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INTRODUCTION 

Irish beef evaluations for beef traits comprise many breeds and their crosses and incorporates 

thirteen traits recorded on subsets of the data. Traits comprise of slaughterhouse data 

(predominantly dairy and dairy beef crosses), weight recording (beef and dairy) and 

conformation scoring (purebred beef), and own performance feed intake and weight (purebred 

beef). Estimating breeding values and genetic parameters in a multiple breed population is 

complicated by breed differences for trait means as well as dominance and recombination. 

Incorporating a heterogeneous variance correction across fixed effect classes, as often applied 

in the dairy situation, may not account sufficiently for heterogeneous variance components in 

mixed populations, as there are likely to be true differences in variance components within and 

between breeds and for example gender within a breed. Furthermore, heterogeneous variance 

components may not only differ in terms of their additive genetic or environmental variances, 

there may be different genetic and environmental correlations between traits within and across 

breeds. Several methods have been proposed to account for some of these complexities. Pool et 

al. (2005) assumed homogeneous (co)variances across different breeds and used fixed 

regressions on heterozygosity and breed fraction to account for different means. Pollock and 

Quaas (2005) employed a correction for heterogeneity of variance by percentage of the 

dominant breed. We envisage that the optimal evaluation model for the Irish mixed population 

would account for heterogeneous (co)variances as a function of breed and gender. The 

objective of this study was to test the ability of a multitrait random regression model (RR), to 

model genetic (co)variances for carcass weight (CW), fatness (CF) and conformation (CC) as a 

function of breed composition in a Holstein and Friesian crossbred population, treating these 

two as separate breeds. 

 

MATERIAL AND METHODS 

Data. Records for CW, CF and CC for animals of ≥93% combined Holstein and Friesian breed 

composition were extracted from the Irish Cattle Breeding Federation database. Only animals 

with records of sire, paternal grandsire, finishing herd, abattoir of slaughter, dates of birth  and 

slaughter, age at slaughter between 300 and 875 days and not more that two lifetime 



movements between herds were retained. Animals with measurement greater than three 

standard deviations from the mean carcass weight daily gain were removed. Due to a small 

number of records for animals of ≤50% Holstein these were removed. At this point 48,816 

animals remained. Contemporary groups of finishing herd and abattoir were formed, ensuring 

that each contemporary group contained ≥4 animals while each sire had ≥3 offspring. 

Contemporary groups with records of only one sire and sires which were mated to only one 

breed composition percentage type were removed. The final data set contained 36,813 animals. 

A relationship matrix was formed for sire, grand sire and great grand sire (n = 1469).  

 

Statistical models. A multivariate sire model, with CW, CF and CC as dependent variables, 

was fitted to estimate a 3 x 3 matrix representing the average genetic (co)variances. A 9 × 9 

genetic (co)variance matrix was estimated, treating each of CW, CF and CC as different traits 

in each of the following classes, (1) ≥93.75%, (2) between 93.74% and 81.25% and (3) 

between 81.24% and 50% Holstein composition, to estimate average (co)variances for these 

categories. Thirdly, a multitrait random regression sire model was fitted. Random regression 

coefficients, on first order Legendre polynomials of Holstein composition, were fitted to 

account for differences along the Holstein composition trajectory, treating CW, CC and CF as 

dependent variables. In this model heterogeneous residual (co)variances were estimated within 

the three breed composition classes previously defined. No residual covariances were 

estimable between the breed composition classes as animals have only one record. In each 

model the three fixed effects were, gender, the herd-year management group of finishing and 

abattoir-year of slaughter contemporary group effects as well as fixed regression of Holstein 

composition and age modelled through fifth and second order Legendre polynomials 

respectively.  Each model was fitted using ASReml (Gilmour et al., 2005). 

 

RESULTS  

Genetic variance. Population average variance components are given in Table 1. The RR 

(Figure 1) and 9 × 9 (results not shown) estimates of additive genetic variance (σ2
a) for each 

trait were similar and the population average estimates were within their ranges. Estimates of 

σ2
a using RR (Figure 1) suggest it is heterogeneous across breed composition for CW and CF. 

The estimate of σ2
a for CW in 50% Holstein (291 kg2) is twice as large as the estimate for pure 

Holstein (144 kg2). In contrast with σ2
a for CW, which decreased with increasing Holstein 

percentage, σ2
a for CF increased with increasing Holstein percentage from 0.36 to 0.71 

classification units2. The σ2
a for CC did not appear to differ across breed composition (Figure 

1). The trends of change in σ2
a with changing breed composition from both RR and 9 × 9 were 

in agreement.   

 

Genetic correlations. The additive genetic correlations (ra) within each trait, estimated by RR, 

decreased from 1.0 to 0.64 across breed composition. As an example the ra for CC as a 

function of breed composition is given in Figure 2. The ra between CC in pure Holstein and 

50% Holstein is 0.64. In comparison, the 9 x 9 estimates of ra within this trait across breed 

were all >0.85. The ra between traits also changed across breed composition. For example, in 

contradiction with the positive population average estimate of ra between CW and CC (0.14), 

the RR estimate was negative in 50% Holsteins (-0.08) and positive in purebred Holsteins 



(0.28) (Figure 2). In comparison the 9 x 9 estimates were moderately positive, 0.12 and 0.30 

respectively for 50% and purebred Holsteins. 

 

Table 1. Genetic parameters estimates across the population in the for carcass traitsA. 

Trait σ2
CW CC CF 

CW 170.0 23.7 0.18 0.02 0.14 0.10 0.21 0.09

CC 0.19 0.03 0.38 0.01 0.17 0.02 0.49 0.08

CF 0.63 0.08 0.31 0.01 0.23 0.01 0.26 0.03

AVariances (σ2
) in the first column, thereafter heritabilities on the diagonal, genetic (above 

diagonal) and phenotypic (below diagonal) correlations. Standard errors as subscripts. 
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Figure 1. Estimates of additive genetic variance, using a random regression model, for 

carcass weight (CW) in kg2, carcass conformation (CC) and carcass fatness (CF) in 

carcass classification units2 (CU2). 
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Figure 2. Estimates of additive genetic correlations (ra), using a random regression 

model, (A) across breed composition for carcass conformation and (B) between carcass 

conformation and carcass weight. 

 

DISCUSSION 

Genetic variance. Some multibreed genetic evaluation models (e.g. Pool et al., 2005) assume 

homogeneity of σ2
a across breed. The results of this study suggest that this assumption might 

not be optimal due to a genotype × genotype interaction. The RR model attempts to model any  



change in σ2
a across breed composition. It is likely that estimates of σ2

a in this study include 

some of the non-additive variance, especially as breed composition ranges between 50% and 

100% Holstein. Incorporation of the dominance relationship matrix could remove any bias due 

to dominance (Misztal, 1997).  

 

Genetic correlations. The results from the RR model suggested that ra within and between 

traits differ along the breed composition trajectory. As already stated the estimates of additive 

(co)variance components may be somewhat biased by non-additive (co)variance. Nonetheless, 

within trait across breed estimates of ra less than unity suggest that the relative performance of 

genotypes differs depending upon the genotype to which they are mated. In Ireland, for 

example, selection for beef traits is carried out in purebred herds that specialise in producing 

terminal sires. The beef production herds keep crossbred dams to which they mate these 

purebred sires. Re-ranking of sires and loss of selection efficiency may occur as selection 

pressure is imposed on traits that have ra with the beef production traits of less than unity. The 

fact that ra between traits changes across breed composition may cause further reduction in 

predicted response to selection (Figure 2).  

 

Applications. Some breed composition groups in a population may contain few records for 

certain traits. Estimating breeding values for these traits may be problematic due to the 

unreliability of estimates from random regression models in areas of a distribution with few 

data points (Pool and Meuwissen, 1999). We tried to accommodate this by excluding records 

of sires that had all offspring of the same breed composition, i.e. pure breed or F1 mostly. 

Especially when considering that some records have been collected in certain breed groups 

only, a major challenge will be how to deal with the extrapolation and maybe alternative 

models might be more suited. An option might be to estimate variance components as 

functions of clusters of similar numerically small breeds. 

 

CONCLUSION 

It is possible to model heterogeneous σ2
a and ra in multiple breed populations using random 

regression. The results suggest that genotype × genotype interaction for σ2
a and ra exists in 

multiple breed populations, which may have implications for breeding programmes due to the 

re-ranking or re-scaling of animals and loss of selection efficiency. The effects of non-additive 

genetic effects and numerically small breed composition groups must be investigated before 

the use of a random regression model to estimate σ2
a and ra in a multiple breed population is 

recommended. 
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