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Abstract—Propagating a short, relativistically intense laser
pulse in a plasma channel makes it possible to generate comb-like
electron beams for advanced radiation sources. The ponderomo-
tive force of the leading edge of the pulse expels all electrons fac-
ing the pulse. The bare ions attract the ambient plasma electrons,
forming a closed bubble of electron density confining the pulse
tail. The cavity of electron density evolves slowly, in lock-step
with the optical driver, and readily traps background electrons.
The combination of a bubble (a self-consistently maintained,
“soft” hollow channel) and a preformed channel forces transverse
flapping of the laser pulse tail, causing oscillations in the bubble
size. The resulting periodic injection produces a sequence of
background-free, quasi-monoenergetic bunches of femtosecond
duration. The number of these spectral components, their charge,
energy, and energy separation is sensitive to the channel radius
and pulse length. Accumulation of noise (continuously injected
charge) can be prevented using a negatively chirped drive pulse
with a bandwidth close to a one-half of the carrier wavelength. As
a result of dispersion compensation, self-steepening of the pulse is
reduced, and continuous injection almost completely suppressed.
This level of control on a femtosecond time scale is hard to achieve
with conventional accelerator techniques. These comb-like beams
can drive high-brightness, tunable, multi-color γ-ray sources.

I. INTRODUCTION

Laser-plasma accelerators (LPAs), driven by compact short-
pulse, multi-terawatt lasers, have become a popular scientific
instrument [1]. Their ability to deliver GeV-scale, background-
free, fs-duration electron beams [2], [3], with a beam quality
competitive with standard linear accelerators [4], is an asset
for the design of all-optical γ-ray sources, featuring the un-
precedented degree of control over the radiation spectrum [5].
This flexibility is rooted in the nature of the driver – a relativis-
tically intense laser pulse. The radiation pressure of the pulse
creates complete electron cavitation in an underdense plasma,
leaving the background ions unperturbed [6]–[8]. The resulting
“bubble” of electron density guides the pulse over many
Rayleigh lengths while maintaining GV/cm-scale accelerating
and focusing gradients [9]. The shape of the bubble evolves
slowly, in lock-step with the optical driver, making it possible
to trap initially quiescent background electrons, eliminating the
need for an external photocathode [10]. The electron injection
and acceleration process can thus be controlled by purely
optical means [11]–[13], thereby adjusting the properties of
electron beams to the demands of a given application.

Progress in applications demands the design of a miniature
GeV-scale accelerator, driven by a high-repetition-rate, 10-
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Fig. 1. Radial profile of electron density (left axis) and normalized intensity
of the NCP in a cross-section taken at the peak intensity (right axis). (WAKE
simulation.) Density on axis n0 = 6.5 × 1018 cm−3. Blue curve: initial
distribution of intensity (z = 0, matched spot). Red curves: distributions of
intensity at z=2 mm (thin solid line) and 2.5 mm (thick dashed line). The
most intense segment of the pulse self-guides with almost invariable spot size,
roughly one-half of the channel-matched spot size.

TW-class laser. Reaching this energy over a few-mm distance
requires an accelerating gradient as high as 10 GV/cm, which,
in turn, dictates acceleration in the blowout regime in highly
dispersive, dense plasmas (∼1019 cm−3). This choice presents
a number of challenges. High-contrast, negative gradients of
the nonlinear index co-propagate with the drive pulse, locally
reducing its frequency by a large fraction of the carrier
frequency [10], [11], [13]–[17]. The negative group velocity
dispersion (GVD) of the plasma concurrently transforms the
red-shifted pulse into a relativistic optical shock [18], [19],
causing the bubble to constantly expand and trap background
electrons, degrading electron beam quality [10]–[13], [20],
[21]. To avoid this, we propose to compensate for the nonlinear
reduction in frequency (exceeding −ω0/2) with a careful
choice of the initial laser phase [22]. To be practically effective,
this approach needs broad spectrum amplifiers delivering few-
Joule, near-IR laser pulses with the bandwidth approaching
one-half of the carrier wavelength {such as the future Petawatt
Field Synthesizer (PFS) [23]}. By temporally advancing the
high frequency components of the incident pulse (i.e. intro-
ducing a negative frequency chirp), we reduce the positive
chirp produced by the plasma wake excitation. The nega-
tively chirped pulse (NCP) thus remains uncompressed through
electron dephasing, continuous injection remains suppressed,
and the quasi-monoenergetic (QME) electron bunch remains
dominant. As a bonus, the higher average frequency of the
pulse, together with slower etching of its front, effectively
increases the dephasing length, boosting electron energy [11]–
[13]. This technique of dispersion compensation, combined
with tailoring of the target, helps produce high-quality electron
beams in formats other than a single QME bunch. Propagating
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Fig. 2. Evolution of (a) laser pulse energy; (b) mean frequency (in units of
ω0); (c) RMS bandwidth (in units of ω0); (d) pulse length computed from
the ζ-variance of the energy density on axis. (WAKE simulations.) Black –
the reference case; red – the NCP in a channel. The pulse propagates towards
positive z. The chirp and channel together reduce depletion, frequency red-
shift, spectral broadening, and contraction of the pulse (cf. also Fig. 3).

the NCP in a channel [24] suppresses diffraction of its leading
edge, further reducing self-steepening. More importantly, the
channel forces periodic oscillations of the bubble size, bringing
about periodic self-injection [25]. The resulting polychromatic
(“comb-like”) electron beams consist of several high-quality,
multi-100 MeV QME components each carrying 100 pC-scale
charge. The number of these components can be controlled
by varying the channel radius, whereas their mean energy and
energy separation is controlled by changing the plasma length
[12], [26]. Negative chirp minimizes the continuous energy
background, improving spectral separation and energy spread
of individual components. Such clean multi-color beams, un-
available with standard accelerator technology, may find a
unique application as drivers for table-top short-pulse optical
sources from near-IR to γ-ray range [5], [27].

II. SIMULATION FRAMEWORK

Physical processes underlying the all-optical manipulations
of the LPA are explored using reduced and full particle-in-cell
simulations. Fast quasistatic simulations using the fully rel-
ativistic, cylindrically symmetric, time-averaged (over 1/ω0),
extended paraxial code WAKE [6], [14] shed light on the phys-
ical nature of the continuous injection [11] and help retrieve the
laser pulse phase profile sufficient to disrupt formation of the
relativistic optical shock. Accurate self-consistent simulations
of electron phase space dynamics are carried out with the fully
explicit, quasi-cylindrical code CALDER-Circ [28], which
uses a numerical Cherenkov-free electromagnetic solver [29]
and third-order splines for macroparticles. These features, in
combination with the fine grid (∆z=∆r/16=0.125c/ω0 =16
nm, where r2 =x2 +y2) and large number of particles per cell
(20) maintain low sampling noise, negligibly low numerical
dispersion, and also avoids numerical emittance dilution.

The interaction regime corresponds to that considered in
[11], [12]. The plasma spans from z=0 to 3 mm, having 0.5

mm-length linear entrance and exit ramps, and a 2 mm longi-
tudinally flat section with the density n0 = 6.5×1018 cm−3.
The linearly polarized, 70 TW pulse with the carrier wave-
length λ0 = 0.805 µm propagates toward positive z. The
normalized vector potential in the focal plane is Gaussian,
a(z = 0) = a0 exp[−(r/r0)2 − 2 ln 2(t/τL)2 + iϕ(t)], with
a0 = 3.27, τL = 30 fs, r0 = 13.6 µm. The rate of the phase
variation defines the instantaneous frequency, ω(t)=−dϕ/dt=
ω0−(4 ln 2)(κ/τL)2t, where ω0 = 2πc/λ0. Simulations with
a 30 fs-length, transform-limited pulse, or TLP (κ = 0), are
referred to as the reference case. To combat self-steepening,
we increase the bandwidth by a factor of 6 (κ=2.4323), thus
temporally advancing high frequencies; the NCP in this format
may be obtained by under-compressing a 420-TW, 5-fs pulse
of the PFS [23]. A detailed comparative study of the TLP and
NCP evolution in a uniform plasma was presented in [11]. We
complement this study by placing the pulse in a leaky channel
matched to the spot size of the incident pulse [24] (cf. Fig. 1):

ne(r) =


n0(1 + r2/r2

ch), for r ≤ rch

2n0(2− r/rch), for rch < r ≤ 2rch

0, for r > 2rch.

The channel further mitigates the pulse self-steepening and
yields, as a bonus, new features in the electron beam.

III. RESULTS AND DISCUSSION

A. Preventing Formation of Relativistic Optical Shock

The large bandwidth and negative chirp significantly re-
duce energy depletion, average frequency red-shift, and self-
compression of the drive pulse. Figures 2(b) and 2(c) show
radially integrated mean frequency and frequency variance [16]

〈ω(z)〉 = A−1

∫ ∞
0

r dr

∫ ∞
0

ω|a(r, z, ω)|2 dω,

〈∆ω(z)〉2 = A−1

∫ ∞
0

r dr

∫ ∞
0

(ω − 〈ω〉)2|a(r, z, ω)|2 dω,

where a(r, z, ω) =
∫ +∞
−∞ a(r, z, ζ)e−i(ω0−ω)ζ dζ is the Fourier

transform with respect to ζ = z/c − t, and A =∫∞
0
r dr

∫∞
0
|a(r, z, ω)|2 dω. Figure 2(d) shows the pulse

length computed as a ζ-variance of the energy density on axis,

τL(z) =

(
8 ln 2B−1

∫ ∞
−∞

(ζ − 〈τ〉)2|a(0, z, ζ)|2 dζ

)1/2

,

where 〈τ〉 = B−1
∫∞
−∞ ζ |a(0, z, ζ)|2 dζ is the position of

the pulse centroid, and B =
∫∞
−∞ |a(0, z, ζ)|2 dζ. Figures

2(a) and 2(b) indicate that in the reference case the pulse
energy and mean frequency drop by 50% by the end of the
interaction, with a nearly 10-fold increase in the frequency
variance [Fig. 2(c)]. Conversely, an NCP propagating in the
channel experiences merely 30% reduction in energy and mean
frequency, with the initial bandwidth preserved through z ≈ 2
mm (or 80% of the interaction length). As a result, pulse
compression is noticeably reduced [cf. Fig. 2(d)].1

Figure 3 complements the integral characteristics displayed
in Fig. 2 and links longitudinal distortion of the pulse [panels

1Oscillations in τL(z) result from periodic focusing of the pulse tail inside
a bubble (cf. Fig. 4). For a pulse of duration much shorter than the bubble
length such oscillations are absent [13].



(a), (b)] to the local frequency shift on axis [(c), (d)]. The shift
is extracted from the complex envelope of the vector potential,
a(0, z, ζ) = |a| exp(iφ), using two independent methods [14].
First, the Wigner transform of the envelope, W(ζ, ω) =∫ +∞
−∞ a

(
ζ + ζ′

2 , z
)
a∗
(
ζ − ζ′

2 , z
)

e−i(ω0−ω)ζ dζ ′, yields the
distribution of “photon density” in the “photon phase space.”
Secondly, the “instantaneous” frequency is calculated as the
rate of the envelope phase change, ω(ζ) = ω0−dφ/dt = ω0 +
∂φ/∂ζ. The pulse leading edge rides on the co-moving neg-
ative gradient in the nonlinear index. The positive frequency
chirp develops along the gradient, red-shifting the pulse head
by a large fraction of the carrier frequency. Radially integrated
spectral power S(z, ω)=

∫∞
0
ω2|a(r, z, ω)|2r dr shown in Fig.

3(e) demonstrates an order-of-magnitude increase of the pulse
bandwidth in the reference case, in agreement with Fig. 2(c).

In the reference case, negative GVD slows down the red-
shifted frequency components, compressing the pulse to a
nearly single-cycle optical shock of highly relativistic intensity
(|a| ≈ 16) [cf. Figs. 3(a) and 3(c)]. The shock acts on the
ambient plasma electrons as a snow-plow, causing elonga-
tion of the bubble and continuous injection [11]. The mid-
IR photons further slide into the bubble, mixing with the
unshifted radiation, red-shifting the entire pulse by the end of
the interaction. Mixing radiation of different frequencies and
uncorrelated phases leads to sharp variations of the envelope
phase, making the local frequency poorly defined, causing
oscillations of the envelope in the tail area.

Chirp and channel together delay formation of the optical
shock. The channel suppresses diffraction of the leading edge,
reducing its steepening [12]. Temporal advancement of high
frequencies partly compensates for the nonlinear red-shift,
preserving the pulse bandwidth for a long time. The red-shift
remains localized at the leading edge [cf. Fig. 3(d)]. There is
no sign of photon phase mixing. The instantaneous frequency
thus remains well-defined and single-valued, showing minimal
oscillations. The pulse in Fig. 3(b) is not yet fully compressed,
and the intensity build-up is only about a half of that of the
reference case. Weaker compression of the NCP reduces the
snow-plow effect thereby suppressing the bubble expansion.

B. Accordion Effect and Periodic Injection

Propagation in the channel adds new features to the pulse
evolution, leading to generation of electron beams in uncon-
ventional formats. Figure 4 examines transverse evolution of
the NCP in the uniform plasma and in the channel, linking
it to the process of electron self-injection. In the uniform
plasma, the accelerating phase (the region inside the bubble
where the longitudinal electric field is negative) oscillates
only once [between points marked (CF1) and (CF3) in Fig.
4(a)], giving way to continuous expansion afterwards. A single
QME bunch with a weak tail is thus created [11]. Conversely,
the bubble propagating in a channel oscillates at least twice
between points marked (CC1) and (CC5), producing two
distinct features in collection volume [initial longitudinal and
radial positions of high-energy electrons at dephasing shown
in Fig. 4(b)]. Collection phase space and energy spectrum in
Figs. 5(c) and 5(d) indicate that these features correspond to
narrow-bandwidth QME bunches well separated in energy.

Oscillation of the accelerating phase (the accordion effect)

Fig. 3. Preventing pulse self-steepening with negative frequency chirp
(WAKE simulations.) Panels (a) and (c) correspond to the reference case,
and (b) and (d) to the case of an NCP propagating in a channel. The pulse
propagates from left to right. All quantities correspond to z = 2.2 mm
(the dephasing limit in the reference case). All quantities in panels (a)–
(d) are shown on axis: (a), (b) lineouts of the normalized intensity, |a|2
(left axes, black curves), and nonlinear refractive index (right axes, red
curves); and (c), (d) absolute value of the Wigner transform (grayscale) and
instantaneous frequency extracted from the envelope phase. Panel (e) shows
radially integrated spectral power in the reference case (black) and in the case
of NCP propagating in a channel (red); frequency is in units of ω0. Dashed
curves in panels (c)-(e) correspond to the incident pulse. The co-moving
negative slope of the index red-shifts the frequency at the pulse leading edge.
In the reference case, mid-IR photons, delayed by the negative GVD of the
plasma, build up a relativistic optical shock and further slide into the bubble,
mixing with unshifted radiation. The negative chirp reduces frequency red-
shift and localizes it to the pulse leading edge, thus reducing self-steepening.

was found to be the cause of periodic self-injection and
creation of multiple QME beams in a uniform plasma [30].
Generation of comb-like beams in channels was observed
as well [25], [26]. In both situations (and in the regime
considered here) the laser pulse and the bubble are comparable
in length. The pulse can be thus split into two segments –
the most intense one (“the head”), located in the region of
the index gradient at the leading edge, and less intense tail
confined within the bubble. Figures 4(c) and 4(CC1)–4(CF6)
demonstrate that the head is quite insensitive to transverse
non-uniformity of the ambient plasma. It self-guides with a
steadily varying spot, showing no oscillations. Furthermore,
suppressing diffraction of the leading edge with the preformed
channel almost freezes the head spot size (this can also be seen
in Fig. 1). As a result, the collection radius (initial radial offset
of self-injected electrons, close to the local spot size of head)
shown in Fig. 4(b) remains uniform throughout acceleration.
Thus, contrary to the earlier conjectures [25], [26], the channel
stabilizes the most intense segment of the pulse, preventing
undamped “betatron oscillations.”

The pulse tail, on the other hand, is naturally unmatched
to the self-consistently maintained soft hollow channel – the
bubble. Snapshots of the pulse intensity taken at the points
of full expansion/contraction of the bubble [Figs. 4(CC1)–
4(CF6)] show that the tail flaps, driving the bubble boundaries
sidewards, changing the bubble size. In a uniform plasma, the



Fig. 4. Accordion effect in a plasma channel. The NCP propagates in a longitudinally uniform channel [red in panels (a)–(c)] and in a flat plasma [black in
(a)–(c)]. All lengths are in microns, unless specified differently. CALDER-Circ simulations yield the length of the accelerating phase on axis (roughly, half-length
of the bubble), (a), and collection volume of electrons crossing the plane z = 2.2 mm, (b). Initial radial offsets of injected electrons in panel (b) correspond
to a cylindrical shell with a local radius close to the radius of the laser pulse head. WAKE simulations yield the evolution of the laser beam radius in the
highest-intensity cross-section (at e−2 of the peak intensity) [panel (c)] and pulse intensity snapshots (CC1)–(CF6) at the points of full expansion and contraction
of the bubble, labeled accordingly in panel (a). The pulse propagates to the right, tags “CC” and “CF” stand for “chirp-channel” and “chirp-flat”. The grayscale
shows distributions of intensity normalized to the local peak intensity, encircled by the intensity iso-contours at e−2 of the peak. Oscillations of the bubble
size [panel (a)] are uncorrelated with the evolution of the most intense segment of the pulse [panel (c)]. The pulse head propagates with almost invariable spot,
whereas the tail flaps inside the bubble, driving the bubble walls sidewards, causing bubble expansion and electron self-injection. In the uniform plasma, flapping
subsides after the point (CF3), giving way to steady bubble expansion and weak continuous injection. In the channel, flapping persists, yielding two oscillations
of the bubble size and two distinct consecutive injections producing two high-energy QME beams [cf. Fig. 5(d)].

flapping subsides. The addition of the low-contrast external
channel supports the flapping, leading to at least 2.5 periods
of bubble oscillations between the points marked (CC1) and
(CC5) in Fig. 4(a). We find that reducing the channel radius,
matching the channel to the self-guided rather than incident
pulse spot size, destabilizes the tail even further, yielding
another period of bubble oscillation, adding a third QME
electron bunch accelerated in the first bucket (these details
will be presented in a separate publication).

Reducing the amount of radiation confined inside the
bubble effectively eliminates the accordion effect [13]. Figure
6 shows that clipping the pulse tail (i.e. reducing the pulse
length from 30 to 20 fs while keeping the same 70 TW
power and the same frequency bandwidth) leads to a single
oscillation of the bubble size, followed by a steady slow
expansion. This yields a single high-charge QME bunch with a
weak tail, similarly to the uniform-plasma case [11]. Changing
the channel radius and/or the NCP length (as permitted by
the bandwidth) thus effectively controls the output of the
acceleration process and the electron beam structure (from
comb-like to quasi-monoenergetic), while keeping a low level
of background.

Last but not least, the data presented in Figs. 4–6 show
that, in all instances, whether self-injection is continuous or
periodic, into the first or the second bucket, in a uniform
plasma or in a channel, all electrons accelerated through
dephasing are collected from the cylindrical shell, as predicted
by theory [10], [11], [30]. There is no evidence of longitudinal
injection reported earlier for a similar regime [31]. Stable
propagation of the pulse head, showing no signs of “betatron
oscillations,” as well as the collection volume inconsistent
with longitudinal wavebreaking, rules out both “parametric
resonance” and periodic longitudinal wavebreaking [25], [26]
as physical mechanisms responsible for the generation of these
tunable comb-like electron beams.

C. Properties of Electron Beams

The dynamics of electron injection in the channel is dis-
cussed in detail in [12]. QME beams statistics for the cases
displayed in Figs. 5 and 6 are summarized in Table I. Table I
shows: total charge, Q; mean energy, 〈E〉; dispersion of energy,
σE ; root-mean-square (RMS) normalized transverse emittance,
εN⊥ = 2−1/2[(εNx )2 +(εNy )2]1/2, where εNi = (mec)

−1[(〈p2
i 〉−

〈pi〉2)(〈r2
i 〉−〈ri〉2)−(〈piri〉−〈ri〉〈pi〉)2]1/2; RMS divergence



Fig. 5. Dynamics of electron injection in the reference case (black) and in
the case of NCP propagating in a channel (red) (CALDER-Circ simulations).
(a) Length of the accelerating phase on axis vs. propagation length. (b), (c)
Transverse (longitudinal) collection phase space [initial radial (longitudinal)
positions vs. final longitudinal momenta] of electrons crossing the plane
z = 2.2 mm [red marker in panel (a)]. The channel suppresses diffraction
of the pulse leading edge, keeping the collection radius [red markers in panel
(b)] constant. In a channel, the bubble size oscillates twice between z = 0.8
and 1.55 mm, producing two distinct groups of QME electrons in panel (c).
The group encircled by a blue ellipse is accelerated into the second bucket.
(d) Electron energy spectra. The negative chirp and the channel suppress
continuous injection so effectively as to make electrons from the second bucket
(E ≈ 250 MeV) stand clearly against the weak low-energy background.

σα=2−1/2[σ2
αx+σ

2
αy]1/2, where σαi=〈pz〉−1(〈p2

i 〉−〈pi〉2)1/2;
and the average flux 〈F 〉=Q/σE . Statistics of the continuous
background are collected in Table II.

The energy spectra in the reference case [black curves in
Figs. 5(d) and 6(d)] are fully dominated by the high-charge
energy tail, which contains 85% the total charge accelerated
above 50 MeV. The chirp and the channel bring the tail down,
reducing the charge by a factor 2–4, and the average flux
by a factor 2.75–4.25 (depending on the pulse length), while
roughly preserving the net charge of the QME components.2
The chirp and the channel also reduce the energy spread
of the QME components against the reference case. The
highest energy component of the tri-color beam [Fig. 5(d)]
receives 30% energy boost against the reference case, while
acceleration in the second bucket adds the third component
to the energy comb. The QME bunch accelerated through
dephasing in the reference case absorbs 8%, and the tail about
15% of the incident pulse energy. Carrying out acceleration
with a 20 fs NCP over the same distance in the channel changes
these numbers to 16.5% and 10%, respectively. Increasing the
NCP duration to 30 fs changes the energy balance, with 10.5%
going to the comb-like beam, and only 3% to the tail.

The energy and energy separation of the QME bunches
can be controlled by changing the acceleration length. Owing
to the stabilizing effect of the chirp, the acceleration distance
can be varied safely, without accumulation of the background
[12]. The residual background is not a deal-breaker for inverse
Compton scattering (ICS) sources. Preliminary simulations of
the ICS of a narrow-bandwidth laser beam (λ = 0.8 µm,
∆λ/λ = 0.02) from the tri-color electron beam of Fig. 5
show that the comb-like structure imprints onto the scattered
radiation spectrum, yielding a tunable tri-color γ-ray flashes

2Importantly, the channel alone is unable to suppress the tail [12].

Fig. 6. Same as Fig. 5 except the NCP length is 20 fs (rather than 30 fs), with
70 TW power and frequency bandwidth equivalent to a 5 fs transform-limited
duration. Clipping the pulse tail suppresses the bubble oscillations, yielding a
single QME bunch with an average flux 3.5 times higher than in the reference
case, and a weak tail. As in Figs. 4 and 5, all injected electrons have radial
offsets close to the laser pulse spot size; there is no evidence of longitudinal
injection from the near-axis region.

with the peak flux in the range 108 ph MeV−1 sr−1, and the
energy of QME components (energy spread 20–40%) ranging
from 1 to 12 MeV. Inclusion of the low-energy background
affects only the lowest-energy component, actually increasing
its flux. QME beam of Fig. 6 yields the γ-ray signal centered
at 7 MeV, with roughly a 30% energy spread and the peak flux
2.5× 108 ph MeV−1 sr−1.

IV. SUMMARY AND OUTLOOK

The numerical simulations presented here demonstrate
production of GeV-scale, clean comb-like electron beams of
fs-scale duration (a beam format inaccessible with standard
acceleration techniques) in a miniature, mm-size LPA. Propa-
gating the drive pulse in the plasma channel destabilizes the
pulse tail confined within the soft accelerating bucket – the
electron density bubble. Transverse flapping of the unmatched
tail causes oscillations in the bubble size in the course of
propagation. This accordion effect results in the periodic
injection and subsequent acceleration of comb-like electron
beams. Using a drive pulse with a broad frequency spectrum
(equivalent to the sub-2-cycle transform-limited duration) and
introducing a negative chirp prevents pulse self-compression
into the relativistic optical shock, thereby suppressing contin-
uous injection and accumulation of low-energy background
in electron spectra. The channel radius and the pulse length
are important parameters, controlling the number of spectral
components in the beam, whereas their energy and energy
difference can be controlled by changing the plasma length.
Low energy spread and clear separation of GeV-scale spectral
components in energy, as well as a minimal amount of noise
(resulting from all-optical control of self-injection), make our
comb-like beams attractive for advanced radiation sources.
They can drive compact, all-optical, multi-color ICS γ-ray
sources [5]. Alternatively, by separating the QME components
in a magnetic electron spectrometer and using beam delay
lines, or selectively focusing them with highly chromatic
magnetic quadrupole lenses [32], one can use our multi-color
beams as drivers of compact, tunable, synchronized, pulsed
broad-bandwidth radiation sources [27].



TABLE I. STATISTICS OF THE QME BEAMS [FIGS. 5(D) AND 6(D)]

Beam 1 a Beam 1 b Beam 1 c Beam 2 c Beam 3 c,d

Q (pC) 330 400 200 117 85.5
〈E〉 (MeV) 540 585 700 503 245
σE (MeV) 88 32 36 36 18.5

εN⊥ (mm mrad) 0.57 0.85 1.0 0.75 2.08
σα (mrad) 2.00 2.60 2.1 2.50 6.60
〈F 〉 e 3.75 12.5 5.5 3.25 4.60

a reference case [Fig. 5(d), black]
b 20 fs NCP in the channel [Fig. 6(d), red]
c 30 fs NCP in the channel [Fig. 5(d), red]
d electrons from the second bucket only
e in pC MeV−1.

TABLE II. STATISTICS OF THE BACKGROUND [FIGS. 5(D) AND 6(D)]

Q (pC) a Emax (MeV) σα (mrad) 〈F 〉 (pC MeV−1) b

Reference 1520 350 10.5 5.07
NCP, 30 fs c 360 350 5.50 1.20
NCP, 20 fs 735 450 8.50 1.84
a charge in the energy range 50 MeV < E < Emax
b average flux, 〈F 〉 = Q/∆E, ∆E = Emax − 50 MeV
c electrons from the first bucket only.
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