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W = g1X
∑

i Z
2
i + g2X

3. By combining the tools of the conformal bootstrap with results

obtained through supersymmetric localization, we argue that this model exhibits a symme-

try enhancement at the infrared superconformal fixed point due to g2 flowing to zero. This

example is special in that the existence of an infrared fixed point with g1, g2 6= 0, which

does not exhibit symmetry enhancement, does not generally lead to any obvious unitarity

violations or other inconsistencies. We do show, however, that the F -theorem excludes the

models with g1, g2 6= 0 for N > 5. The conformal bootstrap provides a stronger constraint

and excludes such models for N > 2. We provide evidence that the g2 = 0 models, which

have the enhanced O(N)×U(1) symmetry, come close to saturating the bootstrap bounds.
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1 Introduction

The technique of F -maximization, originally proposed in [1] and further developed in [2, 3],

allows one to identify the superconformal U(1)R symmetry at the infrared fixed points of

a wide class of three-dimensional RG trajectories that preserve N = 2 supersymmetry.

Identifying this U(1)R symmetry is desirable, since the scaling dimensions of BPS opera-

tors as well as unitarity bounds satisfied by operators that belong to long multiplets are

all determined by their respective R-charges [4]. Determining the R-symmetry of a super-

conformal field theory (SCFT) using F -maximization relies on embedding that SCFT as

the infrared limit of an RG flow that starts from a free UV theory. The matter content

of the UV theory and the symmetries preserved by the flow are used as inputs for the F -

maximization procedure. The R-symmetry of the infrared fixed point is then determined

in terms of these inputs; the explicit procedure is described in detail in [1]. This procedure

can be carried out explicitly using the supersymmetric localization results of [1, 5].

In applying the above method one implicitly assumes that the symmetries of the in-

frared SCFT are isomorphic to those preserved by the RG flow. An important caveat of

F -maximization is that it may lead to incorrect results if this assumption fails. This may

happen due to extra symmetries that emerge at the IR fixed point, but are not present

throughout the flow; such extra symmetries are usually referred to as accidental. Indeed,

the superconformal R-symmetry at the IR fixed point could happen to be a linear combi-

nation of the various U(1) symmetries preserved by the flow and of accidental U(1) sym-

metries. In such cases the F -maximization procedure has to be modified in order to take

those extra symmetries into account [6–8]. One indication that accidental symmetries may
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be present is when F -maximization yields unitarity violating scaling dimensions for some

chiral operators.1 It is generally speculated that these chiral operators actually become

free, resulting in the emergence of additional symmetries that were not taken into account.

In some other cases, accidental symmetries can be detected by passing to a weakly coupled

dual of the original theory, in which the symmetry enhancement is manifest [10]. Finally,

it is possible that the RG flows where the F -theorem [2, 11–13] seems to be violated could

also indicate the presence of additional symmetries, but there is no known systematic way

for detecting them.

Our work is focused on a simple family of models whose naive IR fixed points, ob-

tained under the assumption of no symmetry enhancement, do not always exhibit any

obvious problems such as those mentioned above. Nevertheless, we will show that these

naive IR fixed points are ruled out as consistent unitary SCFTs, since their CFT data vi-

olates the constraints imposed by crossing symmetry. These constraints can be efficiently

implemented with the help of the numerical conformal bootstrap technique introduced

in [14]. We view this result as strong evidence that accidental symmetries must be present

in the IR. To our knowledge, our work represents the first example where the conformal

bootstrap is used to argue for such a result.2

The theory we examine is a certain N = 2 supersymmetric generalization of the critical

O(N) vector model. This model has a chiral super-field X and N chiral super-fields Zi
interacting through a cubic superpotential

W =
g1

2
X

N∑
i=1

Z2
i +

g2

6
X3 , (1.1)

where g1 and g2 are coupling constants. The superpotential interaction triggers a supersym-

metric RG flow that preserves O(N)×Z3 flavor symmetry. Under the O(N) symmetry, the

Zi transform as a fundamental vector and X is a singlet. The generator of the Z3 symmetry

acts by multiplying both X and Zi by e2πi/3. A consequence of the O(N)×Z3 symmetry is

that no other superpotential interactions are dynamically generated throughout the flow.

The naive guess in this case is that generically, without further tuning of parameters,

the RG trajectory would end at an IR fixed point preserving only O(N)× Z3 flavor sym-

metry where both g1 and g2 are non-zero.3 At this fixed point, the superconformal U(1)R
charges (and hence scaling dimensions) of X and of Zi would all equal 2/3, as this is the

only R-symmetry preserved by the entire flow that commutes with O(N) × Z3 — in this

case, F -maximization is rather trivial, since there is no freedom in what the supercon-

formal R-symmetry could be. Due to recent progress on studying supersymmetric field

theories on curved manifolds, one could compute certain observables of this naive fixed

point exactly. For instance, one can use supersymmetric localization to compute its S3

1We refer the reader to [9] for a nice discussion and examples in the context of 4d N = 1 gauge theories.
2The idea that the conformal bootstrap could be used to provide evidence for the emergence of accidental

symmetries was already proposed in [15].
3It should be clear that the couplings that flow are the ones obtained after rescaling X and Zi such that

their corresponding Kähler terms are canonical. For simplicity, we will not make a distinction between the

superpotential and the canonical couplings in our notation.
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free energy F = − log |ZS3 |, or further using the results of [3], one can also calculate the

O(N) “central charge” c
O(N)
J , defined in terms of the two-point function of the canonically

normalized O(N) current, or the coefficient cT defined in terms of the two-point function

of the canonically normalized stress tensor. The main argument of this paper is quite sim-

ple: using the conformal bootstrap, we show that a unitary SCFT with O(N) symmetry,

a chiral O(N) fundamental of dimension 2/3, and with the value of c
O(N)
J determined by

localization, is inconsistent when N > 2.4 The naive fixed point of (1.1) therefore does

not exist when N > 2, and we expect symmetry enhancement in the infrared. A weaker

result can be obtained using the F -theorem [2, 11–13], which can be used to argue that

this naive fixed point does not exist when N > 5.

The naive fixed point of (1.1) with non-vanishing g1 and g2 also does not exist for

N = 2. In this case, if g2 = 0, the theory is equivalent to the XY Z model. The X3

coupling in (1.1) is then marginal, and using conformal perturbation theory around the

XY Z model, it can be seen to flow to zero in the infrared.5 The assumptions used in

our particular bootstrap analysis do not distinguish between the XY Z model and its X3

deformation as in (1.1), which is why we do not exclude the N = 2 case. When N = 1,

we believe that generically (1.1) flows to two decoupled copies of the N = 2 super-Ising

theory (the latter was studied in a bootstrap context in [18]). We will give some evidence

for this proposal in section 2.2. Our main focus in this paper is, however, the case N > 2.

When N > 2, what we believe happens with the model (1.1) is that the IR physics

is governed by one of two other fixed points with enhanced symmetry. Apart from the

UV fixed point with g1 = g2 = 0, the theory (1.1) is also believed to have a fixed point

where g2 = 0 and g1 6= 0, as well as a fixed point where g1 = 0 and g2 6= 0. The former

has O(N)× U(1) flavor symmetry, as we review in section 2.1. The latter fixed point has

U(N) × Z3 flavor symmetry (the Z3 is as before and under U(N) the Zi transform as a

fundamental and X is a singlet), being the product of a free theory of N chiral multiplets

and the N = 2 super-Ising model studied in [18]. Both fixed points enhance the O(N)×Z3

preserved by the flow to a strictly larger symmetry group.

Among the applications of the models (1.1) with N > 2 are the world volume theories

of M2-branes placed at Calabi-Yau singularities. For example, the theory with N = 5 has

been proposed in [19]6 as a description of a single M2-brane placed at the tip of the conical

Stenzel space
∑5

i=1 z
2
i = 0. This claim is plausible because the classical moduli space of

the model (1.1) is X = 0,
∑5

i=1 Z
2
i = 0, which is exactly the conical Stenzel space. We

will show, however, that the SO(5) symmetric theory with non-vanishing g1 and g2 does

not exist at the quantum level. We postpone a further discussion of models that arise on

M2-branes to future work.

4Using the value of cT of this fixed point by itself does not seem to lead to an inconsistency.
5In fact, in 3d N = 2 SCFTs, a marginal operator can be either exactly marginal or marginally irrele-

vant [16]. It is known that the XY Z model has one exactly marginal deformation, and that it preserves

the permutation symmetry between X, Y , and Z [17]. The marginal deformation X3 does not preserve

this symmetry and must therefore be marginally irrelevant.
6At first sight, the theory proposed in [19] seems different because it is a U(1) × U(1) Chern-Simons

gauge theory. However, for k = 1 the gauge symmetries become unimportant, and the model reduces to

the SO(5) symmetric Wess-Zumino model (1.1) after some field redefinitions.
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The rest of this paper is organized as follows. In section 2, we provide some Renor-

malization Group arguments for why for N > 2 one does not expect a fixed point of (1.1)

with both g1 and g2 non-vanishing. In particular, the F -theorem rules out such models for

N > 5. In section 3, we provide rigorous bounds on c
O(N)
J when the R-charge of Zi equals

2/3 and notice that the naive fixed point of (1.1) would be inconsistent for N > 2. In this

section, we actually present our bounds more generally in d space-time dimensions, with

2 < d < 4. We leave the computation of c
O(N)
J using supersymmetric localization, as well

as a detailed description of the bootstrap equations to the appendices.

2 Renormalization group arguments

In this section we present some arguments that, for N > 2, the theory (1.1) is not expected

to have a fixed point with only O(N) × Z3 flavor symmetry. The first argument relies on

a general RG flow analysis and the second on computations done in the 4 − ε expansion.

The third argument uses the F -theorem with which we are able to exclude our putative

SCFT, but only for N > 5. A more rigorous proof that this putative CFT does not exist

for all N > 2 will be given in section 3 using the conformal bootstrap.

2.1 RG flow analysis

Let us start by analyzing the predictions of supersymmetry for various flows in the space of

couplings g1 and g2 of our model (1.1). Consider first deforming the free theory g1 = g2 = 0

only by the relevant deformation X3, i.e., turning on g2 6= 0, while keeping g1 = 0 in the

superpotential (1.1). The theory flows to the super-Ising SCFT plus N free fields Zi, in

which the R-charges of X and Zi, are given by rZ = 1
2 and rX = 2

3 , respectively. In this case,

these charges are fixed trivially by demanding the marginality of the superpotential and the

fact that the Zi are free. The deformation X
∑
Z2
i has R-charge rXZ2 = 2

3 +2× 1
2 < 2, and

so it is a relevant deformation of the super-Ising plus N free fields SCFT. Turning on a non-

zero g1 we therefore expect to flow to a non-trivial SCFT in the IR in which rX = rZ = 2
3 .

It is easy to see that this series of RG flows is consistent with the F -theorem.

The second series of flows is slightly more involved, and starts by considering the case

g2 = 0 in (1.1), where the superpotential becomes [20, 21]

W =
g1

2
X

N∑
i=1

Z2
i . (2.1)

This superpotential preserves more flavor symmetry than (1.1): it preserves an O(N)

symmetry under which the Zi transform as a fundamental vector and X is a singlet, as

well as an additional U(1) under which Zi and X have charges +1 and −2, respectively.

Since (2.1) is the most general superpotential interaction preserving this O(N)×U(1) flavor

symmetry, no other superpotential interactions are generated throughout the RG flow.

The infrared limit of (2.1) is believed to be anN = 2 superconformal field theory analog

of the critical O(N) model. The scaling dimensions of the chiral operators X and Zi are

related to their superconformal R-charges, which can be determined using F -maximization
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N 1 2 3 4 5 6 7 8 9 10

rZ .708 .667 .632 .605 .586 .572 .562 .554 .548 .543

rX .584 .667 .737 .790 .828 .856 .876 .892 .904 .914

c
O(N)
J – .521 .600 .664 .715 .754 785 809 .828 .844

Table 1. The superconformal R-charges rX and rZ of X and Zi, respectively, as well as the

coefficient c
O(N)
J at the infrared fixed point of (2.1). The coefficient c

O(N)
J is normalized so that it

equals 1 in a theory of N free chiral multiplets.

and supersymmetric localization as in [21]. In this case, the most general R-symmetry

preserved by (2.1) is such that the R-charges of X and Zi obey

rX = 2− 2rZ , (2.2)

with arbitrary rZ . (The superpotential has R-charge 2.) Maximizing the S3 free energy over

rZ , ref. [21] obtained the values listed in table 1 for various values of N . The superconformal

R-charges, and thus scaling dimensions of the operators of this SCFT, are thus quite non-

trivial. For future reference, in this table we also list the values of c
O(N)
J for this SCFT,

computed using the method explained in appendix A.

Coming back to the theory (1.1) (with g1, g2 6= 0), one may interpret it as a super-

potential deformation of the IR fixed point of (2.1) by the operator X3. One can see,

however, that if N > 2, at the fixed point of (2.1), the operator X3 has R-charge rX3 > 2,

and so the superpotential deformation by it is irrelevant. In other words, if one starts at

the interacting superconformal fixed point that has g1 6= 0 and g2 = 0 and turns on a small

non-zero value for g2, then g2 flows back to zero. An N = 2 fixed point with non-zero g1

and g2, if it exists at all, can therefore not be reached from the fixed point with g2 = 0.

Moreover, the arguments of [16] guarantee that if such a fixed point exists as a unitary

SCFT, it is attractive in the space of couplings (g1, g2).

To summarize, we naively expect the space of theories described by (1.1) to contain

four types of fixed points. The free theory in which both g1 and g2 are relevant; the

super-Ising model plus N free fields that preserves U(N) × Z3 symmetry and in which g1

is relevant, but g2 is irrelevant; the model (2.1) that preserves O(N) × U(1) symmetry

and in which both g1 and g2 are irrelevant (for N > 1); and a fixed point preserving only

O(N) × Z3 where both g1 and g2 are irrelevant. The resulting RG flow diagram is quite

peculiar. The fixed point with only O(N) × Z3 symmetry looks like a deformation of the

one with O(N)×U(1) symmetry, but we have argued that it is impossible to have an RG

flow line connecting the two, in either direction. It is thus reasonable to expect that one

of these two fixed points does not correspond to a unitary SCFT. In the next section we

will show that it is the O(N)× Z3 one that does not exist.

2.2 4− ε expansion

Our second argument why for N > 2 we do not expect a fixed point with only O(N)× Z3

flavor symmetry comes from studying the models (1.1) in the 4 − ε expansion. From

– 5 –
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the results of [22], we can read off the beta functions for the physical couplings in 4 − ε
dimensions.7 They are known up to four loops, but here we state them up to the two-loop

order for brevity:

β1 = g1

[
− ε

2
+

(N + 4) |g1|2 + |g2|2

32π2
− 4(N + 1) |g1|4 + (N + 2) |g1|2 |g2|2 + |g2|4

512π4
+ . . .

]
,

β2 = g2

− ε
2

+
3
(
N |g1|2 + |g2|2

)
32π2

− 3(2N |g1|4 +N |g1|2 |g2|2 + |g2|4)

512π4
+ . . .

 . (2.3)

The equations β1 = β2 = 0 have the following perturbative solutions:

I : g1 = g2 = 0 ,

II : g1 = 0 , |g2|2 =
16π2ε

3

(
1 +

ε

3
+

(
1

12
− ζ(3)

3

)
ε2 +O(ε3)

)
,

III : g2 = 0 ,

|g1|2 =
16π2ε

N + 4

(
1+

4(N+1)

(N + 4)3
ε+

16+16N+17N2−N3−6(N + 4)2ζ(3)

(N + 4)4
ε2 +O(ε3)

)
,

IV : |g1|2 =
8π2ε

3

(
1 +

ε

3
+

1 + 2(N − 3)ζ(3)

12
ε2 +O(ε3)

)
,

|g2|2 =
8π2ε

3
(2−N)

(
1 +

ε

3
+

1− (N2 −N + 4)ζ(3)

12
ε2 +O(ε3)

)
. (2.4)

These equations determine g1 and g2 up to arbitrary phases that can be absorbed through

field redefinitions. See figure 1 for plots of the RG flow lines obtained from the one-loop

beta functions. In this figure, the fixed points listed above are marked with a green square,

a red circle, a blue triangle, and a black diamond, respectively.

The first solution is the free UV fixed point of theory (1.1). The second has U(N)×Z3

flavor symmetry corresponding to a product SCFT of the supersymmetric Ising model and

N free chiral multiplets. The third fixed point has O(N)×U(1) flavor symmetry. The last

fixed point only exists for N = 1 (when N = 2 it coincides with the third fixed point). It

corresponds to two decoupled copies of the super-Ising theory, as can be seen by making

the field redefinitions X → 1√
2
(X + Z) and Z → 1√

2
(X − Z). These redefinitions lead to

two decoupled copies of the super-Ising theory whenever |g1| = |g2|, and one can indeed

verify that this equality is satisfied by the fourth solution in (2.4).

We see that there is no fixed point that has O(N)×Z3 global symmetry perturbatively

in the 4− ε expansion. It is plausible, however, that such a fixed point would appear non-

perturbatively, so the 4 − ε expansion cannot be used to argue conclusively that such a

fixed point would also be absent when ε = 1.

7The physical couplings are gphys
1 = g1/

√
ZXZ2

Z and gphys
2 = g2/

√
Z3

X , where ZX and ZZ are the

wave-function renormalization factors for X and Z, respectively, in a holomorphic scheme where the super-

potential is not renormalized. Above, we use the notation gi instead of gphys
i to avoid clutter.
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Figure 1. RG flow lines obtained from the one-loop beta functions — see (2.3), where these beta

functions are given to two-loop order. The green square, red circle, blue triangle, and black diamond

correspond to the fixed points in (2.4). Note that the last fixed point only exists for N = 1.

2.3 F -theorem arguments

The F -value of the naive fixed point of (1.1), where both g1 and g2 are non-vanishing, can

be computed using the supersymmetric localization results of [1]. It equals −(N+1)`(1/3),

where `(z) is the function defined in [1] representing the contribution to the S3 free energy

of a chiral multiplet of R-charge 1 − z, since at the naive fixed point of (1.1) the fields X

and Zi all have R-charge 2/3. Numerically, we have

FO(N)×Z3
≈ 0.291(N + 1) . (2.5)
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One could imagine deforming this fixed point by giving the X field a large superpotential

mass, mXX
2. As can be seen from solving the classical equation of motion, integrating

out X then induces a quartic superpotential interaction (ZiZi)
2 for the Zi fields. If we

then fine-tune the O(N)-invariant mass of the Zi fields (a smaller and smaller degree of

fine-tuning is required as we take mX → ∞), the IR limit can be argued to be simply a

free theory of the N fields Zi. Its F -coefficient is

FN free fields = N
log 2

2
≈ 0.347N . (2.6)

The RG flow we described must be possible if the fixed point with O(N) × Z3 flavor

symmetry exists. We see, however, that FO(N)×Z3
< FN free fields when N > 5, contradicting

the F -theorem [2, 11–13]. This F -theorem argument thus rules out the existence of a fixed

point of (1.1) with non-vanishing g1 and g2 for N > 5. This is a weaker bound than the

one obtained using the conformal bootstrap in the next section.

The theory with g2 = 0, (2.1), may also be deformed by the relevant operator X2. This

flow was considered in [21] and shown to also lead to a free theory of N chiral superfields

Zi. While such a flow provides a counter-example to the cT theorem, the F -theorem holds

for all N [21]. This is consistent with our arguments: the enhanced symmetry theory with

g2 = 0 exists for all N .

It has been conjectured that the three-dimensional F -theorem is a special case of the

Generalized F -Theorem valid in continuous dimension [23, 24]. The conjecture states that

F̃UV > F̃IR, and for Wess-Zumino theories with 4 supercharges

F̃ =
∑

chirals

F̃(∆i) , (2.7)

where the function F(∆) is given in eq. (5.23) of [23]. In figure 2 we exhibit the constraints

on allowed values of N from the Generalized F -Theorem. They arise when the theory (1.1)

in continuous dimension d is deformed by the operator X2. For 3 ≤ d < 4 it flows to the free

theory of N chiral superfields, while for 2 < d < 3 it flows to the theory with superpotential

(ZiZi)
2 and ∆Z = (d − 1)/4. We see that the requirement F̃UV > F̃IR translates into

increasingly stringent constraints on N as d decreases. For dimensions slightly above d = 2

all theories with N > 2 are ruled out by the Generalized F -Theorem. Directly in d = 2

none of the theories (1.1) with N > 1 are expected to exist on general grounds, since there

should not be such interacting CFTs with continuous symmetries acting on scalar fields.

The N = 1 theory is known to exist in d = 2 —it is a member of the Dk series of N = 2

superconformal minimal models [25, 26].

3 Excluding theories via conformal bootstrap

We now aim to provide a more rigorous argument why an N = 2-preserving fixed point

of (1.1) with only O(N) × Z3 flavor symmetry is inconsistent as a unitary theory. This

argument is non-perturbative and combines the conformal bootstrap with supersymmetric

localization results. The conformal bootstrap technique can be used to numerically bound

– 8 –
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Figure 2. δF̃ ≡ F̃UV − F̃IR as a function of 2 < d < 4 for N = 1, 2, 3, 4, 5, 6, 9 (dark to light).

Here, F̃UV is the generalized free energy defined in [23] corresponding to the theory (1.1) with

O(N)×Z3 symmetry, while F̃IR corresponds to the infrared fixed point obtained by deforming that

theory by X2.

scaling dimensions and OPE coefficients of low-lying operators of all unitary CFTs with a

given global symmetry [14, 27–34] or a certain amount of supersymmetry [15, 35–41]. At

the same time, scaling dimensions and OPE coefficients of operators protected by super-

symmetry can be determined analytically for a given theory using supersymmetric local-

ization [21]. If the bootstrap bounds exclude the values determined via localization, then

such theories cannot be consistent unitary SCFTs.

The “central charge” of the O(N) conserved current c
O(N)
J for N = 2 SCFTs is an

example of a quantity that can both be bounded using the bootstrap and computed exactly

from supersymmetric localization. In d space-time dimensions, we define the central charge

c
O(N)
J of the canonically normalized O(N) conserved current jµij by

〈jµij(x)jνkl(0)〉 = c
O(N)
J

Γ2(d/2)

4(d− 1)(d− 2)πd
(δikδjl − δilδjk)

(
ηµν − 2

xµxν

x2

)
1

x2d−2
. (3.1)

With this definition, c
O(N)
J = 1 for a free chiral multiplet transforming in the fundamental

representation of O(N). (While we are primarily interested in the theory (1.1) defined in

three space-time dimensions, we will be more general and perform a study in d space-time

dimensions.)

In appendix A we explain how to compute c
O(N)
J using supersymmetric localization.

For the proposed fixed point of (1.1) with only O(N)× Z3 flavor symmetry, we have that

the R-charges of X and Z are fixed to be rX = rZ = 2/3 in any d, but the relation between

the scaling dimension and R-charge is dimension dependent [18, 23]:

∆Zi = ∆X =
d− 1

3
. (3.2)

The result for c
O(N)
J is also a function of d but independent of N . For instance, in d = 3,

we have

c
O(N)
J =

8

9
− 2

π
√

3
≈ 0.521 , (3.3)
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d 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

c
O(N)
J .050 .154 .275 .399 .521 .637 .744 .841 .927 1

Table 2. The values of c
O(N)
J for a potential fixed point of (1.1) with only O(N) × Z3 flavor

symmetry.

in agreement with the value listed in table 1 for N = 2, in which case the theory (2.1) also

has rX = rZ = 2/3. For a list of values for c
O(N)
J in various space-time dimensions, see

table 2.

Since the O(N) current jµij is a superconformal descendant in the same super-multiplet

as the spin-0 superconformal primary OSa,d−2,0, we can relate c
O(N)
J to the OPE coefficient

λSa,d−2,0. (Our convention for denoting operators is OXx,∆,` where X = S, T corresponds

to U(1)R charge 0 and ±2rZ , respectively; x = s, t, a corresponds to the singlet, rank-two

symmetric traceless, and antisymmetric O(N) representation; ∆ is the scaling dimension;

and ` is the spin. We use a similar convention for OPE coefficients.) In our normalization,

c
O(N)
J =

22d−5

λ2
Sa,d−2,0

. (3.4)

As explained further in appendix B, we can now use the conformal bootstrap to place upper

bounds on λ2
Sa,d−2,0, and therefore lower bounds on c

O(N)
J , as a function of N , space-time

dimension d, and the scaling dimension of the superconformal primary ∆Zi .

In figure 3 we show lower bounds on c
O(N)
J at the value ∆Zi = 2

3 determined by R-

Symmetry for N = 2, . . . , 10 and d = 3, along with the localization value c
O(N)
J ≈ 0.521.

This value is disallowed by the bootstrap bounds for N ≥ 3 and thus shows that the IR

limit of the model (1.1) cannot be described by an N = 2 SCFT with only O(N) × Z3

flavor symmetry. We view this as a non-perturbative proof that for N ≥ 3 the above flow

must exhibit flavor symmetry enhancement in the IR.

Figure 4 shows lower bounds on c
O(N)
J as we vary ∆Zi for the specific case N = 3

and d = 3, together with the analytical value (∆Zi , c
O(N)
J ) = (2/3, 0.521) determined by

R-symmetry and localization. This value is marked with a black diamond in figure 4 and

is disallowed by the bootstrap bounds. As a consistency check, the plot begins at the free

theory value (∆Zi , c
O(N)
J ) = (1/2, 1), which lies on the boundary of the allowed region.

Also close to the boundary of the allowed region we find the fixed points with O(N)×U(1)

flavor symmetry for which the values of ∆Zi = rX and c
O(N)
J were given in table 1. These

latter SCFTs are marked with blue triangles in figure 4. The dashed blue line that passes

through these blue triangles represents the curve in the (∆Z , c
O(N)
J ) plane along which all

these models are located, obtained by eliminating N between the expressions for ∆Z and

c
O(N)
J . As we can see, these O(N) × U(1)-invariant SCFTs come close to saturating the

bootstrap bounds, especially at large N where the quantities (∆Z , c
O(N)
J ) approach the free

field values (1/2, 1).

In figure 5, we depart from d = 3 and show lower bounds on c
O(N)
J at the value

∆Zi = d−1
3 for N = 2, 3, 4 in dimensions 2 < d < 4, along with the localization value

– 10 –
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Figure 3. Lower bounds on central charge c
O(N)
J for N = 2 SCFTs with O(N) symmetry in

d = 3 for N = 2, . . . , 10, computed using the conformal bootstrap. The black dotted line denotes

the N independent analytical value of c
O(N)
J computed from localization for SCFTs with super

potential (1.1). For N ≥ 3, the black dotted line falls outside of the region allowed by the bootstrap,

making model (1.1) a disallowed SCFT.

Allowed

Disallowed

▼

▼

▼

◆◆ N=3

N=6

N=9

0.50 0.55 0.60 0.65 0.70
ΔZ

0.5

0.6

0.7

0.8

0.9

1.0
cJ
O (N)

d=3

Figure 4. Conformal bootstrap lower bounds on c
O(N)
J for N = 2 SCFTs with O(N) symme-

try in 3d, for N = 3, 6, 9. The black diamond denotes the N -independent analytical value of

(∆Zi
, c

O(N)
J ) = (2/3, 0.521), computed from localization for SCFTs with super potential (1.1). The

diamond falls outside of the orange shaded region allowed by the bootstrap. The blue triangles and

the dotted blue line correspond to the interacting SCFT with O(N)×U(1) flavor symmetry — see

table 1. The blue triangles correspond to N = 3, 6, 9, from right to left.

of c
O(N)
J plotted as a function of dimension. In dimensions d ≥ 3 the localization value is

disallowed by the bootstrap bounds for N ≥ 3, but as the dimension decreases toward d = 2,

theories with higher values of N appear to be allowed by the bootstrap. However, the lower

bounds computed using the bootstrap could conceivably be improved by inputing more

theory specific assumptions into the bootstrap algorithm, such as the scaling dimensions of
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Figure 5. The left plot shows lower bounds on central charge c
O(N)
J for N = 2 SCFTs with O(N)

symmetry in dimensions 2 < d < 4 for N = 2, 3, 4, 6, 9. The black dotted curve denotes the N

independent analytical value of c
O(N)
J computed from localization for SCFTs with super poten-

tial (1.1) in 2 < d < 4. The right plot shows the difference between the c
O(N)
J bound determined

by the bootstrap and the results from localization, focusing on N = 2, 3, 4.

certain low-lying operators. The bounds on N from the Generalized F -Theorem, discussed

in section 2.3, are so far more stringent in d < 3 than the bounds from the conformal

bootstrap.

4 Discussion

In this paper, we argued that the N = 2 generalization of the critical O(N) vector model

with superpotential (1.1) and N > 2 exhibits a flavor symmetry enhancement at the

infrared superconformal fixed point, where the coupling g2 flows to zero. While we present

several arguments relying on a general RG flow analysis, the 4 − ε expansion, and the

F -theorem in section 2, our most constraining argument is presented in section 3 and

relies on a combination between supersymmetric localization techniques and the conformal

bootstrap. It would be interesting to see if there are other situations in which the conformal

bootstrap can be used in a similar way to provide an argument for symmetry enhancement.

In obtaining our bounds in figure 4 for the O(N) current central charge, we noticed that

the superconformal fixed points with enhanced O(N)×U(1) global symmetry given in (2.1)

come close to saturating these bounds, being located at certain kinks in the boundary

between the allowed and disallowed regions. We hope to report on a more careful study of

these SCFTs in a later publication [42].
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A Supersymmetric localization

For the purpose of computing c
O(N)
J using supersymmetric localization, it is useful to

consider a U(1) subgroup of O(N) (call it Ũ(1)) that corresponds to SO(2) rotations of the

first two components of the O(N) fundamental vector. The conserved current is j̃µ = jµ12.

From (3.1), it obeys

〈j̃µ(x)j̃ν(0)〉 = c
O(N)
J

Γ2(d/2)

4(d− 1)(d− 2)πd

(
ηµν − 2

xµxν

x2

)
1

x2d−2
. (A.1)

In general, for an abelian current it is convenient to define

〈j̃µ(x)j̃ν(0)〉 = c
Ũ(1)
J

Γ2(d/2)

8(d− 1)(d− 2)πd

(
ηµν − 2

xµxν

x2

)
1

x2d−2
, (A.2)

so that a free chiral multiplet with unit charge has c
Ũ(1)
J = 1. From comparing (A.1)

to (A.2), we see that

c
Ũ(1)
J = 2c

O(N)
J . (A.3)

We can now compute c
Ũ(1)
J from supersymmetric localization. Let us define Y± =

Z1 ± iZ2 and write the superpotential (1.1) as

W =
g1

2

(
XY+Y− +

N∑
i=3

XZiZi

)
+
g2

6
X3 . (A.4)

Under Ũ(1), Y± have charges ±1 while all other fields are neutral, so we consider the trial

R-charges

rY+ = rZ∗ + y ,

rY− = rZ∗ − y ,
rZi = rZ∗ ,

(A.5)

where y is the trial parameter and rZ∗=2
3 at a fixed point of (1.1) with only O(N) × Z3

flavor symmetry. In order to study the fixed point of (2.1), one should determine rZ∗

by maximizing the Sd free energy with respect to rZ∗ . Eq. (A.5) is consistent with the

marginality of the superpotential (A.4) and the coefficients y are precisely equal to the

Ũ(1) charge.

The Sd free energy is

F = F̃(∆X) + F̃(∆Y+) + F̃(∆Y−) +

N∑
i=3

F̃(∆Zi) , (A.6)

where F̃ is the quantity defined in [23] that interpolates between the familiar Free Energies

defined in integer dimensions. Here, we used ∆ = (d − 1)r/2 as the relation between the
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scaling dimension and R-charge for a chiral operator. For a single chiral super-field, F̃ can

be compactly defined by its derivative:

∂F̃(∆)

∂∆
=

Γ(d− 1−∆)Γ(∆) sin(π(∆− d/2))

Γ(d− 1)
. (A.7)

Regardless of rZ∗ , F is maximized when y = 0. The coefficient c
Ũ(1)
J can be computed

according to the results of [3] as

c
Ũ(1)
J = −

(
2dΓ(d−1

2 )

(d− 1)2π3/2Γ(d2 − 1)

)
∂2F

∂y2

∣∣∣∣
y=0

, (A.8)

where the constant of proportionality is fixed by requiring that c
Ũ(1)
J equal one for the

theory of a single free chiral multiplet.

Combining (A.3), (A.6), (A.7), and (A.8), and using rZ∗ = 2/3 for the proposed fixed

point of (1.1) with O(N)×Z3 flavor symmetry, we can calculate c
O(N)
J for arbitrary d. See

table 2 for numerical results in various d.

If we wish to compute c
O(N)
J for the fixed point of (2.1) with O(N) × U(1) flavor

symmetry, we should first maximize F with respect to rZ∗ . In d = 3, this maximization

was performed in [21] and the result is also listed in table 1. In table 1 we also list the

corresponding values of c
O(N)
J computed from (A.3) and (A.8).

B N = 2 O(N) conformal bootstrap

We now show how to constrain N = 2 theories with O(N) symmetry using the conformal

bootstrap technique. We restrict our attention to the four-point function of two chiral and

two anti-chiral scalar operators transforming in the fundamental representation of O(N).

Let Zi be such a chiral operator, with i = 1, . . . , N an O(N) fundamental index, and let Z̄i
be an anti-chiral operator. We find it convenient to write Zi = Z1i+iZ2i and Z̄i = Z1i−iZ2i

and work with ZIi, (I = 1, 2 being a fundamental SO(2)R index) instead of Zi and Z̄i. We

will examine the four-point function:

〈ZIi(x1)ZJj(x2)ZKk(x3)ZLl(x4)〉 , (B.1)

which includes all orderings of two Z’s and two Z̄’s at once.

The operators appearing in the ZIi × ZJj OPE can be classified according to their

transformation properties under SO(2)R × O(N). We have singlets or rank-two traceless

symmetric tensors of SO(2)R (corresponding to operators that have zero or ±2rZ R-charge,

respectively) denoted by S and T , as well as singlets, rank-two traceless symmetric tensors,

or rank-two anti-symmetric tenors of O(N) denoted by s, t, and a, respectively. Due to

Bose symmetry, the operators of the type Ts and Tt must have even spin, those of the

type Ta should have odd spin, and there are no spin restrictions on the other operators.

Forgetting about supersymmetry and performing the s-channel OPE in (B.1), one

can write the four-point function as a sum over conformal blocks G∆,` for identical scalar
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operators [43]. We have8

x2∆Z
12 x2∆Z

34 〈ZIi(x1)ZJj(x2)ZKk(x3)ZLl(x4)〉

= F
(1)
IJKL

 ∑
O∈Ss
` even

f
(1)
ijklλ

2
OG∆,`(u, v) +

∑
O∈Ss
` odd

f
(2)
ijklλ

2
OG∆,`(u, v) +

∑
O∈Ts
` even

f
(3)
ijklλ

2
OG∆,`(u, v)


+ F

(2)
IJKL

 ∑
O∈Sa
` odd

f
(1)
ijklλ

2
OG∆,`(u, v) +

∑
O∈Sa
` even

f
(2)
ijklλ

2
OG∆,`(u, v) +

∑
O∈Ta
` odd

f
(3)
ijklλ

2
OG∆,`(u, v)


+ F

(3)
IJKL

 ∑
O∈St
` even

f
(1)
ijklλ

2
OG∆,`(u, v) +

∑
O∈St
` odd

f
(2)
ijklλ

2
OG∆,`(u, v) +

∑
O∈Tt
` even

f
(3)
ijklλ

2
OG∆,`(u, v)

 ,
(B.2)

where

f
(1)
ijkl = δijδkl , f

(2)
ijkl = δilδjk − δikδjl , f

(3)
ijkl = δilδjk + δikδjl − δijδkl , (B.3)

and

F
(1)
IJKL = δIJδKL , F

(2)
IJKL = δILδJK − δIKδJL ,

F
(3)
IJKL = δILδJK − δIKδJL −

2

N
δIJδKL .

(B.4)

In the sum (B.2), we sum only over conformal primaries O.

Supersymmetry relates some of the OPE coefficients in (B.2) to one another. As ex-

plained in [18], in the T channel, there is only one operator per superconformal multiplet

contributing to (B.2). In the S channel, there are generically four operators contributing

that have related OPE coefficients. Their contributions can be grouped into a supercon-

formal block. As in [18], let us define

G∆,` = G∆,` +
2(`+ d− 2)(∆ + `)

(2`+ d− 2)(∆ + `+ 1)
G∆+1,`+1

+
2`(`+ d− 3)(2`+ d− 4)(∆− `+ 2− d)

(`+ d− 3)(2`+ d− 4)(2`+ d− 2)(∆− `− d+ 3)
G∆+1,`−1

+
∆(∆ + 3− d)(∆− `+ 2− d)(∆ + `)(

∆ + 2− d
2

) (
∆ + 1− d

2

)
(∆− `+ 3− d)(∆ + `+ 1)

G∆+2,` .

(B.5)

We also define G̃∆,` to be the same expression as (B.5) with the middle two terms multi-

plied by (−1). Then, combining the contributions coming from the same superconformal

multiplet amounts to the replacements

f
(1)
ijklG∆,` → f

(1)
ijkl

G∆,` + G̃∆,`

2
+ f

(2)
ijkl

G∆,` − G̃∆,`

2
,

f
(2)
ijklG∆,` → f

(2)
ijkl

G∆,` + G̃∆,`

2
+ f

(1)
ijkl

G∆,` − G̃∆,`

2

(B.6)

8We use the normalization of the conformal blocks in [31]. Specifically, in the r and η coordinates

introduced in [44], we have G∆,` = r∆P`(η) + . . ., as r → 0 with η kept fixed.
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in (B.2). With these replacements, we should sum only over superconformal primaries in

the first two terms of each line of (B.2).

The four-point function (B.2) (with or without the replacements (B.6)) should be

invariant under crossing symmetry, whereby one exchanges two of the operators. Some of

these exchanges are trivial — for instance, the {1, I, i} ↔ {2, J, j} exchange yields nothing

but the selection rules on the spins of the operators that appear in each channel in (B.2).

The {1, I, i} ↔ {3,K, k} exchange yields non-trivial conditions, given by 9 equations, which

can be grouped into a vector “sum rule.” Upon using (B.6), we obtain

0 =
∑

Ss, all `

λ2
OV

Ss
∆,` +

∑
St, all `

λ2
OV

St
∆,` +

∑
Sa, all `

λ2
OV

Sa
∆,`

+
∑

Ts, ` even

λ2
OV

Ts
∆,` +

∑
Tt, ` even

λ2
OV

Tt
∆,` +

∑
Ta, ` odd

λ2
OV

Ta
∆,` ,

(B.7)

where the V∆,` are given by

V Rs
∆,` =

 0

U−,R∆,`

U+,R
∆,`

 , V Rt
∆,` =


U−,R∆,`(

1− 2

N

)
U−,R∆,`

−
(

1 +
2

N

)
U+,R

∆,`

 , V Ra
∆,` =

−U
−,R
∆,`

U−,R∆,`

−U+,R
∆,`

 , (B.8)

for which R ∈ {S, T}, and the U±,R∆,` are given by

U±,S∆,` =

F
∓
∆,`

F̃∓∆,`
F̃±∆,`

 , U±,T∆,` =

 0

F∓∆,`
−F±∆,`

 . (B.9)

Here, we defined

F±∆,` = v∆ZG∆,`(u, v)± u∆ZG∆,`(v, u) ,

F±∆,` = v∆ZG∆,`(u, v)± u∆ZG∆,`(v, u) ,

F̃±∆,` = v∆Z G̃∆,`(u, v)± u∆Z G̃∆,`(v, u) .

(B.10)

The operator spectrum is further constrained due to the N = 2 supersymmetry [18, 45].

Specifically, by generalizing the reasoning in [18] for N = 2 SCFTs to include O(N)

symmetry, we find the constraints listed in table 3.

We are interested in bounding c
O(N)
J . This quantity is related to the OPE coefficient

λSa,d−1,1 with which the O(N) current, jµij , appears in the Zi × Z̄j OPE. Since jµij is a

superconformal descendant, its OPE coefficient λSa,d−1,1 is related to the OPE coefficient

λSa,d−2,0 of the O(N)-antisymmetric spin-0 superconformal primary OSa,d−2,0 in the same

supermultiplet as jµij . According to (B.5), we can relate λ2
Sa,d−1,1 to λ2

Sa,d−2,0 as

λ2
Sa,d−1,1 = λ2

Sa,d−2,0

2(d− 2)

d− 1
. (B.11)
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s t a

S ∆ ≥ `+ d− 2, for all allowed values of `

T

∆ ≥ |2∆Z − (d− 1)|+ `+ (d− 1), for all allowed values of `

∆ = 2∆Z + `, for all allowed values of `

∆ = d− 2∆Z , for ` = 0, ∆Z ≤ d/4
∆ = 2∆Z , for ` = 0

Table 3. Constraints on the operator spectrum of an N = 2 SCFT with O(N) flavor symmetry

coming from supersymmetry.

By expanding the four point function (B.1) of the free theory in terms of superconformal

blocks, we can derive the relationship

c
O(N)
J =

4d−2(d− 2)

d− 1

1

λ2
Sa,d−1,1

. (B.12)

Combining (B.11) and (B.12), we find

c
O(N)
J =

22d−5

λ2
Sa,d−2,0

. (B.13)

To bound λ2
Sa,d−2,0, we start by rewriting the crossing equation (B.2) as [29],

λ2
Sa,d−2,0V

Sa
d−2,0 = −V Ss

unit −
∑

O6=OSa,d−2,0

λ2
OVO . (B.14)

Now apply a linear functional ~α to (B.14) and look at the space of functionals that satisfy

the constraints

~α
(
~V Sa
d−2,0

)
= 1 ,

~α
(
~VO(∆)

)
≥ 0 for all O 6= OSa,0 and constraining ∆ as in table 3.

(B.15)

Eqs. (B.14) and (B.15) then imply that

λ2
Sa,d−2,0 ≤ ~α(−~V Ss

unit) . (B.16)

By finding the minimal such ~α we find an upper bound on λ2
Sa,d−2,0, which using (B.13)

gives a lower bound on c
O(N)
J .

The numerical results presented in the main text were generated as follows. We used

a Mathematica script to generate the conformal blocks G∆,`(u, v) in arbitrary dimension,

using the recursion formula for scalar conformal blocks [46]. We implemented the semi-

definite programming required by the numerical bootstrap using SDPB [47], for which we

used the parameters specified in the first column of table 1 in the SDPB manual [47]. The

convergence of our results was tested by varying the maximum number of derivatives, Λ,

of the functionals ~α —specifically, we notice that the bound for Λ = 19 differ from those

with Λ = 21 by 10−3 in the value of c
O(N)
J . Furthermore, as we increase the search space in

~α, the space of allowed theories can only become smaller, which implies that once a theory

is excluded by the numerical bootstrap at a given value of Λ, it is rigorously excluded from

the space of all mathematically consistent unitary CFTs.
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