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When one considers the fine-scale spread of an epidemic, one usually knows the sources of
biological variability and their qualitative effect on the epidemic process. The force of
infection on a susceptible unit depends on the locations and the strengths of the infectious
units, and on the environmental and intrinsic factors affecting infectivity and/or
susceptibility. The infection probability for the susceptible unit can then be modelled as a
function of these factors. Thus, one can build a conceptual model at the fine scale. However,
the epidemic is generally observed at a larger scale and one has to build a model adapted to
this larger scale. But how can the sources of variation identified at the fine scale be integrated
into the model at the larger scale? To answer this question, we present, in the context of plant
epidemiology, a multi-scale approach which consists of defining a base model built at the fine
scale and upscaling it to match the scale of the sampling and the data. This approach will
enable comparing experiments involving different observational processes.
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1. INTRODUCTION

In plant, animal or human epidemiology and popu-
lation genetics, dispersal models can be used when a
spatial component is considered. In epidemiology,
dispersal models are needed to evaluate the spatial
spread of a disease from already infected individuals
and to improve control strategies. In population
genetics, these models enable estimating gene dispersal,
a typical case being the dispersal of pollen from
genetically modified plants to other plants.

In such contexts, different scales appear naturally: the
phenomenon scale; the sampling scale; and themodelling
scale (Dungan et al. 2002). Precisely describing the
phenomenon and collecting the corresponding data are
generally impossible, especially if the phenomenon is not
completely known. So, one has to resort to realistic data
collection, i.e. changing the sampling scale, and to
simplify the description of the phenomenon, i.e. chan-
ging the modelling scale. Then, the three scales do not
automatically coincide and a model is generally the
result of a compromise between (i) a description of the
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physical or biological processes and (ii) the temporal and
spatial features of the observed dataset.

In studies of pollen dispersal for trees, for example,
the mating model (Smouse & Sork 2004) is a popular one
as soon as all the trees are known in the surroundings of
the mother trees of interest. Assuming that the pollen is
similarly dispersed around each father tree, the pollina-
tion probability of a seed of a mother by a given father is
described as a function of a dispersal function and the
locations of the father trees. But when the locations of
the possible fathers are not observed, an alternative is to
assume that these locations are drawn from a Poisson
point process, and to integrate the stochasticity gener-
ated by this assumption (Smouse & Sork 2004).

In plant epidemiology, spore dispersal at short
time scales can be described by a Brownian motion
(Stockmarr 2002; Bicout & Sache 2003) if one assumes
that the behaviour of the spores is a diffusion process,
which implies very specific wind conditions. At large
time scales, many different wind conditions may
appear, and the interest is not so much in spore
dispersal as in disease spread. Dispersal will then be
described through empirical disease dispersal curves
(Aylor 1990; McCartney & Fitt 2006; Soubeyrand et al.
2007, in press).
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In animal epidemiology, when an epidemic is studied
within a farm composed of pens, the spread of the
disease between animals can be modelled by a system of
transmission probabilities: one probability for animals
located in the same pen; one probability for animals
located in neighbouring pens; and a zero probability
otherwise (Höhle et al. 2005). But when the epidemic is
studied at the scale of a country with irregularly located
farms, the individuals of interest can become farms
instead of animals, and a spatial dispersal kernel
accounting for the heterogeneity of inter-farm distances
can be used (Keeling et al. 2001).

In all these cases, where the dispersal process is of
primary interest, each model is obtained by a direct
translation from a conceptual model to a mathematical
model suitable for the specific framework of interest. In
particular, the model is adapted to (i) the type of
disease observation (e.g. the disease presence/absence
measure), (ii) the scale (or support) of disease
observation (e.g. the farm) and (iii) the covariates
that are observed and which explain a part of data
variability (e.g. the locations of the infectious units).
Thus, these dispersal models are well adapted to
specific situations. However, in general, their outputs
cannot be compared in a quantitative way because they
do not share a common construction base. This is a
major problem for comparative studies involving
different survey strategies.

In this paper, we propose to develop specific but
coherent models: specific because each of them is
tailored for a given situation and coherent because
they all stem from a single base model. For this
purpose, we suggest translating a conceptual model into
a mathematical model at a fine scale, i.e. a scale at
which describing the sources of variations is natural,
inherent and intuitive. Then, models at larger scales are
built based on the mathematical model, using an
approach similar to the multi-scale modelling approach
developed in physics where a macroscopic model is
derived from a microscopic model (Weinan & Engquist
2003; Weinan et al. 2003). Explicit links between model
structures at the fine scale and each specific scale are
then exhibited. In particular, links between parameters
at different scales are made explicit. These parameters
can then be used to compare model outputs obtained in
different situations.

We illustrate this proposal in the case of the spread
of plant diseases, when two observation dates are
available. Section 2 presents the conceptual model, its
biological assumptions and its mathematical trans-
lation at the finest of the considered scales. This fine-
scale model describes the probabilistic behaviour of the
presence/absence of the disease on small-scale suscep-
tible units. The model includes the effects of spatially
unstructured and structured covariates (e.g. due to
genotype, physiology, climate) affecting the infectious-
ness of the infectious units and the receptivity of the
susceptible units. Then, the fine-scale model is scaled
up to build larger-scale models adapted to situations
where

— the type of disease observation is changed (e.g. from
the presence/absence to the number of symptoms),
J. R. Soc. Interface (2007)
—the scale (or support) of disease observation is changed
(e.g. from the plant to the agricultural plot), and

— the unstructured and structured covariates are cen-
sored (i.e. unobserved or partially observed), so
reducing the information content of the observed data.

Thus, in §§3, 4 and 5 of this paper, we study different
larger-scale models adapted to various sampling
schemes. This study corresponds to exploring some
parts of the cube drawn in figure 1a. The first axis of
this cube represents the observation scale, the second
axis the observation type and the third axis the
covariate censoring. The fine-scale model is represented
by the point at the origin. The zones of the cube which
are explored in the paper are coloured in grey. In §3 we
will look at different types of disease measures made at
relatively small scales (dark grey zone). In §4 we will
study what happens when one ignores some of the
covariates associated with relatively small-scale obser-
vation units. In §5 we will consider larger-scale
observation units within which the covariates are
varying. Figure 1b breaks down what sorts of covariate
censorings are considered and where some of the
subsections of the paper are located in this space. We
discuss, in §6, the interests and limits of the proposed
methodology developed in a conceptual context of plant
epidemiology. In §7 we will see how this context can be
extended, especially to animal and human epidemiology.
2. AT THE FINE SCALE

2.1. Biological assumptions

We will subsequently focus on the spread of a plant
disease between two dates corresponding to the begin-
ning and the end of an epidemic cycle. We focus on
diseases for which the entity responsible for disease
transmission is called a propagule. The propagule can be
a specialized cell (spore), a whole organism (bacterium)
or a structure embedding a pathogen (pollen grain
and vector).

We assume that the variability of the disease cycle
duration is negligible, and that a common starting
point in time exists for transmission from all infectious
plants. Then, the cycles can be distinguished and
observed at the time scale we are interested in.

We assume that at the starting point the infectious
plant units are detectable, and that they remain
infectious during the cycle. At the end of the cycle,
we assume that the newly infected plant units, there-
after called infected units, are detectable. The newly
infected units are not infectious during the cycle.

We assume that the rules governing the transmission
mechanisms are the same at all the spatial scales we are
looking at.
2.2. Conceptual model

The conceptual model describes spatial spread by
identifying the different spatial and temporal elements
without actually completely specifying them.

From a spatial point of view, plants or plant units are
considered as points in space, and with a specific
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Figure 1. (a) Cube representing the space partly explored in this paper. The fine-scale model is at the origin (units with
infinitesimal areas, presence/absence for the disease measure, no covariate censoring). The grey rectangles are the zones of the
cube which are explored in §§3, 4 and 5. On the observation-type axis the letters H, M, S and N denote, respectively, the
following disease measures: presence/absence, count of infected subunits, severity and count of lesions (notation introduced in
§3).(b) Cube representing the decomposition of the censoring axis drawn in the cube of (a). At the origin of the cube, there is
no censoring; at the opposite point the censoring is complete; the other points correspond to intermediate situations tackled in
this paper.
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qualitative status: either healthy, infected or infectious.
We assume that no new plant units are generated
during the period of interest (the generation of plant
units can however be handled in given situations; e.g.
Soubeyrand et al. 2006b).

From a temporal point of view, time is discrete, i.e.
each time step corresponding to the beginning of a cycle.

Epidemic spread is understood as a three-step
mechanism. First, propagules are dispersed from each
infectious plant or plant unit. Second, the accumulation
of propagules over a given susceptible unit defines a
local infectious potential. Third, the susceptible unit
becomes infected with a success probability depending
on the local infectious potential.
2.3. Mathematical translation

We denote the location of the ith unit in the considered
region by xi. For a given time t, we denote ditZ0 if the
health status of unit i is not observed at time t, ditZ1 if it
is observed.

Health status of unit i at time t is denoted by Iit and
Hit with IitZ1 if unit i is infectious, IitZ0 if it is not and
HitZ1 if unit i is infected, HitZ0 if it is healthy.

Propagule dispersal from a given infectious unit i is
described by a dispersal function fq(xKxj) where x is
any location in the region of interest and q a set of
parameters. Different shapes for the dispersal func-
tion have been proposed (e.g. Tufto et al. 1997; Klein
et al. 2003). Local infectious potential at location x at
time t is then written as the following convolution
(Mollison 1977):

LðxÞZ
X
i

Iit fqðxKxiÞ; ð2:1Þ
J. R. Soc. Interface (2007)
i.e. the sum of the values at location x of the dispersal
functions centred on the infectious units.

The probability of infection of a healthy unit at point
xj is described by a function depending on the local
infectious potential

PðHj;tC1 Z 1jLðxjÞ;Hjt Z 0ÞZ gðLðxjÞÞ;

where g is a link function from R
C to [0,1].

If all infectious units are observed and if the
observations are made at the beginning and the end of
a cycle, parameter estimation can then be carried out
by maximizing the log-likelihoodX

j:djtdj;tC1Z1

HjtZ0

Hj;tC1logfgðLðxjÞÞg

Cð1KHj;tC1Þlogf1KgðLðxjÞÞg: ð2:2Þ

Depending on the shape of fq, (2.2) is the log-likelihood of
a generalized linear or nonlinear model (McCullagh &
Nelder 1989; Collett 1991; Harrell 2001; Huet
et al. 2004).

Note that in (2.2) the sum is computed only for units
j such that HjtZ0 because the other units, already
infected at time t, do not bring information on the
parameters in the framework of interest here (see
Soubeyrand et al. (2006b) for a framework where
already infected units bring information on the
dispersal parameters).
2.3.1. Introduction of covariates. In fact, infection
success depends on many local factors (Rapilly 1991)
such as plant characteristics (e.g. genotype, individual
variations within a genetically homogeneous plantation,
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age, size), the environment (e.g. the soil and the climate
which can influence plant physiology), randomness in
source infectivity (some infectious plants may be more
infectious than others owing to a larger production of
propagules on this plant or a larger local population of
vectors for a vector-borne disease).

These factors can be introduced into the model as
penalties acting on the infectious potential L whose
initial mathematical expression is written in (2.1); then,
as above, the link between the new L and the
probability of success of an infection will be described
by the link function g. Specifically, we propose to model
the effect of the factors mentioned above as multi-
plicative factors: if j is a susceptible unit located at
xj, then

LðxjÞZ ajbðxjÞ
X
i

IitcifqðxK xiÞ; ð2:3Þ

where aj denotes a spatially unstructured effect
associated with the susceptible unit j; b(xj) denotes
the effect of spatially structured factors on unit j; and ci
denotes the spatially unstructured effect associated
with an infectious unit i. b(xj) may just depend on
location, or may depend on explicit covariates (e.g. soil
composition). Similarly, aj and ci may depend on plant
characteristics. Note that we could also have added
spatial penalties by taking into account possible
spatially structured effects affecting the infectious
units. Thereafter, we omit the word ‘spatially’ for the
sake of shortness.
2.3.2. Examples of specifications. In practice, one must
specify the nature of the infectious and susceptible
units, the dispersal function fq and other elements of the
model. Typical specifications might be the following.

—An infectious unit can be an agricultural plot, a
plant, a leaf or a lesion. Each infectious unit spreads
around its location a random number of propagules,
for example a Poisson number of propagules with
mean l.

— Propaguleswhich are dispersed around any infectious
unit are, for example, independently distributed from
a two-dimensional exponential lawwith parameter r:
the probability density to find a propagule deposited
at location y is r2expðKrjjyKxjjÞ=2p where x is the
infectious unit location. Thus, the random field of
propagules generated by an infectious unit at x is a
non-stationary Poisson point process with intensity
fqðyÞZðlr2Þ=ð2pÞexpðKrjjyKxjjÞ and qZðr; lÞ.

Many parametric forms for fq have been proposed
(Tufto et al. 1997; Klein et al. 2003; Austerlitz et al.
2004). The shape of the dispersal function is known to
influence the epidemic dynamics and the statistical
estimation. This point, already discussed for example
by Fitt et al. (1987) and Austerlitz et al. (2004), is not
tackled in this paper.

The argument in the dispersal function fq is very
often the Euclidian distance, as in the above example.
However, other types of arguments can be used
depending upon the context. Indeed, fq can be a
J. R. Soc. Interface (2007)
function of the distance and the direction (Soubeyrand
et al. in press) if there is a prevailing wind for example.
If the disease spreads through contacts between
individuals, relations between individuals can be
modelled in a network, and distances on this network
used as the argument of the dispersal function
(Hufnagel et al. 2004; Dargatz et al. 2005; Parham &
Ferguson 2006).

—The random field of propagules generated by all
infectious units is an inhomogeneous Poisson random
field whose intensity at point y is the local infectious
potential LðyÞZ

P
iIitðlr2Þ=ð2pÞexpðKrjjyK xijjÞ,

where xi is the location of the infectious unit i. Note
that with such a specification, the unstructured and
structured effects aj, b(xj) and ci are constant.

—The susceptible unit, at the fine scale, can be an
infinitesimal susceptible zone with area dx. The
health status Hj,tC1 is defined, in this case, by the
presence or the absence of the disease at time tC1 on
the susceptible unit j with area dx and location xj.
The area dx captures a Poisson number of propagules
with intensity LðxjÞdx. Assuming that propagules
land independently and that the failure probability is
eKqR0, then PðHj;tC1Z0ÞZexpðKqLðxjÞdxÞ, where
the exponential shape for the link function g comes
from the Poisson assumption. A Taylor expansion of
the previous expression (justified because dx is
infinitesimal) yields PðHj;tC1Z0ÞZ1KqLðxjÞdx.
3. DERIVING THE FINE-SCALE MODEL TO
BUILD MODELS ADAPTED TO VARIOUS
DISEASE-OBSERVATION SCALES

The model proposed above (§2.3.2) describes the
presence/absence of a disease on infinitesimal units.
In practice, various sorts of disease measures corre-
sponding to various observation scales are encountered.
A review on relationships between disease intensity
measurements was proposed for example in plant
epidemiology by McRoberts et al. (2003). Using the
same type of derivations, we study how the fine-scale
model, where the base susceptible units are infinitesi-
mal parts of healthy plants, can be derived to obtain
models adapted to various disease measures acquired
from larger susceptible units, such as a leaf. These
larger susceptible units are assumed to be small enough
that the local infectious potential is constant within any
unit (§5 will present a situation where the infectious
potential varies within the units).
3.1. Counting the lesions on susceptible units

Consider a larger susceptible unit with area sj at point
xj. It captures a Poisson number of propagules with
intensity sjLðxjÞ, and the number Nj,tC1 of lesions
generated at time tC1 from the propagules is then
Poisson distributed with mean sjqLðxjÞ, i.e.
PðNj;tC1ZnÞZexpfKsjqLðxjÞgðsjqLðxjÞÞn=n!.

So, if lesions can be identified then the disease
measure can be lesion counts, and the log-likelihood
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used to estimate the parameters becomesX
j:djtdj;tC1Z1

HjtZ0

log PðNj;tC1Þ

Z
X

j:djtdj;tC1Z1

HjtZ0

Nj;tC1logðsjqLðxjÞÞKNj;tC1qLðxjÞ

KlogðNj;tC1!Þ;

where the summation is performed on units observed at
times t and tC1 (i.e. djtdj;tC1Z1) and healthy at time t
(i.e. HjtZ0).

Remark: the sum in this log-likelihood is computed
only for healthy units at time t. However, already
infected units at time t could also be considered in the
log-likelihood. Indeed, they can be affected by propa-
gules dispersed from the infectious units and, conse-
quently, contain information on the parameters. But, in
order to account for this information, the autoinfection
must be modelled as well as its interaction with the
alloinfection (i.e. the process of infection from other
units). This point will not be tackled in this paper.
3.2. Measuring the infected areas of
susceptible units

When lesions arehardlydistinguishable, counting them is
impossible and one relies on severity measures, the most
classical one being the infected area on the susceptible
unit, saySjt forunit jat time t. Suppose that the areaSj;tC1

is a random variable depending on Nj,tC1 and sj:
Sj;tC1ZFðNj;tC1; sjÞ. The functionF is a random function
which can be selected empirically and/or based on
mechanistic assumptions about the disease. For example,
Sj,tC1 can be derived from a spatial Boolean process
(Stoyan et al. 1995;Molchanov 1996) on the unit if lesions
are assumed to be independent surface areas. The density
probability function of Sj,tC1 is

pðSj;tC1ÞZ
XN
NZ0

f ðSj;tC1jN ;sjÞ
ðsjqLðxjÞÞN

N !
expðKsjqLðxjÞÞ;

where f ð$jN ; sÞ is the conditional density probability
function of F(N, s) given N and s. The log-likelihood
is then X

j:djtdj;tC1Z1

HjtZ0

log pðSj;tC1Þ:

The remark written in §3.1 is also valid here.
Remark: susceptibility of units is already incorpor-

ated in the local infectious potential (2.3) through the
unstructured effects aj. We could also account for
susceptibility in the density function f because it can
affect not only the number of lesions but also their sizes.
3.3. Observing the presence/absence of the
disease on susceptible units

The easiest way to measure the disease on a given
susceptible unit is to observe whether it is present or
J. R. Soc. Interface (2007)
not on the unit. To avoid cumbersome notation, we
denote the presence/absence of the disease on the
susceptible unit j by Hjt, the same notation as for the
infinitesimal units. The disease is not on unit j if
no propagule succeeds in infecting the unit, which
occurs with probability PðNj;tC1Z0ÞZexpðKsjqLðxjÞÞ
because Nj,tC1 follows a Poisson distribution with mean
sjqLðxjÞ (§3.1). Thus, Hj,tC1 is Bernoulli distributed
with probability 1KexpðKsjqLðxjÞÞ.

In this case, we obtain the log-likelihoodX
j:djtdj;tC1Z1

HjtZ0

Hj;tC1logf1KexpðKsjqLðxjÞÞg

Kð1KHj;tC1ÞsjqLðxjÞ: ð3:1Þ

This formula is similar to the log-likelihood (2.2), with
gjðLÞZ1KexpðKsjqLÞ depending on the unit charac-
teristics sj and q.
3.4. Counting the infected subunits of
susceptible units

Sometimes, the observation unit (e.g. a plant) is split
into mj subunits (e.g. the leaves) and the disease
measure is the number of infected subunits Mjt. The
interest of such a measure is to obtain a variable which
can be mapped because it is less noisy than the
presence/absence variable. Let Hjkt denote the
health status of subunit k of unit j. Following §3.3,
Hjk,tC1 is Bernoulli distributed with probability
1KexpðKsjkqLðxjÞÞ, where sjk is the area of subunit k.
In this section all subunits of unit j are submitted to the
same infectious potential L(xj). In addition, the Hjk,tC1

are independent because under the Poisson assumption,
the propagules land independently on the subunits.
This yields the following.

— In the case where the subunit areas are the same
(i.e. sjkZsj=mj), Mj,tC1 follows a binomial distri-
bution with size mj and success probability pjZ
1KexpðKsjqLðxjÞ=mjÞ. Thus, the log-likelihood
becomes

X
j:djtdj;tC1Z1

HjtZ0

log
mj

Mj;tC1

 !

CMj;tC1log pjKðmjKMj;tC1Þlogð1K pjÞ; ð3:2Þ

where
m
M

� �
Zm!=fM !ðmKM Þ!g.

— In the case where the subunit areas are different and
cannot be measured individually, one can, for
example, consider the areas as independently and
identically distributed with probability density
function fs. Then, Hjkt is Bernoulli distributed with
probability pjZ

Ð
sf1KexpðKsqLðxjÞÞgfsðsÞds, Mj,tC1

follows a binomial distribution with size mj and
success probability pj, and the log-likelihood can be
written as in (3.2) by replacing pj by its new
expression.
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3.5. Conclusion: estimating relevant biological
parameters

Asmentioned before, the interest of the derivation from a
basicmodel is in allowing (i) the estimationof biologically
relevant parameters, those defined at the fine-scalemodel
and (ii) the comparison of experiments performed at
different scales. Indeed, for each constructed model, we
have written a log-likelihood on which the inference on
the parameters can be based. In particular, inference on
the parameters included in the infectious potential L is
possible in each case sinceL appears in each expression of
the log-likelihood. Moreover, each context offers the
possibility to infer other parameters which are specific to
the context; for example, the parameters which could
enter in the random functionF linking the lesion count to
the infected area (§3.2), or those which could enter in the
probability density function fs of the subunit areas (§3.4).

Applying this derivation-based approach requires
interactions between biologists and statisticians,
in particular, to define the crucial fine-scale model,
to incorporate the context-specific parameters and to
decide which model components can be neglected.
4. DERIVING THE FINE-SCALE MODEL TO
STUDY THE CONSEQUENCES OF IGNORING
COVARIATES

In §3, we built models adapted to different disease-
observation scales, i.e. when the information content of
the observations is changed. In the present section, we
study the consequences of reducing the information
content on the covariates.

Suppose that we observe the presence/absence of a
disease on susceptible units; so, we consider the model
of §2.3

Hj;tC1wBernoulliðgðLðxjÞÞÞ; ð4:1Þ
LðxjÞZ ajbðxjÞ

X
i

IitcifqðxK xiÞ: ð4:2Þ

This model is quite simple, but estimating its par-
ameters using the log-likelihood (3.1) requires the
computation of the potential (4.2) for each susceptible
unit, i.e. requires the knowledge of all the infectious
units and the precise status of the sampled units
(location, health status and covariates). In practice,
collecting all these data can be a very cumbersome task,
and the covariates denoted by aj, b(xj) and ci in (4.2) are
usually not observed, in particular because their
identify is often unknown. A common approach consists
of ignoring the covariate which is not observed and
adopting a simplified model where the ignored covari-
ate is replaced by a constant value. In this section we
study the consequences of this approach and how these
consequences can be used in a residual analysis to build
a relevant model from the simplified model.
4.1. Ignoring the unstructured effects of the
susceptible units

Measuring individual characteristics of the plant units
is a difficult task, in particular if the relevant
characteristics are not known in advance, so that
many of them have to be measured. In practice,
J. R. Soc. Interface (2007)
individual characteristics are simply not observed and
ignored in the modelling. In this subsection we study
the consequence of ignoring the unstructured effects
affecting the susceptible units.

Let Cj be the conditional event HjtZ0; bðxjÞ;
�

ci : iZ1;.; Ig; aj does not appear in Cj since it is not
observed. The unstructured effects, supposed to be
independently distributed, can be written as ajZaCej
where a is the mean value of the effects and ej is a
centred random unstructured variable with variance
s2a. The infectious potential (4.2) affecting unit j can be
written

LðxjÞZ aAj CejAj ;

where AjZbðxjÞ
P

iIitcifqðxjK xiÞ. The random vari-
ables ejAj are independent, centred and with variances
s2aA

2
j . Then, conditionally on the events Cj, the infected

status at time tC1 of units susceptible at time t remain
independent (as they were conditional on the events
Cjhfajg). In addition, supposing that s2a/0, then a
Taylor expansion yields the following approximation:

PðHj;tC1 Z 1jCjÞZE2fgðLðxjÞÞjCjg

xgðaAjÞC
1

2
s2aA

2
j g

ð2ÞðaAjÞ;

where g(2) is the second derivative of g.
If the ej are ignored, the infectious potential is

LðxjÞZaAj and the infection probability of a unit
susceptible at time t is PðHj;tC1Z1jCjÞZgðaAjÞ. Hence,
the absence of the correction factor s2aA

2
j g

ð2ÞðaAjÞ=2,
which should compensate the non-observation of the
unstructured effect aj. For example, with the link func-
tion gðLÞZ1KeKL obtained in §3, gð2ÞðLÞZKeKL!0
and for the true set of parameters, the probability
PðHj;tC1Z1jCjÞZgðaAjÞ, used when the unstructured
effects are ignored, is higher than it should be. So,
ignoring the unstructured covariate will lead to biased
parameter estimators.

To avoid the bias in the estimator when the
unstructured covariate cannot be measured, a possible
approach consists of specifying a parametric distri-
bution for the unstructured effects aj viewed as random
effects, as in the frailty model of Soubeyrand et al.
(2007). The distribution of the random effects can
sometimes be difficult to specify and results can be
sensitive to its form. To overcome this difficulty,
methods like the ones developed by Ritz (2004),
Soubeyrand et al. (2006a, 2007) and Waagepetersen
(2006) can be used to specify the unobserved random
effects.
4.2. Ignoring the structured effects on the
susceptible units

For large-scale studies, spatially structured factors due
to physical environment (soil, climate) or genetics are
often neglected in a first step, the observation effort
being focused on disease detection. These structured
effects, taken into account through b(x) in (2.1) (or
(4.2)), are often considered as constant. We go on to
study the consequences of ignoring the variations of
bð$Þ, following the asymptotic approach applied in §4.1.
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Suppose that the b(xj) are not observed, the
conditional events we are working with are then
CjZfHjtZ0; aj ; ci : iZ1;.; Ig. Set bðxÞZbCex and
suppose that the ex are small. The random values ex
cannot be considered as independent, but are assumed
to form a stationary random field with variance s2b/0
and spatial autocorrelation function r (d). Calculations
similar to those carried out above yield

PðHj;tC1 Z 1jCjÞxgðbBjÞC
1

2
s2bB

2
j g

ð2ÞðbBjÞ;

where BjZaj
P

iIitcifqðxjK xiÞ. Furthermore, con-
ditionally on the events Cj , a spatial dependence
appears among the health status at time tC1 of
susceptible units at time t

covðHj;tC1;Hk;tC1jCj ; CkÞ

xs2brðdjkÞBjBkg
ð1ÞðbBjÞgð1ÞðbBkÞ;

where djk is the distance between xj and xk.
If the variations of the structured covariate bð$Þ are

ignored, PðHj;tC1Z1jCjÞ is simply g(bBj), the covari-
ance covðHj;tC1;Hk;tC1jCj ; CkÞ is zero; consequently, the
parameter estimators will be biased, as in §4.1.

To avoid the bias in the estimator, if the spatial
distribution of b(x) can be specified up to a given set of
unknown parameters, we obtain a hierarchical model
including spatially correlated random effects, and a
likelihood-based or Bayesian estimation procedure
using Monte Carlo sampling can be performed (Diggle
et al. 1998; Zhang 2002; Desassis et al. 2005).
4.3. Ignoring the unstructured effects of the
infectious units

Very often, locations are the only available data on
infectious units. Time and level of infection, or
individual unit characteristics are not known although
they can influence greatly the infectiousness of a given
unit. So, suppose that the unstructured effects ci
associated with the infectious units are not observed;
the conditional events we are working with are then
CjZfHjtZ0; aj ; bðxjÞg. Set cjZcCej , the infectious
potential can be written

LðxjÞZ cCj CajbðxjÞ
X
i

eiIitf ðxiK xjÞ;

where CjZajbðxjÞ
P

iIitfqðxjK xiÞ. Suppose that the
independent random variables ej are centred and with
variance s2c/0. SetC 0

jkZajakbðxjÞbðxkÞ
P

iIitf ðxjK xiÞ
f ðxkK xiÞ. Then using Taylor’s expansions,

PðHj;tC1 Z 1jCjÞxgðcCjÞC
1

2
s2cC

0
jjg

ð2ÞðcCjÞ;

and a spatial dependence appears between health
status,

covðHj;tC1;Hk;tC1jCj ; CkÞxs2cC
0
jkg

ð1ÞðcCjÞgð1ÞðcCkÞ;

because susceptible units near more infectious units
have a higher chance of being infected.

As before, if the distribution of the ci are known up to
a given number of parameters, the model is a
J. R. Soc. Interface (2007)
hierarchical one and a procedure based on Monte
Carlo sampling can be used to estimate the parameters.
4.4. Detection of the main departure from the
simplest model

If a departure from the simplest model, i.e. the model
where covariates are replaced by constants, is known to
be due to one specific reason, then the statistical
treatment will depend on the situation: (i) if the absent
covariate can be measured, the model including the
covariate will be fitted using an estimation procedure
for generalized linear or nonlinear models and (ii) if the
covariate cannot be measured, then hierarchical models
and the associated estimation procedures as those
mentioned at the ends of §§4.1–4.3 can be applied.

Very often, however, one does not know if the
simplest model is suitable or if any departure must be
taken into account. In such a case, a common strategy
consists of (i) estimating the simplest model in a first
step and (ii) checking on residuals to examine whether
this model is acceptable or whether it must be modified.
By doing so, one generally assumes that the dispersal as
described by the simplest model captures the main
features of the observed dispersal, and that departures
are not due to many reasons but that one reason is more
important than the others.

A residual analysis based on the results presented
above can then be used to point out the main departure.
Consider the conditional event CjZfHjtZ0g. Under
the simplest model, the conditional probability for the
unit j to be infected is PjZPðHj;tC1Z1jCjÞZgðajÞ,
where ajZabc

P
iIitf ðxjK xiÞ is the local infectious

potential affecting j. Under the model with unstruc-
tured effects for the susceptible units (§4.1),
PjZgðajÞCs2aa

2
j g

ð2ÞðajÞ=2a2. Under the model with
structured effects for the susceptible units (§4.2),
PjZgðajÞCs2ba

2
j g

ð2ÞðajÞ=2b2. Under the model with
unstructured effects for the infectious units (§4.3),
PjZgðajÞCs2cbjg

ð2ÞðajÞ=2c2, where bjZðabcÞ2
P

iIitf

ðxjK xiÞ2.
Plotting WjZðHj;tC1KgðajÞÞ=a2

j g
ð2ÞðajÞ against b2j

(respectively, a2
j ) or b

2
j g

ð2ÞðajÞ (respectively a2
j g

ð2ÞðajÞ)
can help in deciding whether there is a departure from
the simplest model, and if the most important
departure is due to effects on the susceptible units or
the infectious units. Indeed, the expected value of Wj is
zero under the simplest model, positive and constant
(either s2a=2a

2 or s2b=2b
2) under the model with either

the unstructured effects or the structured effects for the
susceptible units, and a space-varying function
(xj1bj=a

2
j ) under the model with the unstructured

effects on the infectious units.
To distinguish between departures due to unstruc-

tured or structured effects on the susceptible units,
the conditional covariance between health status at
time tC1 given Cj can be used. Indeed, this covariance
is zero under the simplest model and the model with
the unstructured effects for the susceptible units,
whereas it is s2brðdjkÞajakg

ð1ÞðajÞgð1ÞðakÞ=b2 under the
model with structured effects for the susceptible units.
Hence, if the plot above shows that there are
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(unstructured or structured) effects for the susceptible
units, plotting ðHj;tC1KgðajÞÞðHk;tC1KgðakÞÞ=ajakg

ð1Þ

ðajÞgð1ÞðakÞ against the distance djk between xj and xk
can help in deciding between the unstructured or
structured effects. We present in appendix A how
these statistics could be used on a simulated example.
5. SAMPLING THROUGH LARGE SPATIAL
UNITS

When dealing with datasets collected on a large spatial
scale, looking at individual plants or leaves becomes
impossible, and the observation unit is the agricultural
plot for example. At this scale, the unstructured and
structured covariates, which are not observed or
partially observed, are varying within the observed
spatial units. In the following, we study the consequences
of these variations when the susceptible plants or the
infectious plants are grouped in larger spatial units.
5.1. Grouping susceptible subunits
in spatial units

Suppose that susceptible subunits are regularly spaced
in a spatial unit. They correspond to trees in an orchard
for instance, the orchard being the spatial unit under
consideration. Suppose there are mj susceptible
subunits in the spatial unit j, their locations being xjk
for k%mj . The disease measure at the spatial unit level
can be the number Mj;tC1 of infected subunits, or the
presence/absence Hj;tC1 of at least one infected subunit
(Hj;tC1Z1 if Mj;tC1R1, zero otherwise).

If, conditionally on the set of parameters to be
estimated, the local infectious potential LjkZLðxjkÞ can
be computed for each subunit, the Mj;tC1 are mutually
independent with probability distributions satisfying

PðMj;tC1jmj ;Ljk : k%mjÞ

Z
X

h1;.;hmj
2f0;1gP

hkZMj;tC1

Ymj

kZ1

gðLjkÞhkf1KgðLjkÞg1Khk

 !
;

and the Hj;tC1 are mutually independent with prob-
ability distributions satisfying

PðHj;tC1 Z 0jmj ;Ljk : k%mjÞZ
Ymj

kZ1

ð1KgðLjkÞÞ: ð5:1Þ

Based on these expressions, a likelihood can be built as
in §3 for estimating the model parameters. This
assumes that either the simplest model (without
varying covariates, see §4.4) accurately describes the
epidemic spread or that the covariates have been
measured at the subunit level.

In practice, the covariates will not be measured at
the subunit level: for instance, the unstructured
variations described by the coefficients ajk will not be
observed, and the structured variations b(xjk) will be
measured only at a given location of the spatial unit,
say its centre zj. In this case, one has to tackle two
problems: (i) the non-observation of the unstructured
covariate as in §4 and (ii) the so-called change-
of-support problem (Chilès & Delfiner 1999) since the
J. R. Soc. Interface (2007)
disease measure is an areal datum, in the sense that the
disease notation is common for all the unit area,
whereas the structured covariate is a point datum.

By an asymptotic development, as in §4, one can
investigate what the distributions of Mj;tC1 and Hj;tC1

become when problems (i) and (ii) occur. Consider, for
example, the case of the presence/absence variable
Hj;tC1. Assume that the ajk have variance s

2
a, that bð$Þ is

a stationary random field independent of the ajk,
with variance s2b and autocorrelation function rð$Þ.
Set DjkZ

P
iIitcifqðxjkK xiÞ. It can be shown that,

conditionally on the event CjZfHjtZ0; bðzjÞ;
ci : iZ1;.; Ig, the probability that Hj;tC1Z0 is
asymptotically the sum of

Qmj

kZ1ð1KgðabDjkÞÞ and a

function depending on s2a, s2b and rð$Þ. So, the
probability that Hj;tC1Z0 is the sum of a term
analogous to the right-hand side of (5.1) where the
covariates associated with the susceptible units would
be assumed to be constant, and a correction factor
depending on the characteristics of these covariates.
Moreover, the covariance between the measures Hj;tC1

and Hj 0;tC1 made at two spatial units j and j0 is not zero
but equal to a function of s2a, s

2
b and rð$Þ.
5.2. Grouping infectious subunits
in spatial units

Infectious unit recording is not always done at the
individual level, but can be done at larger spatial units.
For example, one will not observe the location of
individual infectious trees, but only the central locations
of infectious orchards and the number of infectious trees
in each orchard. Then, the infectious potential

LðxjÞZ ajbðxjÞ
X
i

X
k

Iik;tcikfqðxjK xikÞ;

affecting the susceptible unit j cannot be computed
since the exact locations xik as well as the unstructured
effects cik of the infectious trees of any orchard i are not
observed. Therefore, the probability that Hj;tC1Z0
which is equal to gðLðxjÞÞ cannot be computed either.

However, an asymptotic development can also be
used here for approximating the probability that Hj;tC1

Z0 given, for each infectious spatial unit i, the location
zi of its centre and the number of infectious subunitsNi,t

at time t. Asymptotically, this probability is the sum of
gðL�ðxjÞÞ where

L�ðxjÞZ ajbðxjÞ
X
i

Ni;tcfqðxjK ziÞ;

and a correction factor depending on the variance of the
unstructured effects cik associated with the infectious
subunits. L�ðxjÞ is a hypothetical infectious potential
where the subunits are supposed tobe clustered at point zi
and the unstructured effects are supposed to be constant.
Moreover, the covariance between the measures Hj;tC1

andHj 0;tC1 made at two susceptible units j and j0 at time t

is not zero but equal to a function of s2c.
5.3. Small-scale versus large-scale spatial units

Pooling subunits in small-scale spatial units (§3.4) or in
large-scale spatial units (§§5.1 and 5.2) have different
consequences for the probability distributions of the
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health status of susceptible units at time t. Indeed,
when the spatial units are large, the infection prob-
abilities are changed and, furthermore, there is a non-
zero covariance between the health status of different
susceptible units. These changes occur because the
covariates associated with the subunits are not
observed at this level.

The fact that the infection probabilities and the
covariance between health status depend on the
characteristics of the covariates shows that the data
contain information on the unstructured and struc-
tured effects even if these effects are not observed or
partially observed. Consequently, these characteristics
can be inferred from the collected data, at least in
principle. Nevertheless, regarding inference, the
likelihood obtained when the spatial units are large is
not tractable in practice. To overcome this problem, an
estimating equation can be built based on (i) a pseudo-
likelihood which will ignore the spatial dependence
between the health status and (ii) a least square
criterion between the empirical and the theoretical
covariance of the health status. A hierarchical model
and an appropriate estimation procedure can also be
applied; the random effects included in the hierarchical
model would then be the unobserved locations of the
subunits in the observed spatial units and the values of
the covariates for these subunits.
6. OVERVIEW OF THE PROPOSED
MULTI-SCALE APPROACH

6.1. Summary

In this paper, we have presented a multi-scale model-
ling approach to building on epidemic models which
takes into account the sources of variation of the
epidemic and which matches the scale of the sampling
and the data. The multi-scale approach consists of (i)
defining a base model describing an epidemic at a fine
scale and (ii) upscaling it in order to build models at
larger scales. In this paper, we have studied various
larger-scale models adapted to various sampling
schemes. The considered sampling schemes were
characterized by the type of disease observation (e.g.
presence/absence of the disease), the scale (or support)
of disease observation (e.g. the plant) and the censoring
level of the covariates (e.g. censored structured effects
but observed unstructured effects). This study has
allowed us to explore a part of the cube drawn
in figure 1a.
6.2. What is the interest of a multi-scale
approach?

In epidemiological studies where the spatial com-
ponent is considered, the dispersal process is often of
primary interest and a model including a description
of the dispersal process is generally used to analyse
the data. The model is in fact based on the
mathematical translation of a conceptual model from
which several derivations are possible; the derivations
consist, for instance, in adding covariates, changing
the disease measure and/or changing the sampling
J. R. Soc. Interface (2007)
scheme. Using a base model, namely the fine-scale
model, from which others can be derived is useful from
several viewpoints.

(i) If measurements are done at various scales for
different experiments (§§3 and 5), the multi-
scale approach helps in exhibiting the link
between (1) the characteristics of the models
built for the different experiments and (2) the
parameters and functions defining the fine-scale
model. Then, experiments can be compared by
going back to the parameters and functions of
the fine-scale model.

(ii) If covariates are known to influence the
dispersal process, then the multi-scale model-
ling approach offers a framework where the
covariates can be included into the model in a
biologically relevant way instead of adding
them empirically, as covariates are added into
a statistical linear model.

(iii) The model validation step (Cook & Weisberg
1982; McCullagh & Nelder 1989), based on
residual analysis, can be guided by the
expected deviations from the fine-scale model
instead of just looking at empirical links
between residuals and covariates as is usually
the case. Thus, the multi-scale approach
enables one to check the hypotheses made in
the conceptual model.
6.3. Using asymptotic developments

Many developments in this paper have been performed
in an asymptotic framework, by assuming that disturb-
ances are of secondary importance with respect to the
dispersal effect. The advantage of this assumption is in
generating explicit formulae which can be easily
interpreted. If this assumption is not suitable, bias
and covariances (similar to those exhibited in this
paper) remain and can be assessed by simulation.
However, in cases where validation statistics are
needed, the statistics proposed in the asymptotic
framework can be used to check the goodness-of-fit of
the model (see §4.4). In other words, the asymptotic
context helps to propose validation statistics which
can then be used in more general contexts. The
asymptotic formulae can also be used to modify and
improve the model as in Soubeyrand et al. (2006a) and
Soubeyrand & Chadœuf (in press).
6.4. Dealing with reduced information content
in the dataset

Taking into account a covariate effect is similarly
difficult regardless of whether the covariates act on the
infectious or the susceptible plant units. When dealing
with censoring on the locations, the situation is much
more tricky when the censoring affects the infectious
units rather than the susceptible ones. The main reason
is that the pattern of the infection of susceptible units is
the result of a dispersal process for which the main
driving factors, namely the locations of the infectious
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units, are supposed to be known. So, dealing with
reduced information on the locations of the susceptible
units remains basically a statistical power problem:
there is less data than one could actually have. In
addition, when the locations of the infectious units are
not known, one needs to restore them. This can lead to
hierarchical models in which the infectious units will be
randomly distributed in a given space, as long as no
information is available on the processes explaining the
spatial repartition of these units; note however that the
influence of such a choice is difficult to evaluate in
practice.
6.5. Tackling other deviations from the
fine-scale model

Deviations from the fine-scale model can appear in
many ways and not only those considered in this paper
and summed up in figure 1. We have chosen, for
example, to consider a structured effect only on
susceptible plant units; but a similar development
could have been made by considering a structured effect
on infectious plant units. Another interesting situation
which has not been tackled in this paper is the situation
where some of the infectious units are not recorded.
This situation is particularly expected to occur when
the spatial scale of interest is large owing to the cost of
an exhaustive mapping of infectious units. This
problem could be approached by restoring the unob-
served infectious units. This sort of problem (detection
of unknown sources) was handled by Martin et al.
(2006) when the number of unknown sources is small.
7. BEYOND AN APPROACH DEVELOPED IN A
CONCEPTUAL CONTEXT OF PLANT
EPIDEMIOLOGY

We now discuss in which other directions the proposed
approach could be developed.
7.1. Application to data

The approach we presented has been developed in a
conceptual context. Even if some components of this
approach have been applied to real datasets (see some
of the references cited before), its multi-scale feature
has not been fully exploited to compare datasets
collected at different scales. More precisely, we think
that the approach we presented could be especially
useful in performing a multi-scale meta-analysis
enabling a better understanding of multi-scale phenom-
ena like epidemics.
7.2. Changing the time scale

We have chosen to consider the simplest situation
where only one epidemic cycle happens. This leads to a
considerable simplification as, under this assumption,
all infection events are independent and the fine-scale
model can be derived relatively easily. When the time
scale is changed such that several cycles may arise
between two observation dates, the infection events are
not independent anymore. Indeed, if a susceptible unit
J. R. Soc. Interface (2007)
is infected, it can then be infectious and the infection
events due to this new source of propagules are
conditional on the initial infection event. Dealing with
such a situation is not easy, even with a base model
without covariates. Gibson (1997), Fewster (2003) and
Jamieson et al. (2005) proposed an estimation based on
the modelling of the successive infection (or coloniza-
tion) events, whereas Keeling et al. (2004) proposed an
empirical procedure to estimate the dispersal function
by minimizing the difference between an observed
spatial pattern and the one obtained under individual
pattern changes guided by the dispersal function.
Chadœuf et al. (1992) proposed to model the spatial
dependence between infectious events. Applying an
approach similar to the one developed in this paper
could help in analysing which part of the observed
dependence is due to dispersal, and which one is due to
covariates or measurement pooling.
7.3. Extending the approach to animal and
human epidemiology

Accounting for potential mismatches between the scale
at which biological processes operate and that at which
data are acquired is important in plant, animal and
human epidemiology if models are to accurately explore
the mechanisms that give rise to biological variability.
We looked at this challenge in the context of plant
diseases, where the individuals are sedentary, by
developing a multi-scale framework. This simple case
could be expanded to the analysis of epidemiological
data collected at nested scales (e.g. individuals within
families (or other social units) within settlements
within counties within countries; or animals within
fields within farms within parishes). The multi-scale
framework developed in this paper is not directly
applicable to animal and human epidemiology because,
for instance, animals and humans can move, and
disease measurements and transmission processes will
probably be different. In such cases, the main difficulty
is the fact that transmission does not necessarily
originate from the point at which an infectious
individual is observed, but from every point of its
path, which is generally unknown. Nevertheless, the
ideas presented in this paper (upscaling a fine-scale
model, studying the consequences of ignoring covari-
ates and of sampling across larger spatial units) can be
applied to these disciplines. The application would be
particularly facilitated in situations where an infectious
potential can be defined as in equation (2.3). Precisely
this concept of infectious potential has been developed
in a number of different contexts: in plant (e.g. Gibson
1997; Jamieson et al. 2005); livestock (Gerbier et al.
2002; Keeling et al. 2004; Diggle 2005; Höhle et al. 2005;
Höhle & Feldmann in press); and human epidemiology
(Neal & Roberts 2004), as well as in other disciplines
(Lescouret et al. 1998; Medlock & Kot 2003; Parham &
Ferguson 2006), and is causing epidemiologists to shift
their perspective from that of a single transmission
process to a multi-scale transmission system.

We would like to thank Dan Haydon and the reviewers for
their comments on this article.
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Figure 2. Simulated data set. (a) Locations and initial health status of orchards (grey dots, susceptible orchards; black dots,
infectious orchards). (b) Close-up of the zone delimited by the square on (a). The symbols are now located at tree locations and
give the final health status of the trees (grey dots, susceptible trees; black dots, infectious trees; crosses, newly infected trees).
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Figure 3. Residual plots. (a) Mean value of the normalized residuals and (b) autocovariance of the normalized residuals.

Biological variability and sampling scale S. Soubeyrand et al. 995
APPENDIX A

Here we show in a simulated example how the residuals
proposed in §4.4 can be used to look at departures from
the simplest model, where the structured and unstruc-
tured effects are assumed to be constant. We first
simulated an initial pattern of susceptible and infec-
tious units in the following way.

—A first set of points was simulated using a Strauss
point process (Stoyan et al. 1995) with intensity 100,
interaction distance 0.02 and complete inhibition
distance on a square of side 2.7. This leads to a
regular set of points which could represent centres of
orchards. Then, for each orchard, 10 points (repre-
senting trees) were independently and uniformly
spread in a 0.02!0.02 square centred on the
previous points.
J. R. Soc. Interface (2007)
—Each orchard was labelled as either infectious or
susceptible with probability 0.1 and 0.9, respectively.
All the trees of an orchard have the same status.

Then, the final states of initially healthy trees were
simulated under the model described by equations (4.1)
and (4.2) specified as follows.

—The dispersal function fq was chosen to be a centred
bivariate isotropic Gaussian density with standard
deviation 0.05.

—The unstructured effects of the infectious units were
all equal to one.

—The unstructured effects of the susceptible units
satisfied 1=3C2UiexpðK1=2Þ=3, where Ui were
independently drawn from the LogNormal(0,5)
distribution.
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—The structured effects on the susceptible units were
drawn using a Boolean disc model (Stoyan et al.
1995; Molchanov 1996) with intensity 15 and radius
0.075, the effect value being 0.1 outside the discs
and 3.96 inside the discs.

Figure 2a shows the locations of orchards (dots) and
their initial health status (grey, susceptible; black,
infectious). The detail of the zone delimited by a square
is shown in figure 2b. Here we can see how the trees are
scattered within the orchards. We can also see the final
health status of the trees (grey dots, susceptible trees;
black dots, infectious trees; crosses, newly infected
trees).

We then estimated the parameters of the model
with constant structured and unstructured effects.
Finally, we computed the normalized residuals WjZ
ðHj;2KgðajÞÞ=a2

j g
ð2ÞðajÞ. The evolution of its mean value

with respect to the probability to remain healthy is
given in figure 3a. It mostly remains above 0 for
probabilities less than 0.55, then oscillates with a large
amplitude for larger probabilities. The estimated
autocovariance of WjZðHj;2KgðajÞÞ=ajg

ð1ÞðajÞ which
estimates the expectation of ðHj;tC1KgðajÞÞðHk;tC1

KgðakÞÞ=ajakg
ð1ÞðajÞgð1ÞðakÞ is given in figure 3b. It

remains positive from 0 to 0.11, except at distance 0.05
where it is equal to K1, whereas it begins at 5
approximately 0 and peaks at 15 at distance 0.05.
Note that, for this Boolean model, the value of two
points are independent as soon as their separating
distance is greater than 0.15.

Following the procedure proposed above, one deci-
des first that a structured or unstructured effect exists,
due to the positive value of the local mean of the
normalized residuals, second that it is a structured
effect due to the presence of an autocovariance. Note
that this statistical test needs to be formalized in order
to take into account the random variations of the
statistics, as the oscillation observed on the first curve.
In this simulation, zones with probability larger than
0.55 are scarce. This fact, together with the presence of
a spatial structure can lead to large structured
variations as the one in figure 3a.
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par un processus de Gibbs: estimation et tests. Biometrics
48, 1165–1175. (doi:10.2307/2532707)

Chilès, J.-P. & Delfiner, P. 1999 Geostatistics. Modeling
spatial uncertainty. New York, NY: Wiley.
J. R. Soc. Interface (2007)
Collett, D. 1991 Modelling binary data. London, UK: Chap-
man & Hall.

Cook, R. D. & Weisberg, S. 1982 Residuals and influence
analysis. New York, NY: Chapman & Hall.

Dargatz, C., Georgescu, V. & Held, L. 2005 Stochastic
modelling of the spatial spread of influenza in Germany.
Technical report. Munich, Germany: Ludwig-Maximilians
Universität.

Desassis, N., Monestiez, P., Bacro, J. N., Lagacherie, P. &
Robbez-Masson, J. M. 2005 Mapping unobserved factors
on vine plant mortality. InGeostatistics for environmental
applications (eds P. Renard, H. Demougeot-Renard &
R. Froidevaux), pp. 125–136. Berlin, Germany: Springer.

Diggle, P. J., Tawn, J. A. & Moyeed, R. A. 1998 Model-based
geostatistics. J. R. Stat. Soc. C 47, 299–350. (doi:10.1111/
1467-9876.00113)

Diggle, P. J. 2005 A partial likelihood for spatio-temporal
point processes. Johns Hopkins University, Department of
Biostatistics working paper 75.

Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P.,
Citron-Pousty, S., Fortin, M.-J., Jakomulska, A., Miriti,
M. & Rosenberg, M. S. 2002 A balanced view of scale in
spatial statistical analysis. Ecography 25, 626–640. (doi:10.
1034/j.1600-0587.2002.250510.x)

Fewster, R. M. 2003 A spatiotemporal stochastic process
model for species spread. Biometrics 59, 640–649. (doi:10.
1111/1541-0420.00074)

Fitt, B. D. L., Gregory, P. H., Todd, A. D., McCartney, H. A.
&Macdonald, O. C. 1987 Spore dispersal and plant disease
gradients: a comparison between two empirical models.
J. Phytopathol. 118, 227–242.

Gerbier, G., Bacro, J.-N., Pouillot, R., Durand, B., Moutou,
F. & Chadœuf, J. 2002 A point pattern model of the spread
of foot-and-mouth disease. Prevent. Vet. Med. 56, 33–49.
(doi:10.1016/S0167-5877(02)00122-8)

Gibson, G. J. 1997 Markov chain Monte Carlo methods for
fitting spatiotemporal stochastic models in plant epide-
miology. J. R. Stat. Soc. C 46, 215–233. (doi:10.1111/1467-
9876.00061)

Harrell, F. 2001 Regression modeling strategies with appli-
cations to linear models, logistic regression and survival
analysis. Berlin, Germany: Springer.
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