
RESEARCH ARTICLE

Accounting for Genetic Architecture

Improves Sequence Based Genomic

Prediction for a Drosophila Fitness Trait

Ulrike Ober1☯, Wen Huang2☯, Michael Magwire2¤, Martin Schlather3, Henner Simianer1,

Trudy F. C. Mackay2*

1 Department of Animal Sciences, Animal Breeding and Genetics Group, Georg-August-Universität

Göttingen, 37075, Göttingen, Germany, 2 Department of Biological Sciences, North Carolina State
University, Raleigh, North Carolina, 27695–7614, United States of America, 3 Institute for Mathematics,
University of Mannheim, 68131, Mannheim, Germany

☯ These authors contributed equally to this work.

¤ Current address: Syngenta, 3054 E. Cornwallis Road, Research Triangle Park, North Carolina, 27709,
United States of America
* trudy_mackay@ncsu.edu

Abstract

The ability to predict quantitative trait phenotypes from molecular polymorphism data will

revolutionize evolutionary biology, medicine and human biology, and animal and plant

breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of

quantitative traits, but the combination of individually significant quantitative trait loci typi-

cally has low predictive ability. Utilizing all segregating variants can give good predictive

ability in plant and animal breeding populations, but gives little insight into trait biology.

Here, we used the DrosophilaGenetic Reference Panel to perform both a genome wide

association analysis and genomic prediction for the fitness-related trait chill coma recovery

time. We found substantial total genetic variation for chill coma recovery time, with a genetic

architecture that differs between males and females, a small number of molecular variants

with large main effects, and evidence for epistasis. Although the top additive variants

explained 36% (17%) of the genetic variance among lines in females (males), the predictive

ability using genomic best linear unbiased prediction and a relationship matrix using all com-

mon segregating variants was very low for females and zero for males. We hypothesized

that the low predictive ability was due to the mismatch between the infinitesimal genetic

architecture assumed by the genomic best linear unbiased prediction model and the true

genetic architecture of chill coma recovery time. Indeed, we found that the predictive ability

of the genomic best linear unbiased prediction model is markedly improved when we com-

bine quantitative trait locus mapping with genomic prediction by only including the top

variants associated with main and epistatic effects in the relationship matrix. This trait-asso-

ciated prediction approach has the advantage that it yields biologically interpretable predic-

tion models.
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Introduction

The ability to accurately predict phenotypes for quantitative traits from genome wide polymor-

phism data will revolutionize evolutionary biology, medicine and human biology, as well as

breeding of agriculturally important plant and animal species. The most commonly used

experimental approach to dissect the genotype-phenotype map has been to identify individual

quantitative trait loci (QTLs) by linkage to, or association with, segregating molecular markers

in mapping populations [1]. These studies evaluate the null hypothesis that variants are not

associated with differences in trait means, and rejection of the null hypothesis gives biological

insight into genes and genetic networks affecting naturally segregating quantitative variation.

Genome wide association (GWA) mapping studies for quantitative traits and complex diseases

in humans have identified over 2,000 novel variants [2]. However, the effects of individual vari-

ants are small, and collectively they explain only a small fraction of the total genetic and pheno-

typic variation for each trait, a phenomenon termed ‘missing heritability’ [3].

A second approach computes genome-based relationship matrices among individuals in a

population based on all genotyped segregating variants, and uses this to estimate the fraction of

additive genetic variance explained by the variants [4, 5]. When applied to human quantitative

traits and complex diseases, this method explains a much greater fraction of the total heritabil-

ity than single marker analyses [6, 7]. Importantly, when a statistical model is developed in a

population for which individuals have been both genotyped for molecular markers and pheno-

typed for a quantitative trait, the model can be used to predict phenotypes for an independent

sample of individuals from the same population with genotype information only (genomic pre-

diction). Genomic prediction methods have been extended to predict genomic breeding values

for ranking selection candidates in animal and plant breeding programs (genomic selection)

[8–12]. Genomic selection can massively increase genetic progress and is currently widely uti-

lized in applied breeding programs.

With the advent of next generation sequencing technologies, we can now perform genome

wide association mapping and genomic prediction on populations of individuals with complete

genome sequences. This scenario differs from GWA and genomic prediction analyses in which

only a subset of segregating variants are genotyped in that the causal variants are themselves

included in the list of polymorphic variants. If the true genetic architecture of a trait differs

from the additive, highly polygenic model typically assumed in genomic prediction (GBLUP,

genomic best linear unbiased prediction) [13, 14], combining QTL mapping with genomic pre-

diction may improve prediction accuracy and yield biologically relevant prediction models.

Indeed, genomic prediction methods that incorporate epistatic or non-additive effects typically

outperform their counterparts with only additive effects [15, 16].

The Drosophila melanogaster Genetic Reference Panel (DGRP) consists of 205 sequenced

inbred lines derived from the Raleigh, NC population [17, 18]. Here, we report GWA and

genomic prediction analyses for time to recover from a chill-induced coma, a component of fit-

ness in Drosophila and other insects [19, 20]. We find substantial total genetic variation for

chill coma recovery time, with a genetic architecture that differs between males and females

and includes alleles with large additive effects as well evidence for epistasis [21]. Genomic pre-

dictive ability for chill coma recovery time is very low when based on a genomic relationship

matrix including all markers, but is markedly improved when the relationship matrix only

includes variants associated with main and epistatic effects on the trait.
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Results

Quantitative genetics of chill coma recovery time

We assessed time to recovery from a chill-induced coma for 176 of the 205 DGRP lines (S1

Table) with Illumina sequence data [17, 18]. We find significant genetic variation (P = 1.07 x

10−52 for the between line variance and P = 1.40 x 10−6 for the sex by line interaction variance)

for chill coma recovery time (Fig 1), with a broad sense heritability (± SE) of Ĥ 2 = 0.35 (± 0.04)

(S2 Table), similar to that previously reported for 157 DGRP lines [17]. The genetic correlation

between chill coma recovery time in males and females is high (r̂MF ¼ 0:93). However, given

the significant sex by line interaction variance (S2 Table), we considered males and females

separately in subsequent analyses.

Genetic architecture of chill coma recovery time

Our previous GWA analysis of chill coma recovery time used single nucleotide polymorphisms

(SNPs) for 157 Freeze 1.0 DGRP lines [17]. Sequences of these lines were obtained using both

454 and Illumina technology. Illumina sequences are now available for all 205 Freeze 2.0

DGRP lines, which have been genotyped for SNPs as well as small and large insertion/deletion

(indel) variants and other non-SNP variants [18]. We performed a GWA analysis for chill

coma recovery time based on line means, using a mixed model to account for relatedness for

176 DGRP lines with Freeze 2 genotypes of 1,868,905 common (minor allele frequency� 0.05)

bi-allelic variants meeting quality control metrics. The broad sense heritabilities of line means

(± SE) are Ĥ 2 ¼ 0:92 (± 0.10) in females and Ĥ 2 ¼ 0:84 (± 0.10) in males (S2 Table). The

increase over individual-based heritability estimates is because the line means are estimated

with much greater precision given that we measured approximately 100 individuals per sex

and line.

At a nominal P< 10−5 threshold, we found 68 variants in or near 44 genes associated with

female chill coma recovery time and 68 variants in or near 42 genes associated with male chill

coma recovery time (S3 Table). A total of 26 genes were male-specific, 28 were female-specific,

and 16 were common to both sexes (although the variants associated with males and females

for the common genes were not necessarily the same). Three SNPs in females

(2L_3753356_SNP in the 3’UTR of CG10019, 2L_4588764_SNP in the first intron of dumpy

(dp), and X_18394766_SNP, a non-synonymous polymorphism in Rad51D) and one SNP in

males (2L_4513330_SNP in the first intron of dp) had large effects and were genome-wide sig-

nificant at a Bonferroni-corrected 5% significance threshold (P< 2.68 x 10−8; S3 Table). These

few significant additive SNPs explained 36% and 17% of the genetic variation among lines in

females and males, respectively. Previously, we inferred widespread epistasis for female chill

coma recovery time from the failure of associations with common SNPs to replicate between

the Freeze 1.0 DGRP lines and an extreme-QTL GWA analysis of a large advanced intercross

population derived from 40 DGRP lines, despite adequate power [21]. We therefore infer that

the genetic architecture of chill coma recovery time is sex-specific, with a small number of

SNPs with large main effects and variants with smaller additive effects and epistatic interac-

tions that account for the remaining genetic variance in each sex.

Genomic prediction for chill coma recovery time using genome wide
variants

We constructed genomic relationship matrices [5] from all of the 3,742,106 SNPs and 437,096

indels that were polymorphic in the 176 DGRP lines, as well as for the subset of 1,868,905 com-

mon variants (MAF� 0.05). We used genomic best linear unbiased prediction (GBLUP) to
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predict mean chill coma recovery phenotypes for these lines, as described previously for starva-

tion resistance and startle response [13].

We used 100 replicates of 5-fold cross-validation (CV) to assess the average correlation (r)

between predicted genetic values using all common variants and observed phenotypes, for each

sex separately. Surprisingly, we found that genomic-based predictive ability was very low

(r = 0.08) in females, and in males, the estimate of additive genetic variance from the genomic

relationship matrix was zero, leading to r = 0. Similar results (r = 0.08 in females and r = 0 in

males) were obtained using all variants, suggesting that the low predictive ability of genomic

prediction was not due to the omission of rare variants (Fig 2). The distributions of chill coma

recovery times are not normal, and have a pronounced minor peak for longer recovery time in

both sexes (Fig 1). The low predictive ability of genomic prediction is not, however, attributable

to the non-normal distributions, as Box-Cox transformed data show the same pattern of low

predictive abilities (r = 0.10 in females and r = 0 in males using common or all variants, Fig 2).

This result is in contrast to previous analyses, where predictive ability for starvation resistance

and startle response was 0.24 and 0.23, respectively [13].

The low predictive ability of genomic prediction could be due to low additive genetic vari-

ance for chill coma recovery time, despite appreciable total genetic variance. To assess this, we

estimated the additive genetic variance for chill coma recovery using the genomic relationship

matrix derived from common variants, both for individual data and for line means. Indeed, the

estimate of additive genetic variance is zero for males and not significantly different from zero

in females in both analyses (S4 Table). In fact, the likelihood profile for the additive genetic var-

iance in males was flat near the origin and thus the maximum likelihood estimate was zero.

The observation that estimates of additive genetic variance using the genome-wide relation-

ship matrix are not significantly different from zero is puzzling given the results from the

GWA analyses. As noted above, we estimated that the top GWA hits accounted for 36% and

Fig 1. Distribution of chill coma recovery time among 176 DGRP lines. The histograms depict the distribution of line means for (A) females and (B)
males for chill coma recovery time.

doi:10.1371/journal.pone.0126880.g001
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17% of the variance among lines in females and males, respectively. There are several possible

technical explanations for the discrepancy between the additive genetic variance expected to be

contributed by variants detected in our GWA analysis and the non-significant or zero estimates

of additive variance from the genome wide relationship matrix. First, the sample size of 176

lines is not large and may produce unstable estimates. However, the sample size was even

smaller for starvation resistance and startle response in our earlier study in which the GBLUP

estimates of additive genetic variance were reasonably accurate from a strictly additive model

[13]. Second, the GBLUP model assumes a highly polygenic genetic architecture such that the

effects of all variants are strictly additive, and normally distributed with equal variance. Depar-

tures of the true genetic architecture from these model assumptions, such as variants with large

effects, non-additive genetic variance, or both, as inferred for chill coma recovery time, could

thus lead to low GBLUP estimates of additive genetic variance. Further, the genomic variance

estimated from the relationship matrix is not necessarily identical to the true genetic variance

of the trait [22], although differences should be minor if the genomic relationship is con-

structed from sequence data assumed to harbor all causal variants, as in the present case.

Fig 2. Prediction accuracy using common or all variants with raw line means or Box-Cox transformed line means. Prediction accuracy of GBLUP for
100 replicates of 5-fold cross-validation (CV) are plotted as box plots, for females and males separately. We performed the analysis using either raw line
means (A) or line means transformed by Box-Cox transformation (B).

doi:10.1371/journal.pone.0126880.g002
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We assessed the effects of genetic architecture on estimates of additive genetic variance

from the genomic relationship matrix by simulating phenotypes for the DGRP genotypes with

different genetic architectures. We considered an additive model consisting of 100 QTLs each

explaining 1% of the total genetic variance, a major gene model where one QTL explains all of

the genetic variance, and an epistatic model where each of 50 pairs of interactions explains 2%

of the total genetic variance. We simulated the phenotypic data such that the broad sense heri-

tability is 37% (i.e., the same as for chill coma) and estimated the additive genetic variance

using a mixed model. We performed 100 replicate under each scenario. While the additive

model occasionally led to low estimates of additive genetic variance, the major gene model did

so slightly more frequently and the epistatic model substantially more frequently (Fig 3).

Therefore, we conclude that departures from the genetic architecture assumed by the GBLUP

model can cause a substantial underestimation of the additive genetic variance and hence

reduce predictive ability of the model.

Incorporating genetic architecture improves genomic prediction

Because the underlying genetic architecture affects the amount of estimated additive genetic

variance, which is the variance component accessible by GBLUP prediction, we assessed

whether genomic prediction could be improved by incorporating additive and/or epistatic

trait-associated variants. We used leave-one-out cross-validation (LOOCV) in these analyses

to maximize sample size in the training set. In each of the 176 LOOCV iterations, one line was

left out and the remaining 175 lines were used to carry out a GWAS for single variants and

pair-wise interactions between variants. We then selected the top trait-associated additive vari-

ants and/or epistatic pairs with P<10-X to construct the genomic relationship matrix and pre-

dict the phenotype of the remaining line. We computed the predictive ability as the correlation

between the vector of estimated genetic values and the vector of observed line means, and var-

ied X to arrive at an optimal threshold (Fig 4). Using all common variants, we again found that

GBLUP had low predictive ability in females (r = 0.07) and none in males (Fig 5). However, the

maximum predictive ability increased to 0.40 in males and 0.43 in females when only the top

SNPs were used to construct the relationship matrix (Fig 4 and Fig 5). Using top epistatic vari-

ants to build a pairwise epistatic genomic relationship matrix based on a modified approach of

Astle and Balding [23] also resulted in an improvement in predictive ability, to 0.35 in males

Fig 3. Genetic architecture affects estimated additive genetic variance. Different genetic architectures were simulated using DGRP genotypes for an
additive model (A), a major gene model (B) or an epistatic model (C). Broad sense heritability was assumed to be 37%, the same as the observed chill coma
recovery time. A total of 100 simulations were performed and the additive genetic variance (expressed as the proportion of additive genetic variance of total
variance) was estimated and summarized in histograms.

doi:10.1371/journal.pone.0126880.g003
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and 0.32 in females (Fig 5). Finally, incorporating both top additive variants and top epistatic

variants (MAF> 0.15) improved the predictive ability in males to 0.48, but did not improve

predictive ability in females (0.43) beyond that achieved by the additive model alone (Fig 5). In

this combined model, we used the top epistatic variants leading to the best predictive ability in

the epistatic LOOCV and varied the P-value threshold for the additive variants to optimize the

predictive ability. Interestingly, in the additive only model, the highest predictive ability in

males was achieved when a single variant was included (Fig 4), which coincided with the top

association signal in males (2L_4513330, S3 Table).

Discussion

The sequenced inbred lines of the DGRP provide a unique opportunity to dissect the genetic

architecture of Drosophila quantitative traits. Here, we performed GWA analyses for a compo-

nent of fitness, time to recover from a chill-induced coma. The broad sense heritability of chill

coma recovery time in the DGRP is moderately high (~0.40), and sex-specific. In contrast to

results from most GWA analyses in human populations, in which the top GWA variants have

small effects and collectively explain only a small fraction of the total heritability [2, 3, 24], we

found that a small number of sex-specific SNPs with large marginal effects explain a substantial

fraction of the variation in chill coma recovery time in the DGRP. These variants are common

and are not in long-range linkage disequilibrium with other genomic variants, which can occur

for variants with MAF< 0.05 due to the small size of the DGRP. In addition to large additive

effects, our previous study implicated substantial epistasis for chill coma recovery time [21].

The complicated genetic architecture of chill coma recovery time is not unexpected for a fit-

ness-related trait. Fisher’s fundamental theorem of natural selection predicts reduced levels of

additive genetic variation for such traits, with residual genetic variance attributable to additive

and dominance variance from deleterious alleles maintained at low frequencies by mutation-

selection balance and balancing selection of alleles at intermediate frequencies, and epistatic

Fig 4. Trait-associated GBLUP.We performed LOOCV in females (A) and males (B) separately. In each of the 176 folds, the top GWAS associations and/
or epistatic interactions in the training set were used to build the genomic relationship matrix and make prediction of the validation line. Accuracy of prediction
(left y-axis, correlation between predicted and observed phenotypes) is plotted against the P-value threshold for the additive model and additive + epistatic
model. For the additive + epistatic model, the epistatic pairs (on average the top 30 pairs in females and the top 3,232 pairs in males) that achieved the
highest prediction accuracy in an epistatic only model was used, while the threshold for GWAS association was varied. The black line indicates the number of
variants (right y-axis) significant in GWAS at varying thresholds.

doi:10.1371/journal.pone.0126880.g004

Trait-Associated Genomic Prediction in Drosophila

PLOSONE | DOI:10.1371/journal.pone.0126880 May 7, 2015 7 / 17



variance from gene-gene interactions [25]. Our GWA analysis did not evaluate the effects of

low frequency alleles (MAF< 0.05). However, the additive effects were predominantly such

that the carriers of rarer alleles took longer to recover from a chill-induced coma (S3 Table). To

the extent that allele frequency is a proxy for fitness, this suggests that these alleles are deleteri-

ous with respect to chill coma recovery, and that they may be under a form of balancing selec-

tion. Possibilities include overdominance for chill coma recovery time or a beneficial effect on

another fitness trait.

We computed genetic relationship matrices for all common variants and used GBLUP and

cross-validation to assess predictive ability for chill coma recovery time. GBLUP is only one of

many methods utilized in genomic prediction [26–29]. Simulation studies show that methods

tailored to specific known underlying genetic architectures, in particular Bayes B [4], give

improved predictive abilities over GBLUP when the genetic architecture consists of a few, addi-

tive loci with large effects [26–28]. However, Bayesian methods are very sensitive to the

assumed prior distribution of effects, which are unknown a priori [29]. Alternatively, a recently

proposed generalized ridge regression method estimated variant-specific shrinkage parameters

from the data without the need for prior distributions [30]. However, this method made pre-

dictions that were comparable to GBLUP (S1 Fig). GBLUP is not only easy to implement but

gives equivalent (and high) prediction accuracies when compared to other methods when

applied to plant and animal breeding populations [14, 26–28], in which the relationship

between individuals in the training and test populations is high. In human populations, how-

ever, in which the individuals in the training and test populations are not related, GBLUP

Fig 5. Accounting for genetic architecture improves genomic prediction. Scatter plots showing the predicted phenotypes and observed phenotypes for
females (A-D) and males (E-H) under different GBLUPmodels. Each panel represents a model indicated by the text above the plot with the prediction
accuracy in the parenthesis. Each point in the scatter plots represents one fold of LOOCV under the indicated model.

doi:10.1371/journal.pone.0126880.g005
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prediction accuracy is not high [14, 31], suggesting that models incorporating genetic architec-

ture could improve predictive ability.

When genetic architecture was not included in the model, the predictive ability we obtained

for chill coma recovery time using GBLUP was very low for females and zero for males, due to

estimates of narrow sense heritability that are not significantly different from zero in females

and equal to zero in males. We hypothesized that this low predictive ability is due to violations

of the additive infinitesimal model assumed by GBLUP that is inconsistent with the true

genetic architecture of chill coma recovery time. This idea was supported by our simulation

study (Fig 3). Our GWA analyses and previous results suggest that the true architecture of chill

coma recovery includes a few large effect additive loci coupled with additional epistatic interac-

tions. The low predictive ability from the mismatch between the true and assumed genetic

architecture is further exacerbated by the low average genomic relatedness of the DGRP lines

[13, 18] and rapid decline of LD with physical distance in the DGRP [17,8]. Whether the viola-

tion of the infinitesimal model was due to major genes, non-additivity or both cannot be defini-

tively answered with the available data.

The GBLUP model utilizes the average genomic relationship over all loci between individu-

als (or lines, in the case of the DGRP), and is the same for all traits measured in the population

[32]. Furthermore, although epistasis for chill coma appears to be widespread [21], inclusion of

a second variance component accounting for genome-wide pair-wise interactions among all

considered variants did not improve prediction (S1 Fig). This is expected since most genetic

variance is additive even if the gene action is epistatic, unless allele frequencies are intermediate

[33, 34]. However, if only a few loci or interactions between them affect the trait, using the

entire genomic relationship matrix and/or genome-wide interactions essentially adds noise

unless the average genomic relatedness matches the genomic relatedness at causal loci, leading

to reduced prediction accuracy [14, 32]. Indeed, our implementation of GBLUP that takes

account of trait-associated QTLs [32], including epistasis and major additive effects, dramati-

cally improved predictive ability.

The genomic prediction was greatly improved when adding SNPs or SNP combinations

selected based on GWA analyses in each fold of the LOOCVs. Although this study was under-

powered to detect epistatic interactions globally due to its small sample size, this does not

mean that there is no epistasis among the top hits in the pair-wise epistasis tests. The improve-

ment of prediction accuracy is likely a result of enriching for true causal variants among the list

of variants used to construct the genetic covariance matrix. In addition to improved predictive

ability, the trait-associated GBLUP approach affords the opportunity to evaluate the stability of

particular additive variants and pairwise interactions by enumerating the number of times each

enters the training model in the different folds of the LOOCV (S5 Table and S6 Table). Not

surprisingly, the top additive variants in the GWA analysis were recapitulated among the vari-

ants entering the model in all or most of the folds of the LOOCV (S5 Table). However, there

were relatively few pairwise interactions repeatedly entering the models (S6 Table); these inter-

actions have the highest priority for future functional tests.

Epistasis is a major feature of the genetic architecture of time to recover from a chill-induced

coma in Drosophila [21]. To what extent does this phenomenon apply to other quantitative

traits in Drosophila, as well as to quantitative traits in other species? There is substantial evi-

dence for epistatic interactions between QTLs in Drosophila and mice [1, 21, 24, 34], chickens

[35], Arabidopsis [36] and yeast [37, 38]. Epistatic effects can be as large as main QTL effects,

and can occur in opposite directions between different pairs of interacting loci and between

loci without significant main effects on the trait. Epistasis can also occur between closely linked

QTLs [36–38] and even between polymorphisms in a single gene [39]. Therefore, epistasis

appears to be a common feature of the genetic architecture of a wide range of quantitative traits

Trait-Associated Genomic Prediction in Drosophila

PLOSONE | DOI:10.1371/journal.pone.0126880 May 7, 2015 9 / 17



in genetic model organisms, and hence, by extension, in other less genetically tractable species

as well.

The implications of pervasive epistasis are profound. Complex networks of genetic interac-

tions provide the genetic basis of canalization (hidden genetic variation) [40]. Widespread and

complex epistasis could lead to population-specific genetic architecture, since the effect of a

given allele will be conditional on the presence of interacting alleles, which typically vary in fre-

quency between populations [21, 34, 41]. This leads to non-replication of estimates of main

effects in different populations and to population specific responses to artificial selection.

Epistasis may be in part responsible for the phenomenon of missing heritability [3] in human

complex traits and diseases, since estimates of effects of single markers are biased when epista-

sis exists but is not accounted for [34, 42]. In this regard epistasis provides a reason for the

apparent additive and close to infinitesimal genetic architecture of many quantitative traits:

additivity is an emergent property of underlying epistatic gene action [34]. We know that

developmental, neural, transcriptional, metabolic and biochemical networks are highly

dynamic, interconnected and nonlinear [43]. Identifying epistatic genetic interaction networks

will greatly inform our understanding of how molecular interactions affect variation in organ-

ismal quantitative traits [34, 44], as well as improve genomic prediction.

Materials and Methods

Drosophila phenotypic data

We quantified chill coma recovery by transferring (without anesthesia) three to seven day-old

flies to empty vials, and placing them on ice for three hours. We transferred the flies to room

temperature, and recorded the time it took for each individual to right itself and stand on its

legs [45]. We obtained two replicate measurements per sex and line, with 50 flies per replicate,

for each of 177 DGRP lines. One line, DGRP_879, had a chill coma recovery phenotype two

standard deviations from the mean, and was excluded from all analyses.

Heritability, genetic correlation, and variance components

To estimate broad sense heritability, we fitted the mixed model Y = μ + S + L + S×L + R(S×L) +

ε to the individual level data. Y is phenotype, μ is the overall mean, S is the fixed effect of sex, L

is the random effect of line, R is the random effect of replicate, and ε is the residual. We also fit-

ted reduced models separately for males and females. We estimated the broad sense heritability

for the full model as Ĥ 2 ¼
ŝ
2
L
þŝ2

SL

ŝ
2
L
þŝ2

SL
þŝ2

E

, where ŝ2
L; ŝ

2
SL and ŝ

2
E are, respectively, the estimated vari-

ance components for the line, sex by line and residual terms. For the reduced models, our esti-

mates of broad sense heritability were Ĥ 2 ¼
ŝ
2
LM

ŝ
2
LM

þŝ2
EM

for males and Ĥ 2 ¼
ŝ
2
LF

ŝ
2
LF

þŝ2
EF

for females,

where the subscripts M and F refer to the sex-specific among- and within-line variance compo-

nents. We estimated the genetic correlation between males and females as r̂MF ¼
ŝ
2
L

ŝ
2
L
þŝ2

SL

. We

estimated heritabilities of line means from the individual data as Ĥ 2 ¼
ŝ
2
LM

ŝ
2
LM

þŝ2
RM

and Ĥ 2 ¼

ŝ
2
LF

ŝ
2
LF

þŝ2
RF

for males and females, respectively, where ŝ2
R is the between replicate variance compo-

nent. To partition total genetic variance into additive and non-additive components, we fitted a

mixed model y =Wμ + Zg + Zg’ + e to individual level data in females and males separately.

The random effects vector was symbolically separated into two in the model to help model

specification despite the same incidence matrix Z with rows of unit vectors where one compo-

nent is 1 and all others are 0 indicating the respective line the individual was from. Further-

more,W = (1,. . .,1)T; μ is the overall mean; the additive genetic value g ~ N(0, σG
2
s
2
GG) is
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assumed to be multivariate normal where G is the genomic relationship matrix of the n lines

(also see below); the non-additive genetic value g’ ~ N(0, σG
2
s
2
GI) where I is the identity matrix;

and the error term e ~ N(0, σE
2I). All variance components were estimated by REML using the

Proc Mixed procedure in SAS software (Version 9.2 for Linux, [46]).

Genome wide association analysis

We performed genome wide association analysis on line means. Associations between single

variants and line means for chill coma recovery time were tested by a mixed effect model

accounting for relatedness among lines (including relatedness due to shared inversion kary-

topes) using FastLMM [18, 47]. We used models of form Y = μ + V + a + ε, where V is the

fixed effect of the polymorphic variant and a is a polygenic term whose covariance is specified

by the genomic relationship matrix to evaluate the effects of markers for males and females

separately. We performed these analyses for 1,865,879 biallelic variants for which the Phred

scaled variant quality (10log10P where P is the probability value from a likelihood ratio test test-

ing the existence of a variant) was greater than 500, the minor allele frequency was� 0.05, and

genotype call rate was� 0.8 among the DGRP lines [18]. We considered only homozygous

genotypes whose JGIL [48] quality scores were greater than 20. We estimated marginal allelic

effects of each variant as one-half the difference in trait mean between the variant classes

(polarized by allele frequency, such that the effect is the difference between the major and

minor alleles) [25].

Bioinformatics analyses

We used SnpEff [49] for functional annotation of DNA variants based on the 5.49 release of

the FlyBase [50] annotation.

Genomic Best Linear Unbiased Prediction (GBLUP)

We used the underlying statistical model y =Wμ + Zg + e (Model 1) to perform genomic pre-

diction. The ith component of the q-vector y is the phenotypic value of the ith line that is used

for prediction (i = 1,. . .,n),W = (1,. . .,1)T; μ is the overall mean; g ~ N(0, σG
2
s
2
GG) is assumed

to be multivariate normal where G is a genomic relationship matrix of the n lines; Z is a (q×n)

incidence matrix with rows of unit vectors where one component is 1 and all others are 0, indi-

cating the respective positions of lines used for prediction in the g vector of genetic values of all

lines; σG
2 is the genetic variance; and e ~ N(0, σE

2I) is the residual term, where σE
2 is the resid-

ual variance. The BLUP of the vector of genetic values can be obtained by solving the mixed

model equations

WTW WTZ

ZTW ZTZþ
s
2
E

s2
G

G
�1

0

@

1

A

 

μ̂

ĝ

!

¼

 

WTy

ZTy

!

:

When including two different random components, we used the statistical model y =Wμ +

Z1g1 + Z2g2 + e (Model 2) where g1 ~ N(0, σG1
2G1) and g2 ~ N(0, σG2

2G2) are assumed to be

independent multivariate normal vectors where G1 and G2 are two different genomic relation-

ship matrices, and Z1 and Z2 are the corresponding incidence matrices. The BLUP for this
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model can be obtained by solving the mixed model equations
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We estimated variance components for Model 1 and Model 2 using maximum likelihood

(ML) as implemented by the R package”RandomFields”, version 2.0.46, and the “fitvario” func-

tion (http://CRAN.R-project.org/package=RandomFields) [51].

Genomic relationship matrices

We constructed genomic relationship matrices from the 3,742,106 SNPs and 437,096 indels

that were polymorphic in the 176 DGRP lines, as well as for the subset of 1,868,905 common

variants (MAF� 0.05). We only used variants with a call rate> 0.8 in the 176 lines. Missing

genotypes were assigned the allele frequencies based on the set of 176 lines.

The additive genomic relationship matrix, G, is defined asG ¼ ðM�PÞðM�PÞT

2
Ps

j¼1
pjð1�pjÞ

[5], whereM is

the (n×s) matrix of genotype vectors for the n lines, with the s variants coded as -1, 1; and the

jth column of P is (2(pj—0.5),. . .,2(pj ‒ 0.5))
T, where pj is the frequency of the second allele at

locus j.

We calculated pairwise epistatic genomic relationship matrices by modifying an approach

according to Astle and Balding [23]. For the j-th pair (SNPj1, SNPj2) of interacting SNPs we

built two relationship matrices, Kj1 and Kj2 (one for each of the two SNPs), according to

Kji ¼
ðxji � 2pji1Þðxji � 2pji1Þ

T

2pjið1� pjiÞ
; i ¼ 1; 2;

where xji is the genotype-vector and pji is the allele frequency of SNPji for i = 1, 2. We then

calculated the Hadamard-product of Kj1 and Kj2 to obtain a matrix reflecting the interaction of

SNP1 and SNP2. This calculation was repeated for all pairs of interacting SNPs and finally aver-

aged over all Hadamard-products, to obtain one final epistatic relationship matrix

K ¼
1

m

Xm

j¼1
Kj1#Kj2

to be used as the pairwise epistatic genomic relationship matrix in the GBLUP models. In the

additive case, the resulting covariance matrix is an unbiased and positive semi-definite estima-

tor for the relationship matrix [23], and analogously K is an unbiased and positive semi-defi-

nite estimator for the additive x additive relationship matrix for the respective subset ofm SNP

pairs.

Calculating the epistatic genomic relationship matrix as the Hadamard product of the addi-

tive genomic relationship matrices constructed from all SNPs involved in epistatic interactions

[13] accounts for all pairwise interactions of the involved SNPs. Thus, for n epistatic SNP pairs

comprising 2n SNPs there are 4n2 SNP by SNP interactions. Our approach accounts for only

the n pairwise interactions, i.e., for a SNP interacting with one other SNP, just this interaction

is modeled and the interactions with the SNPs in the other n − 1 epistatic pairs are disregarded.

In more general terms it is always possible to split the set of all pairwise SNP interactions in

two subsets, where one subset reflects all interactions with a significant effect, and the
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complementary subset comprises all other pairwise interactions. The approach we used is

equivalent to accounting for the significant interactions and ignoring the other interactions.

5-fold cross-validation using GBLUP

We first used 5-fold cross-validation (CV) [52–54] to assess prediction accuracy. In a 5-fold

CV, the lines are randomly divided into five groups. Four of the five groups comprise the train-

ing set, and the remaining group constitutes the validation set, giving rise to five possible divi-

sions of training and validation sets. For each of these divisions (“folds”), total genetic values

for the lines of the validation set are predicted and the corresponding predictive ability defined

as the correlation between predicted genetic values and observed phenotypic values is calcu-

lated. The five predictive abilities are then averaged to obtain one average correlation per CV

replicate. These analyses were performed separately for males and females, with 100 replicates

for each CV.

Leave-One-Out CV

We also performed a leave-one-out cross-validation (LOOCV) for trait-associated GBLUP.

With n lines, the LOOCV consists of n folds. In each fold, n-1 observations are used as the

training set and the phenotype of the remaining single line is predicted. This is repeated n

times such that each line is predicted once. In each of the 176 folds, a GWA analysis for single

variants and/or pair-wise interactions between variants was performed on the 175 lines of the

training set only, i.e., all single marker and epistatic GWA analyses were repeated 176 times.

The single marker GWA analysis was performed as described above while the epistatic GWA

was performed as follows. We first pruned the genotype data for LD using the LD pruning util-

ity in PLINK [55] such that no pair of variants has r2 > 0.8 within a window of 100 variants,

and constrained the analysis to interactions between variants of MAF> 0.15 and at least two

lines for each of the four possible genotypes. Raw phenotypic data were adjusted for the effects

of inversions and major principal components of the genotypic matrix for common variants by

fitting them as fixed effects and taking residuals from the fitted model [18]. Finally we per-

formed a full genome-wide screen for pairwise interactions, fitting models of form Y = μ + VA

+ VB + VA×VB + ε, using FastEpistasis [56]. After the single marker and epistatic GWA analy-

ses, we selected the top trait-associated additive variants and/or epistatic pairs with p< 10-X in

the respective training set to construct genomic relationship matrices and predicted the pheno-

type of the remaining line based on Model 1 and Model 2, incorporating additive and/or epi-

static genomic relationship matrices as described above. We computed the predictive ability

as the correlation between the vector of estimated genetic values (from all 176 folds) and

the vector of observed line phenotypes, and varied the P-value threshold X to arrive at an opti-

mal value. The same LOOCV approach was also applied using the bigRR package, which

implements a variant ridge regression with variant specific shrinkage parameters [30]. For

comparison with the trait-associated GBLUP, we also performed LOOCV with two variance

components, the additive genomic relationship matrix, G, and the Hadamard product of G,

G#G, with the latter of the two representing genome-wide pair-wise interactions among all var-

iants. All cross-validation procedures and the GBLUP approach were implemented using R

software [51].

Simulations

To investigate whether the genetic architecture of a quantitative trait could account for the dif-

ficulty of the additive genomic relationship to explain phenotypic variation, we performed sim-

ulations under three distinct genetic architectures: (1) a major gene explaining 37% of the
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phenotypic variation; (2) 100 loci additively explaining 37% of the phenotypic variation; and

(3) 50 pairs of interacting loci explaining a total of 37% of the phenotypic variation. For the

major gene and polygenic models, we randomly selected QTL sites from the genome and

assigned their allelic effects such that each locus explained an equal amount of variance. For

each pair of the randomly chosen QTLs in the epistatic model, the genotypic effect was

assigned by the formula b(m1 –p1)(m2 –p2), wherem1 andm2 were the {-1, 1} coded genotypes,

p1 and p2 were the allele frequencies of the two interacting loci, and b was the epistatic effect.

To achieve equal variance for each interacting pair, we first calculated the sample variance of

(m1 –p1)(m2 –p2) and determined b accordingly.
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