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RESEARCH Open Access

Accounting for cellular heterogeneity is critical
in epigenome-wide association studies
Andrew E Jaffe1* and Rafael A Irizarry2*

Abstract

Background: Epigenome-wide association studies of human disease and other quantitative traits are becoming

increasingly common. A series of papers reporting age-related changes in DNA methylation profiles in peripheral

blood have already been published. However, blood is a heterogeneous collection of different cell types, each with

a very different DNA methylation profile.

Results: Using a statistical method that permits estimating the relative proportion of cell types from DNA

methylation profiles, we examine data from five previously published studies, and find strong evidence of cell

composition change across age in blood. We also demonstrate that, in these studies, cellular composition explains

much of the observed variability in DNA methylation. Furthermore, we find high levels of confounding between

age-related variability and cellular composition at the CpG level.

Conclusions: Our findings underscore the importance of considering cell composition variability in epigenetic

studies based on whole blood and other heterogeneous tissue sources. We also provide software for estimating

and exploring this composition confounding for the Illumina 450k microarray.

Background

Epigenome-wide association studies (EWAS) of human

disease are becoming increasingly common. DNA methy-

lation (DNAm) is of particular interest because it is dy-

namic across the lifetime, affected by environmental

insults, and previously implicated in developmental disor-

ders and cancer [1]. In these studies, DNAm levels are

measured genome-wide at thousands to millions of sites

in hundreds of individuals to identify loci where these

levels are associated with quantitative traits or disease

[1,2]. Because existing cohort studies that extensively

characterize participants often store blood samples, the

most widely available tissue for subsequent/retrospective

EWAS is whole blood. Furthermore, many studies meas-

ure genome-wide DNAm in blood as obtaining disease-

relevant tissues is often invasive and/or impossible. With

many of these studies completed, few disease-associated

loci have been reported outside of cancer [3], type 1 dia-

betes [4], and rheumatoid arthritis [5]. Instead a series of

papers reporting age-related changes of DNAm profiles

have been published [6-14].

Age-related changes in DNAm have been previously re-

ported and functionally described by Chu et al. [15]. In this

carefully designed study, fluorescence-activated cell sorting

(FACS) was used to separate peripheral blood into pure cel-

lular populations. DNAm was measured in four genomic

regions, selected using biological insight, and modest age-

related changes were found in CD4+ and CD8+ T cells. In

contrast, the above-mentioned EWAS measured DNAm

for all CpGs selected by the array manufacturers and used

whole blood as a source tissue. Whole blood is a heteroge-

neous collection of different cell types, each with a very dif-

ferent DNA methylation profile [16,17]. Observed whole

blood DNAm profiles are therefore mixtures of the cell

type profiles. In a seminal paper, Houseman et al. [16] de-

scribe a statistical method that can accurately estimate rela-

tive proportions of cell type components in whole blood.

Using practically the same statistical approach, Guintivano

et al. [18] describe a method for estimating neuron and

non-neuron components in brain samples. However, cur-

rently there are no published statistical solutions to parsing

age effects by cell type from observed whole blood DNAm

measurements.
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We examined data from five publicly available studies

(Additional file 1) and found strong evidence of cell

composition changes across age. Furthermore, we find

high levels of confounding between age-related variabil-

ity and cell composition. We report findings that under-

score the importance of accounting for cell composition

variability in epigenetic studies based on whole blood

and other heterogeneous tissue sources.

Results and discussion
DNAm profiles show large between cell type differences

We downloaded Illumina HumanMethylation450 Bead-

Chip (Illumina 450k) data from flow-sorted neutrophils

(granulocytes), lymphocytes (CD8+ and CD4+ T cells,

CD56+ natural killer cells and CD19+ B cells) and CD14+

monocytes from six adult male samples (mean age 38 ±

13.6 years) as previously described [17] and confirmed that

sorted blood cell types have unique DNAm profiles

(Figure S1 in Additional file 2). In fact 63.5% of the CpGs

on the Illumina 450k array showed differences with P < 0.05

across these cell types (Figure S1C in Additional file 2).

We used these data to adapt the statistical method

developed by Houseman et al. [16] for the Illumina

HumanMethylation27 BeadChip (Illumina 27k) array to

estimate cell composition from DNAm profiles obtained

with its successor, the Illumina 450k. We select a subset

of 600 cell-type-specific CpGs (Figure 1) and then use

these to estimate proportions in whole blood samples

(see Materials and methods). We provide a table with

statistical summaries of cell-type variability for all CpGs

on the Illumina 450k array (Additional file 3).

In sorted samples, cell type explains a larger percentage

of variability than age

Given these results, for the purposes of our analysis, we

assumed that, for the selected 600 CpGs, the cell type-

specific DNAm profiles are the same for all ages. Al-

though we know this assumption does not hold true for

all CpGs [15], the results of this section suggest that it is

reasonable for most CpGs, and our 600 CpG profile in

particular. To demonstrate this, we interrogated two

publicly available datasets - the Reinius et al. [17] Illumina

450k data on 6 men (sample ages were obtained from the

authors) and Illumina 27k data from sorted CD4+ T cells

and monocytes [6] on 24 and 26 subjects, respectively (see

Materials and methods). First, we removed CpG probes

A
B C

D

Figure 1 Illustration of how blood composition drives observed age differences. (A) Heatmap of the cell sorted data shows very clear and

consistent DNAm profiles for each cell type. We show 600 probes selected for estimating composition proportions used to demonstrate

differences here. (B) To simplify the illustration we selected a section of (A) displaying only the two most abundant cell types: CD4+ T cells and

granulocytes. (C) Heatmap of a randomly selected sample of 30 whole blood samples (from the data in Additional file 1) across three age groups

(10 per group): between 1 and 5 years of age, between 30 and 40, greater than 60 years. The same probes as in (B) are used. When the samples

are ordered by their estimated granulocyte proportion, the samples roughly cluster by age and a similar pattern to (B) is observed. The estimated

cell count proportions for each of the samples are shown below. Note the strong confounding between age and cell composition. (D) For the

two samples highlighted with an arrow in (C), we show how a weighted average of the cell type profiles can reconstruct the observed DNAm

profiles. The numbers shown are the estimated proportions. Note how different weights (cell counts) for old and young result in very different

observed DNAm patterns. Note that the differences in CD4+ T cells and granulocytes drive much of the differences in DNAm. NK, CD56+ natural

killer cells; CD8T, CD8+ T cells; CD4T, CD4+ T cells, Gran, granulocytes; Bcell, CD19+ B cells; Mono, CD14+ monocytes; DNAm, proportion of DNA

methylation at individual CpGs (Illumina 'beta' values, bound between 0 and 1); Prop, cell count proportion, between 0 and 1 for each

component, such that they sum to 1.
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that showed age associations (at P < 0.05) in the Reinius

et al. [17] dataset when picking cell-type-discriminating

probes for the cell composition estimation. Additionally,

in Rakyan et al. [6] (which was a larger sample) we found

that the percentage of variance explained by cell type was

much greater than that explained by age within each cell

type with most CpGs showing no significant association

with age (Figure S2 in Additional file 2). Furthermore,

among the 23 CpGs appearing on the Illumina 27k array

that were among the 600 cell-type discriminating CpGs

(from the Illumina 450k), only one probe (cg03439703)

had a p-value < 0.05 when testing for association with

age in both CD4+ T cells (P = 0.003) and monocytes

(P = 0.047).

Varying cell composition may explain apparent

age-associated differences

We downloaded all publicly available DNAm studies in

peripheral blood measured with the Illumina 450k array

(Additional file 1), re-normalized the data, and applied

our method to obtain cell composition estimates for each

sample. Note that only three of the studies were focused

on finding age-related changes in DNAm [8,10,11], but all

studies recorded age information. Figure 1 demonstrates

that peripheral blood samples indeed appear to be a mix-

ture of pure cellular components, and differences in

DNAm may potentially arise merely from differences in

the relative proportions of these components rather

than site-specific changes in specific cellular populations

(Figure 1C).

Cell type proportions change with age following

monotonic patterns

We observed consistent age-related changes for the pro-

portions of each cell type (Figure 2). These results are in

line with previously published findings related to T cells,

namely the involution of the thymus, where T cells in

lymphocytes mature. This process begins very early in

BA

DC

FE

Figure 2 Cellular composition changes across the lifespan. Estimated cellular composition proportions are plotted against age for (A) CD4+ T cells,

(B) CD8+ T cells, (C) natural killer (NK) cells, (D)monocytes (Mono), (E) B cells, and (F) granulocytes (Gran). Color indicates the data source, which are

described in Additional file 1. The black lines are curves fit to data with local weighted regression (loess) with confidence intervals in grey. Spearman

correlation coefficients are reported for each composition proportion estimate and age.
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life [19] and continues with age - the size of the thymus

drops approximately 3% per year until the mid-60s, and

is approximately 5% the size of the thymus in a newborn

[20], suggesting that the number, and diversity, of T cells

decreases with age. However, we also note these age-

cell count relationships, although monotonic, were non-

linear with an inflection point around 40 years (Figure 2).

While these findings may be partially attributable to

'batch' effects (given the strong correlation between age

and study/dataset), datasets with overlapping age ranges

(Liu et al. and Hannum et al.) have consistent age com-

position trends (Figure S3 in Additional file 2).

Cellular composition correlates strongly with global

DNAm profiles

Given that blood cell types have very different DNAm pro-

files (Figure S1 in Additional file 2) and that cell type pro-

portions change across age (Figure 2), we assessed if cell

composition was a major source of variability in the five

peripheral blood data sets. We computed the first two

principal components of the epigenome-wide DNAm pro-

files across the five studies and compared them to the

first principal component of the cell proportion estimates

(Figure 3). The correlation between DNAm variance and

composition variance was apparent within each study,

often to a stronger degree (Figure S4 in Additional file 2).

These observed correlations therefore empirically demon-

strate that cell composition is a very large source of vari-

ability in DNAm data derived from peripheral blood.

Confounding between cell composition and age leads to

false positives

To determine the adverse effects at the single locus level

of the observed confounding between age, cell compo-

sition, and DNAm, we reexamined the CpGs reported in

the literature to be associated with age [6-13] across se-

veral different measurement platforms (Additional file 4).

For each of the CpGs reported to associate with age on

the Illumina 450k array (n = 134,489), we tested between-

to-within cell type variability on the sorted DNAm

data and found that 86.7% of these had P < 0.05

across cell type (Figure S5 in Additional file 2).

A simple linear regression model including the cell

composition percentages as covariates has been sug-

gested as a way to adjust for the confounding [5]. We

applied this method to the data from Hannum et al.

[10] and Alisch et al. [8] and found that the adjusted

estimates are, on average, closer to 0 (Figure S6A in

Additional file 2). However, at this level of confounding it

is not clear that this naïve approach will in fact produce

unbiased adjusted estimates (Figure 4A) [21]. We therefore

tried two alternative approaches. First we applied the

Remove Unwanted Variation (RUV) method [22], an ana-

lysis that estimates and adjusts for unknown surrogate

variables as done by Leek and Storey [23]. This resul-

ted in much greater, but not complete, attenuation of

the age association estimates (Figure 4B; Figure S6B

in Additional file 2). Next we obtained age association

estimates from fitting the model to data from sorted

CD4+ T cells and granulocytes. Note that in these

data, cell composition is not a confounder and we see

minimal evidence of age association (Figure 4C,D;

Figure S6C,D in Additional file 2). We did not imple-

ment the adjustment approach suggested by Guintivano

et al. [18] because mathematical derivations demon-

strated their solution adjusts for confounding in

special situations (see Materials and methods).

A

B

Figure 3 Cellular composition is a major source of variability in

DNAm datasets in whole blood. Principal components (PCs) (A) 1

and (B) 2 of the 456,655 DNAm probes (y-axis) and the first PC of

the empirical cell counts (x-axis) are highly correlated. The first PC of

the DNAm data explains 10.9% of the variance, and the second

explains 9.3% of the variance. Color indicates data source, which are

described in Additional file 1.
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Improved biological interpretation after composition filtering

We removed results from Johansson et al. [14] (which

reporting one-third of the array was differentially me-

thylated) then mapped the remaining 5,237 age-associated

CpGs (Additional file 4) to human genes using the database

provided by Triche [24]. For each Gene Ontology category

[25] with more than 25 annotated gene IDs we counted

the number of CpGs associated with a gene in that ca-

tegory and formed an observed count to expected count

ratio (see Materials and methods). We then filtered this

list by removing CpGs associated with cell composition

and recomputed the observed to expected ratios. With

the unfiltered list, 10 of the top 20 enriched categories

were clearly related to the immune system while only

three were related to development, whereas in the fil-

tered list 9 of the top 20 were associated with deve-

lopmental processes and only 4 to immune response

(Additional file 5).

Conclusions
Whole blood has been one of the most widely used

source tissues in EWAS. Here we demonstrate that, in

these studies, cellular composition explains much of the

observed variability in DNAm. Therefore, when the out-

come of interest correlates with cell composition, as age

does, failure to account for cellular heterogeneity may

result in many false positives. For binary outcomes, for

example, we may observe differences between cases and

controls, not due to the real differences in DNAm, but

rather due to cases and controls having different blood

cell counts (Figure 1).

While our re-analysis of publicly available data does not

necessarily suggest that all reported age-related DNAm

changes in blood are false positives, it certainly suggests

that one should account for cellular composition. We

therefore recommend that users of the Illumina 450k array

studying whole blood perform the cell composition esti-

mation (using, for example, the estimateCellCounts func-

tion we have added to the minfi Bioconductor package)

and check for possible confounding. If confounding is

present, we recommend the use of our table (Additional

file 3; also available in the FlowSorted.Blood.450k Biocon-

ductor package) that summarizes cell-type variability for

each CpG. Those CpGs with methylation values highly

Figure 4 Confounding between cellular composition and age at the CpG level. Comparisons between resulting t-statistics for age on DNA

methylation levels in Hannum et al. [10] using (A) naïve (for example, including cell composition estimates as covariates in regression models), (B)

two-step Remove Unwanted Variation (RUV), (C) flow-sorted CD4+ T cells and (D) flow-sorted monocytes compared to the effect of age on

DNAm in a univariate model. The univariate and naïve models also adjusted for processing plate, which was a very strong confounder. Here,

analysis with RUV attenuates the association between DNAm and age. The solid lines indicate the resulting t-statistic cutoff for false discovery

rate <5% - no probes were significant at this threshold in the cell sorted data. All panels contain probes present on both the Illumina 450k and

27k (n = 24,692) to facilitate comparisons to age associations in the flow-sorted cellular populations.
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associated with cell-type variability should be treated with

skepticism, and we strongly recommend that CpGs

associated with both composition and the covariate

of interest be validated using FACS-derived cellular

populations.

Note that due to the high levels of confounding we

currently do not recommend regression approaches for

adjustment purposes, but we note that RUV performed

best for reducing the composition-based confounding.

However, when there is no or minimal confounding, the

added unaccounted variability may result in false nega-

tives. In such cases popular factor-based 'batch' correc-

tion methodology, like surrogate variable analysis [23],

and RUV [22] can empirically estimate and control for

cell-type composition.

Note that these confounding problems are not confined

to blood, but rather any tissue source that contains a mix-

ture of cell types. Here, careful study design, via targeted

validation employing cell sorting within the tissue of inter-

est, can help isolate cell type-specific changes, such as

age-related DNAm changes in the pure cellular popula-

tions of blood beyond the preliminary negative findings in

CD4+ T cells and monocytes from Rakyan et al. [6]. These

may better explain observed biological effects, specifically,

which epigenetic marks mediate risk for disease or associ-

ate with a trait. Characterizing and exploring the effects of

cellular heterogeneity is therefore a necessary step in the

analysis of genome-wide DNAm data in any heteroge-

neous tissue source, especially peripheral blood.

Materials and methods
Sample and study selection

There were five publicly available datasets on the Illu-

mina 450k platform [5,8,10,11,26] performed on blood

samples in the Gene Expression Omnibus (GEO) avail-

able through the National Center for Biotechnology In-

formation (NCBI) as of February 2013 [27]. We also

downloaded cell sorted data described in the Results sec-

tion from Reinius et al. [17] (GSE35069). Because study

and age were almost perfectly confounded, and because

there were very strong effects of study in the processed

GEO data, we required 'raw' methylated (M) and

unmethylated (U) channels from the Illumina 450k to

preprocess and normalize all of the samples together, in-

cluding the cell-sorted dataset. One study, Horvath et al.

[12], was not included in the manuscript because the

GEO entry lacked raw data. Samples were dropped ac-

cording to three criteria: 1) missing an age in the data-

base (N = 11); 2) known to be cell-sorted, according to

published manuscripts (N = 2, from Heyn et al. [11]);

and 3) hypothesized to be cell-sorted, based on granulo-

cyte count values (Figure S7 in Additional file 2), includ-

ing all centenarian samples from Heyn et al (N = 19), as

all appeared to be only granulocytes, and 21 samples

from Harris et al. [26], which appeared to be granulocyte-

depleted (the manuscript refers to a subset of samples be-

ing sorted, but it was not available information in the

GEO entry). This left 1,098 samples across 5 studies.

We performed across-array quantile normalization

within the M and U channels separately to normalize in-

tensities across samples. Before normalization, we dropped

probes on the sex chromosomes (chromosome X = 11,232

and chromosome Y = 416) and also probes that contained

an annotated SNP (via dbSNP 137 Common database) in

the CpG site (N = 16,756) and at the single base extension

site (N = 7,880). This left 456,655 autosomal probes across

the epigenome. After normalization, DNAm measure-

ments on the logit scale were calculated as log2(M/U), and

then transformed to Illumina’s 'beta' scale (proportion

methylation, between 0 and 1). This approach is similar to

the 'ABNorm' approach described by Sun et al. [28], but

we use the logit transform described above rather than the

Illumina approach [M/(M +U+ 100)] for calculating the

beta values.

Empirically estimating cellular composition using the

Illumina 450k microarray

We tailored the algorithm designed by Houseman et al.

[16] for the Illumina 27k array to the Illumina 450k array.

Briefly, the Houseman algorithm identified 500 CpGs that

discriminated cellular composition in flow-sorted cell pop-

ulations (consisting of CD4+ and CD8+ T cells, B cells,

monocytes, natural killer cells, and granulocytes). The al-

gorithm then fits a nonlinear random effects model at

each of these CpGs, estimating the coefficient for each cel-

lular component, and then uses these coefficients to pre-

dict the relative proportion of each cellular component in

peripheral blood samples.

However, there were several reasons that prevented the

direct use of Houseman et al.’s algorithm on the 1,098

blood samples obtained on the Illumina 450k. First, while

473 of the 500 composition-discriminating CpGs were

present on the Illumina 450k, these probes exhibited

slightly different behavior in the two arrays (Figure S8 in

Additional file 2). Second, 291 CpGs used by Houseman

et al.’s algorithm contained an annotated SNPs (by rs

number in the dbSNP137 database) at the CpG site of

interest (N = 57), at the single base extension site following

the CpG (N = 34) or in the probe sequence itself (N =

200). Problems detailing the inclusion of SNPs in the de-

sign of the Illumina 450k have been discussed previously

[29,30], and given our data are from a genetically hetero-

geneous population, we elected to exclude some of these

probes.

We therefore obtained flow-sorted data, including the

same six cellular components on six adult male subjects on

the Illumina 450k platform [17], and derived our own simi-

lar blood composition algorithm using linear modeling
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across 600 composition-discriminating probes. We com-

puted t-statistics for each cell type after removing probes

that associated with age (at P ≤ 0.05), comparing that par-

ticular cell type with all others, and selected among the

CpGs showing differences at P < 10-8 the 100 most differ-

entially methylated probes by effect size, 50 hypermethy-

lated and 50 hypomethylated. One outlying CD8+ T cell

was excluded for the sake of composition estimation. The

choices of 50 and 10-8 were somewhat arbitrary, but in-

sample cross-validation (via leaving out one sample per

cell type, training the model on the remaining 30 samples,

and then predicting the 6 left out samples) demonstrated

nearly perfect concordance between our estimates of

cellular composition and the true values (Figure S9 in

Additional file 2).

We also validated the overall algorithm using publicly

available brain data from Guintivano et al. [18], which

consisted of flow-sorted NeuN + and NeuN- cellular

populations from the dorsolateral prefrontal cortex as

training data, and then mixture data containing 10%

NeuN+/90% NeuN-, 20% NeuN+/80% NeuN-, …, 90%

NeuN+/10% NeuN- and bulk tissue data with FACS-

derived counts of NeuN + cells as testing data. We proc-

essed the data (quantile normalization, dropping probes

with SNPs and on sex chromosomes), picked 50 hypo-

and hyper-methylated probes, and implemented the

algorithm. The algorithm successfully recovered the mix-

ture experiment (correlation = 0.9995; Figure S10A in

Additional file 2) and predicted the FACS-derived counts

from bulk tissue with moderate accuracy (correlation =

0.786). Lastly, we expect similar accuracy in blood (<10%

on the Illumina 27k) as Houseman et al. [16], as we have

adapted the algorithm to the Illumina 450k without chan-

ging the regression calibration approach.

Software to implement the estimation of cellular com-

positions from cell-sorted DNAm data is available in the

minfi Bioconductor package [31]. Publicly available cell-

sorted data, to be used in conjunction with the minfi

package, are available in the FlowSorted.Blood.450k Bio-

conductor package.

Previously published solution does not generally adjust

for confounding

Guintivano et al. [18] also provide software that imple-

ments a method that they claim can transform data to

eliminate (or at least reduce) the confounding effect of

cell type heterogeneity on methylation profiles. Although

the software is developed for brain, and only for two cell

types, one could envision extensions applicable to cases

with more cell types such as blood.

However, we offer a mathematical proof demonstrating

that the solution offered in the paper only adjusts for con-

founding in a very special case. To understand the trans-

formation we downloaded the accompanying software

package CETS (version 0.99.2) and deciphered it from the

R code. Here is a mathematical description of what the

transformation does.

Let Yi be the observed methylation profile for the ith

individual, a mix of glia (G) and neurons (N). Then we

can write:

Y i ¼ πiμi;N þ 1−πið Þμi;G þ εi

where πi is the proportion of the ith sample that comes

from neurons, μi,N and μi,G are the profiles for neurons

and glia, respectively, and εi is measurement error. In

their software, Guintivano et al. [18] provide neuron and

glia profiles based on an average across many cell-sorted

samples, which we will denote with �μN and �μG . It is im-

portant to note that these are averages and thus different

from the individual profiles. The transformation pro-

posed by Guintivano et al. [18] is:

T Y ið Þ ¼ Y i þ 1−πið Þ �μN−�μGð Þ

They claim that this will recover the pure neuronal

signal μi,N. But we can do some arithmetic to note that

the above can be rewritten as:

μi;N þ 1−πið Þ �μN−μi;N

� �

− �μG−μi;G

� �h i

þ εi

Thus, the signal is recovered only when the difference

between the individual profiles and the average profiles

are the same across cell type, which is not a reasonable,

nor useful, assumption.

Variability in sorted cell populations

We downloaded publicly available data from Rakyan et al.

[6] at GEO accession GSE20242, which consisted of sorted

adult blood samples for monocyte and CD4+ T-cell popu-

lations. Linear regression models including i) age, ii) cell

type, iii) both age, cell type, and their interaction term

were fit at every probe. We summarized each fit with the

adjusted R2 (coefficient of determination) . We then exam-

ined the P-values for the age terms within each cellular

population at our 600 probes from the Illumina 450k used

to estimate cellular composition that were also present on

the Illumina 27k (n = 23).

Analysis of reported age-associated differentially methylated

regions

We downloaded tables for statistically significant age-

associated differentially methylated probes or regions

(DMRs) from the supplementary material of published

manuscripts listed in Additional file 4. For each reported

age-associated DMR, we identified the F-statistic (and

resulting marginal P-value) for that probe for the effect

of composition in the publicly available sorted Illumina

450k data [17].
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We applied naïve regression adjustment (for example,

adjusting for cell type estimates) and two-step RUV

using k = 10 (principal components) in Alisch et al. [8]

and k = 30 in Hannum et al. [10], which were deter-

mined using diagnostic plots across a range of k values.

Univariate regression modeling for Hannum et al. [10]

included a categorical 'plate' adjustment variable, as plate

and age were strongly associated, and plate and DNAm

estimates were also associated. The RUV method re-

quires control probes that are affected by the con-

founder (cell composition) but not the outcome of

interest. We therefore used our 600 probes used to esti-

mate cell type proportion since we showed these had no

relation to age in at least two cell types. While it is pos-

sible that they are age associated in other cell types the

results summarized in Figure S2 in Additional file 2 sug-

gest that this is a useful approximation. With these con-

trol probes in place we then let the algorithm estimate

the surrogate variables.

We assessed functional significance through enrich-

ment using pre-defined gene sets with the Gene Ontol-

ogy database. First we mapped each CpG to its Entrez

Gene ID [24] for background enrichment (311,817/

456,655 probes had an annotated Entrez Gene ID). For

each gene set with 25 or more genes, we assessed the

number of CpGs that mapped to each gene set. Then we

assessed the number of reported age DMR CpGs in the

existing gene sets, before (n = 4,691/5,237 mapped to an

Entrez ID) and after (n = 1,090/1,209 mapped to an

Entrez ID) removing probes that correlated with com-

position (f-statistic P-value <1 × 10-4 and DNAm range

>10%). The observed verses expected ratios were com-

puted for every gene set before and after this compo-

sition filtering, and are presented in Additional file 5.

Data availability

All datasets are publicly available in the GEO database

[27] at the accessions available in Additional file 1.

Additional files

Additional file 1: Table S1. Studies included in the cellular

composition analyses. 'Dataset' refers to each study used in the paper,

followed by its citation (see References for full citation); 'N' is the number

of samples included from each study; 'GEO ID' is the Gene Expression

Omnibus identifier; 'Primary Outcome' is the main disease or trait

reported by the referenced article - note that only some datasets were

primarily focused on age; 'Median Age [IQR] (yrs)' is the median age of

the study participants, followed by their interquartile range (25th percent-

ile, 75th percentile), in years.

Additional file 2: Figure S1. Differential DNA methylation by cell

composition. Figure S2. Contributions of age and cell type to cell-sorted

DNAm data. Figure S3. Age versus cell type for Liu et al. [5] and Hannum

et al. [10] studies. Figure S4. Global variation in DNA methylation by

composition, by study sample (Additional file 1). Figure S5. Composition

P-values from previously reported age-associated differentially methylated

regions. Figure S6. Composition confounding in Alisch et al. [8]. Figure S7.

Removal of samples with outlying granulocyte counts. Figure S8. Differences

between sorted profiles on the Illumina 27k versus the Illumina 450k.

Figure S9. Cross-validated cell counts. Figure S10. Validation of algorithm

using brain data.

Additional file 3: Table S2. Association of each probe on the Illumina

450k with blood cell composition. Note that probes on the sex

chromosomes and those that contain annotated SNPs have been filtered

(see Materials and methods). We recommend using the CpG identifiers to

match each probe from a user’s differential methylation analysis in their

whole blood data to obtain the corresponding composition P-value - if

there are many small P-values for significant differentially methylated

sites for the exposure/outcome/trait of interest, this may be a sign of

confounding via composition differences, in which case we recommend

estimating cellular components using the minfi Bioconductor package,

and formally exploring this potential correlation between the trait,

composition, and DNAm. 'Name' refers to the CpG identifier from the

Illumina 450k; 'Fstat' and 'p.value' are the f-statistic and corresponding

P-value for composition from the ANOVA containing six samples/biological

replicates per cell type across six cell types (n = 36; see Materials and

methods); 'CD8T_mean' is the mean DNAm across the six CD8+ T cell

replicates, on the beta/proportion methylation scale; 'CD4T_mean' is the

mean DNAm across the six CD4+ T-cell replicates, on the beta/proportion

methylation scale; 'NK_mean' is the mean DNAm across the six natural killer

cell replicates, on the beta/proportion methylation scale; 'Bcell_mean' is

the mean DNAm across the six B-cell replicates, on the beta/proportion

methylation scale; 'Mono_mean' is the mean DNAm across the six monocyte

replicates, on the beta/proportion methylation scale; 'Gran_mean' is the mean

DNAm across the six granulocyte replicates, on the beta/proportion methylation

scale; 'DNAm_min' and 'DNAm_max' are the minimum and maximum beta

values, respectively, across the 36 samples at each loci; 'DNAm_range' is the

range of beta values.

Additional file 4: Table S3. Previously published results for age-associated

differential methylation in blood. 'Study (Reference)' refers to a particular study,

along with its reference, that reported age-associated differentially methylated

regions (aDMRs); 'Platform' is the DNA methylation microarray platform used

by the study - '450k' is the Illumina 450k, '27k' is the Illumina 27k and 'CHARM

2.0' is the second generation of the Comprehensive High-Throughput Arrays

for Relative Methylation platform. '# of aDMRs' reports the number of

differentially methylated loci associated with age - the number left of the

backslash is the number reported at genome-wide significance (determined

by respective publication) and to the right, the number of significant sites

available as a Supplementary Table obtained from each respective manuscript;

'SVA?' displays whether surrogate variable analysis was used in the paper,

which may have partially adjusted for blood cell composition effects.

Additional file 5: Table S4. Gene Ontology (GO) enrichment before

and after removing Illumina 450k probes associated with cellular

composition. 'GO ID' refers to the GO identifier; 'Background' refers to all

of the probes on the Illumina 450k that mapped to an Entrez Gene ID;

'Before' refers to age-associated probes that were not filtered by whether

they associated with cellular composition; 'After' refers to age-associated

probes after those probes associated with cellular composition were

filtered from the analysis; 'Number of Probes Enriched' is the number of

probes that mapped to that GO category for each condition; 'Expected

Number of Probes' is the expected number of probes, assuming no

enrichment, for each category; 'Observed/Expected Ratio' is the ratio of

observed to expected counts, a.k.a. the odds ratio; 'GO Term' is the

biological term corresponding to each GO ID; 'Set Size' is the number of

genes for each GO set. 'Ontology' refers to the three GO classifications -

molecular function ('MF'), biological processes ('BP'), and cellular

component ('CC'); 'Rank' refers to the P-value rank, smallest to largest,

before and after filtering age-associated probes also associated with

cellular composition.

Abbreviations

DNAm: DNA methylation; EWAS: epigenome-wide association study;

FACS: fluorescence-activated cell sorting; GEO: Gene Expression Omnibus;

M: methylated; RUV: Remove Unwanted Variation; SNP: single-nucleotide

polymorphism; U: unmethylated.
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