multiplet components we thus consider decays with final

states comprising of 2 − 4 SM gauge or Higgs bosons. The numerical results have been

obtained with Madgraph 5 [41] using FeynRules [42] generated model files.
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Figure 6. Feynman diagrams for the cascade decay of the χ+3 component of the (1, 2, 5/2)S state

for mχ+3
< mχ+2

.
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Figure 7. Lifetime as a function of the mass of the Q = 3 component of the multiplet (1, 2, 5/2),

if it is the lightest. The red solid curve shows the lifetime for a NDA estimated tree-level mass

splitting between χ+3 and χ+2 components, while the blue dashed curve represents the zero mass

splitting limit.

Finally, the cascade decays of the colored cases can be estimated from the one of

the χ+3 component of the (1, 2, 5/2)S multiplet by appropriate replacements of Clebsch-

Gordan coefficients and by multiplying with the respective color factors. Note that an

accurate evaluation of the decay rates for the colored cases is not necessary since their relic

abundance turns out to be very suppressed resulting in no relevant BBN constraints. More

details can be found in section 4.

The SU(2)L factors needed in the evaluation of the cascade decays are exemplified in

appendix B. For all the cases the cut-off scale Λeff was set to 1015 GeV. We do not include

off-shell effects of the W bosons in the computation of the lifetimes.9

In figure 7 the lifetime of the Q = 3 component of (1, 2, 5/2)S is shown as a function

of its mass, assuming that it is lighter than the Q = 2 component and hence decays

via an off-shell χ+2. The blue dashed curve shows the lifetime in the zero mass splitting

9In ref. [43] it was shown that in the case of stop decays these off-shell effects can be numerically relevant

for mass differences between the decaying particle and the decay products up to 35GeV.
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Figure 8. Left: lifetimes of the Q = 0 (dark blue dashed), Q = 1 (yellow large dots), Q = −1

(turquoise solid), Q = 2 (pink dash-dotted) and Q = 3 (violet small dots) states of the (1, 5, 1)S
multiplet, assuming for each curve that the respective component is the lightest one. Right: same

as for the left-hand side but for (1, 5, 2)S . The turquoise solid line corresponds to the Q = 4

lightest state.

approximation, while the red solid one stands for a NDA estimated tree-level mass splitting

as given in eq. (2.15). In the plot we assume that the d = 5 operator involves only one

lepton flavor. If χ couples in the same way to all three flavors the corresponding lifetimes

are reduced by a factor of three. From figure 7 it can be inferred that the presence of

tree-level mass splitting only affects the lifetimes for low masses of χ+3, of the order O(v).

For larger masses it quickly becomes completely irrelevant and we henceforth work in the

zero mass splitting limit whenever computing cascade decays.

In figure 8, we show the lifetimes of all the components of the (1, 5, 1)S (left panel) and

(1, 5, 2)S (right panel) multiplet assuming inter-multiplet mass degeneracy. As it can be

inferred from the plot, the same scaling behavior of all the components for large mχ is found

as expected in the SU(2)L limit. The lifetimes of χ+2, χ+3 (and χ+4 in case of (1, 5, 2)S)

are larger due to the fact that a smaller number of final states is available, especially at

lower masses, and hence the decay widths are suppressed. For such long lifetimes there are

potential issues with cosmology (see section 4.2).

3.3.2 Loop-induced decays

In all the SM extensions considered in tables 1–2 there is always an operator responsible

for the decay of the new multiplet that is linear in χ, except in the case of the (real) scalar

multiplet with SM gauge quantum numbers (1, 7, 0). In this case the operator responsible

for χ decay is χχχH†H.10 This can be understood by simply noticing that the SM extended

with a real (1, 7, 0) scalar has an accidental Z2 symmetry, χ → −χ, at the renormalizable

level and the presence of an operator trilinear in χ clearly breaks such a symmetry. We

note that in the context of minimal DM [4] this d = 5 operator and its effect on the scalar

septuplet lifetime have been previously overlooked. The decay only proceeds at one-loop

10Different SU(2)L contractions give rise to different independent operators. In this section we consider

the case where two fields χ are contracted in a j = 4 weak isospin multiplet.
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Figure 9. Feynman diagrams for the loop decay of the χ0 component of the (1, 7, 0)S multiplet

with V V = γγ, γZ, ZZ, W+W−. Electroweak VEV insertions are denoted by a cross.

level and, depending on the nature of the lightest particle in the multiplet, can result in

the following final states with EW gauge bosons11

• χ0: the possible two-body final states are γγ, γZ, ZZ and W+W−. The relevant

Feynman diagrams are shown in figure 9. By neglecting the gauge boson masses in

the final state we get

Γχ0
=

857C2
0

441548π5
g4v4

Λ2
effmχ

= 5.9× 10−8 s−1

(

1015GeV

Λeff

)2(
1TeV

mχ

)

, (3.7)

where C0 ≈ −0.0966 is a numerical factor coming from the evaluation of the relevant

Passarino-Veltman functions. We observe that even for an EFT cut-off at the Planck

scale, the fast decay of the neutral component of the septuplet effectively rules out

this particular minimal scalar DM candidate [44].

• χ+1: the two-body final states are Wγ or WZ, with a decay rate given by

Γχ+1
=

9C2
0

34496π5
g4v4

Λ2
effmχ

= 7.9× 10−9 s−1

(

1015GeV

Λeff

)2(
1TeV

mχ

)

. (3.8)

• χ+2: there is only a two-body decay into WW , yielding

Γχ+2
=

9245C2
0

2207744π5
g4v4

Λ2
effmχ

= 1.3× 10−7 s−1

(

1015GeV

Λeff

)2(
1TeV

mχ

)

. (3.9)

• χ+3: in this case there are no two-body decay channels into gauge bosons, while it is

possible to show that if we ignore the effect of SM fermions χ+3 cannot decay into an

odd number of gauge bosons.12 Hence, we do expect that the leading contribution

to this decay will be given by a final state containing four gauge bosons. Though we

did not explicitly compute this decay rate, we can quote (and use in the numerical

analysis) an NDA estimate given by

Γχ+3
=

1

3145728π7
g8v4

Λ2
effmχ

= 1.9× 10−11 s−1

(

1015GeV

Λeff

)2(
1TeV

mχ

)

. (3.10)

11For very large χ masses, final states containing Higgs bosons might be important as well.
12At the one-loop level there are no contributions from SM fermions and the charge conjugation C

transformation is a symmetry of the gauge and scalar sectors. The selection rules for these decay channels

follow from the presence of this symmetry.
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We end this section by noting that for Λeff & 1015GeV the loop-induced lifetimes when

combined with cosmological considerations preclude the scalar septuplet to be within the

kinematical reach of the LHC (see section 4.2 for details).

4 Cosmology

Most of the accidentally safe SM extensions are characterized by color- and weak multiplets

of scalars or fermions, with weak-scale masses and no renormalizable interactions beyond

their couplings to the SM gauge bosons (and the Higgs portal operators in the case of

scalars). Thus they will be produced and thermalized in the early Universe, eventually

freezing-out once their thermalizing interactions become slower than the Hubble expansion

rateH(T ). The details depend somewhat on the mass hierarchy within the χmultiplets but

the decay rates of the lightest χi components (through higher dimensional operators) are

typically much smaller than H(T ) at freeze-out for both weakly and strongly interacting χ.

We thus have effectively a two step process and we can treat freeze-out and decay separately.

In case χ is a color singlet, the cosmological relic abundance will generically be deter-

mined by its (co)annihilations into EW gauge bosons resulting in a cosmological density

of Ωχh
2 ∼ 0.01 . On the other hand, the final relic abundance of a colored multiplet is

determined in two stages. At temperatures T ∼ mχ/30 the relic abundance is determined

by perturbative QCD annihilations resulting in Ωχh
2 ∼ 10−3. Then, χ undergoes a second

stage of annihilation after the QCD phase transition, further reducing its relic abundance

to a value roughly three orders of magnitude smaller [45].

The χ lifetimes determine at which cosmological epoch they will decay. Such decays

will involve the creation of energetic SM particles, which can produce a variety of observ-

able effects. First, the decays of heavier multiplet components into the lightest χi state

always happen well before nucleo-synthesis and give a negligible entropy release. On the

other hand, if the lightest χi states can decay through d = 5 operators, their lifetimes

are at least of the order (0.1 − 105) s, and may thus affect the primordial generation of

light nuclear elements [46]. For longer lifetimes of the order (1012 − 1013) s, χi decays

would create distortions in the thermalization of the cosmic microwave background (CMB)

before recombination. Such distortions of the spectrum by the injection of high-energy

photons into the plasma lead to strong constraints [47]. Decays of χi after recombina-

tion can give rise to photons that free-stream to us, and are visible in the diffuse gamma

ray background [48]. Observations by Fermi LAT [49] limit the flux of these gamma rays

and thus constrain such scenarios. In general these observations of the diffuse gamma ray

background rule out χi with lifetimes between (1013 − 1026) s. If χi only decay through

d ≥ 6 operators, they will survive to the present day. In case they are integer charged, they

would act as heavy positively charged nucleons, producing anomalously heavy isotopes. A

combination of measurements places severe limits on the abundance of terrestrial heavy

elements today [50], effectively excluding such scenarios.13 Alternatively, if their charge is a

non-integer fraction of that of the electron, they are excluded by the null results of searches

for fractionally charged particles in bulk matter on Earth or meteoritic material [52, 53].

13We note however that in principle these bounds can be evaded for mχ ≫TeV [51].
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Finally, sufficiently stable neutral χi can form (a fraction of) dark matter, a possibility,

which has been thoroughly covered in the literature [4–7]. In principle, one could think

about introducing an infinitesimal hypercharge (ǫY ) which would make χ absolutely stable

but still pass all the cosmological bounds. This would open up additional DM candi-

date scenarios like the complex scalars (1, 1, ǫY ), (1, 3, ǫY ), (1, 5, ǫY ) or the Dirac fermions

(1, 1, ǫY ), (1, 3, ǫY ). Representations having Y 6= 0 for ǫY → 0 are excluded by direct DM

searches [4]. On the other hand, higher-dimensional SU(2)L representations have a Landau

pole below 1015GeV (cf. table 9). We will not entertain such a possibility any further since

it is a rather simple distortion of the minimal DM setup (see for instance [7]). We also refer

the reader to existing literature for more details on experimental bounds on ǫY (e.g. [54]).

We close this section with a few general comments about the possible interpretation

of cosmological DM within our framework. First of all, we note that the microscopic

nature of the DM is still uncertain. For example Massive Astrophysical Compact Halo

Object (MACHO) made of ordinary baryons (like black holes or neutron stars) could in

principle be a viable option. It is known, however, that in such cases departures from

the standard Big Bang theory are needed. The present cosmological data and various

theoretical considerations favor the hypothesis of particle DM. Besides the minimal DM

cases, requiring DM of this type in our framework means departing from minimality. The

easiest possibility then is to assume, on top of the (non DM) accidental matter state, the

presence of the fermionic minimal DM multiplet at ∼ 10TeV. However, this works only

for some accidental matter states. In other cases extra d = 5 operators can trigger too

fast decay of the minimal DM candidate. Additional possibilities include the presence of

extra gauge interactions where the stability of DM is again guaranteed by an accidental

symmetry of the new gauge sector (for a recent work along these lines see [55]) or axion

DM with PQ symmetry breaking above Λeff [56–58].

4.1 Relic abundance

We first consider scenarios with uncolored χ, where its lightest component is electrically

charged. In these cases, direct searches already limit mχ ≫ mZ (see section 5.2) and

we can compute the relevant thermally-averaged cross-sections in the SU(2)L-symmetric

limit. This approach is valid as long as all SU(2)L multiplet components are present in the

thermal plasma.

For inter-multiplet splittings of typical radiative size all heavier χi components decay

into the lightest one with lifetimes (cf. figure 5) which can be comparable or even shorter

than the inverse Hubble rate at freeze-out (typically O(10−11 s)). Thus the abundance of

the lightest χi component (before itself starts decaying) is actually described by the sum

of the densities of all χi states. And as long as χi ↔ χj conversion rates are in equilibrium

at freeze-out (which is always the case for color singlet weakly interacting χ), the actual

χi → χjX rates do not affect the total relic abundance [59], and the SU(2)L symmetric

approximation can be justified.

Finally, we also ignore thermal corrections. They mainly induce thermal mass splittings

of the order ∆mχ ∼ (g2T )2/mχ, which can be neglected at the level of precision we are

considering here [5].

– 24 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
4

Due to the above approximations we can write a single Boltzmann equation that

describes the evolution of the total abundance of all components χi of the multiplet as

a whole. In particular, it includes all co-annihilations in the form of
∑

ij σA(χiχj → SM

particles). The final χ abundance can be well approximated as [4]

Yχ ≡ nχ(T )

s(T )
≈
√

180

πgSM

1

mPlTf 〈σv〉
,

mχ

Tf
≈ ln

gχmχmPl〈σv〉
240

√
g
SM

, (4.1)

where gχ is the number of degrees of freedom of a whole χ multiplet including anti-particles

in case of complex representations, gSM is the number of SM degrees-of-freedom in ther-

mal equilibrium at the freeze-out temperature Tf (cf. [60]), and s is their total entropy.

The typical freeze-out temperature is Tf ∼ mχ/26 ≪ mχ, such that we can keep only the

dominant s-wave (co)annihilation processes. The relevant formulae for the corresponding

thermally averaged annihilation cross-sections 〈σv〉 into SU(2)L ⊗U(1)Y vector bosons for

both scalar and fermionic χ with generic SU(2)L ⊗U(1)Y quantum numbers can be found

in [4]. The resulting Yχ estimates are within 10% of the more complete treatment includ-

ing p−wave annihilations and renormalization of the SM gauge couplings [5]. However,

for mχ & 1TeV, the relic abundance is expected to be further reduced by O(1) non-

perturbative (Sommerfeld) corrections due to the electrostatic Coulomb force effects [61].

In case of scalars, additional renormalizable Higgs portal interactions can also contribute

to the annihilation cross section deferring freeze-out. In light of this our estimates of Yχ
using eq. (4.1) with dominant EW gauge boson contributions to 〈σv〉 can be considered as

upper bounds on the actual relic abundances of χ.

In the case of colored χ, one needs to consider two separate regimes of annihilation.

The first era is before the QCD phase transition when all χ components are freely prop-

agating in the QCD plasma and the annihilation cross-section can be determined using

perturbative QCD. The second era is after the QCD phase transition when the heavier

multiplet components have decayed to the lightest χ, which in turn have become confined

in color neutral bound states. The annihilation cross section in this second period turns

out to be much higher than in the first, thus leading to a second period of annihilation

which completely determines the final χ relic abundance [45]. In particular, heavy colored

particles are confined within hadronic states of typical size Rhad ∼ GeV−1 which annihilate

with a geometrical cross section yielding 〈σv〉 ∼ πR2
had

√

TB/mχ, where TB ∼ 180MeV is

the temperature at which QCD confines and hadronic bound states form. The final χ relic

abundance can thus be approximated as

Yχ ∼ 10−17

(

Rhad

GeV−1

)−2( TB
180 MeV

)−2/3
( mχ

TeV

)1/2
, (4.2)

where we have used eq. (4.1) with Tf = TB and gSM ∼ 15 just below the QCD phase

transition. The annihilation proceeds through intermediate excited bound states which

decay by radiating away photons before annihilating into quarks and gluons [45]. These

processes need to be considered carefully, since such late decays to photons and hadronic

jets could affect nucleosynthesis [62]. In case of electrically charged χi, this process is fast
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Figure 10. Comparison of NDA estimates for the χ0 lifetimes (τχ) in case of colored multiplets

(8, 1, 0)S (drawn in thick dashed purple), (8, 3, 0)S (drawn in thin brown) and (8, 3, 1)S (drawn in

thick green) with the annihilation lifetimes of the corresponding χ0 hadronic bound states (τhad0 ,

drawn in thin dashed gray). In the shaded region, the χ0 decay before their hadronic bound states

fully annihilate. See text for details.

with a lifetime of

τhad+ ∼
[αs(mχ)]

1/2m2
χ

αEMΛ3
had

∼ 3× 10−17 s

(

αs(mχ)

0.1

)1/2(Λhad

GeV

)−3( mχ

TeV

)2

. (4.3)

where Λhad ∼ 1GeV is related to the QCD string tension σ via σ ∼ Λ2
had. On the other

hand, for electrically neutral χi, radiation of photons is loop suppressed, leading to a much

longer annihilation process

τhad0 .
4πm6

χ

α2
EMΛ7

had

(

TB
Λhad

)7/3

∼ 1 s

(

mχ

2.7 TeV

)6(Λhad

GeV

)−28/3( TB
180 MeV

)7/3

, (4.4)

where the inequality is due to neglected non-local contributions to the decay rate. This

scenario however, only applies to our cases χ ∼ (8, 1, 0)S , (8, 3, 0)S and (8, 3, 1)S when the

lightest component is neutral. In figure 10 we plot the relevant lifetimes τχ and τhad0 as

a function of χ mass. We observe that in the low mass regime, τhad0 < τχ and we can

use the non-perturbative result in eq. (4.2) to estimate the final χ abundance. However

in the heavy χ limit, τhad0 > τχ and so χ decays before the second stage annihilation

process is completed. In this case the relevant abundancies are those after the first stage

of annihilation above the QCD phase transition. We can estimate them using the general

SU(N) annihilation cross-sections computed in [63] after exchanging the relevant SU(N)

group invariants and correcting for the different number of degrees of freedom. In particular

for the adjoint representation of QCD
∑

i,j,a,b |{T a, T b}ji|2 = 216 and
∑

i,j,a,b |[T a, T b]ji|2 =
72. Velocity expanding the resulting χχ→ gg cross section we obtain (cf. [64]) ,

〈σv〉 = 27πα2
s

gχm2
, (4.5)

in the conventions of [4]. In estimating the resulting relic abundance we can safely assume

that weak interactions keep χi ↔ χj processes in equilibrium until decoupling [59]. We
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have also checked that employing eqs. (4.1) and (4.5) and using the running αs(2mχ) to

estimate the relic abundance reproduces the results of the full leading order perturbative

QCD calculation and integration of the Boltzmann equation to within 20% (in agreement

with similar results for the fundamental QCD representation in [63]). Non-perturbative

Sommerfeld corrections are expected to lead to an O(1) reduction in the final result and

so our estimates can again be taken as upper bounds on the actual relic abundance of

color octet scalar χ above the QCD phase transition. In the intermediate mχ regime when

τhad0 ∼ τχ the actual evolution of the χ number density in the primordial plasma depends

on the detailed dynamics of the neutral χ hadron annihilation and decays, the evaluation

of which is beyond the scope of our study. As we show in the next section however, these

details are never relevant, since they do not lead to observational constraints.

4.2 Implications for Big Bang nucleosynthesis

In general, nucleosynthesis of primordial elements in the early Universe represents a sen-

sitive probe of any metastable relic with lifetime of about 1 s or longer [46, 65]. The

constraints come from two classes of processes: injection of very energetic photons or

hadrons from decays during or after BBN adds an additional non-thermal component to

the plasma and can modify the abundances of the light elements [66–70]; in addition, if

the relic particle is electromagnetically charged, bound states with nuclei may arise that

strongly enhance some of the nuclear rates and allow for catalysed production of e.g. 6Li,
7Li [71–73]. The Standard BBN prediction for the 6Li abundance is actually significantly

smaller than the observed one, so that the presence of a charged relic with appropriate

lifetime can help reconciling BBN with the measured abundances of 6Li and 7Li [74–79].

In general, the decay can produce very energetic SM particles that can initiate either

hadronic or electromagnetic showers in the plasma. The most stringent bounds are ob-

tained for a relic that produces mostly hadronic showers, since electromagnetic particles

like photons or electrons can thermalize very quickly by interacting with the tail of the CMB

distribution until times of about 106 s. In the following we will consider the constraints for

relics producing a small number of energetic hadronic jets with a branching ratio Bhad = 1

and Ehad ∼ mχ, where Ehad is the decay energy released in the form of hadronic showers to

obtain conservative upper bounds on χ number densities. This assumption is mostly valid

if χ is colored (in particular in this case always Bhad = 1 and Ehad & mχ/2), while Bhad < 1

is expected for non-colored χ. Then the hadronic BBN bounds are relaxed accordingly by a

factor 1/Bhad. Finally, for lifetimes τχ & 104 s, electromagnetic interactions start having a

significant effect and the bounds above τχ & 107 s become effectively independent of Bhad.

In practice there are three regions of lifetimes as discussed in [62]: for lifetimes

0.1 s . τχ . 100 s the dominant effect is the interconversion between protons and neutrons,

that changes the 4He abundance by overproducing it; at longer lifetimes 100 s . τχ . 107 s

hadrodissociation is the most efficient process and the bounds come from the non-thermal

production of lithium and deuterium; finally at late times 107 s . τχ . 1012 s photodis-

sociation caused both by direct electromagnetic showers and by those generated by the

daughter hadrons starts to dominate and result mainly in the overproduction of 3He.
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In the following we use the results from the general analysis of [62] for the second

and the third lifetime regions. In particular the bound coming from the abundance of 3He

scales as 1/mχ and does not depend on Bhad (we neglect the decay energy released into

neutrinos, which is always expected to be a small fraction of mχ). On the other hand due

to the Li anomaly, in the second region we only consider bounds on Yχ coming from the

deuterium to hydrogen abundance ratio (D/H), which scale roughly as E
−1/2
had . Finally, we

note that a charged thermal relic with τχ ∼ 102−103 s and abundance just below the D/H

bound may (partly) ameliorate the standard BBN Lithium problems (cf. [80]).

The value of the observed 4He abundance Yp ≡ 4(nHe/nH)/(1 + 4nHe/nH) ≈
2(nn/np)/(1+nn/np) which dominates the constraints in the first lifetime region has been

updated since the analysis of [62] and currently reads Yp = 0.250(3) [65] to be compared

with the prediction of standard BBN of Y SBBN
p = 0.2483(5) [81]. The bounds from [62]

which assumed significantly smaller Yp thus need to be re-evaluated. For this purpose we

numerically solve the relevant Boltzmann equations (cf. [60])

−H(T )T
dyχ
dT

= −yχ
τχ
,

−H(T )T
dyn
dT

= −λnpyn + λpnyp −
yn
τn

− Bhad

τχ
yχKχ ,

−H(T )T
dyp
dT

= −λpnyp + λnpyn +
yn
τn

+
Bhad

τχ
yχKχ , (4.6)

where yi ≡ ni/nb and nb is the baryon number density (we use η ≡ nb/nγ = 6.1 ×
10−10), H(T ) = π(T 2/mPl)

√

gSM/90 is the Hubble rate and τn = 880(1) s is the neutron

lifetime. We have furthermore defined Kχ ≡ Kn→p − Kp→n and λnp ≃ λpn exp(1/y) ≃
(1443/τn)y

3(y + 0.25)2 [82, 83], where y = T/Q and Q = 1.293MeV is the neutron-proton

mass difference. We have checked that this approximate form of λnp and λpn reproduces

the final results using exact numerical integration of the weak nucleon conversion rates

(cf. [82, 84]) to better than 0.5%. Finally, for the catalyzed nuclear conversion rates we

employ the formulae for KN→N ′ including all the numerical inputs as defined in [62]. At

temperatures much bigger than Q we expect yn = (1 − yp) = 1/(1 + exp(Q/T )) and yχ
given by its thermal relic abundance ȳχ. Finally, the resulting 4He abundance is well

determined by yn,p at (T ≃ 8.5×109 K) when BBN begins [81, 85]. As a cross-check of our

approach, we have determined Yp in absence of yχ and obtained Yp(ȳχ = 0) = 0.243, which

is consistent with the expected precision in light of our approximations. In particular,

neglected higher order effects would increase Yp by 2% [82], reproducing the standard BBN

result. In setting constraints we use our estimates only to compute the deviations of Yp
from the standard BBN value ∆Yp = Yp(ȳχ) − Yp(ȳχ = 0) and compare Y SBBN

p + ∆Yp to

the 2σ region of the observed Yp value. As discussed above, the effects of χ decays on Yp
scale as 1/Bhad, and for Ehad & 100GeV (in the form of a fixed number of hadronic jets)

also approximately as E
−1/3
had .

We finally determine the upper bound on the possible contributions of χ decays to Yp
by fixing Bhad = 1 and assuming χ decay to two hadronic jets. The resulting effects then

scale as m
−1/3
χ and we can use a single reference value to constrain the abundances of χ
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Figure 11. Comparison of BBN Yp (left hand panel) and D/H (right hand panel) constraints on

the abundances and lifetimes of metastable hadronically decaying particles with the corresponding

estimates for the cases of viable χ multiplets. Each line, going from bottom to top, corresponds to

the mass range 0.5 TeV < mχ < 5TeV. The only explicitly labeled examples are (1, 5, 2)S,QLP=3,

(1, 5, 2)S,QLP=4, (1, 5, 1)S,QLP=3 and (1, 2, 5/2)S,QLP=3, which are potentially constrained. The case

(1, 7, 0) is not shown as its lifetime is longer than 106 s for 0.5 TeV < mχ < 5TeV and Λeff =

1015 GeV.

at different mχ. As discussed above, this leads to a conservative O(1) overestimate of the

actual Yp constraints for decays of χ involving also uncolored final states. The comparison

of the lifetimes and relic abundances of all χ candidates from tables 1 and 2 in the mass

range of 0.5 TeV < mχ < 5TeV with the Yp bound estimated in this way is shown in

figure 11 (left hand side). Notice the almost discontinuous drop of the abundance for some

representations. This is due to the fact that for colored multiplets featuring a neutral

component there is a qualitative change of behaviour when the lifetime of the particle

becames smaller than the annihilation lifetime of the associated hadronic bound state

(cf. figure 10). We observe that all the χ are consistent with the Yp constraint. Also, most

of the candidates have lifetimes shorter than ∼ 10 s (for Λeff ∼ 1015GeV), so that no further

bounds from BBN processes at later times can be derived. The only exceptions are the cases

in table 6 where the lightest χ component can only decay through long cascades involving

off-shell heavier components andW bosons as well as (1, 7, 0)S decaying exclusively through

loop-induced processes. For these cases the D/H bound applies as shown in figure 11

(right hand side). In particular, while all the colored multiplets (including those decaying

with cascades) are consistent with this constraint due to their low relic abundance after

the second stage of strong annihilations, all the long-lived uncolored cases are in general

constrained. In the relevant region of relic abundances and lifetimes, the bound turns out

to be insensitive to the exact χ relic abundance or decay mode and so even our crude

estimates suffice to extract fairly robust lower bounds on χ masses. They are shown in

table 7 for a fixed value of Λeff = 1015GeV, while the Λeff dependence is shown explicitly

in figure 12.
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Spin χ QLP Mass bound [GeV]

0 (1, 2, 5/2) 3 790

0 (1, 5, 1) 3 920

0 (1, 5, 2) 3, 4 530, 1900

0 (1, 7, 0) 0, 1, 2, 3 ≫ 5000

Table 7. BBN bounds on the masses of long lived χ multiplet components assuming fixed Λeff =

1015 GeV.

H1,5,1LQ=3

H1,5,2LQ=4

H1,5,2LQ=3

H1,2,5�2LQ=3
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Figure 12. Dependence of the D/H bound on the χ mass as a function of the EFT cut-off scale

Λeff suppressing the relevant d = 5 decay mediating operators. See text for details.

We finally note that it is close to these D/H exclusion bounds where the primordial

Lithium problem might be addressed by the presence of χ listed in the first three rows of

table 7. A detailed exploration of this possibility goes however well beyond the scope of

the present analysis and we leave it for future study.

5 Collider phenomenology

In this section, we discuss the collider phenomenology of the new states and give bounds

on the masses of the new particles. The states of table 1 can be ordered into two classes:

the ones which can decay by renormalizable interactions and the ones which decay via

effective operators. In case the states decay via renormalizable interactions, they can be

detected via their decay products. We will shortly comment on the renormalizable cases

in section 5.1, mostly referring to the existing literature. If they only decay via effective

operators they are rather long-lived and can eventually leave the detector before decaying.

If the new particles are uncolored, the signature depends on whether the particle is charged

or not. A summary of the different mass bounds for the uncolored cases can be found in

table 8.

All the extra colored states, given in table 2, can only decay via d = 5 operators and

are hence long-lived. They hadronize and build exotic new mesons or baryons. We will

discuss them in section 5.4.
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Spin χ QLP Mass bound [GeV]

0 (1, 2, 3/2) 1, 2 430, 420

0 (1, 2, 5/2) 2, 3 460, 460

0 (1, 5, 0) 0, 1, 2 75, 500, 600

0 (1, 5, 1) -1, 0, 1, 2, 3 640, 50⋆ (85), 320, 490, 600

0 (1, 5, 2) 0, 1, 2, 3, 4 85, 530, 410, 500, 570

0 (1, 7, 0) 0, 1, 2, 3 75, 500, 600, 670

1/2 (1, 4, 1/2) -1 860

1/2 (1, 4, 3/2) 0 90

1/2 (1, 5, 0) 0 95

Table 8. LHC-I/LEP summary bounds for uncolored accidental matter multiplets decaying via

d ≥ 5 operators. Bounds on the neutral particles are given under the assumption of very small

mass splitting to the |Q| = 1 component. The exclusion bound in braces corresponds to the case

where the next-to-LP has Q = −1 instead of Q = 1. ⋆A stronger exclusion bound, depending on

the size of the portal coupling α (see eq. (2.5)), can be obtained from the Higgs data.

The production of the new exotic fermions and scalars proceeds via Drell-Yan processes.

Throughout this section, we use the LO Drell-Yan production cross sections. Formulae are

given e.g. in ref. [37]. The cross section for scalars is in general more than one order

of magnitude smaller than for fermions, which explains the lower exclusion bounds on

the scalars.

5.1 Renormalizable cases

Among the extra multiplets which preserve the flavor group of the SM, compatibly with

cosmology and a cut-off scale of Λeff ≈ 1015GeV, we identified four states which decay via

renormalizable interactions, namely (1, 1, 0)S , (1, 3, 0)S , (1, 4, 1/2)S and (1, 4, 3/2)S . In all

of these cases, the new state acquires a VEV. With the only exception of the SM singlet,

these VEVs must be small in order to comply with EW precision measurements. For O(1)

couplings in the scalar potential and barring fine-tunings this implies mχ & 2 − 20TeV,

cf. section 2.2.1.

The gauge singlet can sizeably mix with the Higgs boson. Such mixing is constrained

by the current Higgs data, see e.g. ref. [86]. The triplet and quadruplet scalar multiplets

can only have a very small mixing with the Higgs boson due to its effects on EW precision

observables. Nevertheless, their charged components can modify the Higgs to γγ and to Zγ

rates by their loop contributions. Whether these loop contributions suppress or enhance

the diphoton rates depends on the sign of the couplings in the scalar potential [87, 88].

Finally, masses of the new neutral scalars below 62.5GeV can be probed by the invisible

Higgs boson width. For more details see section 2.2.2.

Low masses of the triplets and quadruplets can be constrained by the Z width (see sec-

tion 5.3 for more details). Their charged components can also be directly detected. They
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decay into vector bosons or via cascades into vector bosons and the (off-shell) neutral com-

ponents of the multiplet. The coupling to two vector bosons is proportional to the VEV of

the multiplet. Apart from searches for singly charged Higgs bosons, searches for multiple

charged Higgs bosons can provide a distinctive probe for large scalar multiplets. By now,

searches for doubly charged Higgs bosons [89, 90] have only been performed for decays of

the charged scalars into fermions, as in e.g. the case for models with Y = 1 triplets [91]

and quadruplets with additional vector-like matter for seesaw mass generation of neutri-

nos [92, 93]. Bounds on doubly charged Higgs bosons decaying to W±W± can be obtained

by reinterpreting SUSY searches for dileptons, missing energy and jets, and can exclude

masses of the doubly charged scalars up to roughly 200GeV at
√
s = 7 TeV for SU(2)L

triplets [94].

5.2 Colorless and charged LP

Charged stable particles will undergo charge exchange with the detector material. For

masses larger than 100GeV the time of flight till to the outer detector is significantly

larger than for lighter objects such as muons. They can hence be distinguished by their

longer time of flight and by their anomalous energy loss in the detector. The energy loss

in the detector is described by the Bethe-Bloch formula and depends on the speed and the

charge of the particle. Searches for such ionizing tracks have been performed in refs. [95–

108]. The strongest bounds come from the CMS search of ref. [108], where the exclusion

limits on the production cross sections of fractionally, singly and multiply charged particles

are presented assuming vanishing quantum numbers under SU(2)L. Hence, in order to use

the results of ref. [108] they need to be recast. Reference [109] gives tabulated efficiency

values in terms of the transverse momentum, the pseudo rapidity and the velocity β of the

heavy charged particle. These can be used to reinterpret the results of ref. [108] without

running a full detector simulation.

In order to compute the efficiencies, the models were implemented into Madgraph 5 [41]

with the help of FeynRules [42]. The cross sections, computed at LO at the scale Q =
√
ŝ

using the MSTW2008 [110] parton distribution functions, were than rescaled by a factor

accounting for the change in the efficiencies with respect to the cases considered in ref. [108].

We find that the efficiencies for fermions with non-vanishing SU(2)L quantum numbers

barely change compared to the case with T3 = 0. The exclusion limits from ref. [108] on

the cross section can hence be applied naively. For scalars, the efficiencies change slightly

compared to the fermions. For masses of 300GeV the efficiency is slightly smaller than

the one for fermions, for 800GeV it is roughly 15% larger. For the cases we considered,

the efficiency for scalars is always within 3% of the case with vanishing quantum SU(2)L
quantum numbers.

In order to derive exclusion limits for the scalars, we adopt the following procedure.

We compute the cross section and derive an approximate bound using the 95% C.L. upper

limits given in ref. [108]. With this approximate bound at hand, we compute at the naive

bound the efficiencies for the scalar and compare it to the efficiencies of a fermion with

T3 = 0. The results can then be recast by the appropriate factor. We note, however, that

such refined bounds are in good agreement with the results obtained naively.
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Even though the efficiency values in ref. [109] are given for the singly charged analysis

only, we apply the same procedure to the |Q| > 1 case to check whether also here, the

naive method gives sensible results, as the basic cuts in both analysis are the same. Indeed

we find also here that within the precision of our results, the naive estimate is very good.

The results can be found in table 8. The limits for charged fermions are stronger than

for scalars due to the larger production cross section. The weakest exclusion limits are

obtained for T3 = 0.

Before concluding this subsection let us mention the recently approved LHC experiment

MoEDAL [111, 112], whose target is the study of new physics phenomena (e.g. magnetic

monopoles) which manifest themselves through the presence of highly-ionizing particles. In

particular, the nuclear track detectors of MoEDAL are sensitive to particles with |Q|/β & 5,

where Q is the charge and β is the velocity of the particle in units of the speed of light.

For our framework, with Q ranging from 1 to 4 (cf. table 8), the discovery potential of the

MoEDAL experiment will be relevant at low values of the β distribution.

5.3 Colorless and neutral LP

The search for stable (on detector scale) neutral and colorless particles is very challenging

at the LHC. Limits can either be set directly on the mass of the neutral particle as e.g. by

mono-x searches or from constraints on the invisible Z width or, indirectly, by giving

bounds on the mass of the second lightest particle of the multiplet, such as in disappearing

track signatures. Let us discuss in turn all these possibilities:

• Mono-x searches: neutral stable particles are searched for at the LHC in mono-x

searches, in which large missing energy is accompanied by a radiation of an additional

high-energetic particle x, where “x” can stand for a jet, a photon, a W or Z boson,

a top quark or a Higgs bosons. Nevertheless, we find that the monojet searches of

ref. [113], which potentially have the strongest reach [114], are not sensitive to our

states yet. Similar results were found for instance in ref. [7], in the case of a fermionic

(1, 3, 0) multiplet. Monojet searches can, however, become sensitive at 14TeV [7].

• Invisible Z width: at LEP, the Z boson width was determined with high accuracy [115,

116]. This measurements set a tight bound on new physics contributions to the

invisible Z width at the level of Γnew
inv < 2 MeV. This hence excludes charged particles,

or particles with non-trivial SU(2)L quantum numbers, up to the kinematic bound

for the Z → χχ† decay, meaning that masses mχ . 45 GeV are excluded.

• Disappearing tracks: disappearing tracks can be observed at the LHC if a rather long-

lived charged particle decays within the sensitive volume into a neutral particle and

a soft pion, which is not detected. The strongest limits on these searches [117], are

sensitive to lifetimes of the charged particle between 0.1 ns and 10 ns. We checked

whether the typical lifetimes for our particles lie within this range. It turns out,

however, that for all fermionic states of table 1 with a lightest neutral state, the

mass splitting between the neutral component and the charged component is always

so large, that the lifetime is smaller than 0.1 ns (cf. figure 5). This is due to the

– 33 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
4

fact that the radiative mass splitting increases with the hypercharge and the SU(2)L
quantum number. For the scalar states featuring a lightest neutral component and

which do not decay through renormalizable interactions, the same argument holds.

In addition, the mass splitting does not need to be purely radiative but a larger mass

splitting can also stem from the potential term.

• LEP bounds on charginos: the LEP experiments set bounds on charginos that are

nearly mass degenerate with the lightest neutralino. These bounds can be reinter-

preted for our purposes in order to derive limits on the mass of the lightest neutral par-

ticles, since we showed in section 2.3 that the next-to-LP has always charge QLP± 1.

References [118–121] cover a mass splitting ∆m between 200 MeV . ∆m . 5 GeV

and are based on soft events with an initial state radiated photon. In order to es-

timate the limits for the case where the LP of the multiplet is neutral, we took the

OPAL results of ref. [121]. There, the results were given in terms of a 95% C.L. upper

limit on the cross section. We implemented the models into MadGraph 5 with the help

of FeynRules [42], computed the cross section values for the |Q| = 1 charged compo-

nent of the multiplet, and compared them to the given limits in ref. [121]. In order

to verify this procedure, we computed the efficiencies for example points on parton

level, using MadAnalysis [122]. For the fermionic states we found that the efficiencies

are basically unchanged compared to the chargino case. For the scalars they turned

out to be a bit reduced, which is however not relevant given the precision to which

we estimate the bounds. The hence obtained limits on the charged components are

given in table 8. At the accuracy we are working this essentially corresponds to the

bounds on the neutral components, which are obtained after subtracting the small

mass splitting.

For the case of the scalar (1, 5, 1) multiplet, either the +1 charged or the −1 charged

component can be the next-to-LP. These two cases lead to different exclusion bounds.

The exclusion bound from the Q = 1 state being the second-lightest component is

much smaller due to the smaller production cross section, as this state corresponds

to T 3 = 0. In such a case a stronger bound can come from the Higgs invisible width.

What about mass splittings larger than 5GeV not covered by the chargino search

of ref. [121]? If the neutral LP of a scalar multiplet is the component with the

smallest/largest isospin, then the mass splitting between the |Q| = 1 next-to-LP and

the neutral LP can also be larger than 5GeV. This is not true for a generic value

of the isospin −j < I < j, as for the neutral state to be the lightest a cancellation

between the tree-level and radiative mass splitting is required. In particular, the only

case in which we have to consider a mass splitting larger than 5GeV is for (1, 5, 2)S .

Even in such a case, however, mass splittings larger than about 20GeV are excluded

by EW precision observables (cf. section 2.2.1).

Searches for charginos decaying into neutralinos andW bosons (with theW s decaying

hadronically, semileptonically or leptonically) and for ∆m > 5 GeV were performed
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also at LEP [123].14 In the (1, 5, 2)S case, for mass splittings around 5GeV the

estimated bounds on the |Q| = 1 particle decaying to the neutral state turn out to

be weaker (by roughly 10GeV) than the ones given in table 8. For mass splittings

larger than 15GeV the limits become tighter (by around 5GeV). A more detailed

analysis is however beyond the scope of this paper.

5.4 Colored LP

The description of long-lived colored particles is complicated by the effect of non-

perturbative QCD interactions. In fact, in all the cases of table 2 the decay of the new

states is induced by a d = 5 operator and the lifetimes are long enough that heavy colored

particles hadronize before decaying. The theoretical description of the hadron formation

and of the nuclear interactions of such states with matter represents the main source of

uncertainty. In this section, we will briefly describe the various steps for the path of our

new states, from their production to their escape from the detector or, in case the initial

velocity β is small enough, to their eventual stopping and decay inside the detector. We

finally conclude by looking at the recent LHC results that are tuned to the case of QCD

bound states of SUSY particles with quarks and gluons. We refer to [124] for a review on

various phenomenological aspects of stable massive particle at colliders.

Production. The production mechanism of the new particles in our framework is deter-

mined by the color quantum number and by the value of the mass. We are interested

in the fundamental, the two indices symmetric and the adjoint representations of

SU(3)c and we denote such cases respectively as C3, C6 and C8. At the renormaliz-

able level the presence of a U(1) or a Z2 accidental symmetry guarantees these states

to be pair produced. The fate of the produced state crucially depends on the velocity

at the production time. Relativistic particles will lose energy throughout the detec-

tor but eventually escape it, while slow particles will be stopped in the detector and

decay at a later time. Typical velocity distributions are displayed in figure 13. There

is no significant difference between scalars and fermions. For higher center-of-mass

energies and lower masses, mχ, higher velocities are more probable. Notice also that

due to the normalization with respect to the total cross section there is no difference

between the different color quantum numbers. Another issue that has to be con-

sidered for a complete description of the production mechanism is the Sommerfeld

enhancement due to ladder exchange of gluons. This effect is relevant only for slowly

produced states.

Hadronization. Once produced, a colored particle combines with quarks and gluons to

form a colorless hadron state. For example, a color-triplet can form bound states

such as C3q or C3q1q2, an octet state can form invariants such as C8qq, C8q1q2q2 or

C8g, while the sextuplet can hadronize in states of the form C6qg, C6qqq and C6qq.

The probability for Ci of hadronizing in a given bound state are rather uncertain,

14LHC searches for pair production of charginos, with the charginos decaying to W s and neutralinos, are

not yet sensitive to such low mass splittings.
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Figure 13. Velocity distribution normalized to the total cross section for colored fermonic states

(top) and colored scalars (bottom). Left (right) panels correspond to
√
s = 8 TeV (

√
s = 14 TeV)

for mχ = 500 GeV (blue), mχ = 800 GeV (pink) and mχ = 1.1 TeV (light blue).

different models give quite different values.15 Bound states made of larger numbers

of quarks and gluons are expected to be heavier [128] and, even if the hadronization

in this channels could be non-negligible, the newly produced state could decay into

a lighter one plus ordinary baryons and mesons, through QCD gauge interactions.

Despite the fact that the hadronization processes are very uncertain, in some cases a

detailed knowledge is not very important. As we are going to comment soon, nuclear

conversions can wash out the information on the original hadron state at production.

Propagation through matter. As soon as produced and during their propagation, the

long lived colored particles interact with the electrons, protons and neutrons present

in the detector. The dominant interactions we consider here are the electromagnetic

and the strong ones.

• Electromagnetic interactions: a particle with electric charge can interact with

atomic electrons as well as with protons and neutrons in the nuclei. In the first

case the net effect is the ionization of the atoms while interactions with atomic

15See for example the comparison between the string model adopted by Pythia [125] and the cluster

model used in HERWIG [126, 127] in table 3 of [124].
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nuclei generate displacements of atoms from the lattice. In both cases the heavy

long lived particle loses energy, however the energy loss dE/dx from ionization

is much larger than the one generated in the non-ionizing way.

The main role of the heavy elementary parton is to contribute to the electric

charge of the hadron. Indeed the SM gauge quantum number and the require-

ment to obtain a color-singlet hadron state has an important influence on the

total charge of the resulting bound state. We notice that considering all the

cases in table 2, the resulting bound state has always integer charge. The most

unfavourable situation, from the point of view of detection, happens when the

resulting hadron is electromagnetically neutral.

• Strong interactions: before discussing the various kind of interactions between

the heavy hadrons and the matter in the detector, let us clarify the role of the

parton Ci in the nuclear reactions. Due to their large mass, the wave-functions

of the Ci’s are expected to be highly localized as compared to those of the light

constituents (quarks and gluons) that are spread in space as in ordinary QCD.

From this observation we can draw the conclusions that the probability for the

heavy parton Ci to interact with matter is very low, while the typical cross

section of the hadron with matter, being due to the effect of the light partons,

is expected to be of the same order of those for pion scatterings.

Our heavy long-lived hadron can have elastic as well as inelastic reactions with

nucleons. Elastic scatterings are not particularly relevant, indeed the energy

loss is small because the long-lived hadron scatters on a much lighter target

nucleus. Inelastic processes are instead those responsible for the slowing-down

of the hadron. In an inelastic reaction it is also possible to exchange baryon and

electric charge.

The importance of baryon exchange has been emphasized in [129], in these

reactions a heavy hadron is transformed into another one with different baryon

number. For the case of the gluino it has been argued that, bound states with

null baryon charge (R-mesons) are very efficiently converted into baryonic states

in reactions like (C8dd̄) + p→ π + (C8udd). The reverse reaction is suppressed

mainly because of the mass split ordering of the various hadrons and by the low

presence of pions as targetd in the detector material. As a consequence, early

in the detector, mesons are converted into baryons.

Processes with charge exchange are particularly relevant for detecting the pres-

ence of the heavy parton. Indeed, tracks generated by the passage of electric

particles can be easily detected, so it is important to understand the value of the

electric charge of the hadron through all its travel in the calorimeter material.

Even in the most pessimistic case of a hadron generated as a neutral bound

state, reactions with charge exchange can covert it in a charged state that could

be detected.

We finally mention that there are a series of phenomenological approaches to

describe the strong interactions between heavy hadrons and matter [130–132].
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Despite the fact they agree on several general qualitative aspects, they give rise

to rather different quantitative results.

Stopping and decay. Depending on the Ci mass, a non-negligible number of particles

could stop in the detector. In our framework most of the states are supposed to decay

within few seconds. This constitutes a really interesting possibility to understand

the structure of the d = 5 effective operators responsible for the decay. However, the

detection of these processes represents a severe experimental challenge.

Having described the most important aspects of the phenomenology of our long lived

particles, we now move to comment about direct searches. At the LHC, searches for long-

lived colored particles are performed in the context of R-hadrons, which are bound states

of gluinos/ squarks and quarks/gluons. The R-hadrons can be detected by the longer

time-of-flight to the outer detectors and their anomalous energy loss. Complementary to

the searches relying simply on the longer time-of-flight and the anomalous energy loss, are

searches for stopped R-hadrons. They are particularly suited for velocities β ≪ 1.

In the former case, the strongest limits come from the CMS search of ref. [108], which

excludes gluino masses up to 1276GeV, if the fraction of gluinos hadronizing into g̃ − g

bound states is 0.5. If the fraction is equal to one, gluino masses are excluded up to

1250GeV. In such a case the R-hadron is neutral in the inner tracker which leads to a

smaller energy loss and hence a lower exclusion bound. In ref. [108] stop masses were

excluded up to 935GeV (818GeV). The exact exclusion bound depends on the modeling

of the interactions of the stop with the detector material. The exclusion bound is here

given for the so-called cloud model of ref. [129, 133] (the charged-suppressed model of

ref. [134]). Very similar exclusion bounds were obtained in a recent ATLAS study [135]

both for long-lived stops and gluinos.

In the search for out-of-time decays of stopped gluinos or squarks of ref. [136], gluinos

are excluded up to masses of 880GeV, assuming BR(g̃ → χ̃0
1g)=100% and a gluino lifetime

between 1 µs and 1000 s. Stop masses are excluded up to 470GeV for BR(t̃→ χ̃0
1t)=100%

and stop lifetimes between 1 µs and 1000 s. The exclusion bounds require that the neu-

tralino mass is kinematically consistent with the used requirements on the energies of the

gluon or respectively top decay products. The search furthermore assumes a cloud model

for the R-hadron interactions. Reference [137] excludes sbottom masses up to 344GeV for

BR(b̃→ χ̃0
1b)=100% for lifetimes between 1 µs and 1000 s.

The results on these searches of R-hadrons cannot straightforwardly be applied for our

cases. In order to give exclusion bounds on our states a detailed study of the hadronization

of the different states and a full detector simulation would be necessary. We expect that

the exclusion limits not only depend strongly on the SU(3)c quantum number, but they

depend also on the charge and SU(2)L quantum number. The charge influences the energy

loss directly, whereas different SU(2)L quantum numbers lead to different time intervals, in

which the R-hadron propagates as a neutral particle in the detector due to pion exchange

between the different members of an isomultiplet [138]. For stopped R-hadrons, in addition,

the searches depend on the BRs. For our cases if the new exotic particle decays into a
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missing energy and jet signature, there are always several other operators allowing the

particle to decay (cf. table 2), such that the corresponding BR likely deviates from 1.

A further discussion on the bounds on long-lived colored states is beyond the scope

of this paper, as, even in the well-studied case of R-hadrons the exclusion bounds depend

significantly on the modelling of the hadronization and the nuclear scattering model.

6 Conclusions

Low-energy tests of fundamental symmetries provide a powerful probe of new physics scales

up to energies of about 1015GeV. Given the accidental (B and L) and approximate (CP,

flavor and custodial) symmetry structure of the SM, it is somewhat surprising that signals

of physics beyond the SM (if it exists) have not been observed so far.

This last statement hinges on the theoretical prejudice that new physics effects at low

energies can be described by a generic EFT, where the Wilson coefficients of the effective

operators are O(1). There are, of course, exceptions to this point of view. The simplest

one is maybe to allow for ultraweak couplings in the theory, so that the generic EFT power

counting fails — an extreme example being the dissolution of the Weinberg operator when

RH neutrinos are below the EW scale. On the other hand, the effective operators might

not be there due to an exact symmetry of the Lagrangian in the full theory (as e.g. B − L

in left-right symmetric models [139]) or they might be suppressed due to an approximate

symmetry (as e.g. in minimal flavor violation [140]). In this paper, we explored yet another

possibility: the quantum numbers of the new physics states below the EFT cut-off are such

that by only requiring Lorentz and SM gauge invariance, the accidental and approximate

symmetries of the SM are automatically preserved at the renormalizable level. The resulting

new physics dynamics is practically invisible to low-energy indirect searches, and the only

way of experimentally probing these scenarios is by direct production and detection of new

particles at colliders. We hence focused on the phenomenological possibility that the new

states lie within the kinematical reach of the LHC.

Barring few exceptions, the new matter multiplets are subject to extra accidental Z2

or U(1) symmetries which forbid their decays at the renormalizable level. Whenever the

LP in the multiplet is color- and charge-neutral, it forms a DM candidate [4–7]. Generally

however, the extra multiplets will decay due to the presence of higher dimensional operators

in the EFT. In the spirit of generic EFT we choose to work with a cut-off scale of Λeff ≈
1015GeV which is large enough not to require any further protection mechanisms in the

full theory and is moreover suggested by the observations of neutrino masses. The infinite

set of possible states which satisfy the accidental symmetry conditions can then be reduced

thanks to cosmological considerations. In particular, since the new states are long-lived,

scenarios where the lightest component of the new multiplet is charged and/or colored are

constrained by cosmological observations as well as by searches for exotic forms of matter

on the Earth and in the Universe. The latter practically exclude all the cases where the

charged and/or colored LP decays via d > 5 operators.

Another handle in order to further reduce the list of possible states is the requirement

that the theory remains perturbative up to the cut-off scale of the EFT. In particular, we
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required that no Landau poles are generated below Λeff ≈ 1015GeV. As a byproduct of the

perturbativity analysis we noticed that, due to accidental cancellations in the coefficients

of the one-loop beta functions for the non-abelian gauge factors, two-loop corrections can

become important and hence the one-loop determination of the Landau pole can be mis-

leading. A typical example is given by the two minimal DM cases in eqs. (2.16)–(2.17). In

this respect, we also pointed out the existence of a previously overlooked d = 5 operator

which is responsible for a fast decay of (1, 7, 0)S , thus ruling out the scalar minimal DM

candidate [44].

The final set of states which satisfy all the above constraints is collected in tables 1–2.

For these, we studied current bounds on their masses coming from their potential effects

on BBN as well as from their production and detection at colliders. In particular, we

found that for most of the states decaying through d = 5 operators and being thermally

produced in the early Universe, their abundances are sufficiently diluted not to affect

standard BBN. The notable exceptions are those uncolored cases, where the decay rates

are either loop suppressed or proceed through long cascades leading to high-multiplicity

final states (they are listed in table 7). At colliders, the lightest particle of the multiplets in

tables 1–2 are, barring few exceptions, stable on the detector scale. For the color singlets

we found that the current mass bounds are of few hundred GeV if the lightest particle of

the multiplet is charged, whereas for neutral states the detection is more difficult and hence

the bounds lie below 100GeV (cf. table 8). On the other hand, for colored multiplets the

mass bounds strongly depend on the hadronization process and the nuclear interactions

with the detector material.

A this point, a natural question to ask is the following: what is accidental matter

good for? Who ordered that? Besides the case of minimal DM, we note that the scalar

multiplets in tables 1–2 could easily improve the stability of the renormalizable Higgs

potential.16 Close to the EFT cut-off, the potential can again be destabilized in cases

where d = 5 operators exist containing only scalars, namely (1, 5, 0)S , (1, 5, 1)S , (1, 5, 2)S ,

(1, 7, 0)S , (8, 1, 0)S , (8, 1, 1)S , (8, 3, 0)S and (8, 3, 1)S . However, at such large field values the

whole tower of operators should be considered and stabilization is expected to be recovered

via d ≥ 6 operators. Finally, a charged thermal relic with τχ ∼ (102−103) s and abundance

just below the D/H bound (which can be achieved for some of the accidental matter states

listed in table 7) may also help to resolve the standard BBN Lithium problems [74–79].

More generally, accidental matter should be seen as a purely phenomenological possibility.

New physics might manifest itself in a way we were not expecting and thus the direct

search strategies should cover diverse scenarios. In particular, the typical signature of

accidental matter is the presence of charged/colored particles which are stable on the scale

of particle detectors and which have no chances to be detected through indirect searches.

Consequently, high-energy colliders will be the only means of probing such scenarios. New

experiments in the near future (LHC-II, MoEDAL, etc) will have the capabilities to further

explore their parameter space.

16On the other hand, we explicitly checked that none of the weak-scale accidental matter states improves

on gauge coupling unification with respect to the SM.
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We end by noting that an improvement in p-decay bounds by an order of magni-

tude [141] or failure to observe neutrinoless double beta decay with inverse neutrino mass

hierarchy in the next generation of experiments [142] would put some pressure on this

setup. In particular, (i) if neutrino oscillation experiments were to confirm the inverse

neutrino mass hierarchy, then our EFT setup predicts an observable neutrinoless double

beta decay signal. Failure to observe one in the next generation of experiments would

imply the presence of NP degrees of freedom below the EFT cut-off which couple to SM

fermions. Finally, (ii) there is already a mild tension between the proton decay bounds and

neutrino mass measurements, if one assumes a common EFT scale for both phenomena.

This tension would be strengthened by future improvements in p-decay bounds or by a

positive indication of a quasi-degenerate light neutrino spectrum, requiring a significant

scale separation between the relevant L and B violating operators.

Acknowledgments

We thank Sergio Cecotti, Talal Ahmed Chowdhury, Ben Gripaios, Miha Nemevšek, Paolo
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A Two-loop Landau poles

In this appendix we provide the RG evolution of the gauge couplings and study the emer-

gence of the associated Landau poles. In this way one can set an upper bound on the

dimensionality of the extra representation, by requiring that no Landau poles are gener-

ated below Λeff ≈ 1015GeV (cf. the discussion in section 2.4).

The two-loop RG equation for the three gauge couplings gi (i = 1, 2, 3), read

d

dt
α−1
i = −ai −

bij
4π
αj , (A.1)

where αi =
g2i
4π and t = 1

2π log µ
MZ

. The one- and two-loop beta function are [143] (no

summation over i)

ai = − 11

3
C2(Gi) +

4

3

∑

F

κS2(Fi) +
1

3

∑

S

ηS2(Si) , (A.2)
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bij =

[

− 34

3
(C2(Gi))

2 +
∑

F

(

4C2(Fi) +
20

3
C2(Gi)

)

κS2(Fi) (A.3)

+
∑

S

(

4C2(Si) +
2

3
C2(Gi)

)

ηS2(Si)

]

δij

+ 4

[

∑

F

κC2(Fj)S2(Fi) +
∑

S

ηC2(Sj)S2(Si)

]

,

where Gi denotes the i-th gauge factor, S2 and C2 are the index (including multiplicity

factors) and the quadratic Casimir of a given (fermionic (F ) or scalar (S)) irreducible

representation; κ = 1, 12 for Dirac and Weyl fermions and η = 1, 12 for complex and real

scalar fields, respectively. The Yukawa contribution in the two-loop beta function is ne-

glected. In fact, the extra states we want to introduce do not couple with SM fermions,

so that the Yukawa contribution does not grow with the dimensionality of the extra rep-

resentation. Employing the GUT normalization for the abelian factor, we use the values

α1(mZ) = 0.016923, α2(mZ) = 0.03374, and α3(mZ) = 0.1173 for the onset of the RG run-

ning [17, 144]. For simplicity, the extra state χ is integrated in at mZ = 91.188GeV [17].

The scaling of the Landau pole with mχ is approximately linear.

For the cases where the SM is extended with a representation charged under SU(3)c
and/or SU(2)L, the results are summarized in table 9, which provide a useful reference for

estimating the bound on the dimensionality of the extra representations, by requiring that

no Landau poles are generated below a given scale.

The analysis has been repeated for all the states considered in this work, which can

simultaneously transform under SU(3)c and SU(2)L, and have a non-zero hypercharge as

well. These include extra representations interacting with SM fields via d = 5 operators

(but which cannot decay into SM states via renormalizable interactions), for which the

results are reported in table 10. Moreover, we investigated the Landau pole constraints

for those extra scalar representations that can couple to the Higgs boson at the renormal-

izable level (cf. table 5). Among them the only ones that do not couple to SM fermions

at the renormalizable level and that survive the perturbativity criteria are the renormal-

izable cases of table 1. In this respect, we mention a marginal case: (1, 6, 1/2)S for which

Λ2−loop
Landau = 6.6 × 1013GeV. Finally, we also checked the possibility of having multiplets

decaying via d > 5 operators and whose neutral LP might be compatible with cosmological

constraints. No cases beyond those of minimal DM (cf. table 1) and with a Landau pole

above 1015GeV are found.

B SU(2)L decompositions

By denoting the generators in the fundamental representation of SU(2)L as T a = σa/2

(with σa being the Pauli matrices and a = 1, 2, 3), we define their action on the (2j + 1)-

dimensional completely symmetric tensor χi1i2...i2j (i1, i2, . . . , i2j = 1, 2) as

δa(χi1i2...i2j ) = T a
i1k χki2...i2j + T a

i2k χi1k...i2j + . . .+ T a
i2jk

χi1i1...k . (B.1)
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Spin χ Λ2−loop
Landau[GeV]

0 (1, 2, 3/2) ≫ mPl (g1)

0 (1, 2, 5/2) ≫ mPl (g1)

0 (1, 5, 0) ≫ mPl (g1)

0 (1, 5, 1) ≫ mPl (g1)

0 (1, 5, 2) 3.5× 1018 (g1)

0 (1, 7, 0) 1.4× 1016 (g2)

0 (3, 1, 5/3) ≫ mPl (g1)

0 (3, 2, 5/6) ≫ mPl (g1)

0 (3, 2, 11/6) 5.5× 1019 (g1)

0 (3, 3, 2/3) ≫ mPl (g1)

0 (3, 3, 5/3) 3.2× 1017 (g1)

0 (3, 4, 1/6) ≫ mPl (g2)

0 (3, 4, 5/6) ≫ mPl (g2)

0 (6, 2, 1/6) ≫ mPl (g1)

0 (6, 2, 5/6) ≫ mPl (g1)

0 (6, 2, 7/6) ≫ mPl (g1)

0 (6, 2, 11/6) 4.0× 1012 (g1)

0 (6, 4, 1/6) 5.5× 107 (g2)

0 (6, 4, 5/6) 5.0× 107 (g2)

0 (8, 1, 0) ≫ mPl (g1)

0 (8, 1, 1) ≫ mPl (g1)

0 (8, 3, 0) ≫ mPl (g1)

0 (8, 3, 1) 1.0× 1017 (g1)

0 (27, 1, 0) 1.3× 107 (g3)

1/2 (1, 3, 2) 1.4× 1013 (g1)

1/2 (1, 4, 1/2) 8.1× 1018 (g2)

1/2 (1, 4, 3/2) 2.7× 1015 (g1)

1/2 (3, 3, 4/3) 9.3× 1010 (g1)

1/2 (3, 3, 5/3) 1.6× 108 (g1)

1/2 (3, 4, 1/6) 5.4× 105 (g2)

1/2 (3, 4, 5/6) 5.3× 105 (g2)

1/2 (3, 4, 7/6) 5.2× 105 (g2)

1/2 (6, 1, 1/3) ≫ mPl (g1)

1/2 (6, 1, 2/3) ≫ mPl (g1)

1/2 (6, 2, 1/6) 1.9× 1012 (g3)

1/2 (8, 1, 1) 4.0× 1016 (g1)

1/2 (8, 2, 1/2) 1.5× 107 (g3)

1/2 (15, 1, 1/3) 3.2× 103 (g3)

1/2 (15, 1, 2/3) 3.2× 103 (g3)

1/2 (15, 2, 1/6) 3.6× 102 (g3)

Table 10. List of extra multiplets which can decay into SM particles via d = 5 operators (states

decaying via d = 4 operators have been already subtracted) and corresponding two-loop Landau

poles evaluated by integrating in the new states at mZ (fields with zero hypercharge are understood

to be real). In the third column, the symbol in the bracket stands for the gauge coupling responsible

for the emergence of the Landau pole.
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In general, we arrive at the following embedding of the properly normalized T 3 eigenstates:

χ11...1 =
1

√

B2j,0

χj

χ11...2 =
1

√

B2j,1

χj−1

... (B.2)

χ12...2 =
1

√

B2j,2j−1

χ−j+1

χ22...2 =
1

√

B2j,2j

χ−j ,

where the superscripts denote the T 3 eigenvalue, Bn,k is the binomial factor Bn,k = n!
k!(n−k)!

and the normalization of the states is such that

χ∗i1i2...i2jχi1i2...i2j = |χj |2 + |χj−1|2 + . . .+ |χ−j+1|2 + |χ−j |2 . (B.3)

Let us consider, for instance, the case of the SU(2)L Higgs doublet:

H1 = H+

H2 = H0 ,
(B.4)

where the electric charge eigenstates are obtained through the formula Q = T 3 + Y . In

particular, since in the unitary gauge: H+ = 0, ImH0 = 0 and ReH0 = 1√
2
(v + h),

whenever the Higgs doublet is contained in the effective operator responsible for the decay

of χ, it might happen that not all of the components of χ can directly decay through the

effective operator. In the following, we provide the SU(2)L decomposition for the three

uncoloured multiplets whose decay, depending on the mass spectrum, might proceed via

off-shell cascades (cf. table 6):

χ = (1, 2, 5/2)S:

• SU(2)L embedding:

χ1 =χ+3 (B.5)

χ2 =χ+2 .

• Operator:

O1 = χ∗iececHi . (B.6)

• Decomposition in the unitary gauge:

O1 =
1√
2
χ∗
−2e

cec(v + h) . (B.7)

Notice that χ+3 does not couple directly to SM particles. Hence, whenever it is the

LP it will decay through an off-shell emission of χ+2 (cf. figure 6).
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χ = (1, 5, 1)S:

• SU(2)L embedding:

χ1111 = χ+3

χ1112 =
1√
4
χ+2

χ1122 =
1√
6
χ+1 (B.8)

χ1222 =
1√
4
χ0

χ2222 = χ−1 .

• Operator:

O1 = χ∗ijklHiHjHkH
∗l′ǫll′ . (B.9)

• Decomposition in the unitary gauge:

O1 =
1

8
χ∗
0(v + h)4 . (B.10)

Notice that only χ0 can directly decay through O1. If χ0 is not the LP in the

multiplet, the charged LP will cascade decay through off-shell components which end

up into χ0.

χ = (1, 5, 2)S:

• SU(2)L embedding:

χ1111 = χ+4

χ1112 =
1√
4
χ+3

χ1122 =
1√
6
χ+2 (B.11)

χ1222 =
1√
4
χ+1

χ2222 = χ0 .

• Operator:

O1 = χ∗ijklHiHjHkHl . (B.12)

• Decomposition in the unitary gauge:

O1 =
1

4
χ∗
0(v + h)4 . (B.13)

Similarly to the previous case, only χ0 can decay through O1, while the charged

components decay through off-shell cascades.
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