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Abstract
In this paper, we focus on chunking including contiguous multiword expression recogni-

tion, namely super-chunking. In particular, we present different strategies to improve a super-
chunker based on Conditional Random Fields by combining it with a finite-state symbolic
super-chunker driven by lexical and grammatical resources. We display a substantial gain of
7.6 points in terms of overall accuracy.

1. Introduction
Multiword expressions (MWEs) are key parts of Natural Language Processing

(Sag et al., 2002). But they have long been neglected in empirical parsing researches.
Preliminary works like Nivre and Nilsson (2004); Arun and Keller (2005) integrated
such expressions in parsers but by considering a gold MWE recognition. In recent
pioneer studies, realistic MWE recognition has started to be integrated in shallow
parsers (Korkontzelos and Manandhar, 2010) and in deep parsers (Cafferkey et al.,
2007; Green et al., 2011; Constant et al., 2012).

In this paper, we focus on shallow parsing, more precisely on chunking including
multiword expression recognition, namely super-chunking (Blanc et al., 2007). The con-
sidered MWEs are contiguous and consist of compounds, nominal collocations, mul-
tiword terms, named entities like dates, person and organization names, etc. Histori-
cally, chunking can conveniently be implemented with cascades of finite-state trans-
ducers (Abney, 1996; Joshi and Hopely, 1997; Ait-Mokhtar and Chanod, 1997; Nasr
and Volanschi, 2005). Blanc et al. (2007) successfully extended this finite-state frame-
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work to super-chunking. They implemented a super-chunker, namely POM, mainly
driven by large-scale lexical and grammatical finite-state resources. Shallow parsing
can also be seen as a sequence annotation task (Ramshaw and Marcus, 1995) that is
very well modeled by discriminative models (e.g. Kudo and Matsumoto, 2001; Sha
and Pereira, 2003; Tsuruoka et al., 2009).

In this paper, we consider the use of Conditional Random Fields (CRF). Such ap-
proach relies on a reference annotated corpus. But, what happens if this corpus does
not entirely comply with our needs in terms of super-chunk annotations? Especially,
what happens if some expected types of MWEs are not encoded? In the following, we
propose different strategies to adapt a CRF-based super-chunker to our needs by com-
bining it with a symbolic super-chunker driven by lexical and grammatical resources
(like POM). The proposed solutions are all evaluated on French as many MWE re-
sources are available for this language.

The paper is organized as follows. In Section 2, we define super-chunking and our
target annotations. Section 3 is devoted to the description of the available resources.
Then, in Section 4 we present a simple CRF-based super-chunker that we consider
our baseline. Next, we detail POM architecture (Section 5). Finally, we present two
combination solutions (Section 6) and evaluate them (Section 7).

2. Super-chunking

2.1. Super-chunks

Super-chunks are non-recursive syntactic constituents, like standard chunks (Ab-
ney, 1991), with the difference that they can contain multiword expressions, as we
defined it in Blanc et al. (2007). For instance, marge d’exploitation (trading margin)
is considered a compound noun, so the utterance la marge d’exploitation (the trading
margin) is annotated as a nominal super-chunk (XN), while standard chunking would
have produced a sequence of a noun phrase (XN) followed by a prepositional phrase
(XP).1 Considering super-chunks instead of standard chunks has two main interests:
(1) it reduces combinatorial complexity for shallow parsing because some ambigui-
ties are resolved with MWE recognition2 (Korkontzelos and Manandhar, 2010) ; (2) it
allows for the identification of semantic units as MWEs form idiomatic units (Baldwin
and Nam, 2010).

1The utterance would be annotated in standard chunks like below:
[XN la marge] [XP d’exploitation]
(the trading margin)

2Korkontzelos and Manandhar (2010) showed that recognizing MWEs could improve chunking. They
limited the experiment to some types of MWEs that do not change the chunk annotation definition.
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Example 1 illustrates super-chunking.3 The annotated sentence contains 4 MWEs
(between brackets): the adverbial time expression durant le premier trimestre 2007 (dur-
ing the first trimester 2007), the nominal determiner l’ensemble des (the whole), the
noun chiffre d’affaires brut (gross sales) and the complex numerical determiner 6 121
millions de. It is composed of a sequence of 6 super-chunks (instead of 11 chunks with
standard chunking).
(1) [(Durant le premier trimestre 2007)], [(l’ensemble des) activités] [au

Maroc] [ont généré] [un (chiffre d’affaires brut)] [de (6 121 millions de)
dirhams]
([During the first trimester 2007], [the whole activities] [in Marocco]
[generated] [gross sales] [of 6,121 million dirhams].)

Several multiword expressions can be combined into a same super-chunk because
any lexical item can be a multiword expression. For instance, let’s consider the fol-
lowing annotated sequence:

[XN La température] [XP (à l’intérieur de) (beaucoup de) maisons] [XP en
Moldavie]
([XN the temperature] [XP inside a lot of houses] [XP in Moldavia])

The whole phrase à l’intérieur de beaucoup de maisons is considered to be a prepo-
sitional super-chunk (XP) because à l’intérieur de (inside) is a multiword preposition,
beaucoup de (a lot of) is a multiword determiner and maisons (houses), a simple noun.

Verbal chunks are also very specific because they can include auxiliaries in the
sense of Gross (1999), inserts, clitics and negation. For example, the sentence

Jean n’a pas pu les trouver
(John could not find them)

is annotated:
[XN Jean] [XV n’a pas pu les trouver]
([John] [could not find them])

The discontinuous sequence n’... pas (not) is a negation, a ... pu is the preterit form
of the modal verb pouvoir (to can) and les is an accusative clitic.

2.2. Target annotation

The annotation tagset of the super-chunker is given in Table 1. Lexical items that
do not belong to any chunk like conjunctions, punctuations or relative pronouns are
labelled with the tag O (meaning other). It is possible to have multiword O like for
multiword conjunctions (e.g. bien que – although). In that case, the whole unit is an-
notated O: bien_que/O. Example 1 is then fully annotated as provided in Table 2.

The target evaluation corpus is a mix of a part of the novel “Le Tour du Monde en 80
jours” (Around the World in 80 days) by Jules Verne, as well as some reports of French

3This example shows the super-chunk segmentation without providing the labels.
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TAG DESCRIPTION

XA adjectival chunk
XADV adverbial chunk
XN nominal chunk
XP prepositional nominal chunk
XV verbal chunk
XVP prepositional verbal chunk

Table 1. Super-chunker tagset

CHUNK TAG

Durant le premier trimestre 2007 XADV
, O
l’ensemble des activités XN
au Maroc XP
ont généré XV
un chiffre d’affaires brut XN
de 6 121 millions de dirhams XP

Table 2. Chunking result example

Parliament sessions. It is composed of 424 sentences, 8,319 tokens and 4,394 super-
chunks. It has been semi-automatically annotated by T. Nakamura and S. Voyatzi
at the LIGM laboratory. Both annotators have independently validated the whole
corpus. In case of disagreement, a final decision was made after discussion. The
super-chunk annotations exactly match the target annotations. Despite its small size,
this corpus is therefore adequate for the evaluation of our tool. It is much harder to
parse than a journalistic corpus because it contains specific terms (Parliament report
section) and very long named entities (Around the World in 80 days). It is also full
of dialogs. We assume that we have no development corpus of the same type. This
means that the super-chunking process is completely blind.
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3. Resources

In this section, we present the resources available to train and tune our super-
chunker. They are composed of a treebank and lexical resources. The chunk annota-
tions directly derived from the treebank do not exactly match our target ones.

3.1. Annotated corpus

The French Treebank (FTB) is a syntactically annotated corpus made of journalistic
articles (Abeillé et al., 2003). Our edition comprises 584,987 tokens and 19,108 sen-
tences. One benefit of this corpus is that compounds are marked. Their annotation
was driven by linguistic criteria such as the ones in Gross (1986). Some organization
and location names are also encoded, e.g. Royal Zenith of Great Neck, San Francisco. In
total, around 5.6% of all lexical units are marked as multiword expressions. Some
types of MWEs are missing like nominal collocations,4 time expressions (date, dura-
tion, etc.), person names, etc.

We automatically converted the treebank to super-chunks in the target chunk tagset.
In most cases, the chunk definition corresponds to the expected ones, except for verbal
chunks when the verbs are combined with auxiliaries and modal verbs. For instance,
the sentence Marie peut changer (Marie can change) is annotated (XN Marie) (XV peut)
(XV changer) in the French Treebank, whereas the expected annotation is (XN Marie)
(XV peut changer) because peut (can) is a modal verb.

We split the corpus in two distinct sections: a training section (90%) and a devel-
opment section (10%). The training section was used to learn the CRF model, whereas
the development section was used for the tuning of the features, the lexical and gram-
matical resources and the super-chunker POM.

3.2. Lexical resources

The lexical resources include large-scale dictionaries developed by linguists. They
are lists of lexical entries, each of them being composed of an inflected form, a lemma,
a part-of-speech (POS), morphological information (e.g. gender, number), syntactic
information (e.g. transitive or intransitive verbs) and semantic information (e.g. hu-
man feature for nouns). They encode not only simple words but also multiword ex-
pressions like compounds. They are compressed in the form of FSTs in order to be
efficiently applied to the text.

All dictionaries that we used are listed in Table 3. The larger ones were developed
between the mid-80’s and the mid-90’s by linguists at the University of Paris 7: DELAF
(Courtois, 1990) is composed of 746,198 inflected simple forms; DELACF (Courtois

4 Collocations are combinations of words that co-occur more often than by chance. They are usually
defined through statistical criteria.
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et al., 1997) contains 255,163 inflected compounds (mostly composed of compound
nouns). Compounds are of the following types :

• nouns: pomme de terre (potato), faux témoignage (perjury)
• prepositions: au milieu de (in the middle of), à cause de (because of)
• adverbs: par ailleurs (moreover), en pratique (in practice)
• conjunctions: bien que (although), pendant que (while)

The dictionary PROLEX (Piton et al., 1999) is a list of toponyms used in order to recog-
nize location names. There exist several additional dictionaries containing organiza-
tions, first names, domain-specific terms and additional lexical entries found during
the development process.

Name Description #entries Reference

DELAF Simple words 948,177 (Courtois, 1990)
DELACF Compound words 255,163 (Courtois et al., 1997)
PROLEX Toponyms 192,249 (Piton et al., 1999)
MISC Additional dictionaries 34,151

Table 3. Dictionaries

Our lexical resources also contain a library of strongly lexicalized local grammars.
Local grammars (Gross, 1997) are Recursive Transition Networks (RTNs) (Woods,
1970) and theoretically recognize algebraic languages. They are of great interest for
representing local lexical and syntactic constraints in a simple and compact way. We
use them mostly to describe MWEs. They can define syntactic classes such as noun
determiners and even syntactico-semantic classes such as time adverbials. Linguistic
descriptions are in the form of Finite-State Graphs (Silberztein, 1994) on an alphabet
made of terminal and non-terminal symbols. A terminal symbol is a word or a lexical
mask. A lexical mask is an underspecified lexical entry (some features are missing)
equivalent to a feature structure representing a set of lexical entries: e.g. the lexical
mask <noun+plural> matches all nouns in the plural. Finally, a non-terminal symbol
is a reference to another graph. A graph represents a transducer and its output is the
annotation assigned to utterances described in the graph. An example of a local gram-
mar is given in Figure 1.5 This grammar describes time adverbials and recognizes
structures like en mars 2007 (in March 2007) and cinq minutes plus tard (five minutes
later). The sequences recognized by this graph are tagged as time adverbs (ADV+time).
Strings between < and > are lexical masks: for instance, <minute> stands for the in-
flected forms whose lemma is minute. Greyed vertices are call to other graphs. For ex-

5 The local grammars are drawn using the graph editor of the Unitex platform (Paumier, 2003).
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ample, Dnum and month are graphs that recognize numerical determiners and month
names.

[ADV+time

monthen

au
le

day

dernier
prochain
<E>

weekDay

<E>
weekDay

<E>
matin
après-midi
soir

Dnum

<minute>
<seconde>
<an>
<jour>
mois

plus
tard
tôt

year

]

Figure 1. Local grammar of time adverbials

Practically, our lexical resources include a network of 302 graphs (in total, 2,853
states and 11,425 transitions in the RTN representation). Local grammars recognize
sequences of the following types:

• nouns: function names [ministre anglais de l’Agriculture (English minister of Agri-
culture)], location names [lac des Bois (lake of the Woods)] and person names [M.
John Smith]

• prepositions: locative prepositions [à dix kilomètres au nord de (ten kilometers
north of)]

• determiners: numerical determiners [vingt-sept (twenty seven), des milliers de
(thousands of)], noun determiners [dix grammes de (ten grams of)]

• adverbs: time adverbials [en octobre 2006 (in October 2006)]
Local grammars identifying named entities (i.e. time adverbials and organization,
location and person names) were partly constructed from Martineau et al. (2009).
Graphs recognizing noun determiners come from Silberztein (2003); Laporte (2007).
All of them are compiled into equivalent FSTs6 (see Table 4).

4. Super-chunking with Conditional Random Fields

Chunking, and by extension super-chunking, can be seen as a sequential annota-
tion task (Ramshaw and Marcus, 1995). Each word is assigned a tag Y-TAG: TAG is
the tag of the chunk it belongs to and Y indicates its relative position in the chunk (B
for beginning; I for the remaining positions). Table 5 shows an example of a chunked

6The local grammar representing determiners det is strictly recursive and there is no equivalent FST (just
an approximation).

65



PBML 99 APRIL 2013

type #graphs #states
in RTN

#transitions
in RTN

#states
in equiv. FST

#transitions
in equiv. FST

adv 56 594 232 1,722 33,971
det 180 1718 746 / /

noun 24 146 414 112 573
prep 43 386 1,215 2,599 62,657

Table 4. Compilation of local grammars into equivalent FSTs

text using this annotation scheme: column CHUNK corresponds to the output chunk
label.

WORD MWE+POS CHUNK

l’ B-DET B-XN
ensemble I-DET I-XN
des I-DET I-XN
activités B-N I-XN
ont B-V B-XV
généré B-V I-XV
121 B-DET B-XN
millions I-DET I-XN
de I-DET I-XN
dirhams B-N I-XN

Table 5. Chunking result example

Several studies (Sha and Pereira, 2003; Tsuruoka et al., 2009) have shown that Linear-
chain Conditional Random Fields (LCRF) are very competitive for chunking. The
models usually incorporate features computed from predicted POS and the words
themselves like in Tsuruoka et al. (2009). Nevertheless, standard chunkers do not ac-
count for MWE recognition. In Constant and Tellier (2012), we showed that MWE
recognition could be successfully performed jointly with POS tagging. The column
MWE+POS in Table 5 corresponds to the output of such joint task. A first super-
chunking strategy is therefore to use such MWE-aware labels instead of simple POS.
The model is trained on the training corpus as is, although chunk annotations do not
entirely match our target ones. We use a similar set of feature templates as Tsuruoka
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et al. (2009) for their base chunker, except that we deal with MWE-aware POS labels
instead of simple ones: word unigrams, bigrams and trigrams; MWE+POS unigrams,
bigrams and trigrams. We trained7 two MWE-aware POS tagger models using fea-
tures defined in Constant and Tellier (2012): the first model (called WITH) contains
all features including features based on data available in the external lexical resources
(namely lexicon-based features); the second one (called WITHOUT) contains all fea-
tures but the lexicon-based ones. In order to select the best model for chunking, we
applied the two models on the FTB development corpus. Results are provided in Ta-
ble 6. The upper part corresponds to overall scores: MWE+POS is the joint MWE
recognition and POS tagging accuracy in terms of labeled F1-measure; U1 stands for
the chunking unlabeled F1-measure indicating the super-chunking segmentation ac-
curacy; F1 stands for the chunking labeled F1-measure. The lower part details the F1-
measure for each chunk label. The column #Chunks indicates the number of chunks
for each label in the development corpus.

#Chunks WITHOUT WITH

MWE+POS – 93.9 94.5
U1 – 92.1 91.2
F1 – 90.1 88.8

O 10,827 97.4 97.0
XA 2,506 81.3 79.3
XADV 1,854 81.4 77.0
XN 7,161 86.6 85.6
XP 8,397 86.9 85.2
XV 5,377 91.5 90.7
XVP 788 92.3 90.7

Table 6. Baseline results on the FTB development section

The best super-chunker reaches around 90% accuracy on the development corpus.
We observe that chunk segmentation costs around 8 points8. We consider it our base-
line. Surprisingly, the best super-chunker uses a MWE-aware POS tagger including
no lexicon-based features, whereas joint MWE and POS labeling is much better with
lexicon-based features. This might show that errors caused by the lexicon-based tag-
ger are critical and cause much more damages for super-chunking.

7 We trained the CRF models by using the software Wapiti (Lavergne et al., 2010), with the same settings
as in (Constant and Tellier, 2012).

8The chunk segmentation cost is 100 − U1.
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5. Super-chunking with a finite-state lexicon-driven approach

Blanc et al. (2007) proposed a finite-state architecture to handle super-chunking,
that was developed in the tool POM. It is based on a cascade of finite-state transducers
(FSTs), similarly to the historical finite-state approach of shallow parsing (Joshi and
Hopely, 1997; Abney, 1996; Ait-Mokhtar and Chanod, 1997). It relies on external large-
coverage lexical resources, as in Silberztein (1994). The chunker is composed of three
successive stages as illustrated in the diagram in Figure 2: (1) an enhanced ambiguous
lexical analysis, (2) an ambiguous chunk analysis, (3) a chunk disambiguation mod-
ule. The whole system is mainly driven by linguistic resources in the form of lexicons
and local grammars. There might also be preprocessing and post-processing stages,
for instance, to deal with disfluencies in speech transcripts (Blanc et al., 2010). In this
paper, we used the same super-chunker architecture.

Preprocess
Lexical

AnalysisTextText
Chunk

AnalysisTFSTL DisambiguationTFSTC Chunked
Text

Postprocess
Chunked

Text

Local 
Grammars

Dictionaries

Superchunker

Figure 2. Process diagram

The lexical analysis module takes as input a text segmented into sentences and
tokens. It uses large-coverage lexical resources in the form of morphosyntactic dictio-
naries and lexicalized local grammars, all compiled into FSTs (cf. Section 3). These re-
sources are applied iteratively to the text. The module generates an acyclic text finite-
state transducer (TFST-L) representing lexical ambiguities for simple words and mul-
tiword expressions for each sentence of the input text. First, a dictionary lookup as-
sociates each token with all its possible morphosyntactic tags and recognizes MWEs.
The output of the lookup is a finite state transducer (TFST). Then, a cascade of strongly
lexicalized grammars is iteratively applied to the TFST, which is augmented with the
analyses of the matching MWEs.

Chunk analysis is also based on a cascade of finite transducers applied to TFST-L,
which is augmented each time a new chunk is found. It returns the text finite trans-
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ducer TFST-C. The module is composed of 13 successive stages, each stage corre-
sponding to the application of a given FST recognizing a type of syntactic structure.
We successively identify :

1. adverbials (XADV): simple adverbs or multiword adverbials that have been rec-
ognized during the lexical analysis

2. adjectival chunks (XA): adjectives that can be preceded by an adverb
3. nominal chunks (XN): simple noun phrases, named entities, some types of pro-

nouns
4. prepositional chunks (XP): XN preceded by a preposition
5. verbal chunks (cascade of 9 FSTs): passive and active forms of infinitive, past

participle, gerund and simple verbal chunks, complex structures integrating
auxiliaries in the sense of Gross (1999).

The syntactic patterns were constructed manually in the form of local grammars
constituting a global network of 115 graphs (1,109 states and 6,054 transitions in the
RTN representation). Then, they were compiled into equivalent FSTs which comprise
823 states and 10,703 transitions in total. Our FSTs represent not only purely syntactic
patterns (e.g. XN can be composed of a noun preceded by a determiner) but also lexico-
syntactic patterns. For example, we used the lexico-syntactic patterns to:

• describe auxiliaries in the sense of Gross (1999) followed by a verb in the infini-
tive, such as viser à (to aim at), avoir peur de (to be afraid of)

• describe fixed XNs such as les uns et les autres (one and every)
• describe intensive adverbials that can modify adjectives such as très (very), un

peu (a little).
The generated TFST-C is composed of both POS and chunk tags found in the lexi-

cal and chunk analyses. In order to remove ambiguity, the chunker includes an incre-
mental disambiguation module removing paths until total linearization is reached.
Blanc et al. (2007) proposed the three following stages: disambiguation with hand-
crafted rules (given an ambiguity and a context, selection of a tag by removing the
transitions corresponding to the other tags); algorithm keeping the shortest paths (in
order to favor multiword analyses); then a simple statistical linearization (based on
the probability to associate the tag of the chunk with its head word).

In this paper, we developed a simpler disambiguation stage. It was limited to one
module: the application of the shortest path algorithm on TFST-C, which was shown
to be the best. The TFST-C weighting is manually set, giving priority to chunk tags.
This lighter disambiguation module forced us to use a specific simple word dictionary
with very few ambiguities. To do so, we applied a standard POS tagger9 on simple
words at the preprocessing stage. From it, we built a dictionary of simple words that
we applied at the lexical stage. We also applied all MWE lexical resources described
above. The standard POS tagger model integrates features based on all our lexical
resources (cf. Section 3).

9 We used lgtagger (Constant and Tellier, 2012).
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6. Combining CRF-based super-chunker and lexicon-driven super-chunker

Our intuition is that POM super-chunker is more accurate for segmentation than
the CRF-based one (our baseline) because it is driven by large-coverage lexical re-
sources full of MWEs, all compatible with our target annotation. Furthermore, the
CRF-based super-chunker should be more accurate to label the identified chunk seg-
ments, as POM does not have any advanced disambiguation tools. Therefore, it sounds
interesting to combine both systems.

For this purpose, we developed two different combination strategies. The first one
consists in merging the outputs of both super-chunkers. It is called merge. The second
one consists in adapting the training corpus by merging it with the POM output, and
then in learning a new CRF model. It is called adapt. The two strategies are based
on the same merging procedure. This procedure takes two annotations as input and
generates a new annotation, as illustrated in Table 7. It works as follows. We first per-
form super-chunk segmentation by gathering the two input annotations in the same
directed graph. Each node corresponds to a chunk segment at a given position. An
arc links two chunks c1 and c2 if the end of c1 coincides with the beginning of c2 in
the text. We find the final segmentation by applying a shortest path algorithm that fa-
vors the longest chunks, and, in case of segmentation ambiguity, the chunks found by
POM. The graph computed for our example is provided in Figure 3. Once the chunk
segmentation is selected, we assign to each chunk its label found in the annotations.
In case of ambiguity, the CRF-based label (or the FTB reference one) is chosen, except
for some specific cases like adverbials. This algorithm is very easy to implement and
formulates our initial intuition. Moreover, it could be easily extended from 2 to n

annotations.

POM output FTB Reference annotation Merge
Le 10 juillet XADV Le 10 juillet XN Le 10 juillet XADV’On July 10’ ’On July 10’ ’On July 10’
Luc Ferry XN Luc Ferry XN Luc Ferry XN’Luc Ferry’ ’Luc Ferry’ ’Luc Ferry’
put rencontrer XV put XV put rencontrer XV’could meet’ ’could’ ’could meet’

rencontrer XV’meet’
le ministre XN le ministre des affaires sociales XN le ministre des affaires sociales XN’the minister’ ’the minister for social affairs’ ’the minister for social affairs’
des affaires sociales XP’for social affairs’

Table 7. Example of two annotations for the merging procedure

For the method adapt, the CRF model might incorporate additional features (as
compared with the baseline model). These features are based on the annotations gen-
erated by POM. Given a position i, let chk(i) be the POM-predicted tag of the chunk
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Le_10_juillet Luc_Ferry

put_rencontrer

put

le_ministre_des_affaires_sociales

le_ministrerencontrer des_affaires_sociales

Figure 3. Example of graph for the merging procedure

the current token belongs to. chkbi(i) indicates the relative position of the token in
the POM-predicted chunk: B for the starting position and I for the remaining posi-
tions. c(i) is the current output label (a chunk tag). The additional feature templates
are provided in the Table 8. We tested this strategy both with the baseline features
(adapt-base) and with all features including the additional ones described in Table 8
(adapt-advanced).

chk(i+ j)/chkbi(i+ j)/c(i) with j ∈ [−2, 2]
chkbi(i+ j)/c(i) with j ∈ [−2, 2]
chk(i+ j)/c(i) with j ∈ [−2, 2]

Table 8. Additional feature templates

7. Evaluation

This section is devoted to the evaluation of the three proposed solutions on the
target MIX corpus. We compare them with the two simple super-chunkers presented
in Sections 4 and 5. The results are provided in Table 9.

We can first notice that the performances of the baseline CRF-based super-chunker
and, respectively, our version of POM are quite low (76%) as compared with the scores
obtained on the FTB-dev (90%) and, respectively, the scores obtained on journalistic
articles by the POM version described in Blanc et al. (2007) (around 95%). The differ-
ence with the results on FTB-dev can be partly explained by the fact that some types of
multiword expressions are not marked in the FTB-train and some verbal super-chunks
do not match with what is expected (cf. low accuracy for XV and XVP). Moreover, in
Blanc et al. (2007), a great effort was made on the tuning of POM resources and dis-
ambiguation rules. We developed them with the help of a corpus of the same type
as the evaluation corpus. In our case, there are no means to tune our resources. In
addition, there are some disambiguation modules missing, even though this is partly
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# chunks baseline POM merge adapt
base

adapt
advanced

U1 – 80.5 84.7 87.9 85.9 88.2
F1 – 76.0 76.1 83.2 81.3 83.6

O 1,591 95.4 86.8 95.5 95.5 95.8
XA 157 58.5 60.0 66.5 62.2 68.6
XADV 343 49.3 48.8 59.5 56.4 59.7
XN 832 76.3 74.2 81.8 78.8 82.0
XP 591 62.6 69.8 72.2 66.4 72.8
XV 794 65.0 82.2 82.4 82.2 82.8
XVP 86 72.4 80.2 80.5 76.1 77.6

Table 9. Final results on the evaluation corpus MIX

compensated by the use of a POS tagger to have less ambiguous lexical resources.
Nevertheless, the main cause of this performance drop is simply that the MIX corpus
is hard to parse.

Furthermore, we can observe that the baseline CRF-based super-chunker and our
version of POM have very comparable results. They have comparable accuracies on
adjective, adverbial and noun phrases. But they show very different results on the
other categories. POM is very bad for identifying non-chunks, i.e. tag O: around 9
point difference with the CRF-based. This is mainly due to the light disambiguation
module of POM. The CRF-based super-chunker obtains bad results for prepositional
phrases (-7 point difference with POM) and verbal chunks (at worse, -17 points). This
is not surprising for verbal chunks as the training corpus is annotated with a verbal
super-chunk definition different from the evaluation corpus. For the prepositional
phrases, this is due to incorrect multiword preposition recognition.

We can notice that our assumptions on the performances of the baseline and POM
are verified: POM is better for segmentation (84.7% vs. 80.5%), whereas the baseline
is better at disambiguation (-3.5 vs. -8.6 points as compared with the segmentation
scores). As expected, the combination strategies show great improvements. The strat-
egy adapt-advanced reaches the best accuracy with a very substantial gain of +7.6 points
as compared with the baseline. The merge method obtains slightly lower scores, but
they are comparable. We can see that adapt-base has lower improvement: +5.5 points.
This shows that the use of features based on the super-chunks predicted by POM are
of great interest (gain of around 2 points). For non-chunks, verbal and prepositional
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phrases, the combined super-chunker reaches results comparable with the ones ob-
tained by the best simple chunker for these categories. For adjective, adverbial and
noun phrases, we observe that the two super-chunkers are complementary as their
combination achieves quite better scores as compared with the best simple chunker
for each of these categories: +10 points for adverbials, +9 points for adjective phrases,
+6 points for noun phrases.

8. Conclusions and Future Work
In this paper, we focused on shallow parsing, more precisely on chunking in-

cluding MWE recognition, namely super-chunking. As it is sometimes hard to have
a training corpus with the exact same annotations as expected, it can be easier to use
a chunker driven by lexical resources that are usually adapted to one’s needs. We have
shown how to improve a CRF-based super-chunker by coupling it with a finite-state
symbolic lexicon-driven super-chunker. We used a procedure merging two chunk
annotations: either to merge the two super-chunker outputs, or to adapt the training
corpus with the lexicon-driven super-chunker. In the second case, the CRF model
is even improved when integrating additional features based on the lexicon-driven
super-chunker. We display a substantial gain of 7.6 points in terms of general ac-
curacy for this latter solution. Future work might consist in improving the lexicon-
driven super-chunker in order to have a more precise merging procedure and have
finer features for CRF models. It would be interesting to extend the evaluation to
other target domains.
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