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SUMMARY 
Remanent and induced magnetization occurs in crustal materials when they are 
below their Curie temperature, and we consider the problem of determining the 
magnetic field originating in the earth's core in the presence of such magnetization. 
Simple physical models of induced magnetization which have been proposed and 
which lead to deterministic effects account for only a small proportion of the 
high-degree internal field found using Magsat data, and thus a stochastic description 
appears more useful. We investigate the effect of remanent magnetization in the 
crust on satellite measurements of the core magnetic field by posing the question: if 
the crustal magnetization is correlated only on the shortest possible length-scale, and 
different components are uncorrelated everywhere, what is the correlation length- 
scale at a radius above the earth's surface? Using an idea due to Parker (1988), we 
model the crust as a zero-mean, stationary, Gaussian random process. We show that 
the matrix of second-order statistics is proportional to the Gram matrix, which 
depends only on the inner-products of the appropriate Green's functions, and that at 
a typical satellite altitude of 400km the data are correlated out to an angular 
separation of approximately 15". Accurate and efficient means of calculating the 
matrix elements are given. This theory leads to a more conservative form for the 
correlation in the data than that previously given by Langel, Estes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sabaka (1989), 
whilst not being incommensurate with the imprecisely known high-degree power 
spectrum. Previous studies examining the core field have treated satellite data as 
independent, and have given different orthogonal components equal weight. Both 
these assumptions are incorrect, and we show that the variance of measurements of 
the radial component of magnetic field due to the crust is expected to be 
approximately twice that in horizontal components. However, the size of the crustal 
effect is small compared to the random noise in the data, and may not lead to 
radically different results from those already published. 

Key words: core magnetic field, crustal magnetization, stochastic representation. 

1 INTRODUCTION 

Determination of the magnetic field originating in the 
earth's core from measurements taken at or above the 
earth's surface is currently of great interest. Knowledge of 
its morphology and time-evolution is essential for testing 
such ideas as whether magnetic diffusion is absent at the top 
of the core on the decade time-scale (the frozen-flux 
hypothesis of Roberts & Scott 1965) and for determining 
fluid flow immediately below the core-mantle boundary 
(CMB); it may also ultimately give insights into the 
mechanism responsible for the regeneration of the field over 
time-scales of millions of years. 

It is likely that improvements in our knowledge of the 
core field will come from both new data from satellite 
missions and observatories, and from theoretical develop- 
ments. For example, the effect that the conductivity of the 
mantle will have on magnetic signals on their passage from 
the core to the earth's surface has been considered (Benton 
& Whaler 1983; Backus 1983), but lack of knowledge of the 
mantle conductivity profile has prevented the use of these 
theories in construction of core fields. However, the effect 
of both remanent and induced magnetization attributable to 
minerals within the lithosphere which are above their Curie 
temperatures has been largely ignored. 

Considerable attention has been given to the methods of 
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constructing plausible maps of the radial field B, at the CMB 
(e.g. Whaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gubbins 1981; Shure, Parker & Backus 
1982; Parker & Shure 1982; Gubbins 1983; Gubbins & 
Bloxham 1985; Shure, Parker & Langel 1985; Backus 
1988a,b, 1989; Parker, Constable & Stark 1989). Whilst the 
methods of harmonic splines (HS) (Shure et al. 1982) and 
stochastic inversion (SI) (Gubbins 1983) can produce almost 
identical results [compare for example the models of Shure 
et al. (1985) and Gubbins & Bloxham (1985)], they choose 
just one smooth model from the large number which fit the 
data acceptably and the questions of model uniqueness are 
still unclear; the method of confidence set inference (CSI) 
may answer these questions (see Backus 1989). The purpose 
of this paper is not to address the question of model 
construction, but rather to concentrate on the statistical 
assumptions about the data necessary for a solution to be 
constructed. The results of this paper are applicable to any 
method of model construction, either HS, SI or CSI. 

Measurements of the internal magnetic field are 
contaminated by external fields and observational errors. 
From a theoretical point of view, external fields can be 
separated from internal fields uniquely if an infinite amount 
of perfect data is available, using Gauss's classical method. 
Unfortunately, the internal field is derived from both the 
core field and from crustal magnetization, and despite views 
to the contrary, the two are fundamentally inseparable on 
the basis of the data alone. Additional, plausible 
assumptions about the nature of the fields can alleviate the 
problem, and indeed, by assuming that the crustal field hasa 
'white' power spectrum it is possible to treat it as random 
noise superposed on the longer wavelength field originating 
in the core. This viewpoint leads to the treatment of 
individual observations made by ships, surveys and 
observatories at the earth's surface r = a (i.e. immediately 
above the source region) as being independent. This crucial 
point, that the observations are made for all practical 
purposes at the noise source, does not hold for satellite 
measurements and a more careful treatment is necessary. 

It has been recognized for many years that the power 
spectrum of the field represents a composite of fields due to 
the crust and core. High-degree signals are acknowledged to 
be attributable to the crust, although the sources are not 
well understood. It is possible that the sources are well 
described by both deterministic and stochastic models, a 
division which has proved useful in statistical investigations 
in other fields (see e.g. Goff & Jordan 1988). It has been 
suggested that induced magnetization is responsible for the 
major part of the crustal signal (e.g. Hahn et af. 1984), 
originating from a simple deterministic model of suscep- 
tibility in the crust. One of the major emphases of this paper 
is to investigate whether such simple deterministic effects 
are discernable in the data, and whether a mixed 
deterministic-stochastic or purely stochastic description of 
the crust is more appropriate. 

Satellite measurements of the magnetic field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB are 
typically taken at several hundreds of kilometres above the 
earth's surface (e.g. between roughly 350 and 550 km in the 
case of the satellite Magsat), and these altitudes lead to 
some averaging of crustal fields through the action of the 
appropriate Green's function. Therefore, to prevent the 
mapping of these correlated signals into a false core field, a 
method is required to explicitly account for these 

correlations; this is performed by prescribing the crustal 
covariance matrix C, which is part of the full data covariance 
matrix C,. We adopt a very simple statistical model, due 
originally to Parker (1988), to treat the averaging. We take 
each component of magnetization to be a stationary, 
zero-mean random Gaussian process, which enables the 
calculation of the elements of the crustal magnetization 
covariance C, everywhere above the earth's surface. Apart 
from the work of Langel et al. (1989), every other treatment 
of satellite data has assumed each datum to be an 
independent observable, which leads to a diagonal form for 
the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,. For an example of correlation in the temporal 
domain, and the resulting data covariance matrix C, 
applicable to observatories and repeat stations, see Bloxham 
& Jackson (1989). 

The content of the paper is as follows. Section 2 reviews 
the gross statistics of the crustal field inferred from satellite 
data. Section 3 explores the possibility that some of the 
high-degree signal may be due to deterministic effects, as 
has been suggested by other authors. In Section 4 we 
introduce a stochastic representation of the crust and 
describe the theory necessary for calculating the correlation 
functions from which relevant elements of C, are calculated 
for typical satellite measurements. Section 5 discusses the 
implications of this theory and compares it with previously 
published methods of calculating covariance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 STATISTICS OF THE MAGNETIC FIELD 

The satellite Magsat has enabled the production of 
high-resolution models of the earth's magnetic field which 
have bearing on both the field due to the core and the 
crustal field (e.g. Arkani-Hamed & Strangway 1986; Cain et 
al. 1989). The method usually adopted to represent the field 
in a source-free region is in terms of a spherical harmonic 
series, where the field B = -VV and 

Here a is the earth's radius (taken as a = 6371.2 km), the 
{g;"; h;"} are the geomagnetic or Gauss coefficients and the 
Py(cos 0) are Schmidt quasi-normalized Legendre functions 
conventional in geomagnetism which satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I (Pr)' sin2 rn$ dB = (P;")' cos' rn@ d 8  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4n 

2 1 + l '  
=I ( P y d B  =- 

where dQ signifies integration over solid angle. More 
general representations are available in regions where 
currents cannot be neglected (e.g. Backus 1986). When the 
representation (1) is adopted, then the power in the 
magnetic field [BIZ at radius a can be written (Mauersberger 
1956; Lowes 1966) 

IB1' = R, = 2 ( I  + 1) [(g;")' + (h;")*]. (3) 
I = 1  I = 1  m = l  

Spectra of the magnetic fields due to the core and the crust 
inevitably overlap, and can each cause contamination of 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi_; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAboth studies of the core field and of the crustal field. In Fig. 
l(a) we show the power spectrum of the field computed 
from several recent models of the magnetic field, namely 
models M07AV6 of Cain et al. (1989), MGST(10/81) of 
Langel & Estes (1982) and M040589 (J. C. Cain, unpub- 
lished). The usual interpretation of this figure (Lowes 1974) 
is that below the 'knee' in the curve the power is due to 
sources in the core, and above the knee the sources are in 

Power Spectrum of Magnetic Field 
(4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Contributions by harmonic degree to two norms of the 
magnetic field, as determined by the satellite Magsat. (a) Power 
spectrum versus harmonic degree for models MGST(10/81) (Langel 
& Estes 1982), MU0589 (J. C. Cain, unpublished) and M07AV6 
(Cain et al. 1989). The last two spectra have been multiplied by 
factors of lo-' and lo-' for clarity. (b) Minimum rate of heat 
production from Ohmic dissipation within the core if all harmonics 
of the field observed at the earth's surface were due to the field in 
the core. The dotted line is the contribution to Qhb (see equation 5) 
from each degree up to 1 = 20, and the solid line is the cumulative 
value of Qhh as each spherical harmonic degree is included, using 
model M07AV6 of Cain el al. (1989). The horizontal line is the 
value of Qhh = 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1017 nT2 for the parameters adopted in the text. 

the crust. For model M07AV6 the break appears at roughly 
degree 15. This interpretation of the spectra is entirely ad 
hoc and, whilst plausible, does make strong assumptions 
about the form of the spectra which originate in the core 
and crust. Is there any way to rule out the possibility that, 
for example, all the observed signal originates in the core? 
One such method does exist, based on the so-called 
'heat-flow bound' (Parker 1972; Gubbins 1975; Backus 
1988a). This bound uses the fact that the core magnetic field 
is sustained by currents which cause Ohmic dissipation 
within the core which must not exceed the heat observed to 
be flowing out of the earth's surface [if the earth is in a 
steady state and geophysically reasonable core temperatures 
are chosen so that the ratio of dissipation rate to heat flux is 
less than unity; see Hewitt, McKenzie & Weiss (1975) and 
Backus (1975)l. Only the poloidal magnetic field is 
observable at the core surface, but for such a field it is 
possible to calculate the field configuration within the core 
which leads to the minimum rate of Ohmic heat production 
CP. Then if u is the core productivity, po is the permeability 
of free space and c is the core radius we find (Gubbins 1975) 

@ = fi 5 (I + 1)(2I+ 1)(21+ 3) 
p:ur=1 1 

Now, defining 

Qhb(B) = @0&/4nC (5 )  

and taking u = 3 X 16 S m-l, po = 4 n  X lo-' H m-', c = 
3485 km and @ = 3 X 1013 W (the observed heat flow out of 
the earth's surface) gives a maximum permissible value of 
Qhb = 3 x lo1' nT2 (Backus 1988a). In Fig. l(b) we show the 
cumulative value of Qhb as each spherical harmonic degree 
is added for model M07AV6. Clearly at degree 25 the 
heat-flow bound is exceeded; this cannot preclude 
harmonics above degree 25 being present in the core field as 
contamination is sure to have occurred, but it does prove 
decisively that all the signal cannot originate in the core 
(provided our assumptions are not egregious). This 
motivates an examination of possible sources of field which 
originate in the CNSt and which are capable of reproducing, 
at least asymptotically, the observed power spectrum. 

3 DETERMINISTIC CHARACTERIZATION 

This section considers effects of induced magnetization. In 
particular we examine the possibility that simple determinis- 
tic models, which are based on physical considerations 
independent of magnetic data, can account for the observed 
power spectrum. The models we shall discuss are intuitively 
appealing and their verification would be important in 
geomagnetism because they would allow the removal of 
much of the crustal field which at present contaminates 
studies of the core field. 

Meyer and colleagues first suggested that the high-degree 
power spectrum was due to induced magnetization resulting 
from regional differences in magnetic susceptibility of crustal 
rocks (Meyer et al. 1983, 1985; Hahn et al. 1984). They 
construct a global model of the susceptibility of the crust, 
based on geological information, and show that the external 
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field which results from the field induced in the crust by an 
internal dipole reproduces the observed spectrum extremely 
well. More recently, Counil, Achache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cohen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1989) have 
suggested a simplification of this model. They suggest that 
the induced field is well approximated by that which results 
from a simple contrast in vertically integrated susceptibility 
between continents and oceans. Both models therefore 
describe the spatial distribution of susceptibility and require 
only an internal field model for their effects to be computed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To compute the induced field we use standard results 

from potential theory. The induced field AB is given by 
AB = -V@, where 

and Hj(s) (the Green's function for the potential) is given by 

Po 1 H,(s) = H(r,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) = - V - 
4n Ir, - sI (7) 

where plo is the permeability of free space, 4n X 

Now to first order in the susceptibility x the magnetization 
1 0 - ~  H m-I. 

M is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pJM = xB, = -xVV, (8) 

where Bj is the internal magnetic field described as the 
gradient of the internal potential 6. Thus the induced 
potential @ is given by 

a(rj) = -p;1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ~ H , ( S )  - VV, d3s. (9) 
V 

For a particular susceptibility distribution and internal field 
model, Appendix A shows how the induced potential @ can 
be calculated as a spherical harmonic expansion equivalent 
to equation (1) but with new coefficients {i;";j;"} instead of 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{g;"; h;"} of the main field. 

Adopting the suggestion of Counil et al. (1989), we have 
computed the induced field which results from a difference 
in vertically integrated magnetic susceptibility between the 
continents and oceans. A theorem due to Runcorn (1975) 
shows that only the difference in susceptibility is relevant, 
because the field induced by a shell of constant susceptibility 
vanishes. Therefore we adopt a model of susceptibility 
where 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC represents the continents and d = a - 6 is the 
depth of the Curie isotherm. Appendix A gives an accurate 
method ,of calculating the spherical harmonic representation 
of x ;  the power spectrum of this representation to degree 70 
is shown in Fig. 2(a). Fig. 2(b) shows the power spectrum of 
the field induced by the continent distribution to degree 60 
when the vertically integrated susceptibility xod = 1.4 km, 
and also the induced field of model CRST-70-F-22-22- of 
Hahn et al. (1984) to degree 35. Both show a flat spectrum 
beyond roughly degree 10. Note the peaks in both spectra at 
degrees 4 and 6, a consequence of the coupling between an 
internal dipole and the peaks in the continent function at 

degrees 3 and 5 (a consequence of the predominance of land 
in the northern hemisphere) in Fig. 2(a). 

The spectra of both representations certainly reproduces 
that seen in the power spectra of magnetic field models (Fig. 
2c). However, since these models make definite determinis- 
tic predictions regarding the magnetic field, to be 
substantiated both models must not only reproduce the 
power spectra but must stand up to tests against the original 
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Power Spectrum of Continents 
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Degree 
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Figure 2. (a) Power spectrum of the spherical harmonic 
representation of the continent function. Note the large 
contributions from the odd degrees, especially 1 = 1, 3, 5. Inset is 
the same on a log-log scale. (b) Power spectrum of magnetic field 
induced by the continent function and an internal source (filled 
circles) when Xod = 1.4 km. Also plotted is the spectrum for the 
model of the induced field CRST-70-F-22-22- of Hahn et al. (1984) 
(open circles). Note the peaks at degrees 4 and 6, a consequence of 
the coupling between an internal dipole and the peaks in the 
continent function at degrees 3 and 5 in (a). (c) The same spectra as 
in (b) but plotted along with model M07AV6 of Cain et al. (1989). 
Beyond I = 10 the induced power spectrum is approximately flat, in 
accord with the observed power spectrum. 
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Observed and Induced Power Spectra 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(continued) 

magnetic data. The induced signal (if present) below degree 
15 is small in comparison to the core field, and must be 
contained in any model of the field which is derived from 
satellite data. Therefore the primary ‘data’ for such a test 
must be the residuals to a field model such as M07AV6 
(Cain et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1989) truncated at or near degree 15; we can 
then assess whether the induced models above degree 15 
represent in any way the observed signal. To gain 
acceptability such a deterministic model must reduce the 
variance of a large set of such data. 

We have carried out such a test for both the models of 
Hahn et al. (1984) and the continent model and the results 
are shown in Figs 3(a) and 3(b). Almost 50000 Magsat 
residuals from model M07AV6 truncated at degree 15 were 
used, after corrections for secular variation from the model 
of Bloxham & Jackson (1989) and external fields from the 
model of Langel & Estes (1985). Histograms of the residuals 
in each of the measured field components show that the 
residuals conform well to a Gaussian distribution, and so the 
chi-squared statistic i s  a good measure of the fit to the data. 
In fact we use the root mean square residual or misfit u 
where 

N 

2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/N c ( y i  - pi), (11) 
i = l  

and pi is an appropriate prediction obtained using (9). Figs 
3(a) and (b) plot the variation in misfit with variation in Xed. 
Unfortunately neither model appears to reduce the variance 
significantly, and the smallest misfits occur at values of 
susceptibility which no longer reproduce the power spectra 
(i.e. the values are too small to account for most of the 
internal signal beyond degree 15). For the model of Hahn et 
al. (1984) the minimum misfit occurs when it is scaled by a 
factor of approximately 0.2 in each of the field components. 
Hahn et al. use typical values of vertically integrated 
susceptibility of xod -75m for much of the oceans 
(corresponding to susceptibilities of xo - 1.5 x lop2), and 
Xod ranges from 500 m to over 1.6 km for continents. On the 
basis of this study it would appear that such a large contrast 
in ocean/continent susceptibility is not upheld. For the 

Crustal magnetization in core field models 

(a) 
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0.0 0.2 0.4 0.6 0.8 1.0 
Scale Factor 

661 
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Figure 3. (a) Change in misfit between predictions from 
continentally induced magnetization and Magsat residuals as a 
function of continent/ocean contrast in vertically integrated 
susceptibility Xed. The residuals are those remaining after 
subtraction of the Cain et al. (1989) model of the main field ( I  5 15), 
and the predictions are based on degrees I >  15. A contrast of 
xod = 1.4 km would be required to account for the power spectrum. 
Solid line is X, short dash Y, long dash 2. (b) As in (a) but using 
the model CRST-70-F-22-22- of Hahn et al. (1984) and changing the 
amplitude of the predictions. A scale factor of 1 represents the 
original model of Hahn et al. which reproduces the power spectrum. 

continent model the best fitting value for xod is different for 
different field components: X suggests xod - 40 m, whereas 
Y suggests Xod-200m. This result is not altogether 
unexpected: after subtraction of the first few degrees of the 
continent function, the resulting model represents mostly an 
edge effect, but it is almost .impossible to discern such a 
signal in Magsat data. The simplicity of the ocean/continent 
model of Counil et al. (1989) is appealing, because it is 
effectively a one-parameter model, but it does not appear to 
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represent a large proportion of the signal attributable to the 
crust. More complex models could be constructed [the 
model of Hahn ef  al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1984) is extremely detailed], but as 
our interest is primarily in the core field, an alternative 
approach presents itself, namely a stochastic representation 
of the crust. This is discussed in the next section. 

4 STOCHASTIC CHARACTERIZATION 

Any attempt to model the magnetic field requires first the 
specification (at least approximately) of the probability 
density function (pdf) of the errors which contaminate the 
data. This section is concerned with this specification, when 
the presence of the crustal field is considered. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is a data 
vector composed of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{n}, i = 1, N, then for large N the pdf 
of the corresponding errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe due to many random sources 
tend, by the Central Limit theorem, towards a Gaussian 
distribution, written 

p ( e  I m) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(2n)” det C,]-1’2 exp { - feTC;’e) (12) 

where C, is the (diagonal) covariance matrix of random 
errors and m is the true earth model. If we consider errors 
due to crustal magnetization to be independent and 
Normally distributed with covariance C,, then the final pdf is 
also a Gaussian of the form (12) with covariance 
C, = C, + C, (e.g. Tarantola 1987, p. 158). 

To consider the remanent crustal contribution C, to the 
full covariance C, we follow an idea of Parker (1988) 
closely. In his study of seamount magnetization, he found 
that seamount magnetic anomaly data could be modelled 
much more successfully, and a more consistent palaeopole 
position constructed, if he allowed the modelling to include 
a statistically random source of magnetization within the 
seamount which would be viewed as noise. A similar 
scenario occurs with satellite data, because the long- 
wavelength core field, originating at r = c, is contaminated 
by shorter wavelength noise which originates mostly at the 
earth’s surface, r = a. Adjusting the arguments of Parker for 
the present case, if e l q ) = e ( ” ) ( r i )  is the error in a field 
measurement of component q at position rj due to the 
magnetization of the crust M(s), then the errors are related 
to M by 

where Gi’”)(s) = G(q)(rj ,  s) is the Green’s function for the 
problem, rj is the observation point, and s is any vector 
within the volume of the crust V. Fig. 4 shows schematically 
the geometry and notation used for the problem. In reality, 
the magnetic layer, of depth d, is extremely thin 
(d/a - 5 x 

In the case of measurements of orthogonal components of 
the field X, Y,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ in the northward, eastward and 
downward directions, the Green’s functions are 

for the earth). 

where 

-6, q = x  

V’Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4, q=z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P rk 

Figure 4. Schematic figure showing the geometry and notation used 
in the text. The earth’s radius is a, the core radius is c and the depth 
of the magnetic shell is d = a - b. Two satellite positions rj and r, 
are separated by a (great circle) angular distance of pjk. 

and where V ,  means differentiation with respect to rj. The 
Green’s function for the crustal error in measurements of 
total field strength F can be found in Appendix B. 

The errors have covariance 

I Giq)(s) * M(s) d3s G ~ ’ ( S ’ )  - M(s’) d3s’ I”. 
Gjq)(s) - E{M(s)M(s’)) - G ~ ’ ( s ’ )  d3sd3s’ 

= I, I,. 
(15) 

where s and s’ both lie within the magnetized volume, E 
stands for expectation and integration and expectation have 
been freely exchanged. 

To make progress, the form for the covariance tensor 
M= E{M(s)M(s’)} must be specified. We begin by 
assuming the crustal magnetization to be a stationary, 
zero-mean, Gaussian random process. This is a very 
different assumption to that of most other workers who treat 
the crust as a deterministic system whose magnetic features 
can be recovered (e.g. Ritzwoller & Bentley 1982; 
LaBrecque & Raymond 1985), but then our aims are 
different: our interest is in the core field. From the linearity 
of equation (13), if M(s) is a stationary, zero-mean, 
Gaussian random process, then the residuals ej“) are 
samples from one also, and their pdf is completely specified 
by the covariance matrix. Stationarity implies that the 
statistics of M(s) are independent of position vector s. This 
type of model has been used in applications other than the 
cited work of Parker; for example the modelling of seafloor 
topography by Goff & Jordan (1988). 
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In Parker's application, the random part of the seamount 

magnetization plays the same role as the crustal 
magnetization M. Parker argued that M would be purely 
uncorrelated at different positions, and in different 
components: thus the components of M at two positions 
average zero, except in the trivial case of identical 
components at the same site. This is the simplest possible 
scenario, but seems very reasonable, and even with this 
assumption, Parker's results were impressive. From this 
assumption, the correlation tensor becomes 

E{M(s)M(s')} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB'IS(S - s') (16) 

where I is the identity matrix, 6(s) is the Dirac delta 
function, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83 is a constant. Equation (15) then becomes 

which is just a multiple of the standard Gram matrix r of 
the data kernels. 

The true length-scale for correlations must, in reality, be 
longer than the infinitesimal one assumed; however, 
provided it is very much smaller than the scale length of 
variations in the Green's function, then (16) will be a good 
approximation. As Parker points out, if a finite length-scale 
of correlation is included, the dimensionality of the integrals 
is increased threefold, and the results become significantly 
more complicated. Also, this assumption leads to the 
minimum possible correlation between the residuals; in 
reality the residuals must be more correlated than this, but 
at least we have improved over the usual assumption of 
completely uncorrelated residuals. 

Is this correlation function reasonably consistent with our 
knowledge of crustal magnetization? Parker & Daniel 
(1979) note that vertical sections of drilled seafloor lose 
almost all correlation in magnetization after about 10 m. 
Therefore our approximation of infinitesimal vertical 
length-scale is probably an adequate one. Except in areas 
corresponding to quiet periods in the reversal sequence, 
oceanic stripes suggest that at the most the correlation 
length perpendicular to the spreading axis is about 20 km. 
Parallel to the spreading axis the correlation length-scale 
must be longer, although transform faults probably restrict 
this. 

Remanent magnetization can only occur at temperatures 
above the Curie temperature, T,. The depth to the Curie 
isotherm depends on the particular mineral assemblage, and 
must also be shallower in areas of high heat flow. Curie 
temperatures range from below 300°C to over 550°C 
(Mayhew,' Johnson & Wasilewski 1985), though the higher 
value is more representative. Mayhew et al. also identify the 
Moho with the 'magnetic bottom' in their terminology. For 
simplicity we take the depth to be constant; the precise 
value does not affect the conclusions profoundly. The 
calculations we have performed have taken the depth to the 
Curie isotherm d to be 35 km, a figure suitable for 
continental crust. In fact we find that the results are 
insensitive to a shallower value for d (of say 5km for 
oceanic crust), provided zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB' is adjusted appropriately [see 
the discussion below equation (23)J. 

4.1 Correlation fi~nctions for satellite observations 

Details of the integrations needed to find the correlation 
functions (i.e. equation 18) for magnetic field measurements 
are set out in Appendix B. It is shown there that the 
covariance of errors e in field components q and v at 
positions ri and rj due to the crust is given by 

where E stands for expectation, the vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf:'') are defined 
in (14), Pj is a Legendre polynomial of degree 1, p is the 
angular separation of the two points, d and a are the depth 
of the magnetized layer and the earth's radius respectively, 
and p = a2/riQ. The amplitude of the covariance depends on 
the factor k(B) = j32pz/4na3, which is proportional to the 
size of B2 in (16). Our task is to find an appropriate 
amplitude for the covariance. 

Equation (19) shows that the errors are derived from a 
correlated potential of the form 

In terms of a conventional spherical harmonic repre- 
sentation of the form ( l ) ,  we can find the covariance of the 
Gauss coefficients which represent the crustal field. Using 
the orthogonality of the spherical harmonics, we find 

I 

21 + 1 E{(Y;l$'} =k(B)-[l- (1 - ~ ) ~ ' * ' ] 6 ~ ~ . 6 ~ ~ . 8 ~ ~  (21) 

where c = d / a ,  Sii- is the Kronecker delta and a;", y;" 
stands for either g;" or h;". Therefore the equivalent Gauss 
coefficients are uncorrelated. The predicted power spectrum 
depends only on the spherical harmonic degree 1, so using 
the notation of equation (3) we find 

RI = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1(1 + l)k(j3)[1 - (1 - E)''+~].  

1(1+ 1)(21+ l)a'€k(/?), 

(22) 

The small and large 1 limits are 

R I = (  1(1+ l)k(B), l+m 

where u = exp ( - E ) .  For d = 35 km, E - 5 X lop3 and the 
small 1 expression in (23) is good for 1<<180; different 
values of d can be accommodated by a change in the value 
of k@). We can now choose k(B) appropriately to give 
agreement between the measured and calculated spectra: 
note that the shape of the spectrum is completely specified 
(because of the correlation function adopted) and only the 
amplitude is required. We find k(B) = 0.0625 nT2 gives 
an adequate fit to the spectrum beyond 1 ~ 1 4 ,  where 
contamination by the core field is probably small, and we 
adopt this value for the rest of the paper. Fig. 5 shows the 
predicted power as a function of 1 compared to the observed 
spectrum at a typical satellite altitude of 400 km and at the 
earth's surface (although at the earth's surface the spectrum 
does not converge and of course the real one does). The 

(23) 
1 << 1/E 
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Power Spectrum of Mognetic Field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t l  

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 1 Q 4  - 

-2 

tl' I I I I I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 30 40 50 60 

Degree 

Figure 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPredicted power spectrum of stochastic remanent 
magnetization model compared to that of model M07AV6 of Cain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
er al. (1989) at a satellite altitude of 400km. The thickness of 
magnetized crust is taken as 35 km, and k ( @  = 0.0625 nT2 (see text 
for definition). Inset is the same at the earth's surface. 

agreement is reasonable between degrees 30 and 50; beyond 
1 = 50 the measured spectrum appears to rise, which may or 
may not be a real effect; there remains the possibility of 
corruption of the spectrum by noise because of the 
approximate method of inversion used by Cain et al. (1989). 

4 

Altitude 400km Azimuth 90. Altitude 400km Azimuth 0' (b) 

I /  1 

Figure 6(a-d) shows the correlation functions for different 
field components as a function of separation, at an altitude 
of 400 km typical of Magsat, with a magnetization depth of 
35 km and one point on the equator. Correlations persist 
over separations of up to 15", or roughly 1500 km. 

The covariance between two Z components is independ- 
ent of their positions, and depends only on their separation; 
the covariance between other field components depends on 
the azimuth (measured clockwise from north) of one 
position from the other, and on their position on the sphere. 
This dependence is a consequence of the fact that the field 
components X, Y, and Z are defined in a spherical 
coordinate system in which field components are only locally 
orthogonal (i.e. non-Euclidean). Note that the covariances 
are zero in the case of two orthogonal field components 
being measured at the same point (corresponding to pij = 1 
in Appendix B). 

Figure 6(a and b) shows the covariances for field com- 
ponents {ZZ} and {W}. The covariance of {W} at 
azimuth 0" decreases monotonically to zero by a separation 
of about 15"; at azimuth 90", by contrast, negative 
correlation occurs from separations of about 4" onwards. 
For {ZZ} at all azimuths negative correlation occurs from 
separations above approximately 6". Fig. 6(c and d) shows 
the covariances of the off-diagonal members of the tensor; 
at zero separation these field components are completely 
uncorrelated, as expected. The { YZ} correlation appears to 
peak at a separation of roughly 3". The variation of {XY} is 
interesting since at azimuths of both 90" and 0" these field 
components are uncorrelated. In between, the correlations 
are non-zero, and at an azimuth of 45" the field components 

t 

-1 
0 5 10 15 20 25 30 

Separation/degrees 

-2 
0 5 10 15 20 25 30 

Separation/degrees 

Figure 6. Correlation of different field components at satellite altitude given by C,, as a function of the angular separation of the observing 
sites and for different azimuths (measured clockwise from north) when one point is on the equator. The altitude is 400 km, and the crustal 
parameters are as in Fig. 5 .  (a) and (b) show the covariance of {ZZ} and {YY) at azimuths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0" and 90". The covariance of {ZZ} is independent 
of azimuth. (c) and (d) show the covariance of {XY) and { YZ} at azimuths 45" and 90". At azimuth 0" both are uncorrelated. 
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( 4  Altitude 400km Azimuth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45' 

2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I I i I  l I I i  I , I I  1 1 , ,  1 1 1 1  

Separation/degrees zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. (conrinued) 

appear to have the longest range correlation of any pair of 
field components. 

Consider now the special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri = rj (i.e. two measure- 
ments at the same observation point). Fig. 6(c and d) clearly 
shows that different field components are uncorrelated at 
the same position, so only the covariance of one field 

Variance versus Altitude 

300 350 400 450 500 550 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 

Altitude/km 

Figure 7. Predicted variance of crustal field versus altitude for field 
components Z (solid line) and X,Y (dashed line). Crustal 
parameters as in Fig. 5 .  

( 4  Altitude 400km Azimuth 90' 

'b A 
2.5 I/ \" 

.5 i t \  

Separation/degrees 

component with itself (i.e. its variance) need be considered. 
Fig. 7 shows the predicted dependence of variance in 
observations of X ,  Y and Z with altitude. For typical Magsat 
altitudes, the predicted variances change by a factor of 6 
between 350 and 550 km. Note that the variances in X are 
equal to those in Y (since both are measurements of 
horizontal field at the same position, which cannot differ if 
the crustal field is isotropic as we have assumed), and that 
the variances in Z are approximately twice those in X or Y. 
The variances for F measurements must necessarily lie 
between the lines for the Z and X variances, since these 
depend on the local direction of the main field Bo. 

The above discussion shows that previous studies of the 
core field which have treated each datum as independent are 
in error not only because of the ignorance of correlation in 
the data but also because the expected variance in Z data 
due to the crust is approximately twice as large as that in X 
or Y data. 

5 CONCLUSIONS A N D  DISCUSSIONS 

We have considered two possible representations of the 
effect of the crust on satellite observations of the core field, 
namely as deterministic and stochastic effects. The first, 
which is mainly due to the difference in susceptibility 
between oceans and continents, requires that the vertically 
integrated susceptibility xod = 1.4 km in order to account 
for the majority of the observed crustal spectrum. However, 
the data only seem to (weakly) suggest xod = 0.1 km, which 
gives a contribution to the power spectrum of less than one 
hundredth of that required. The model of Hahn et al. 

(1984), whilst fitting the data better, also requires the 
amplitude of the susceptibility contrast to be reduced. 

For the stochastic part we have shown that subject to our 
assumption that the crust can be thought of as a stationary, 
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isotropic, zero-mean random process, the averaging 
property of the appropriate Green's function leads to 
significant correlation in the data even when the 
magnetization of the crust is completely uncorrelated in 
space. Correlations appear to be significant over angular 
separations of up to 15". The information on the correlation 
in the data due to the crust which is contained in the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C, is important in an inversion for the core field because 
when used in combination with the random covariance C, it 
determines the linearly independent combinations of data 
which should be fit by the model. 

Recently Langel et al. (1989) (hereinafter LES) con- 
sidered the same problem of crustal contamination in the 
context of deriving more rigorous error estimates on Gauss 
coefficients, although they consider other 'effects such as 
secular variation errors and ionospheric fields in addition. 
Since the methods and results presented here differ from 
those of LES it is worth highlighting these differences. The 
treatment of the crustal field of LES is based on an 
interpretation of the power spectrum (3). They note that an 
empirical description of the power spectrum of Fig. l(a) 
which agrees reasonably with the observations is that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 13, 

Rt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ri(pi)' (24) 

whilst for 1 2  14, 

For the power in 1214,  Langel & Estes (1982) find 
R, = 37.1 nT, p c  =0.974, whilst Cain et al. (1989) find 
R,=  19.1nT, p,=O.996. LES adopt an estimate of the 
spectrum of the crustal field of the form (25) but rather than 
adopting any of the measured values for R, or p , ,  they 

Altitude 400km Azimuth 90. 

Separation/degrees 

adopt R, = 20 nT, p c  = 0.9999387 to give agreement with the 
rms sizes of crustal anomalies at observatories inferred zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom 
the misfit to satellite models of the core field; they also 
extrapolate the spectrum to the regime 1 5  14 where it is 
masked by the core field. LES use their adopted values to 
estimate the covariance of the Gauss coefficients of the 
crustal field from the power spectrum: they assume 

where E stands for expectation, 8tt5 is the Kronecker delta 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy;" stand for either g;" or h;". This assumes that 
there is no correlation between the Gauss coefficients 
representing the crustal field; we find this to be so in the 
theory described here (equation 21), but independence is 
not a necessity [for example, Constable & Parker (1988) find 
correlation between the coefficients gy and g: of the main 
field on the palaeomagnetic time-scale]. 

The resulting covariance functions of LES are shown in 
Fig. 8(a and b) for altitude 400 km and azimuth 90°, which 
should be compared with Fig. 6(b and d). The amplitude 
and length-scale of the figures are predictably different, 
given the different assumptions. The theory of LES shows 
significant correlation at extremely large separations, in 
comparison to the length-scales (-15") reported here. To 
show the disparity in amplitude, consider a single 
measurement of the vertical component of field: the 
standard deviation of the measurement is predicted to be 
8.2nT, in contrast to 2.6nT predicted by our theory. 
Clearly the estimates of the power in the crustal field at low 
spherical harmonic degree crucially affect the estimate of 
covariance in the data, and the two theories use very 
different estimates. For example, using their extrapolation, 
LES find the expected power in the dipole crustal field to be 

(b) Altitude 400km Azimuth 90" 

Separation/degrees 

Figure 8. Correlation functions for different field components corresponding to Fig. 6 but using the theory of Langel et al. (1989). The altitude 
is 400km, the azimuth is 90" and one point is on the equator. (a) Covariance of { Z Z }  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{YY}.  (b) Covariance of {XU} and { X X } .  
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R ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20 nTZ. From equation (22), the theory presented here 
predicts R ,  = 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX nT2 which is in considerable dis- 
agreement. The two theories at present represent rather 
extreme viewpoints; however, we believe that even when a 
more reasonable correlation length of a few tens of 
kilometres is used with this theory, the estimates of power at 
low degree will not change significantly. 

To decide whether the theory presented here will be 
useful in improving models of the core field will require 
numerical calculations. However, some approximate com- 
ments can be made. To be of importance, we require that 
the eigenvectors and eigenvalues of C, = C, + C, are 
somewhat different to those of C,, so that the linear 
combinations of data used in the fitting and the weights they 
are given are not the same as in the case where crustal 
correlations are ignored. The variance of crustal fields 
predicted by the theory presented here can be deduced from 
Fig. 7; the range in standard deviation is between 2.3 and 
1.OnT for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and Y and between 3.4 and 1.4nT for 2 over 
the altitude range 350-550 km. Now Langel et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1982) 
report the estimated root-sum-square value of errors due to 
instrument errors, position and time errors, digitization 
noise, attitude errors and spacecraft fields (but discounting 
external fields) to be 6 n T  per Cartesian component for 
Magsat. The size of the residuals between data and typical 
field models is compatible with this figure (the misfit in Fig. 
3 lies between 6.6 and 7.6nT for example). For all except 
low-altitude Magsat data the size of the crustal signal is 
rather small in comparison, and it is unlikely that the use of 
C, rather than C, will alter field models enormously, 
although calculation is required to verify this. The effect will 
be more important in two circumstances: firstly if random 
errors are reduced [scalar data has an estimated random 
error of 2nT  (Langel et al. 1982), mainly because of the 
elimination of attitude errors); and secondly, for the lowest 
altitude satellite data. 

In this paper the crustal field has been dealt with using an 
idealized magnetic correlation function M. The theory 
allows more realistic correlations to be used, but the 
observations are taken at a sufficiently large distance from 
the source region (the crust) that small changes in the 
magnetization correlation function M make only slight 
changes to C,. Objections could be made that the system has 
been oversimplified; for example, the statistics of crustal 
fields over continents may not be equivalent to those over 
oceans, which would negate our assumption of stationarity; 
our model is isotropic in direction, whereas seafloor 
spreading causes distinct directionality; and the depth to the 
Curie isotherm varies even over oceans with the age of the 
seafloor. Inclusion of all these effects requires a 
deterministic element in the model, and the stochastic 
model succeeds in reflecting the average physical effect to a 
large degree. The theory as it stands gives the prospect of 
improvement of models of the core magnetic field if it is 
applied to the calculation of an appropriate weight matrix C, 
to be used in an inversion. Numerical aspects of this will be 
the subject of a future report. 
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APPENDIX A 

This section discusses methods of calculating the  induced magnetic field given an  internal field model and a susceptibility 
distribution. In calculations we always use real Schmidt quasi-normalised spherical harmonics, but  for notational convenience 
we refer to t he  set of harmonics of degree 1 as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Y,"}, -1  5 m 5 1 ,  with a mapping of (for example) 

and 

We need to  calculate the potential @ given by 

@(r3) = - p i  xH,(s).VV, d3s (A3) 's, 
where V ,  is the internal (inducing) field and H,(s) is given by (7). If we take V t o  be only the continents C (defined by 
C(O,@) = 1 on C and C(@, 4) = 0 otherwise), with upper boundaries at T = a and T = b = a - d and coastline dC, and if x is 
constant within V ( x  = LO say) then equation(A3) is expressible as a surface integral as 

@(r3) = - y ~ p i l / " ~  V,H,(s).nd3s 

where dV is the surface of V. Now dV = C(O,4) [S(r - a )  + S(T - b) ]  +dC(e, 4) [H(T  - a )  - H ( r  - b)] where 6(r)  is the Dirac 
delta function and H ( T )  t he  Heaviside function. The  surfaces of V generate a potential of the form 

I=1 m=O 

where 
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The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArp are derived from the edge contribution, and the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa?(.) are generated by the top and bottom surfaces and 
are given by 

If both C(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) and V(r ,  f9,tp) are descibed by spherical harmonic expansions, then (A7) is just an example of a spheried 
transform which can be performed accurately and efficiently using fast Fourier transforms and Gauss-Legendre quadrature 
(see e.g. Lloyd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gubbins 1990). The edges of dV give a contribution represented by 

The 6!f" can be mapped into the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ir;jr} of the text by using a mapping similar to (Al). 

Spherical Harmonic Representation of Continents 

Let 

where C represents the continents. Then the spherical harmonic representation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx of the form 

m 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=1 m=-1 

has coefficients given by 

Now following Shure et al. (1985) and using the fact that on the unit sphere VEY," = -Z ( l+  l)Y,", equation ( A l l )  can be 
written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a line integral along zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdC, the boundary of C, as 

For the calculations reported in the text, the integral was performed by quadrature with an average distance between points 
on the boundary of 0.6". 

APPENDIX B 

The magnetic field due to the crust A B  measured by satellite is related to the magnetostatic potential 4m by AB = - V C $ ~ ,  
where 

and Hj(s) (the Green's function for the potential) is given in (7). 

of observation. Then, for example, A$" represents the 71 component of field AB at position rj. 

AB = (AX, AY, AZ) in the (-8,qj, -t) directions is related to the magnetization M of the crust by 

In what follows we use greek superscri ts to indicate the component of field, and roman subscripts to indicate the position 

In a spherical coordinate system where 0 is colatitude, 4 is longitude and T = Irl is radius, each Cartesian component of 

A ( V )  where Vr, means differentiation with respect to rj, and l j  For measurements of Cartesian 

components X ,  Y ,  and 2, linearity implies that the errors in measurements due to the crust e iq)  are equal to the crustal 
field components themselves: e!') = ABjq) for 71 = X ,  Y, 2. Errors in measurements of scalar intensity F = IBI can be 
treated, since the crustal perturbation AB is very much smaller than the main geomagnetic field Bo. Therefore errors are 
well represented by e jF)  N Bo(ri) . AB(ri), where Bo(rt) is a unit vector in the direction of the main geomagnetic field 
at position ri. Therefore errors in F are linear in the magnetization M, but they do assume knowledge of the main field 

is defined in (B3) below. 
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Bo. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASince these functions are used only for error estimation, a preliminary internal field model is probably adequate for this 
purpose. The Green's functions relating all four types of crustal field errors ez(') of interest to the magnetization M can be 
written 

Following Parker (1971) the Gram matrix can be written as 

where 

1 
T(ri,rj) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= OFt . V F ,  d 3 s  with F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 -. 

Ir3 - SI 

Adopting the magnetization correlation tensor (16) , we see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT measures the correlation between potential since 

T can be written as a surface integral since 

VFj . VFk = v .  (F jvFk)  - Fjv2Fk 

and all the measurement positions rk lie outside the magnetized volume (the crust), so V21rk - s1-I = 0 and the last term 
on the right-hand side is zero. Then using Gauss's theorem, 

T ( r i ,  rj) = FiVF, . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(s) d2s  

where n(s)  is the unit normal to the surface at s .  For the crustal model, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV consists of two concentric spheres at the top and 
bottom of the crust. Thus evaluating T involves performing two integrals of the form 

over the spheres of radii s1 = a and s2 = b = a - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd where a is the radius of the Earth and d is the depth of the magnetic 
layer. To proceed, recall that the generating function for Legendre polynomials can be written as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApk is the cosine of the angle between rk and s ,  and substitute into equation (B9). To perform the integral we need to 
apply the addition theorem for complex fully-normalised spherical harmonics (e.g. Jackson 1975): 

m=-i 

Then (B9) becomes 

where R is solid angle. Using the orthogonality of the spherical harmonics and a re-application of the addition theorem leads 
to the result that I(.,, rk, s) can be written in the form 
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with 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp j k  is the cosine of the angle between the vectors rj and r k .  Collecting together all the terms, the final form for the 
covariance tensor is 

with f given above. 
Similar forms for matrix elements can be found in Shure et al. (1982), although in their application, by a judicious choice 

of quelling (Backus 1970), it was possible to rewrite the infinite sums for the Gram matrix elements similar to (B14) which 
appeared in their work in terms of closed-form analytic functions. Here the Gram matrix elements are dictated by the 
statistical theory, and no such quelling is possible. 

It is desirable for numerical speed and'accuracy that the infinite sums for Q, or at least its derivatives, be put into closed 
form. Unfortunately, the sums lead to rather cumbersome functions. We show how the sums which are required for this 
theory are performed; the same methods can be applied to other infinite sums such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the ones given in Langel et al. (1989). 
Consider first the generating function: 

Multiplying both sides by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp-'I' and integrating leads to the result 

The integral on the left-hand-side can be evaluated numerically by quadrature, but it is more instructive to note that it is an 
elliptic integral of the first kind, written as 

with arguments 

d ( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Zarctanf i  

= d ( l + P ) / 2 .  

With this identification, sums such as (B14) can easily be performed. For measurements at the earth's surface, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 = n/2, and F($ ,  k)  becomes a complete elliptic integral of the first kind, K ( k )  (see Abramowitz & Stegun 1970), which is 
divergent as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp -+ 0, a consequence of the magnetization tensor M chosen (see (16)). Table 1 lists the derivatives of Q with 
respect to /.L and p in terms of F and E (elliptic integrals of the first and second kinds) and closed form functions, 

The infinite sums have been used to check the accuracy of the elements given in Table 1, since for satellite measurements 
p < 1 in equation (B14) and therefore all the series for Q and its derivatives, found from term-by-term differentiation, are 
unconditionally convergent, and can be truncated when the terms reach machine precision. For example, when p,j = 1, the 
most slowly-converging series corresponding to the expressions in Table 1 is a2Q/ap2 ,  because PY(1) = ( 1  - 1)1(1+ 1)(1+ 2)/8 
and so terms in the series form (B14) for a2Q/ap2  are O(Z4p'). Consequently, when ri = rj = 400km, the series form for 
a2Q/ap2 requires approximately 350 terms to  reach single-precision accuracy. 

The subroutine el2 of Press et al. (1986) has been used to evaluate the elliptic integrals of both the first and second kinds, 
F(&  k) and E(4,  k )  respectively (see Table 1). 

Evaluation of Matrix Elements 

To evaluate the matrix elements we require the derivatives appearing in equation (B15). 
a/art, ( l / r t )  

If d / d a i  represents either 
- (1/ri sin&) a/a+i (appropriate for X ,  Y ,  2 data), then 

The necessary derivatives of Q are listed in Table 1, and for compleness the forms for p, the reciprocal reduced radius, and 
p i j ,  the cosine of the angular separation of ri and rj, and their appropriate derivatives are listed in Table 2. Some of the 
derivatives of Q require special attention in the limit p = 1, so these forms are listed separately in Table 3. 
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Then the matrix elements are, for example, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Q ( K  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP I )  - ( ~ 1 / ~ 2 )  Q ( P ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP Z )  (B21) 
and s1 and 52  are the outer and inner radii of the shell given below ( B 9 ) ,  p1 and p2 are given by (B14) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 = a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2 = b, 
and k ( p )  = P2p~/47ra3. 

Table 1. Derivatives of Q required to compute the matrix elements. For the case p = 1 see Table 3. 

E ( 1  - 2k2)  fi F ( 1  - 3kc2) fi 3p3 f icos$s in@ [A2 (3k2 - 1)  + k2Lc2sin2+] 
- +-+ a2 Q - -  

a P 2  32k4 kc4 + 64k4kc2 2 ~ 5  64A3 k2 kc4 

2 arctan fi Amplitude 

Jm Modulus 

JiT? Complementary modulus 

Ji7zGq Delta amplitude 

J,” A($’, k)- l  @J’ 

J,” A(d’, k )  d4’ 

J l  - 2pp + p2 

J,” l/dl - k2 sin2@ I@’ Elliptic Integral of First Kind 

J,” J m ’ d $ ’  Elliptic Integral of Second Kind 
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Crustal magnetization in core field models 613 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADerivatives of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp required to compute the matrix elements. 

S2 

r t r l  

P aP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dr, rz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P =  

- - - -_  

P - a2 P 
ar,ar, ra 

p,, 

do, 

30, 

= 

= 

cos 0, cos 0, + cos(4, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,) sin 0, sin 0, 

- sin 0, cos 0, + cos 8, sin 0, C O S ( ~ ~  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4,) 

- cos 0, sin e, + sin e, c o s ~ ,  cos(4% - 4,) = 

Table 3. Derivatives of Q required to compute the matrix elements for the special case p = 1. 

where 

L =log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:::I - 
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