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Accounting for errors in quantum algorithms via individual

error reduction
Matthew Otten1 and Stephen K. Gray1

We discuss a surprisingly simple scheme for accounting (and removal) of error in observables determined from quantum
algorithms. A correction to the value of the observable is calculated by first measuring the observable with all error sources active
and subsequently measuring the observable with each error source reduced separately. We apply this scheme to the variational
quantum eigensolver, simulating the calculation of the ground state energy of equilibrium H2 and LiH in the presence of several
noise sources, including amplitude damping, dephasing, thermal noise, and correlated noise. We show that this scheme provides a
decrease in the needed quality of the qubits by up to two orders of magnitude. In near-term quantum computing, where full fault-
tolerant error correction is too expensive, this scheme provides a route to significantly more accurate calculations.

npj Quantum Information            (2019) 5:11 ; https://doi.org/10.1038/s41534-019-0125-3

INTRODUCTION

Quantum computing is beginning to show promising proof-of-
principle calculations, especially in quantum chemistry. Calcula-
tions of the binding energies for molecules such as H2

1 and BeH2
2

have been done using small, noisy quantum computers. Applica-
tions in machine learning have also been shown on quantum
hardware.3 Quantum computing is entering the noisy
intermediate-scale quantum era.4 Full fault-tolerant error correc-
tion is still many years away; near-term quantum computers will
have a limited number of qubits, each qubit being noisy. Methods
that reduce noise and correct errors without doing full error
correction on every qubit will help extend the range of interesting
problems that can be solved in the near-term. Each qubit is a very
valuable resource for near-term quantum computers; using them
efficiently, and reusing them as often as possible, is imperative in
enabling useful calculations on near-term devices.
Here we describe and demonstrate a simple scheme for

reducing the effects of a variety of noise sources by reducing
each source separately and summing the resulting corrections. In
practice, the reduction could be accomplished via quantum error
correction5 or by active engineering to reduce a noise rate, e.g.,
autonomous error correction6,7 or dynamical decoupling.8 Simple
quantum error correction schemes have already been shown in
superconducting circuits9,10 and such systems are approaching
more complicated error correction schemes.11 In trapped ion
quantum computers, a seven qubit color code has been already
been demonstrated.12 Quantum computing architectures are
nearing the quality and size where a single qubit could be error
corrected, but we are far from every qubit being corrected. The
scheme we present could make use of this limited error correction,
by sweeping through each qubit, correcting one qubit at a time,
but is not dependent on error correction methods per se. We
validate it with the variational quantum eigensolver (VQE),13,14

simulating the calculation of the ground state energies of H2 and
LiH. We assume that a single qubit has its error rate reduced by
some means, while the other qubits retain all of their error. Our

results show that the scheme reduces the needed quality of each
qubit drastically; for ‘chemical accuracy’, error rates can be up to
two orders of magnitude larger. We apply this scheme to multiple
noise sources, including amplitude decay, dephasing, thermal
noise, and correlated noise. We stress that the scheme can be
used to reduce the environmental error from any measured
observable, not just those used in VQE. Furthermore, this scheme
is not restricted to algorithms on quantum computers; it could
potentially be used in quantum sensing. Quantum error correction
has been proposed as a method to reduce environmental noise in
quantum metrology,7,15 allowing a probe to reach the Heisenberg
limit.16 Our scheme could reduce the number of error correcting
qubits necessary for such a method.

RESULTS

Noise sources and removal
We simulate four different types of varying noise sources,
represented by Lindblad operators: amplitude damping (L1),
dephasing (L2), thermal (Lth), and correlated noise (Lc):

L1ðρÞ ¼ γ1D½σ�ðρÞ;

L2ðρÞ ¼ γ2D σyσ
� �

ðρÞ;

LthðρÞ ¼ γth nth þ 1ð ÞD½σ� þ γthnthD σy
� �

;

LcðρÞ ¼ γcD σ
y
1σ2

h i

þ γcD σ1σ
y
2

h i

;

(1)

where σ is an annihilation operator and D½C�ðρÞ ¼ CρCy�
1
2 ðC

yCρþ ρCyCÞ. These Lindblad terms are applied to each qubit
or to various combinations of qubits. The parameters in Eq. (1) are
γ1 ¼

1
T1
, the amplitude damping rate; γ2 ¼

2
T�2
, twice the dephasing

rate; γth, the thermalization rate; nth, the thermal occupation (taken
to be 0.5); and γc, the correlated noise rate. We have used this
formalism in previous work.17–19 For our calculations we assume
that reduction of an error source corresponds to reducing the
relevant parameter, γ, by some known amount.
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It is important to understand the exact process of the reduction
of the relevant error parameters and what effect that has on the
relevant error properties of the underlying qubits. For instance, if
some active engineering process reduces the error only fraction-
ally, the fractional reduction must be known to make full use of
our method; if it is only known approximately, there will still be a
correction, but it will not be as drastic. Furthermore, if the error
reduction strategy decreases the relevant source of error, but
increases a different source of error, the method will not directly
be able to account for the additional error. For instance, quantum
error correction could be used to reduce the error by correcting
each qubit, one at a time. Quantum error correction, however,
naturally introduces new overhead in number of qubits (due to
the encoding) and in number of gates (due to the increased
complexity of logical operations, especially two-qubit operations,
on encoded qubits), which could introduce new types of errors
into the circuit evaluation. This additional complexity would make
the original, noisy evaluation differ by more than just a reduction
of the error on each qubit by a partial amount. Furthermore, the
quantum error correction algorithms likely to be implemented in
the near-term will only partially decrease the error, not eliminate
it, even without all these complications. In this work, we assume
gates are separated by one time unit and the error rates are given
in inverse time units.

Variational quantum eigensolver
Here, we briefly overview the variational quantum eigensolver
(VQE). VQE solves for an approximate, variational ground state
energy of a parameterized wavefunction ansatz, |ψ(θ)〉. The
variational principle ensures that E0, the true ground state energy
of the Hamiltonian H, is always less than E, the energy of a
parameterized wavefunction ansatz. E is evaluated on the
quantum computer; the parameters θ are optimized using a
classical computer. Classical computing methods such as varia-
tional quantum Monte Carlo20 also make use of the variational
principle. The hope of a quantum realization is that quantum
computers can efficiently prepare non-trivial states which would
be more difficult to prepare on a classical computer. While
methods like quantum phase estimation21 can give generally
more accurate energies, VQE requires shorter circuits and has a
natural robustness to noise.2,13,22 VQE is not limited to quantum
chemistry; it has also been used to study problems in nuclear
physics.23 When using VQE for quantum chemistry, the second
quantized quantum chemistry Hamiltonian is transformed into a
qubit Hamiltonian using a transformation such as
Jordan–Wigner.24

Correction scheme
First consider the Lindbland master equation,

dρ
dt

¼ LðρÞ ¼
X

m

i¼1

LiðρÞ: (2)

A formal solution for a density matrix evolving from time t to t+ τ
and satisfying this equation is

ρðt þ τÞ ¼ VτðρðtÞÞ; (3)

where

VτðÞ ¼ exp½τLðÞ�: (4)

We use () above to indicate that L and Vτ are superoperators that
take in an operator with the brackets to generate a new one. To
first order in τ and taking L() to be the sum over Lindblad
operators of Eq. (2),

VτðÞ � 1þ τ
X

m

i¼1

LiðÞ; (5)

Applying gate 1 via application of unitary operator U1, evolving
under Vτ, applying gate 2 (U2), etc., up to gate G (UG) corresponds
exactly to a final density matrix given by

ρðTÞ ¼ UGVτ UG�1 � � � Vτ U2Vτ U1ρð0ÞU
y
1

� �

U
y
2

� �

� � �Uy
G�1

� �

U
y
G; (6)

where T = (G – 1) t, the time after the last gate has been applied.
Notice that Eq. (6) is not symmetric, since Vτ is a superoperator.
Equation (6) is ρ(T) for the case of all m error sources present.

The corresponding ρa(T) with no error terms present is simply:

ρaðTÞ ¼ UGUG�1 � � �U2U1ρð0ÞU
y
1U

y
2 � � �U

y
G�1U

y
G: (7)

The density matrices resulting from reducing error sources i= 1, 2,
…, m separately are

ρiðTÞ ¼ UGV
i
τðUG�1 � � � V

i
τðU2V

i
τðU1ρð0ÞU

y
1ÞU

y
2Þ � � �U

y
G�1ÞU

y
G: (8)

V i
τ is the corresponding Lindblad evolution operator that contains

a suitably scaled Li but has all other terms the same, e.g. to first
order in τ,

V i
τðÞ � 1þ τ

X

m

j≠i

LjðÞ þ τð1� fiÞLiðÞ; (9)

where fi is the fraction of noise removed.
Now we consider the new density matrix defined as

~ρðTÞ ¼ ρðTÞ �
X

m

i¼1

1
fi
ðρðTÞ � ρiðTÞÞ: (10)

Insertion of the Eqs. (5) and (9) into Eq. (10) leads, as detailed in
the Supplementary Material, to

~ρðTÞ ¼ ρaðTÞ þ Oðτ2Þ (11)

being correct to first order in τ, i.e. all first order error terms exactly
cancel, with remaining error terms on the order of τ2 and higher.
In contrast, the uncorrected density matrix ρ(T) contains first order
error terms.
We should note that Eq. (10) could also be obtained via a linear

expansion of the density matrix about the noise rates and a finite
difference approximation to the first derivatives. However, we
prefer our propagator-based derivation since it provides a more
physical context as well as a means for rigorous error analysis in
terms of the underlying propagation and Lindblad noise terms.
The general philosophy of error mitigation via additional
measurements and linear response can also be found in some-
what more sophisticated approaches such as quantum subspace
expansion.25

Since the density matrix itself is corrected by this procedure, all
observables are also accurate to first order in τ. Equation (10)
immediately leads to the observable correction formula, traced
with the observable, A:

~A¼ Trð~ρðTÞAÞ

¼ TrðρðTÞAÞ �
P

m

i¼1

1
fi
½TrðρðTÞAÞ � TrðρiðTÞAÞ�

¼ Ah i �
P

m

i¼1

1
fi

Ah i � Aih ið Þ;

(12)

which will also be accurate to order τ whereas the uncorrected
observable, 〈A〉, has first order error terms.
Suppose, for example, that m= n, where n is the number of

qubits, and each qubit is noisy. The strength of Eq. (12) is that, for
near-term quantum computing without the possibility of perfect
error correction of all n qubits, only OðnÞ computations involving
reducing the error on just one qubit (to yield the 〈Ai〉) are required,
along with the original calculation with no error reduction to yield
〈A〉. Intuitively, the difference fi(〈A〉− 〈Ai〉) represents a fraction of
the first order noise contributions for noise source i; these are then
subtracted away from the noisy expectation value with a relevant

M. Otten and S.K. Gray

2

npj Quantum Information (2019)    11 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



scaling 1
fi
, leaving a result with less noise. This cancellation relies on

the expectation value being built up from many measurements.
Each expectation value (〈A〉 and 〈Ai〉) contains contributions from
measurements with no error, as well as measurements with errors.
Our correction scheme cancels out some of the measurements
with error, while leaving the result with no error, leading to a
better calculation of the observable. Our simulations of the
application of this scheme to VQE indicate that Eq. (12) does
indeed yield a substantial improvement for real algorithms. Our
method lends itself naturally to use on a quantum computer,
where calculations can be repeated and techniques exist for the
reduction of error, but it is not restricted to just that. Any quantum
system in which an observable can be repeatedly measured and
each noise source can be reduced separately can make use of the
scheme to obtain a more accurate result; quantum error
correction assisted quantum metrology is a prime example.7,15

In VQE, the measured observable in question is the energy, E, of
the wavefunction ansatz. We first optimize the parameters of the
wavefunction; this can be done either with no error reduction or
potentially reducing the error on a single qubit. Once a set of
optimal parameters is found, the expectation value of the energy
is evaluated on the quantum computer with no error reduction,
and then reducing the error on each qubit separately. For an n
qubit problem, this involves only an additionalOðnÞ evaluations of
the energy on the quantum computer with error reduction on one
of the qubits each time. Once all of the energies are measured, Eq.
(12) is used to obtain ~E.

H2

We first consider the hydrogen molecule, H2, at equilibrium bond
length 0.74 Å and an STO-3G basis, resulting in a four qubit circuit.
We use the unitary coupled cluster singles double (UCCSD) ansatz1

(166 gates) and note that each gate is applied sequentially with
one time unit between each gate. We made no effort to apply
gates in parallel. The parameters of the wavefunction ansatz were
optimized with noise on every qubit. We then sweep through the
qubits, reducing the noise from each qubit by 10% (fi= 0.1 for
each noise source i). The final energy is then calculated by using
our correction scheme, Eq. (12).

Results for typical amplitude damping (γ1) and dephasing (γ2)
noises are shown in Fig. 1, representing three different environ-
mental regimes. One regime corresponds to γ1= γ2 and is similar
to a superconducting qubit quantum computer,2 whereas the
regime with just γ2 is consistent with spin26 and trapped ion27

quantum computers. Though we do not know of a quantum
architecture where γ1 is the dominant noise source, we include it
as a third regime for completeness. The x-axis in this figure (and all
subsequent figures) shows the error rate multiplied by the
number of gates in the circuit multiplied by the number of
qubits, and roughly represents the expected number of errors for
a given circuit evaluation. For the γ1= γ2 case, however, the
expected number of errors would be doubled, as there are two
possible error channels. We see that chemical accuracy (1.6 mHa,
the horizontal black line) with respect to the noise-free result can
be obtained with error rates more than one order of magnitude
higher than without our method; on average, the error rates can
be 35× larger. To obtain chemical accuracy, corrections of 50 mHa
are applied. On this log–log plot, the slopes of the two lines
represent their scaling with error. The correction amount (which is
approximately the error of the uncorrected energy) has a slope of
1, whereas the corrected energy has a slope of 2, representing the
cancellation of the first order error terms.
The Supplementary Material provides results for this same

example removing 100% of the noise. This results in only a slight
benefit, compared to removing only a small fraction (10%) of the
noise, allowing for error rates to be, on average, 45× larger (30%
larger than the fractional case). By removing all of the noise, there
is no need for the linear extrapolation done by the factor 1

f
; the

value at zero-noise is directly measured for each qubit.
Additionally, the determination of the fraction of removed noise,
f, can be complicated. This could be done by measuring the
relevant error properties before and after the error reduction
strategy is applied, but errors in the process could give an
unreliable estimation of f. Even a small deviation from the true
value of f will eventually result in the slope of the corrected energy
becoming 1 (instead of 2) at sufficiently small error rates. This is
due to the difference in the corrected energy and the noise-free
energy becoming smaller than the precision of the determined f. If
an unknown f is assumed to be 1, for instance, the method will still
remove a fraction of the error, giving results as if the quantum
computer had error rates 1−f; there are still first order errors, but
they are smaller due to the correction scheme. Because the
difference between the result when a small fraction of the noise is
removed and when all of the noise is removed is relatively
marginal, we focus on the latter case for the remainder of this
paper, where Eq. (12) takes a simpler form with f= 1. The
Supplementary Material also provides results for a different
wavefunction ansatz, one similar to that of ref. 2. The results are
consistent when using this separate ansatz. Note that these
figures make no reference to the true, full configuration
interaction energy. The difference plotted is between the
corrected energy and the energy evaluated with no noise; the
quality of the wavefunction ansatz cannot be determined from
these figures alone. The ordering of the results provides a limited
sensitivity analysis for different quantum computing architectures.
Similar to ref. 22, we note that VQE is more sensitive to amplitude
damping noise than to dephasing noise.
We should note that the very largest gains in accuracy in Fig. 1

(and subsequent figures) occur at relatively low error rates. The
initial, uncorrected algorithm that is run should be reasonably
reliable, e.g., the error rate should be 1/(no. gates), in inverse time
units with gates separated by one time unit. This error rate (e.g., 1/
166 ≈ 0.006 for the case of Fig. 1) may be quite daunting to
achieve in practice; partial error correction on all qubits could be
used to achieve this threshold.
Even though the wavefunction parameters were optimized in

the presence of noise, the final energy evaluated at the different

Fig. 1 Error cancellation for ground state H2 with the UCCSD ansatz
under amplitude damping (γ1), dephasing (γ2), and both amplitude
damping and dephasing (γ1, γ2) noise sources, removing only 10% of
the noise on each qubit separately. The horizontal line represents
‘chemical accuracy’, 1.6 mHa. Dashed lines with triangles are the
amount of correction applied by our scheme. Solid lines with circles
are the difference between the corrected energy and the energy
evaluated with no noise
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parameter sets for the fully error corrected circuit differ very little.
The optimal parameters from the largest error rates only give a
difference of 1.7 mHa compared to the optimal parameters from
the error-free optimal parameters, when both were evaluated with
no noise. We therefore optimize the parameters once with no
noise and use those parameters for evaluation at all noise rates in
the following examples.
Our correction scheme is not limited to environmental noise

sources, such as those modeled by γ1 and γ2. Any noise source
describable by a Lindblad superoperator can benefit, as long as
each noise source can be isolated and reduced independently of
all other noise sources. To demonstrate this, we apply a thermal
noise source with rate γth and a correlated noise source with rate
γc to the H2 UCCSD example, Fig. 2, where we now assume that
the noise has been completely removed (fi= 1 for all i). We see
trends similar to those for amplitude damping and dephasing;
corrections of ≈70mHa bring the energy to within chemical
accuracy at error rates almost 50 times larger than otherwise
needed. While perhaps experimentally difficult, thermal noise
could be reduced by selectively cooling each qubit. The correction

scheme applied to our correlated noise term reveals some
subtleties of the method. Our correlated noise Lindblad, Lc of
Eq. (1), naturally has terms from two qubits. When we sweep
through the qubits, we now reduce fully all terms which involve a
single qubit; this leads to the removal of each Lc term twice, once
for each qubit in each Lc. This double counting can be corrected
by taking half of the calculated correction from each qubit. Our
scheme relies on the fact that each term is reduced only once. As
long as the noise sources of interest and their controlled reduction
are well understood, the scheme can be applied. In our correlated
noise term, Lc, every term is removed exactly twice and the
calculated correction can be halved. Though we focus on
fractional noise reduction, the results will still hold if the noise is
instead increased by a controlled, known amount (say, doubled),
for each qubit separately. The ‘correction’ would be the difference
between the inflated noise run and the normal noise run, scaled
by the appropriate factor. This is similar in spirit to refs. 28–30,
where the total noise of the system is artificially increased and the
results are subsequently extrapolated to the zero noise limit.

LiH
We also study LiH in the STO-3G basis at bond length 1.74 Å, using
12 qubits, with over 12,000 gates. Results for the UCCSD ansatz are
shown in Fig. 3. The correction for LiH is even more dramatic than
for H2. Corrections of 100–200mHa bring the answer to within
chemical accuracy, and error rates can be over two orders of
magnitude higher, ranging from 68 for only γ1 noise to 128 with
only γ2 noise. This example provides confidence that the
correction scheme will work for larger circuits. For LiH the
procedure works even better than for the smaller circuits of H2.
This will likely be true for ever larger circuits: the number of first
order errors increases with increasing number of qubits, and these
are all approximately corrected. While the number of second order
errors also increases, second order errors go as γ2 and τ2, and will
be small.
Our method can reduce the error in any measured observable,

and so has application to a wide range of quantum algorithms.
Further study on other algorithms, e.g., the quantum phase
estimation21 and quantum approximate optimization algo-
rithms,31 are needed to understand the broader impact of this
scheme. Applications to quantum metrology warrant further
study: the noise floor of a quantum sensor could be reduced at
substantial reduction in cost in number of quantum systems by
reducing the overhead for quantum error correction assisted
metrology.7,15 The magnitude of the correction can also be used
as a metric for measuring how close to the true answer one is,
without knowledge of the true answer. The method relies on the
error characteristics with no reduction to be the same as the error
characteristics after reduction; in quantum error correction, this
may not always be true. Further study into practical methods of
reducing the error and ensuring that the error characteristics
before and after are similar is ongoing.

DISCUSSION

We presented a simple scheme to reduce error in quantum
algorithms, applying it to simulations of the variational quantum
eigensolver. Reducing the error on each qubit (e.g., through error
correction or some active or engineering process) one at a time
and summing the scaled difference from the result with no error
reduction can provide a significant correction to the observable
(e.g., energy). This scheme reduces the coherence requirements to
obtain chemical accuracy; error rates can be up to two orders of
magnitude larger. The overhead is relatively low: an additional
O nð Þ evaluations with single qubit error reduction.
The general philosophy used in this work for accounting for

errors, replacing all-qubit error correction with additional

Fig. 2 Error cancellation for ground state H2 with the UCCSD ansatz
under thermal noise (γth) and correlated noise (γc) with total error
removal on each qubit separately. See caption of Fig. 1 for
explanation of linetypes and symbols

Fig. 3 Error cancellation for the ground state of LiH with the UCCSD
ansatz under amplitude damping (γ1), dephasing (γ2), and both
amplitude damping and dephasing (γ1, γ2) noise sources with total
error removal on each qubit separately. See caption of Fig. 1 for
explanation of linetypes and symbols
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measurements and making use of an error model, has also been
exploited in interesting recent work28–30 involving increasing a
single global noise parameter, along with extrapolation to zero
error assuming a polynomial expansion for the error or via a quasi-
probability formalism. Our approach focuses on changing the
error associated with each individual qubit or error source
separately. Furthermore, our method is developed with focus on
mitigating the environmental noise of each qubit, whereas these
other interesting works focus on the noise from gate applications.
In the near term, with a very limited number of qubits and gates, it
is likely that the approach of refs 28–30 is more feasible. However,
our method, presented is the paper, could be used for quantum
memories and other quantum devices, where the dominant noise
source is not the gates, but the environmental interactions. Our
approach offers an alternative that is particularly relevant when
increasing a global noise parameter (such as the noise on the
gates) is infeasible. Other, more recent work, focuses on using a
stabilizer formalism, where a specific, relevant quantity (such as a
global symmetry of the system) is used to detect errors occurring
in a quantum circuit.32,33 If the symmetry is violated, then an error
occurred and the run in question should be excluded. Such
approaches cannot eliminate all errors and could be used in
tandem with the method we propose in this paper. As quantum
devices with larger numbers of qubits come online, utilization of
many forms of error mitigation will be necessary to make full use
of the power of these small, noisy devices.

METHODS

Generation of VQE circuits
We use the open source package OpenFermion34 to generate the qubit
Hamiltonian, starting from quantum chemistry integrals generated via
Psi4.35 We use the unitary coupled cluster singles doubles (UCCSD)
ansatz,13 with OpenFermion34 and ProjectQ36 to generate the circuits. We
optimize the parameters of the wavefunctions using both Nelder-Mead
simplex37 and COBYLA.38

Time evolution
Consider a system of n qubits characterized by a time-dependent density
matrix ρ(t) subjected to a sequence of k= 1, 2, …, G gate operations, each
being a unitary transformation Uk on ρ: ρ ! UkρU

y
k . We assume time τ

lapses between each gate operation. During these times ρ evolves under a
Lindblad master equation, Eq. (2). The dynamics is simulated with the high-
performance density matrix evolution program QuaC,39 using the different
noise sources noted in the main text.
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