Accounting for Imperfect Detection and Survey Bias in Statistical Analysis of Presence-only Data

Robert M. Dorazio ${ }^{1}$

${ }^{1}$ Southeast Ecological Science Center, U.S. Geological Survey, Gainesville, FL 32653

2014 Graybill/ENVR Conference
Fort Collins, Colorado 08 Sep 2014

Species Distribution Models (SDMs)

Definition: A SDM expresses a functional relationship between the occurrence or abundance of a species and one or more aspects of its environment
Uses: Many!

- Predicting the geographic distribution of a species over its potential range
- Predicting consequences of management actions (e.g., habitat restoration) on a species' distribution
Limitations: Many!
- No dynamics (animal movements, plant dispersals)
- No interactions within or among species

Estimating SDMs From Planned Surveys

Presence-absence surveys

- Binary-regression modeling
- Occupancy modeling

Abundance surveys

- Poisson-regression modeling
- N -mixture modeling

Planned vs. Opportunistic Surveys

Nonindigenous aquatic species in Georgia, USA

Estimating SDMs From Opportunistic Surveys

Source: Web of Science using "presence-only data"

Estimating SDMs From Opportunistic Surveys

Presence-background models

- Binary regressions
- Case-augmented binary regressions (Lee et al., 2006; Lele and Keim, 2006)
- Maximum entropy
(Phillips et al., 2006;
Elith et al., 2010)
- Spatial point processes

(Warton and Shepherd, 2010)

Poisson Process as a SDM

Conceptual unification

- asymptotic equivalence of estimators
- CA-binary regressions modifed for spatial resolution (Dorazio, 2012)
- Maxent models (Renner and Warton, 2013)
- parameters are invariant to spatial scale

Potential sources of bias

- imperfect detectability (Dorazio, 2012; Lahoz-Monfort et al., 2014)
- opportunistic sampling (Phillips et al., 2009; Yackulic et al., 2013)
- location-dependent thinning of process helps in some cases
(Chakraborty et al., 2011; Fithian and Hastie, 2013)

Hierarchical Modeling of Opportunistic and Planned Survey Data

Poisson Process as a SDM

Definitions

Spatial domain: $B \subset \mathbb{R}^{2}$
Individual activity center: $\boldsymbol{s} \in B$
First-order intensity function: $\lambda(\boldsymbol{s})=\exp \left(\boldsymbol{\beta}^{\prime} \boldsymbol{x}(\boldsymbol{s})\right)$

Assumptions

- $N(B) \sim \operatorname{Poisson}(\mu(B))$, where $\mu(B)=\int_{B} \lambda(\boldsymbol{s}) d \boldsymbol{s}$
- $f\left(s_{1}, s_{2}, \ldots, s_{n} \mid N(B)=n\right)=\prod_{i=1}^{n} \lambda\left(s_{i}\right) / \mu(B)$

Latent state variables

- $g\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{n}, n\right)=\frac{\exp \{-\mu(B)\}}{n!} \prod_{i=1}^{n} \lambda\left(\boldsymbol{s}_{i}\right)$
- $N\left(C_{k}\right) \sim \operatorname{Poisson}\left(\mu\left(C_{k}\right)\right)$ where $C_{1} \cup \cdots \cup C_{K}=B$

Detections of Individuals in Opportunistic Surveys

Assumptions

- Each individual is detected independently with probability $p(\boldsymbol{s})$:
$Y \mid \boldsymbol{s} \sim \operatorname{Bernoulli}(p(s))$
- $p(\boldsymbol{s})$ depends on an observer's detection ability and choice of survey location:

$$
\operatorname{logit}(p(\boldsymbol{s}))=\boldsymbol{\alpha}^{\prime} \boldsymbol{w}(\boldsymbol{s})
$$

Observations

- $m=$ number of individuals detected in B
- $\left(s_{1}, \ldots, s_{m}\right)=$ locations of detected individuals

$$
L(\boldsymbol{\beta}, \boldsymbol{\alpha})=\frac{\exp \{-\nu(B)\}}{m!} \prod_{i=1}^{m} \lambda\left(\boldsymbol{s}_{i}\right) p\left(\boldsymbol{s}_{i}\right)
$$

where $\nu(B)=\int_{B} \lambda(s) p(s) d s=\mathrm{E}(M(B))$

Detections of Individuals in Planned Surveys

Assumptions

- Only individuals whose activity centers lie within sample unit C_{k} are available to be detected
- Each individual is detected with probability $p_{k j}$ during the j th survey of unit C_{k} :

$$
\operatorname{logit}\left(p_{k j}\right)=\gamma^{\prime} \boldsymbol{v}\left(C_{k}\right)
$$

Observations (e.g., J_{k} replicate counts)

- $Y_{k j} \mid N\left(C_{k}\right)=n_{k} \sim \operatorname{Binomial}\left(n_{k}, p_{k j}\right)$

$$
\begin{aligned}
L(\boldsymbol{\beta}, \boldsymbol{\gamma})= & \prod_{k=1}^{K} \sum_{n_{k}=\max \left(\boldsymbol{y}_{k}\right)}^{\infty} \frac{\exp \left\{-\mu\left(C_{k}\right)\right\}\left\{\mu\left(C_{k}\right)\right\}^{n_{k}}}{n_{k}!} \\
& \times \prod_{j=1}^{J_{k}}\binom{n_{k}}{y_{k j}} p_{k j}^{y_{k j}}\left(1-p_{k j}\right)^{n_{k}-y_{k j}}
\end{aligned}
$$

Information in Opportunistic Surveys Can Be Limited

$$
\log \{L(\boldsymbol{\beta}, \boldsymbol{\alpha})\}=-\int_{B} \lambda(\boldsymbol{s}) p(\boldsymbol{s}) d \boldsymbol{s}+\sum_{i=1}^{m} \log \left\{\lambda\left(\boldsymbol{s}_{i}\right) p\left(\boldsymbol{s}_{i}\right)\right\}
$$

where

$$
\lambda(\boldsymbol{s}) p(\boldsymbol{s})=\frac{\exp \left\{\boldsymbol{\beta}^{\prime} \boldsymbol{x}(\boldsymbol{s})+\boldsymbol{\alpha}^{\prime} \boldsymbol{w}(\boldsymbol{s})\right\}}{1+\exp \left\{\boldsymbol{\alpha}^{\prime} \boldsymbol{w}(\boldsymbol{s})\right\}}
$$

Identifiability problems:

(1) If $p(s)=p, \beta_{0}$ and α_{0} are not identified.
(2) If $p(\boldsymbol{s})$ is low $\forall \boldsymbol{s}, \lambda(\boldsymbol{s}) p(\boldsymbol{s}) \doteq \exp \left\{\boldsymbol{\beta}^{\prime} \boldsymbol{x}(\boldsymbol{s})+\boldsymbol{\alpha}^{\prime} \boldsymbol{w}(\boldsymbol{s})\right\}$

- β_{0} and α_{0} are not identified
- other elements of $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ are not identified if \boldsymbol{x} and \boldsymbol{w} are linearly dependent
(3) If Fisher information matrix $\boldsymbol{I}(\boldsymbol{\theta})$ is less than full rank, the parameters in $\boldsymbol{\theta}=\left(\boldsymbol{\beta}^{\prime}, \boldsymbol{\alpha}^{\prime}\right)^{\prime}$ are not identified (Bowden, 1973).

Two models
 $\log (\lambda(s))=$
 $\log (8000)+0.5 x(s)$

(1) $\operatorname{logit}(p(s))=$ $\alpha_{0}-1.0 w(s)$
(2) $\operatorname{logit}(p(s))=$ $\alpha_{0}-1.0 x(s)$

Using Planned Surveys To Overcome Limited Information in Opportunistic Surveys

$$
L(\boldsymbol{\beta}, \boldsymbol{\alpha}, \boldsymbol{\gamma})=L(\boldsymbol{\beta}, \boldsymbol{\alpha}) \times L(\boldsymbol{\beta}, \boldsymbol{\gamma})
$$

- partition B into sample units
- select K units randomly
- conduct $J>1$ replicate surveys in each unit

Two models

$\log (\lambda(\boldsymbol{s}))=\log (8000)+0.5 x(\boldsymbol{s})$
(1) $\operatorname{logit}(p(s))=-1.0-1.0 w(s)$
$\operatorname{logit}\left(p_{k j}\right)=0.0-1.0 v\left(C_{k}\right)$
(2) $\operatorname{logit}(p(s))=-1.0-1.0 x(s)$

$$
\operatorname{logit}\left(p_{k j}\right)=0.0-1.0 v\left(C_{k}\right)
$$

where $v(C)=\int_{C} w(\boldsymbol{s}) d \boldsymbol{s}$
where $v(C)=\int_{C} x(s) d s$

Individuals
 (covariate x)

Detections
(covariate w)

Detections (covariate x)

Abundance
(covariate x)

Detections
(covariate w)

Detections
(covariate x)

Simulation Results: Detection covariate w

Simulation Results: Detection covariate x

Summary

(1) Bias in estimates of SDMs induced by detection errors or survey bias can be reduced or eliminated using a joint analysis of data collected in opportunistic and planned surveys.
(2) This approach is widely applicable because a variety of sampling protocols can be used in planned surveys.

- double observers
- removals
- capture-recapture
- occupancy (presence-absence sampling with replicates)
(3) Spatial point processes are formulated at the level of an individual; therefore, extensions of the Poisson process can be developed to
- specify effects of biological interactions between individuals
- predict changes in spatial distribution driven by changes in climate, habitat, non-indigenous species, etc.

Acknowledgments

Funding: - South Atlantic Landscape Conservation Cooperative (Agreement No. 4500038932)

- USGS, Southeast Ecological Science Center

Reviewers: © N. Zimmermann

- C. Yackulic

Dorazio, R.M. 2014. Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Global Ecology and Biogeography (DOI: 10.1111/geb.12216).

Fisher Information Matrix

$$
\boldsymbol{I}(\boldsymbol{\beta}, \boldsymbol{\alpha})=\left(\begin{array}{cc}
\boldsymbol{I}(\boldsymbol{\beta}, \boldsymbol{\beta}) & \boldsymbol{I}(\boldsymbol{\beta}, \boldsymbol{\alpha}) \\
\boldsymbol{I}(\boldsymbol{\beta}, \boldsymbol{\alpha})^{\prime} & \boldsymbol{I}(\boldsymbol{\alpha}, \boldsymbol{\alpha})
\end{array}\right)
$$

The p, q-th element for each of these submatrices is:

$$
\begin{aligned}
\boldsymbol{I}\left(\beta_{p}, \beta_{q}\right) & =\int_{B} x_{p}(\boldsymbol{s}) x_{q}(\boldsymbol{s}) \lambda(\boldsymbol{s}) p(\boldsymbol{s}) d \boldsymbol{s} \\
\boldsymbol{I}\left(\beta_{p}, \alpha_{q}\right) & =\int_{B} x_{p}(\boldsymbol{s}) w_{q}(\boldsymbol{s}) \lambda(\boldsymbol{s}) p(\boldsymbol{s})\{1-p(\boldsymbol{s})\} d \boldsymbol{s} \\
\boldsymbol{I}\left(\alpha_{p}, \alpha_{q}\right) & =\int_{B} w_{p}(\boldsymbol{s}) w_{q}(\boldsymbol{s}) \lambda(\boldsymbol{s}) p(\boldsymbol{s})\{1-p(\boldsymbol{s})\}^{3}[1-\exp \{2 \eta(\boldsymbol{s})\}] d \boldsymbol{s} \\
& +\int_{B} w_{p}(\boldsymbol{s}) w_{q}(\boldsymbol{s}) \lambda(\boldsymbol{s}) p(\boldsymbol{s})^{2}\{1-p(\boldsymbol{s})\} d \boldsymbol{s}
\end{aligned}
$$

where $\eta(\boldsymbol{s})=\operatorname{logit}\{p(\boldsymbol{s})\}$.

References I

Bowden, R. (1973). The theory of parametric identification. Econometrica, 41:1069-1074.
Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A. (2011).
Point pattern modelling for degraded presence-only data over large regions. Applied Statistics, 60:757-776.
Dorazio, R. (2012). Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics, 68:1303-1312.

Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17:43-57.
Fithian, W. and Hastie, T. (2013). Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 7:1917-1939.
Lahoz-Monfort, J. J., Guillera-Arroita, G., and Wintle, B. A. (2014). Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23:504-515.

Lee, A. J., Scott, A. J., and Wild, C. J. (2006). Fitting binary regression models with case-augmented samples. Biometrika, 93:385-397.
Lele, S. R. and Keim, J. L. (2006). Weighted distributions and estimation of resource selection probability functions. Ecology, 87:3021-3028.
Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190:231-259.

References II

Phillips, S. J., Dudik, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., and Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19:181-197.

Renner, I. W. and Warton, D. I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69:274-281.

Warton, D. I. and Shepherd, L. C. (2010). Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology. Annals of Applied Statistics, 4:1383-1402.

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Grant, E. H. C., and Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4:236-243.

