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ABSTRACT 

This paper devises a new method for using the information contained in income-

generating equations to "account for" or "decompose" the level of income inequality in 

a country and its change over time. In the levels decomposition, the shares attributed 

to each explanatory factor are independent of the particular inequality measure used. 

In the change decomposition, methods are presented to break down the contribution of 

each explanatory factor into a coefficients effect, a correlation effect, and a standard 

deviation effect. In an application to rising earnings inequality in the United States, it 

is found that schooling is the single most explanatory variable, only one other variable 

(occupation) has any appreciable role to play, and all of schooling's effect was a 

coefficients effect. 
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ACCOUNTING FOR INCOME INEQUALITY AND ITS CHANGE: 

A NEW METHOD, WITH APPLICATION TO 

THE DISTRIBUTION OF EARNINGS IN 

THE UNITED STATES 

1. Introduction 

For decades, economists and other social scientists have sought to understand the 

inequality of income (or earnings or wages) using regression models.1 Typically, the 

logarithm of the income of individual i in country/group/time t is regressed on a number of 

explanatory variables. Assuming that these have been chosen carefully in light of theory 

and past empirical findings, the question then is how to use the information contained in 

such income-generating equations to "account for" or "decompose" income inequality. 2, 3 

This paper proposes a new methodology for answering two questions.4 First, given 

an income-generating function estimated by a standard semi-log regression, how much 

income inequality is accounted for by each explanatory factor? This shall be termed the 

"levels question," the answer to which is of the form "x% of the inequality of income is 

attributable to education, y% to region, z% to gender, etc." Second, denoting the two 

countries, groups, or dates by 1 and 2 respectively, given estimates of comparable income-

generating functions 

ln (Yi1) = a 1 + £ Pj1 xij1 + si1 (1) 
i 

and 



ln (Yi2) = a2 + £ Pj2 xij2 + s i2, (2) 
i 

how much of the difference in income inequality between one country and another, 

between one group and another within a country, or between one date and another is 

accounted for by education, by potential experience, and by the other explanatory factors? 

This shall be called the "differences question." 5 

Past literature, reviewed in Sections 2D and 3.D, provides approximate regression-

based answers to these two questions, but until now, no exact decomposition has been 

available. This paper shows that such a decomposition can be gotten and further that under 

a quite acceptable set of assumptions, the percentage contribution of a given explanatory 

factor xj at time t is independent of which inequality measure is chosen. The new 

procedure for the levels question is presented in Section 2 and for the difference question 

in Section 3. 

Section 4 applies these methodologies to quantify the role of different explanatory 

factors in accounting for levels of earnings inequality at a point in time and the change in 

earnings inequality over the last twenty years in the United States. Section 5 sums up. 

Before proceeding, it should be noted that the methods developed in this paper are 

quite general. Although the motivating questions and the methods derived are presented in 

terms of inequality of income, the same techniques are applicable to answering the levels 

question and the difference question for any continuous variable. 



2. Accounting for Income Inequality at a Point in Time 

In this section, a method is proposed to account the inequality of income in a single 

survey. Start with an income-generating function, based on human capital theory or some 

other underlying theoretical model, in which income is a function of a certain number of 

"variables" or "factors." The decomposition is based on the income-generating function 

(1), which can be rewritten as 

ln Yit = = at 'Zit (3.a) 

where 

at = [at p1t p2t . . .pJt 1] (3.b) 

and 

Z i t = [1 xi1t xi2t . . . x iJ t Sit] . (3.c) 

On the assumption that "good" estimates have been gotten for the coefficients on the 

variables, the strategy for deriving a useful decomposition equation is first to decompose 

the log-variance of income and then to show that the same decomposition applies to other 

inequality measures as well. 6 

A. Decomposing the Log-variance 

Starting with the income-generating functions (3.a-c), take the variance of both 

sides. On the left-hand side is a simple measure of inequality, the log-variance. The 

variance of the right-hand side can be manipulated using the following: 



Theorem (Mood, Graybill, and Boes): Let A1, . . ., AP and B1, . . ., BQ 

be two sets of random variables, and let a1, . . ., aP and b1, . . . , bQ 

be two sets of constants. Then 

cov Z apAp, Z bqBq = Z Z apbqcov[A B] 
p = 1 q = 1 p = 1q = 1

 P
 q 

(4) 

Applying this theorem in the context of a single random variable ln Y such that 

J+2 

ln Y = YjajZj 
j=1 

we have 

cov 

J+2 

Z j f l y Z y l n / 
y=1 

J+2 

Z cov[a Z ,ln7] (5) 

But because the left-hand side of (5) is the covariance between lnY and itself, it is simply 

the variance of ln Y. Thus, 

J+2 

CT
2(ln7)  = ^ cov[a ;Z ;,ln7] (6a) 

y=1 

or, upon dividing through by σ2 (lnY), 



V cov[aZ , ln7] 
t—i ; ; j+2 

a2 (ln 7) =1 J 
100% = =1

 2 = ^Sj (lnY) , (6.b) 

where each sj(lnY) is a so-called "relative factor inequality weight" given by 

sj(lnY) = cov [aj Zj, lnY] / a
2 (lnY). 7 (6.c) 

It may be noted that when the last element of Z is excluded, the remaining relative factor 

inequality weights 

j+1 

YJ cov[a;Z;,ln7]/CT2(ln7) 
i=1 

sum exactly to R2(lnY). 

One more bit of algebra proves useful. The ordinary correlation coefficient is 

related to the covariance by 

cor [aj Zj , lnY] = cov [aj Zj , lnY] / o(aj Zj) a(lnY) . (7) 

Combining (6.a-c) and (7), we then have: 

Result 1: Given the income-generating function (3.a-c), let sj(lnY) denote 

the share of the log-variance of income that is attributable to the j'th 

explanatory factor and let R2(lnY) be the fraction of the log-variance that is 

explained by all of the Z's taken together. Then, the log-variance of income 

can be decomposed as 

sj(lnY) = cov [aj Zj, lnY] / a
2 (lnY) = aj * a(Z]) * cor[Z], ln 7] (8.a) 

cr(ln7) 



where 

^ ; ( l n Y ) = 100% (8.b) 
j=1 

and 

sj (lnY) = R
2 (lnY). (8.c) 

j = 1 

The fraction that is explained by the j'th explanatory factor, pj(lnY), is then 

S](lnY) 
Pi(lnY) = 2 . (8.d) 

Equations (8.a-d) provide a full and exact decomposition of the log-variance. 

However, because of problems with the log-variance (Sen, 1973; Foster and Ok, 1999), it 

would be nice to be able to decompose other inequality measures besides the log-variance. 

This proves to be quite possible. 

B. Extension to Other Inequality Measures 

Result 1 can be extended to other inequality measures by borrowing from a 

literature which at first would appear to have nothing to do with the problem at hand, 

namely, the literature on decomposition of inequality by additive factor components. In 

this literature, the i'th recipient unit's total income Yi is expressed as the sum of its income 



from each of several factor components, e.g., labor income, capital income, transfer 

income, etc.: 

Yi = E Yik. (9) 
k 

Let N denote the total number of income recipients, Y = (Y1 . . . YN), and 

Yk = (Y1k . . . YNk). The question asked in this literature is, what fraction of total income 

inequality, gauged by an inequality measure I(Y) is accounted for by labor income, by 

capital income, by transfer income, etc.? 

Define a "relative factor inequality weight" sk to be the percentage of income 

inequality that is accounted for by the k'th factor -- for instance, how much of the 

inequality of total income is accounted for by the inequality of labor income. An 

important theorem on decomposition by additive factor components is due to Shorrocks 

(1982), who shows: 

Theorem (Shorrocks, 1982): Under the six assumptions enumerated 

in the appendix, the relative factor inequality weights sk are given by 

sk = cov (Yk, Y) / a2(Y) (10.a) 

such that 

S sk = 1 (10b) 
k 

for any inequality index I(Y) which is continuous and symmetric 



and for which I(n, n, . . . , n) = 0. 

Virtually all inequality indices satisfy these conditions, including the Gini coefficient, the 

Atkinson index, the generalized entropy family, the coefficient of variation, and various 

centile measures. 

Shorrocks's theorem is directly applicable to the question dealt with here, namely, 

using income-generating functions to account for income inequality. The standard income-

generating function written in the form 

lnYit = at'Zit (3. a) 

has the same additive form as the equation expressing total income as the sum of the 

income from each component 

Yi = E Yik. (9) 
k 

Note too that when the inequality of (9) is decomposed, Shorrocks obtains 

sk = cov (Yk, Y) / a2(Y) such t h a t ^ X  = 1, which has the same form as (8) with Yk 
k 

replacing ajZj and Y replacing lnY. Now, taking advantage of this homeomorphism and 

applying Shorrocks’s theorem, we get the following key result: 

Result 2: Given the income-generating function (3.a-c), let an inequality 

index I(lnY) be defined on the vector of log-incomes lnY = (ln Y1, . . ., ln YN). 

Under the six axioms enumerated in the appendix, the decomposition of 



income inequality given by 

sj(lnY) = cov [aj Zj, lnY] / a
2 (lnY) = aj * a(Z}) * cor[Z}, ln 7] (8.a) 

cr(ln7) 

where 

+2>; (lnY) = 100%, (8.b) 

J+1 

2> ; ( l n7 ) = i?2(ln7), and (8.c) 
;=1 

s;(ln7) 
» ( ln7) = 2 (8.d) 

holds for any inequality index I(ln Y1, . . ., ln YN) which is continuous and 

symmetric and for which I(n, \x, . . . , u) = 0. 

These conditions can be shown to hold for a broad class of inequality measures by 

the following argument.9 The standard inequality measures defined on the vector of 

incomes Y = (Y1 , . . . YN) are continuous and symmetric functions that equal zero when all 

income recipients receive the mean income. In such a function, substitute the identity 

eln Yi
 = Yi wherever Yi occurs. The resultant inequality measure I(ln Y1, . . ., ln YN) 

defined on the vector of log-incomes is also continuous and symmetric and satisfies the 



property I(µ, µ, . . . , µ) = 0, and therefore the factor inequality weights from Result 2 can 

be applied to these standard measures. 

Result 2 is quite powerful. It says that as long as we agree on the log-linear 

model (3) and on the decomposition rules, we do not need to agree on which particular 

inequality measure to decompose, because we get the same percentage effect for the j'th 

explanatory factor for a broad class of inequality measures applied to the logarithms of 

income. Included in this class are the Gini coefficient, the Atkinson index, the 

generalized entropy family, and various centile measures. 

C. Different Kinds of Explanatory Variables in Practice 

We have just seen that the percentage contribution of the j'th variable to total 

income inequality is given by (8). For explanatory factors that enter the income-generating 

function as simple variables (e.g., years of education or a dummy variable for union 

membership), each of the components on the right hand side of (8.a) has a straightforward 

interpretation. However, not all explanatory variables enter the earnings function in this 

way. There are three types of such variables: (1) A categorical variable entered as a 

string of dummy explanatory variables,10 (2) An explanatory variable which has a non­

linear (say, quadratic) effect,11 and (3) Two or more explanatory variables which enter 

interactively.12 

To deal with the first two of these issues in the levels decomposition, the solution is 

the same. Define the generic factor "industry" as the composite of the industry dummy 

variables IND1, IND2, . . . and the generic factor "experience" as the composite of EXP and 



EXP2 (and higher-order terms if included). Sum the sj's for IND1, IND2, . . . to get a good 

measure of the overall importance of "industry," and likewise for EXP and EXP2 for a 

measure of the importance of "experience." 

Interactions pose more of a problem. Thus far, the J variables determining log-

income have been assumed to enter the income-generating function additively. As long 

as this assumption is maintained, the model gives a factor inequality weight sj for each 

factor, these factor inequality weights are identical for a broad class of inequality 

measures, and the sum of these factor inequality weights is R2. Thus, for example, to 

account for inequality among a sample of working men and women using a Mincer-type 

human capital specification, one might run an income-generating function of the form 

log y = a + b1 EDUC + b2 EXP + b3 EXPSQ + b4 GENDER + ei (11) 

and, using the results above, derive sj's for education, experience, and gender. 

One might object to the specification in (11) on the grounds that it assumes that 

education and experience have the same effect on income regardless of gender, whereas 

ample empirical research shows that this is not the case (e.g., Blau, Ferber, and Winkler, 

1998). Suppose that the analyst wished to include these variables interactively, thereby 

allowing for the possibility that education and experience affect income differently for 

men and for women. One way of doing this would be to interact gender with the other 

variables in a single equation 

log y = a + b1 EDUC + b2 EXP + b3 EXPSQ + b4 GENDER 

+ b5 GENDER*EDUC + b6 GENDER*EXP + b7 GENDER*EXPSQ + eii . 

(12) 



The problem with this is that the seven resulting sj's would no longer decompose neatly 

into education, experience, and gender components. 

Another way of allowing for interactions would be to run separate income-

generating functions for men and for women 

log ym = am + b1
 m EDUC + b2

m EXP + b3
m EXPSQ + ei

m (13.a) 

log yf = af + b1
f EDUC + b2

f EXP + b3
f EXPSQ + ei

f (13.b) 

and to regard inequality in the full sample as consisting of inequality among men, 

inequality among women, and inequality between men and women. The problems with 

this way of allowing for interactions are that the class of axiomatically-justified ways of 

cardinalizing such a decomposition remains quite broad, and further, the results are not 

identical for different inequality measures that might be chosen.13 Thus, under this 

option, the agreement of results independently of the inequality measure chosen is lost. 

It is up to the individual analyst to decide which is the best choice for him or her. 

The empirical work below adopts the first of these, i.e., equation (11). 

D. Comparison with Other Level Decompositions 

Decompositions in the human capital tradition have a long history dating back to 

the pioneering work of Mincer (1958, 1970, 1974), Becker (1964, 1967), and others. One 

such decomposition was suggested by Chiswick and Mincer (1972), who showed that 

when earnings depend on schooling (S), experience (EXP), and weeks worked (WEEKS) 

in the following way 

ln(wi) = a + b1 Si + b2 (Ai - Si - 5) + b3 ln(WEEKSi) + ε , (14) 



then income inequality as measured by the log-variance can be decomposed as 

σ2 (ln(wi)) = (b1 - b2) σ
2 (S) 

+ b2
2 σ2 (A) 

+ b3
2  σ2 (lnWEEKS) 

+ [2b2 (b1 - b2)] Ra,s  σ(A) σ(S) 

+ [2b3 (b1 - b2)] Rlnweeks, s  σ(lnWEEKS) σ(S) 

+ [2b2 b3)] Ra,lnweeks σ(A)σ(lnWEEKS) 

+  σ2 (ε). (15) 

The first three terms on the right hand side of (15) are the variances of schooling, age, and 

log-weeks weighted by the regression coefficients; the next three are interactions among 

the regressors; and the last is the variance of the error term. The strength of this method is 

that it decomposes the percentage of inequality explained by the regressors (64.8% in 

Chiswick and Mincer’s empirical application for the United States) into components 

associated with schooling, experience, and weeks worked.14 On the other hand, the 

Chiswick-Mincer method does not give “pure” effects of the regressors, it cannot handle a 

quadratic in experience or in other variables, and it quickly becomes unwieldy as further 

explanatory variables are added. 

More recently, Mincer (1997) has decomposed the log-variance into four 

components: 



• I: the variance due to schooling wage differentials 

• II: the residual variance at overtaking, reflecting differentials within schooling 

groups 

• III: the variance component due to differences in returns to post-school investments 

• IV: the contribution of between-experience-group wage differentials, which reflects 

the steepness of the age income-generating profile. 

This decomposition shares the same features as those raised at the end of the preceding 

paragraph. 

Other variance-based decompositions have been proposed. Given two sources 1 

and 2 such that Y = X1 + X2, we know that 

Var(Y) = \x2
2 var(X1) + m

2 var(X2) +2 m H2 cov(X1, X2). 

1 4 2 4 3  1 4 2 4 3  1 4 2 4 3 

A B C 

Goldberger (1970) reports Burt and Finley's (1968) suggestion to allocate A + B + C into 

A + C/2 as the share of X1 and B + C/2 as the share of X2. Given Y = Zk Yk,, the variance 

can be decomposed so that half the value of all the interaction terms involving factor k is 

assigned to that factor (Shorrocks, 1982, 1999). Because the decomposition rule given in 

Result 2 is equivalent to the "natural" decomposition of the log-variance, that same fifty-

fifty assignment of the covariance holds for the present method as well. 

A number of other decompositions have appeared in the literature based on linear 

income-generating functions. Both the standard ANOVA model and the regression-

based alternative proposed by Behrman, Knight, and Sabot (1983) give the proportion of 



the log-variance of earnings explained by each independent variable. However, in 

neither method are the shares due to each factor derived axiomatically, as Shorrocks's sj's 

are. 

Another regression-based framework is that of Morduch and Sicular (1998). 

Income (rather than its logarithm) is regressed on a number of explanatory variables. 

The main empirical conclusion from Morduch and Sicular's work is that the results vary 

enormously.15 This is why a robust decomposition rule, derived axiomatically, may be 

preferable. 

A different strand in the literature abandons the regression framework entirely 

and examines between-group and within-group inequality. For example, Cowell and 

Jenkins (1995) partition the population into a set of mutually exclusive and jointly 

exhaustive subgroups -- in their empirical application to the United States, forty-eight 

sex-race-age-employment status cells are used. The authors then calculate how much 

inequality is between sex cells, between sex-race cells, and so on and find that "not very 

much" of U.S. inequality is explained by population characteristics. More important for 

present purposes is the fact that unlike the method devised in Sections 2.A and 2.B, the 

relative contributions of these various characteristics (sex, race, age, and employment 

status) depend critically on the order in which they are introduced into the analysis. 

Alternatively, one might introduce the various characteristics one by one, but then the 

effects are gross ones not controlling for the effect of any other variable. 16 

Other authors have considered the role of one or a small number of explanatory 

variables. For example, Almeida and Barros (1991) determined how much education 



contributes to the overall inequality of wages by calculating the amount by which 

inequality (measured by Theil's L-index) would fall if proportional transfers were made 

from better-educated groups to less-educated groups so that the group means were 

equalized. They estimate that such transfers would cut wage inequality in Brazil in half. 

However, because they include only a single explanatory variable, there is no way to tell 

whether education contributes more to inequality in this sense than do other factors. Lam 

and Levison (1991) adopted a similar procedure. Lam (1999) included three explanatory 

variables (schooling, age, and race) and found that schooling plays a very large role in 

explaining earnings inequality in both Korea and South Africa and in the latter case race 

plays a large role. 

A quite different type of decomposition comes from the factor components 

literature. Fei, Ranis, and Kuo (1978) and Pyatt, Chen, and Fei (1980) decomposed total 

inequality into terms attributable to each factor component (e.g., labor income, capital 

income, land income). Fei, Ranis, and Kuo showed that the Gini coefficient of total 

income can be decomposed into a weighted sum of "pseudo-Ginis," the weights being 

given by the corresponding factor shares: 

G(Y) =  φk G (Yk), (16.a) 

k 

where 

Y = total income, 

Yk = income from the k'th factor component, 



4>k = Z Yik / Z Z Yik is the share of income from factor k in total income, 
i k i 

and 

£ (Yk) is the "pseudo-Gini coefficient" of income from factor k.17 

Pyatt, Chen, and Fei then showed that the pseudo-Gini coefficient (which they call the 

"concentration ratio") is in turn the product of the ordinary factor Gini G(Yk) and a "rank 

correlation ratio" 

R = cov(Yk ,P) _ covariance between factor income amount and total income rank (16b) 

k cov(Yk ,pk)~ covariance between factor income amount and factor incme rank 

and therefore: 

G(Y) = Z 4)k G(Yk) Rk . (16.c) 
k 

Dividing (16.c) by G(Y), one obtains 

100% = z 4>k G(Yk) Rk / G(Y) = Z <k, (16.d) 
k k 

the sum of the Fei-Ranis-Kuo-Pyatt-Chen relative factor inequality weights. Thus, both the 

Fei-Ranis-Kuo-Pyatt-Chen decomposition and the Shorrocks decomposition provide an 

additive decomposition of total inequality into the contribution of each income source. It 

should be noted that the relative factor inequality weights given by the two decompositions 



( the sk in equation (16.d) and the sj in equation (10.a) are not the same, the difference 

being due to the different decomposition rules used by the different authors. 

3. Accounting for Differences in Income Inequality 

Section 2 established a methodology to account for the level of income inequality 

in a particular country at a particular time. In this section, a method is proposed to account 

for differences in income inequality between one country, group, or time and another.18 

Specifically, we ask: How much of the difference in inequality between one 

country/group/time and another is attributable to each income determinant? Which is 

relatively more important in accounting for these differences: differences in education, in 

experience, in gender, etc? 

A. The Relative Importance of Different Income Determinants in Explaining 

Inequality Differences 

Result 2 established that the j’th factor’s percentage contribution to the level of 

inequality is the same for a broad class of inequality measures. This leads one to ask, are 

the percentage contributions to the changes in inequality similarly independent of how 

inequality is measured? The answer is readily seen to be “no”: the amount by which 

inequality rose or fell -- and perhaps even whether inequality rose or fell -- depends on 

how inequality is measured. Clearly, the answer to the changes question must be index-

specific. 



For any given inequality measure I(.), we may write the change in inequality in 

terms of each period's factor inequality weight and each period's inequality level as 

I(.)2 - I(.)1 = S[*;,2*/(.)2-*;•,1 *
/
(.)1]. (17a) 

i 

Define the contribution of factor j to the change in inequality for an arbitrary inequality 

measure I(.) as 

rij(I(.)) = [sj,2 * I(.)2 - sj,1 * I(.)1] / [I(.)2 - I(.)1]. (17b) 

From this, we may derive 

2X2*/(.)2-*, , 1 */(.)1 ] 
100% = ^ = T n (/(.)), (17.c) 

I(.)2-I(.)1 7 j 

the rij(I(.))'s denoting the contribution of the j'th explanatory factor to the change in 

inequality measured by inequality index I(.). Thus: 

Result 3: The contribution of the j'th factor to the change in a 

particular inequality measure between country/group/time 1 and 

country/group/time 2 is given by 

rij(I(.)) = [sj,2 * I(.)2 - sj,1 * I(.)1] / [I(.)2 - I(.)1] . (17.b) 

Writing Hj as a function of I(.) makes explicit that the explanatory contribution of the j'th 

factor depends on the inequality measure used. It is an empirical question whether the 



choice of inequality measure makes a large difference or a small one in any particular 

context. 

B. Decomposing Differences in the sj’s 

Next, let us consider how to account for the sources of changing contributions of 

the various factors explaining income inequality. If the same income-generating functions 

have been run for two samples at different dates and the sj's given by (8.a) are found to 

differ, one may ask, "why"? To what extent is the change in any given sj due to 

differences between the regression coefficients in the two years? To differences in the 

inequality of the explanatory variable? To differences in the covariance or the correlation 

between the explanatory variable and income? 

For infinitesimal changes, an exact decomposition of the difference in any given sj 

can be obtained by logarithmically differentiating (8.a). This produces: 

sj (ln Y) = aj + a(Zj )+ cor[ZJ , ln Y]- cr(ln Y), (18) 

the ^ over the variable indicating a percentage rate of growth. This equation proves to be 

directly useful in this form. In real-world applications, the changes in each component are 

non-infinitesimal. Dividing through by pctchng(sj(lnY)), the change in sj may then be 

approximated by 

1 « pctchng(aj)/ pctchng(sj(lnY)) + pctchng[a(Zj)]/ pctchng(sj(lnY)) 



+ pctchng[cor[Zj,lnY]]/ pctchng(sj(lnY)) - pctchng[σ(lnY)]/ pctchng(sj(lnY). 19 

(19) 

An objection can be raised to the right-most decomposition of levels in (8.a) and 

the consequent decomposition of changes in (19), which is that aj and cor[Zj, lnY] are both 

functions of cov[Zj, lnY], so that one cannot be varied without the other.
 20 This objection 

can be overcome by making a further approximation. If the j'th income-determining factor 

were orthogonal to the other income-determining factors, that determinant's factor 

inequality weight would equal 

a 2 2 

s j (lnY) 
aj *<J

2(Z ;) (20) 

σ
2 (lnY) 

The changes over time would then decompose approximately as 

1 2 * pctchng(aj)/ pctchng(sj(lnY)) + 2 * pctchng[σ(Zj)]/ pctchng(sj(lnY)) 

- 2 * pctchng[σ(lnY)]/ pctchng(sj(lnY)). (21) 

("Approximately" for two reasons: (i) real-world changes are not infinitesimal, and 

(ii) the j'th regressor is typically not orthogonal to the other regressors.) On the other hand, 

the advantage of the decomposition in (21) over that in (19) is that it says that the j'th 

regressor in the income-generating function contributes more to explaining an observed 

increase in inequality (a) the larger is the increase in the regression coefficient of that 

variable, and (b) the larger is the increase in the inequality of that variable as measured by 

the standard deviation -- both intuitively appealing results. In the case of falling 

inequality, (21) says that the j'th regressor contributes more to the decrease in inequality 



(a) the larger is the decrease in the regression coefficient on that factor and (b) the larger is 

the decrease in the standard deviation of that factor. 

Using these alternative decompositions, we then have: 

Result 4: The change in the j'th explanatory factor's relative factor inequality 

weight can be expressed as 

1 « pctchng(aj)/ pctchng(sj(lnY)) + pctchng[a(Zj)]/ pctchng(sj(lnY)) (19) 

+ pctchng[cor[Zj, lnY]]/ pctchng(sj(lnY)) - pctchng[a(lnY)]/ pctchng(sj(lnY)) 

or as 

1*2 * pctchng(aj)/ pctchng(sj(lnY)) + 2 * pctchng[a(Zj)]/ pctchng(sj(lnY)) (21) 

- 2 * pctchng[a(lnY)]/ pctchng(sj(lnY)) . 

C. Decomposing Total Inequality Into Price Effects and Quantity Effects 

Another decomposition is possible if one is willing to choose the log-variance (i.e., 

the variance of the logarithms of income) as the measure of income inequality; this 

decomposition is due to Yun (2002). In the work of Juhn, Murphy, and Pierce (described 

below), the price effect of a variable in accounting for the change in inequality between a 

base income distribution "1" and a comparison income distribution "2" is defined as the 

difference between the inequality of distribution 2 and the inequality of an auxiliary 

distribution which uses the prices of distribution 1 and the quantities and residuals of 

distribution 2. For the i'th individual, income in the auxiliary distribution is given by 

l n i U = 2 > A . (22) 
i 



From (8), the variance of lnYaux can be composed as 

a
2
(lnYaux) = YJ a1p(Z]2)cor(Z]2,lnYaux)a(lnYaux). (23) 

i 

Using the auxiliary distribution, we have that the difference in inequality between 

distributions 1 and 2 can be expressed as 

/ 2 -A=(/ 2 -^) + (^-A), 

which, for the log-variance, decomposes as 

a2( ln72)-a2( lnj ; ) 

= £ a;2cr(Z;2)cor(Z;2,ln72)cr(ln72) 
j 

­ £ a;1cr(Z;2)cor(Z;2,ln7flax)cr(ln7fl!) 
i 

+ £ a1cr(Z]2)cor(Z]2,lnYaux)a(lnYaux) 
j 

- £ aJ1cj(ZJ1)cor(Z1, lnY1)cr(lnY1). 
j 

(24) 

Upon regrouping, we obtain 

Result 5. The change in inequality between two distributions 1 and 2 can be 

decomposed as 

^ ( l n r 2 ) - a 2 ( ln^) 

= £ [a]2o(Z]2)cor(Z]2,lnY2)cr(lnY2) - af1a(Z]2)cor(Z]2,lnYaux)cr(lnYaux)] 
j 

+ £ [a1o(Z]2)cor(Z]2,lnYaux)a(lnYaux) - aj1a(Zj1)cor(Z;1,lnY1 )a(ln71)]. 
j 



(25) 

The variables in (25) have a clear interpretation: in Juhn, Murphy, and Pierce's 

terminology, each term in the first summation is the price effect of the j'th variable, while 

each term in the second summation is the quantity effect of the j'th variable. 

Finally, in parallel with the decompositions in (19) and (21), we may want to know 

what fraction of the j'th variable's factor inequality weight is attributable to the price effect 

of the j'th variable and what fraction to its quantity effect. Taking the terms for the j'th 

variable and dividing by the change in that variable's factor inequality weight, we obtain: 

Result 6: The change in the j'th explanatory factor's relative factor inequality 

weight can be expressed as 

_ [a]2a(Z]2)cor(Z]2,lnY2)cr(lnY2) -a1a(Z]2)cor(Z]2,lnYaux)cr(lnYaux)] 

~ 5 ;(ln72)-5 ;(lnJ;) 

[a]1o(Z]2 )cor(Z]2, ln Yaux )cr(ln Yaux ) - a]1a(Z1 )cor(Z ;1, ln Y1 )cr(ln Y1)] 

(26) 

where the first term is the percentage contribution of the price effect and the second is the 

percentage contribution of the quantity effect. 

This completes the presentation of the decompositions for analyzing differences in 

the income distributions between one year/group/place and another. Before turning to 

empirical applications of these three methods, let us now compare the decompositions 



given by (19), (21), and (26) with other decompositions that have been carried out by 

others. 

D. Comparison with Other Difference Decompositions 

Decomposing differences in income inequality in the way described in Results 3, 4, 

and 6 offers several advantages compared with other decompositions of inequality 

differences that have been suggested in the literature. 

Using an income-generating function framework, Juhn, Murphy, and Pierce (1991, 

1993) and followers (e.g., Blau and Kahn, 1997; Robbins and Gindling, 1999) have 

decomposed the change over time in quantile differentials (90-50, 90-10, and 50-10) into 

components due to changes in observed quantities, components due to changes in observed 

prices, and a residual (termed "unobserved prices and quantities"). One advantage of the 

decomposition proposed here is that it uses a more comprehensive measure of inequality 

than the 90-50, 90-10, or 50-10 differentials, and in fact much of the decomposition 

analysis can be done entirely non-parametrically. Another advantage is that the factor 

inequality weights derived here (the sj's) measure the relative importance of each 

particular explanatory factor rather than the changes in prices or the changes in quantities 

taken as a group. 

Another literature has decomposed the difference in wage inequality between 

unionized and non-unionized workers. Freeman (1980) showed that given two income-

generating functions 



ln (Yi1) = a1 + £ bj1 xij1 +si1 (2.a) 
j=1 

and 

ln (Yi2) = a2 + J ] bj2 xij2 + Si2, (2.b) 

j=1 

the extent to which var (ln(Yi1)) differs from var (ln(Yi2)) as a result of differences in the 

characteristics in the samples can be gauged by 

2 (bj)2 [a2(xj1) -a2(x j2)] + £ £ bj bj' [CT(xj1 xj1) - G(x j2 x j '2)] (27) 

where a2(xj1) is the variance in characteristic j in group 1, O(xj1 x j '1) is the covariance in 

characteristics j and j ' among members of group 1, and a2(xj2) and a(xj2 xj'2) are the 

corresponding terms in group 2. But as Freeman notes, (26) is only an "approximate 

standardization for differences in characteristics," because all second- and higher-order 

covariance terms are omitted. The decomposition using (8) gives an exact standardization. 

A more recent follow-up literature has estimated the effect of declining unionization 

rates in the United States on the log-variance of wages (Freeman, 1993; Card, 1996). Both 

these studies estimate the effect of the change in unionization rates on the log-variance of 

wages assuming that the union-nonunion wage gap and the within-sector effect of unions on 

the log-variance of wages are unchanged. If these factors do change, then the Freeman and 

Card methodologies do not give an answer. By contrast, the method presented above is 

multivariate and applies in such situations. 



Another regression-based approach is to be found in two papers by Bourguignon and 

co-authors (Bourguignon and Martinez, 1997; Bourguignon, Fournier, and Gurgand, 1998). 

The essence of their procedure is to run two regressions for a base year 1 and a final year 2 

and then to decompose the changes into price, quantity, and residual effects. Given the basic 

wage equations 

ln w1i = x1i b1 + u1i (28) 

and ln w2j = x2j b2 + u2j 

for the two years, the decomposition equations are 

W2 - W1 = b + X +  σ, (29) 

where 

b = X1 (b2 - b1); X = b1 (X2 - X1);  σ = (U2 - U1). (30) 

(The capital letters in (28) and (30) signify vectors.) With adjustment for participation or not 

and employed or not, the model becomes 

ln wki = Pki (xki, yki) * Eki(xki, yki) * (xki bk + uki) (31) 

with Pki (xki, yki) = 1/0 as xki ak + yki ck + vki >=< 0 

and Eki (xki, yki) = 1/0 as xki dk + yki fk + tki >=< 0 

and an analogous decomposition is performed. 

The Bourguignon method gives a thorough accounting of the routes by which a 

change in an explanatory factor affects income inequality. However, implementing that 

method requires heavy econometrics. By contrast, the method derived above is easier to 

apply, but it produces only an incomplete decomposition. What is interesting empirically 

is that both methods have been used to understand changing income inequality in 



Taiwan, and they both produced the conclusion that the major factors affecting income 

inequality there were an increased coefficient on education, which raised income 

inequality, and a reduction in the inequality of years of education, which lowered income 

inequality (Bourguignon, Fournier, and Gurgand, 1998; Fields and Mitchell, 1999). 

Then, there is the recent and comprehensive method of DiNardo, Fortin, and Lemieux 

(1996). These authors gauge the effect of various labor market changes on the density 

function of wages in the United States between 1979 and 1988. Once they estimate the effect 

of a given change on the entire density function, they then calculate the implied effect on 

various inequality measures including the Gini coefficient, the Theil index, and various 

percentile differentials (e.g., 90-10). 

Their method is most easily understood if we adopt the following notation: 21 

A = actual wage distribution in 1988 

B = 1988 wage distribution adjusted for 1979 minimum wage 

C = 1988 wage distribution adjusted for 1979 minimum wage and 1979 unionization 

D = 1988 wage distribution adjusted for 1979 minimum wage, 1979 unionization, and 

1979 other attributes ( which include experience, schooling, race, full­

time/part-time, and dummy variables for SMSA, occupation, and industry) 

E = 1988 wage distribution adjusted for 1979 minimum wage, 1979 unionization, 

1979 other attributes, and 1979 supply and demand 

F = 1988 wage distribution adjusted for everything including a residual, which is then 

the actual wage distribution in 1979. 

Their key equation takes the form 



A - F = [A - B] + [B - C] + [C - D] + [D - E] + [E - F], (32) 

where 

A - B = 1988 wage distribution adjusted for 1979 minimum wage = “effect” of 

minimum wage 22 

B - C = B adjusted for change in unionization rate = “effect” of unionization 

C - D = C adjusted for changes in other attributes = “effect” of other attributes 

D - E = D adjusted for supply and demand = “effect” of supply and demand 

E - F = E adjusted for residual = “effect” of residual. 

The principal advantages of the DiNardo-Fortin-Lemieux method compared with the 

decomposition procedure described in Results 3 and 4 are that it estimates the effect of a 

given income determinant on the entire wage distribution and it does not rely on a particular 

functional form. However, the main disadvantage of their method is that each "effect" 

depends on the order in which the adjustment is done. 

On the other hand, the method derived here has advantages of its own. Because it 

relies on a regression framework, it expresses inequality levels and inequality changes as 

functions of the very income determinants that economists are accustomed to using. Also, in 

explaining income levels, it assigns the same weights to each income determinant regardless 

of the inequality measure used. And as a practical matter, the required calculations in the 

present method are easier to make. It is left to the reader to weigh the two methods' respective 

pros and cons. 

Finally, mention should be made of two other decompositions with quite different 

purposes. Moffitt and Gottschalk (1995) decompose changes in inequality over time into 



two components, one representing the variance in the permanent component of income 

and the other the variance in the transitory component. Layard and Zabalza (1979) 

decompose the inequality of family income into the variances and covariances of 

incomes of family members. Neither of these is directly relevant to the problem 

considered here. 

4. Empirical Application: Analyzing the Sources of Rising Earnings Inequality in 

the United States 

Official publications and academic studies have shown a substantial increase in 

income inequality in the United States over the last twenty years (Katz and Autor, 1999; 

Economic Report of the President, 1999; Levy, 1999; Forster and Pellizzari, 2000). In this 

section, the methods developed in Sections 2 and 3 are used to quantify the contributions 

of various factors in accounting for the amount of labor earnings inequality at a point in 

time (the "levels" question) and also the increase in inequality of labor earnings (the 

"differences" question). 

Data for this analysis come from the Annual Demographic Surveys (March 

supplements) to the 1980 and 2000 U.S. Current Population Surveys. The March 

supplements contain respondents' reports on labor earnings in the preceding year. The 

1980 CPS was chosen as the starting point, because it has been the base year for a number 

of important empirical studies (Katz and Murphy, 1992; Bound and Johnson, 1992; 

DiNardo, Fortin, and Lemieux, 1996) and because earnings inequality had not yet started 



rising in the United States at that time. The 2000 CPS was chosen as comparison year so as 

to be able to speak about changes in inequality over a twenty year period. 

Following Katz and Murphy (1992), Juhn, Murphy, and Pierce (1993), Blau 

(1998), and Katz and Autor (1999), the sample and variables were defined as follows. The 

sample consists of men and women who were full-year, full-time wage and salaried 

employees, 

18-64 years of age. The dependent variable used in the analysis is weekly earnings, 

measured in logs. The explanatory variables are gender (2 categories), race (2 categories), 

education (4 categories, also entered continuously – see below), potential experience and 

its square, occupation (3 categories), industry (3 categories), and geographic region 

(4 categories). Descriptive statistics on these variables are presented in Table 1. 

--- Insert Table 1 around here ---

In this data set, the distribution of labor earnings became unambiguously more 

unequal. Figure 1 displays the Lorenz curves, showing a clear Lorenz-worsening and 

therefore an increase in inequality for a broad range of inequality measures. The most 

commonly-used summary statistic of inequality, the Gini coefficient, rose from 0.274 in 

1979 to 0.338 in 1999 among this sample of workers. Another commonly-used inequality 

measure, the variance of the logarithms of income, increased too, from 0.262 to 0.380. 

Increases in inequality of this magnitude are large, both by the standards of changes that 



typically take place within countries and by the standards of international differences in 

inequality at a point in time (Atkinson, 1997; Forster and Pellizzari, 2000). 

--- Insert Figure 1 around here ---

The first step in the decomposition analysis is to run the earnings functions (1) and 

(2). Log-earnings is a linear function of gender, race, potential experience and its square, 

four schooling categories, three occupational categories, three industry categories, and four 

region categories. The empirical results are given in Table 2. We see that in both years, all 

variables included in the regression are statistically significant at conventional levels, and 

together they explain 41.5% of the variance of log-earnings in 1979 and 38.3% of the 

variance in 1999. 

--- Insert Table 2 around here ---

The levels question is: Of these statistically significant variables, which are how 

important in accounting for the levels of inequality in 1979 and 1999? The answer is given 

in columns (1) and (2) of Table 3. In 1999, after the residual, schooling was the most 

important variable, with a factor inequality weight of 16.1%. Other variables with sizeable 

shares were occupation (9.1%), experience (6.6%), and gender (5.7%). Three other 

variables had shares that were effectively zero – region (0.5%), race (0.4%), and industry 

(0.0%). What we see, then, is that although all of these explanatory factors were 



statistically significant determinants of earnings levels, their importance differs 

enormously: schooling was about twice as important as each of the next three closest 

variables and orders of magnitude higher than the three least important variables. These 

differences in relative importance could not have been seen from standard regression 

output alone.23 

--- Insert Table 3 around here ---

Turning our attention now to the question of how much of the increase in earnings 

inequality was due to each of these factors ("the differences question"), columns (3) and 

(4) of Table 3 give the answer using equation (17.b) in Result 3. The decompositions of 

both inequality measures show that the largest share of the increase in earnings inequality 

was accounted for by an increase in residual inequality. Previously, it was known that 

earnings inequality had increased within education/experience/ . . . cells (Katz and 

Murphy, 1992; Murphy and Welch, 1992; Juhn, Murphy, and Pierce, 1993; Welch, 1999) 

but the relative weight of this factor vis-à-vis other factors was not known. Looking at 

"real" variables, we find here too that the differences in their explanatory contributions are 

enormous. Schooling is the largest such variable, accounting for 56% of the increase in the 

Gini coefficient and 34% of the increase in the log-variance. Occupation was half as 

important as schooling, accounting for 28% of the increase in the Gini coefficient and 18% 

of the increase in the log-variance. Four other variables – race, experience, industry, and 

region -- contributed essentially nothing. Finally, gender had a sizeable effect but it does 



not contribute to the explanation; because gender changes were in the equalizing direction 

but inequality increased, gender's weight is strongly negative. In sum, some of the 

variables that were found in columns (1) and (2) to be statistically significant determinants 

of earnings levels are economically insignificant in accounting for changes in earnings 

inequality. 

Looking more deeply into the role of the single most important variable, schooling, 

we may ask to what extent schooling's contribution to rising earnings inequality was due to 

increased dispersion of earnings between workers with different educational attainments, 

to what extent to increased inequality of years of schooling, and to what extent to other 

factors. So that the inequality of years of schooling could be calculated in answering this 

question, schooling in categories was replaced by a continuous schooling variable, entered 

linearly. The regression results appear in Appendix Table 1 and the first decomposition 

results in Appendix Table 2. These results show a rise in the coefficient on schooling 

(sometimes called a "rate of return"), which has been found in many, many prior studies. 

They also show reduced inequality in years of schooling, which as well has been found in 

past work. Based on these findings, we can further decompose the effect of schooling to 

understand why it contributed what it did, using equations (19), (21), and (26) in Results 4 

and 6. The results, presented in Table 4, show that using all three alternative methods, 

schooling contributed to rising inequality entirely because of a rising coefficients effect 

and not at all because of an increase in inequality of years of schooling. 

Insert Table 4 around here 



The final step in the U.S. analysis is to disaggregate by gender. This is done 

because the gender variable makes a negative contribution to explaining rising inequality, 

and so we want to know whether the same factors that are important or unimportant for the 

two genders taken together are similarly important or unimportant when the two are 

considered separately. The results are shown in Table 5. 

--- Insert Table 5 around here ---

The top part of the table shows that earnings inequality increased for both women 

and men. To understand why, earnings equations were run within gender (using schooling 

in years) and factor inequality weights and the contributions of each factor to changes in 

inequality were calculated. 

For women, after the residual, the big variables accounting for earnings inequality 

in each year are schooling and occupation. These are also the biggest variables explaining 

the increase in earnings inequality, with schooling exhibiting about twice as large an effect 

as occupation. Lastly, for women, schooling contributed to rising inequality entirely 

because of increased differences in earnings across schooling levels and not at all because 

of inequality of years of schooling; in fact, years of schooling became distributed slightly 

more equally for women during that twenty year period. 

For men, schooling was also a leading factor accounting for rising earnings 

inequality in both years. Unlike women, for men, experience was as important a factor in 



1979 as schooling was, but by 1999, its relative contribution had fallen in half. 

Occupation's role increased from 1979 to 1999 and came to equal the role of experience in 

the latter year. As with women, in explaining the increase in earnings inequality for men, 

schooling had the largest effect, followed by occupation; experience and other variables 

explained virtually nothing. Finally, for men as for women, schooling's contribution to 

rising inequality is seen to be a coefficients effect and not an inequality-of-schooling 

effect. 

In sum, for the empirical study of the United States, we have learned that earnings 

inequality increased overall and for women and men separately; that seven variables were 

statistically significant determinants of earnings (gender, race, potential experience, 

schooling, occupation, industry, and region); that despite all being statistically significant, 

their contribution to rising inequality differed enormously, with schooling being far and 

away the most important variable and many other variables (race, experience, gender, 

industry, and region) having no role to play at all; and that schooling's effect was entirely a 

coefficients effect and not at all due to rising inequality of schooling. 

5. Conclusion 

This paper has presented a methodology to account for a) income inequality levels 

in a given country, group, or time period and b) differences in income inequality between 

one country and other, between one group and another, or between one time period and 

another. To sum up what should be done: 



• For a log-income-based levels calculation, run a standard semi-logarithmic income-

generating function (3) for a particular country, group, or date. Using equations 

(8.a-d) in Result 2, calculate the relative factor inequality weights sj(lnY) and the 

corresponding percentage contributions pj(lnY) for each explanatory factor. If you 

accept the decomposition rules in the appendix, you get the same sj(lnY)'s and 

pj(lnY)'s for virtually any inequality measure calculated on the vector of log-

incomes. 

• To account for the role of a given income determinant in explaining the change in 

inequality based on a particular inequality measure I(.), you can use equation (17.b) 

in Result 3 to gauge the proportion of the rise or fall in inequality according to that 

measure that is accounted for by each explanatory factor. 

• Finally, to explain why each explanatory factor contributed to an increase or 

decrease in income inequality between one country/group/date and another, you 

can use equations (19), (21), and (26) in Results 4 and 6 to get a decomposition into 

a coefficients effect, a standard deviation effect, and a correlation effect. 

As an application of this approach, these methods were then used to analyze labor 

earnings inequality in the United States in 1979 and 1999 and the increase in labor 

earnings inequality between those two years. Explanatory variables included gender, race, 

potential experience, schooling, occupation, industry, and region. Although all variables 

were found to be statistically significant determinants of earnings in both years, the 

decomposition analysis revealed enormous differences in their explanatory power. In 



explaining the levels of inequality, schooling exhibited the largest explanatory power, 

followed by occupation, experience, and gender; the three remaining variables – region, 

race, and industry – had no appreciable effect at all. Then, in explaining the increase in 

inequality, schooling was again the single most important variable, but only one other 

variable (occupation) has any appreciable role to play; gender worked in the equalizing 

direction and all other variables contributed essentially zero explanatory power. All of 

schooling's effect was a coefficients effect and none an inequality-of-schooling effect. All 

of these results hold when women and men are analyzed separately. 

* * * 

Before ending, one final point bears repetition. Although this entire paper has been 

cast in terms of income inequality, this methodology can be used to apply regression 

analysis to the decomposition of anything. The usefulness of the method is limited only by 

the meaningfulness of the regression to which it is applied. 

Insert Appendix Tables 1 and 2 around here following the text 



APPENDIX 

Conditions on the Decomposition. 

In the text, Shorrocks's theorem makes reference to six conditions on the 

decomposition itself. Let Yik denote the income of the i'th income recipient from 

factor k, Yk = (Yi1 . . . YiK) be the vector of incomes from the k'th factor, Yi = Yik be 
k 

the i'th recipient's total income, N be the total number of income recipients, and K be the 

total number of factor income components. Let I(Y) be an inequality measure defined 

on the space of total incomes Y = (Y1 Y2 . . . YN ) and let Sk = Sk (Y
1 , . . . , YK ; K) be the 

amount of inequality accounted for by each of the K components. Using this notation, 

Shorrocks's six conditions may be expressed thus: 

Condition 1: (Number of Components) The inequality measure I(Y) is to be 

divided into K components, one for each income factor, denoted Sk (Y
1 , . . . , YK ; K). 

Condition 2: (a) (Continuity) Each Sk is continuous in Yk. (b) (Symmetric 

Treatment of Factors) If π1 , . . . , πk is any permutation of 1, . . ., K, 

Sk (Y
1 , . . . , YK ; K) = Sπk (Y

π1 , . . . , Yπk ; K). 

Condition 3: (Independence of the Level of Disaggregation) The amount of 

inequality accounted for by any one factor Sk does not depend on how the other factors are 

grouped. 



Condition 4: (Consistent Decomposition) The contributions Sk sum to the overall 

amount of inequality, viz., 

£ Sk (Y
1 , . . . , YK ; K) = I(Y). 

k 

Condition 5: (a) (Population Symmetry) If P is any n x n permutation matrix, 

S(Yk P, Y P) = S (Yk , Y); (b) (Normalization for Equal Factor Distribution) If all income 

recipients have the same value for the k'th factor, then the share of inequality accounted for 

by that factor S(nk e, Y) = 0 for all nk. 

Condition 6: (Two Factor Symmetry) Suppose the distribution of factor 2 incomes 

Y2 is simply a permutation of that for factor 1, Y1. Then if those were the only two sources 

of income, Y1 and Y2 should receive the same value in the decomposition. Thus, for all 

permutation matrices P, S(Y1, Y1 + Y1P) = S(Y1P, Y1 + Y1P). 

These six conditions generate the factor inequality weights sk given in the text by 

sk = cov (Yk, Y) / a2(Y) (10.a) 

such that 

£ sk = 1. (10.b) 
k 



ACKNOWLEDGMENTS 

This work was financed in part by a grant from the Organisation for Economic 

Co-Operation and Development. Thanks are gratefully extended to Jesse Leary and Paola 

Valenti for invaluable programming assistance, to Bob Hutchens, George Jakubson, and 

Larry Kahn for many helpful discussions during the preparation of this paper, and to 

François Bourguignon, Leonard Cheng, Arthur Goldberger, Larry Katz, Jacob Mincer, 

Jonathan Morduch, Efe Ok, Solomon Polachek, and Grace Tsiang for useful comments and 

suggestions. Earlier versions of this paper were presented at Cornell, Yale, Harvard, 

Columbia, the City University of New York, Les Facultés Universitaires Notre-Dame de la 

Paix, and the American Economic Association annual meetings. 



1
NOTES 

1 The literature uses several different income concepts: "income" denotes the recipient 

unit's income from all sources, "earnings" denotes income from employment or self-

employment, and "wages" denotes earnings per hour. It also uses several different 

recipient units including families, households, and individuals. To avoid having to refer 

repeatedly to income/earnings/wages among households/families/ individuals/workers, 

the following discussion is cast in terms of "incomes" among "individuals" except for 

those empirical studies that specifically used something else. 

2 The terminology "income-generating function" is used in place of "earnings function" 

or "wage equation," because the method is general enough to allow for non-labor income 

to be included along with labor income in the regression if the analyst so chooses. 

3 What follows is a "decomposition" in the sense that the overall inequality in a 

population is broken down into a number of components such that the whole is equal to 

the sum of its parts. The term "decomposition" has been used in this sense in many types 

of income distribution studies including the literature on inequality decomposition by 

factor components (e.g., Fei, Ranis, and Kuo, 1978; Pyatt, Chen, and Fei, 1980; and 

Shorrocks, 1982) and the literature decomposing differences in mean incomes between 



groups (Oaxaca, 1973; Blinder, 1974; Oaxaca and Ransom, 1994). However, the term 

"decomposition" has also been used in a more restrictive sense by Bourguignon (1979), 

who defines an income inequality measure to be decomposable when the total inequality 

of a population can be broken down into a weighted average of (i) the inequality existing 

within subgroups of the population using that same inequality measure and (ii) the 

inequality existing between the subgroups. In what follows, the term "decomposition" is 

used in the less restrictive sense, whereby the total inequality in a population is expressed 

as the sum of a number of terms, each corresponding to an explanatory variable in the 

income-generating equation. 

4 Since this paper has been circulated in working paper form, the decompositions 

derived here have been used in a number of studies including works by Arcos (1996), 

Fields et al. (1998), Sánchez and Núñez (1998), Fields and Mitchell (1999), Ravallion 

and Chen (1999), Fields and Yoo (2000), Contreras (2000), Andersen (2000), Redmond 

and Kattuman (2001), Gindling and Trejos (2001), Heltberg (2001), and Yun (2002). 

5 Note that the latter question is why one income distribution is more equal than 

another, not why one has a higher mean than another. The latter is the question 

addressed in the Blinder-Oaxaca types of decompositions. 



6 Throughout this paper, a single regressor in the income-generating equation is called 

a "variable." Sometimes, there are natural groupings of "variables" into "factors." So for 

example, EXP is a variable, EXPSQ is another variable, and the two together constitute 

the factor "experience." 

7 After this paper had been circulating in working paper form for some time, Arthur 

Goldberger brought to my attention a passage in his 1964 book (pp. 197-200) in which he 

stated without proof or axiomatic justification that in the standard linear model 

Y = Xp + s , the total residual sum of squares could be decomposed as 

T SSR = b1 m1y + . . . + bKmKy, where m]y = T^(X] -~X])(y-J). This produces the so-

TYl 

called "separate determination coefficient" 2 =b, -^which, after appropriate 

substitutions, can be shown to equal b1
 Z ( x

"
x ) ( ^ "

y )
 =b1

 cov(x
,
y). This is precisely (6.c) 

T(y-y) varC) 

with income as the dependent variable in place of log-income. Goldberger notes that d2
yj 

is "not widely used." I myself have never seen it used in the income inequality literature. 

8
 n is the mean of total income. 

9 
I thank an anonymous referee for this insight. 



10 This may arise for a variable which is inherently categorical (e.g., industry, 

occupation) or for a continuous variable which is censored (e.g., years of education, 

where all that is known is the highest level attended or completed but not the number of 

years). 

11 Experience and experience squared are commonly included in earnings functions. 

12 Earnings functions often contain a unionization variable interacted with years of 

education or experience. 

13 See Cowell and Jenkins (1995) for a comprehensive discussion of the issues 

involved. 

14 An even higher R-squared was found by Plotnick (1982) when log-earnings was 

used as the dependent variable in place of log-income and when the percentage of male 

workers in unions was added to the equation. 

15 They find that in Zouping Country (China) in 1993, the decompositions of different 

inequality measures produce an education effect ranging from plus 174% to minus 30% 

and village effects ranging from plus 125% to minus 467%. 



16 See also Ahuja et al.'s (1997) applications of the Cowell-Jenkins method to China 

and Thailand. 

17 The pseudo-Gini coefficient of a factor component is the Gini coefficient that is 

obtained if income recipients are arrayed in increasing order of total income rather than 

in increasing order of income from that factor. 

18 Though the presentation in the text is in terms of changes in income inequality over 

time, the same methodology can be used to account for inequality differences between 

one country and another or between one group and another within a country. The reader 

is reminded that the question here is what accounts for differences in inequality between 

one time/country/group and another, not what accounts for differences in means. 

19 This expression has the following feature. Suppose that, holding the distribution of 

all the Zjs constant, all incomes were to change by the same non-zero scalar multiple. 

Then all terms on the right hand side of (19) would be zero, thereby satisfying the 

intuitively appealing adding-up constraint that the share of inequality accounted for by 

the j'th explanatory factor is unchanged in such a case. 

In the case of a single regressor, a j  = cov(X,lnY) /σ2(X ) and 



cor[X , lnY]  = cov[X , lnY]/σXσlnY . In the multiple regression case, the corresponding 

expressions are more complicated but the functional dependence remains. 

21 All wage and minimum wage figures below are expressed in 1979 dollars. 

22 In this case, the adjustment is achieved by asking, "How would the 1988 distribution 

of wages have been different if the minimum wage had been raised to its (real) 1979 level 

rather than being at its actual (real) 1988 level?" Other adjustments are made by asking 

similar counterfactuals, i.e., "How would the 1988 distribution of wages have been 

different if the variable in question had been distributed as it was in 1979 rather than as it 

actually was in 1988?" 

23 In 1979, the most important variable was gender, followed by schooling and 

experience with approximately equal importance. The same point holds: the relative 

contributions of different statistically significant variables could not have been seen from 

the regression equation alone. 



48 

REFERENCES 

Ahuja, V., Bidawi, B., Ferreira, F., & Walton, M. (1997). Everyone's Miracle? Washington: 

World Bank. 

Almeida dos Reis, J. G., & de Barros, R. E. (1991). Wage Inequality and the Distribution of 

Education. Journal of Development Economics, 36(1), 117-143. 

Andersen, L. E. (2000). Social Mobility in Latin America. Unpublished Working Paper, 

Universidad Católica Boliviana. 

Arcos, X. R. (1996). Descomposición de la Desigualdad del Consumo en Ecuador. Masters 

Thesis, Cornell University, Ithaca, New York. 

Atkinson, A. B. (1997). Bringing Income Distribution in From the Cold. Economic Journal, 107, 

297-321. 

Becker, G. S. (1964). Human Capital. New York: National Bureau of Economic Research. 

Becker, G. S. (1967). Human Capital and the Personal Distribution of Income: An Analytical 

Approach. W.S. Woytinski Lecture, University of Michigan. 

Behrman, J. R., Knight, J. B., & Sabot, R. H. (1983). A Simulation Alternative to the 

Comparative R2 Approach to Decomposing Inequality. Oxford Bulletin of Economics and 

Statistics, 45, 307-312. 

Blau, F. D., & Ferber M. A. (1998). The Economics of Women, Men, and Work. Third Edition 

Englewood Cliffs, NJ: Prentice-Hall. 

Blau, F. D., & Kahn, L. M. (1997). Swimming Upstream: Trends in the Gender Wage 

Differential in the 1980s. Journal of Labor Economics, 15(1), 1-42. 

Blinder, A. S. (1973). Wage Discrimination: Reduced Form and Structural Estimates. Journal of 

Human Resources, 8, 436-455. 

Bourguignon, F., Fournier, M., & Gurgand, M. (1998). Distribution, Development and 

Education: Taiwan, 1979-1992. DELTA, processed. 

Bourguignon, F., & Martinez, M. (1997). Decomposition of the Change in the Distribution of 

Primary Family Incomes: A Microsimulation Approach Applied to France, 1979-1989. 

DELTA, processed. 



Burt, O.R., & Finley, R. M. (1968). Statistical Analysis of Identities in Random Variables. 

American Journal of Agricultural Economics, 50, 734-744. 

Card, D. (1996). The Effect of Unions on the Structure of Wages: A Longitudinal Analysis. 

Econometrica, 64(4), 957-979. 

Chiswick, B. R., & Mincer, J. (1972). Time-Series Changes in Personal Income Inequality in the 

United States from 1939, with Projections to 1985. Journal of Political Economy, 80(3) 

(May/June, Part II), S34-S66. 

Contreras, D. (2000). Explaining Wage Inequality in Chile: Does Education Really Matter? 

Department of Economics, Universidad de Chile, Chile. 

Cowell, F. A., & Jenkins, S. P. (1995). How Much Inequality Can We Explain?: 

A Methodology and an Application to the United States. The Economic Journal, 

105(429), 421-430. 

DiNardo, J., Fortin, N. M., & Lemieux, T. (1996). Labor Market Institutions and the Distribution 

of Wages, 1973-1992: A Semiparametric Approach. Econometrica, 64(5), 1001-1044. 

Economic Report of the President 1999 (1999). Washington: U.S. Government Printing Office. 

Fei, J. C. H., Ranis, G., & Kuo, S. W. Y. (1978). Growth and the Family Distribution of Income 

by Factor Components. Quarterly Journal of Economics, 92(1), 17-53. 

Fields, G. S., Leary, J., López Calva, L., & Pérez de Rada, E. (1998). Education's Crucial Role 

in Explaining Labor Income Inequality in Urban Bolivia. Cornell University, processed. 

Fields, G. S., & Mitchell, J. (1999). Changing Income Inequality in Taiwan: 

A Decomposition Analysis. In T. N. Srinivasan and G. Saxonhouse (Eds.), Development, 

Duality, and the International Regime: Essays in Honor of Gustav Ranis. Ann Arbor: 

University of Michigan Press. 

Fields, G. S., & Yoo, G. (2000). Falling Labor Income Inequality in Korea's Economic Growth: 

Patterns and Underlying Causes. Review of Income and Wealth, 46(2), 139-159. 

Forster, M. F., & Pellizzari, M. (2000). Trends and Driving Factors in Income Distribution and 

Poverty in the OECD Area. OECD Labour Market and Social Policy Occasional Paper 

No. 42. 

Foster, J. E., & Ok, E. A. (1999). Lorenz Dominance and the Variance of Logarithms. 

Econometrica, 67(4), 901-907. 



Freeman, R. (1980). Union Wage Practices and the Dispersion of Wages. Industrial and Labor 

Relations Review, 36(1), 3-21. 

Freeman, R. (1993). How Much Has De-Unionization Contributed to the Rise in Male Earnings 

Inequality? In S. Danziger & P. Gottschalk (Eds.), Uneven Tides: Rising Inequality in 

America. New York: Russell Sage Foundation. 

Gindling, T. H., & Trejos, J. D. (2001). Cambios en la Desigualdad del Ingreso Laboral en 

Costa Rica, 1976-1999: Medidas y Causas. Universidad de Costa Rica, Costa Rica. 

Goldberger, A. (1964). Econometric Theory. New York: Wiley. 

Goldberger, A. (1970). On the Statistical Analysis of Identities: Comment. American Journal of 

Agricultural Economics, 52(1), 154-155. 

Heltberg, R. (2001). Analyzing Inequality Using Income Regressions: Vietnam, 1992-97. 

Unpublished Working Paper, University of Copenhagen, Denmark. 

Juhn, C., Murphy, K. M., & Pierce, B. (1991). Accounting for the Slowdown in Black-White 

Wage Convergence. In Marvin Kosters (Ed.), Workers and Their Wages. Washington, 

DC: American Enterprise Institute Press. 

Juhn, C., Murphy, K. M., & Pierce, B. (1993). Wage Inequality and the Rise in Returns to Skill. 

Journal of Political Economy, 101(3), 410-442. 

Katz, L. F., & Autor, D. H. (1999). Changes in the Wage Structure and Earnings Inequality. In 

O. Ashenfelter & D. Card (Eds.), Handbook of Labor Economics. Amsterdam: North-

Holland. 

Katz, L. F., & Murphy, K. M. (1992). Changes in Relative Wages, 1963-1987: Supply and 

Demand Factors. Quarterly Journal of Economics, 107(1), 35-78. 

Lam, D. (1999). Generating Extreme Inequality: Schooling, Earnings, and Intergenerational 

Transmission of Human Capital in South Africa and Brazil. University of Michigan, 

processed. 

Lam, D., & Levison, D. (1991). Declining Inequality in Schooling in Brazil and Its Effects on 

Inequality in Earnings. Journal of Development Economics, 37, 199-225. 

Layard, R., & Zabalza, A. (1979). Family Income Distribution: Explanation and Policy 

Evaluation. Journal of Political Economy, 87(5), S133-S161. 

Levy, F. (1999). The New Dollars and Dreams. New York: Russell Sage Foundation. 



Mincer, J. (1958). Investment in Human Capital and Personal Income Distribution. Journal of 

Political Economy, 66, 281-302. 

Mincer, J. (1970). The Distribution of Labor Incomes: A Survey with Special Reference to the 

Human Capital Approach. Journal of Economic Literature, 8(1), 1-26. 

Mincer, J. (1974). Schooling, Experience, and Earnings. New York: National Bureau of 

Economic Research. 

Mincer, J. (1997). Changes in Wage Inequality, 1970-1990. In S. W. Polachek (Ed.), Research in 

Labor Economics, Vol. 16. Greenwich, CT: JAI Press. 

Moffitt, R. A., & Gottschalk, P. Trends in the Autocovariance Structure of Earnings in the U.S.: 

1969-1987. Brown University and Boston College. 

Mood, A. M., Graybill, F. A., & Boes, D. C. Introduction to the Theory of Statistics. Third 

Edition, McGraw-Hill. 

Morduch, J., & Sicular, T. (1998). Rethinking Inequality Decomposition, with Evidence from 

Rural China. Harvard Institute for International Development Working Paper No. 636. 

Murphy, K. M., & Welch, F. (1992). The Structure of Wages. Quarterly Journal of Economics, 

107(1), 285-326. 

Oaxaca, R. L. (1973). Male-Female Wage Differentials in Urban Labor Markets. International 

Economic Review, 14(3), 693-709. 

Oaxaca, R. L., & Ransom, M. R. (1994). On Discrimination and the Decomposition of Wage 

Differentials. Journal of Econometrics, 61(1), 5-21. 

Plotnick, R. D. (1982). Trends in Male Earnings Inequality. Southern Economic Journal, 48(3), 

724-732. 

Pyatt, G., Chen, C., & Fei, J. (1980). The Distribution of Income by Factor Components. 

Quarterly Journal of Economics, 95(3), 451-473. 

Ravallion, M., & Chen, S. (1999). When Economic Reform is Faster than Statistical Reform: 

Measuring and Explaining Income Inequality in Rural China. Oxford Bulletin of 

Economics and Statistics, 61(1), 33-56. 

Redmund, G., & Kattuman, P. (2001). Employment Polarisation and Inequality in the UK and 

Hungary. University of New South Wales and Cambridge University, U.K. 



Robbins, D., & Gindling, T. H. (1999). Trade Liberalization and the Relative Wages for More-

Skilled Workers in Costa Rica. Review of Development Economics, 3(2), 140-154. 

Sánchez Torrez, F., & Méndez, J. N. (1998). Descomposición de la Desigualdad del Ingreso 

Laboral Urbano: 1976-1997. In F. S. Torrez (Ed.), La Distribución del Ingreso en 

Colombia. Bogotá: Departamento Nacional de Planeación. 

Shorrocks, A. F. (1982). Inequality Decomposition by Factor Components. Econometrica, 50(1), 

193-211. 

Shorrocks, A. F. (1983). The Impact of Income Components on the Distribution of Family 

Incomes. Quarterly Journal of Economics, 98(2), 311-326. 

Shorrocks, A. F. (1999). Decomposition Procedures for Distributional Analysis: A Unified 

Framework Based on the Shapley Value. University of Essex, processed. 

Welch, F. (1999). In Defense of Inequality. American Economic Review, 89(2), 1-17. 

Yun, M. (2002). Earnings Inequality in USA, 1961-1999: Comparing Inequality Using Earnings 

Equations. University of Western Ontario, processed. 



Figure 1. 

Lorenz Curves for the Distribution of Earnings in the United States, 1979 and 1999 

1979 1999 



Table 1. 

United States: Descriptive Statistics. 

Variable 

Group 

Gender 

Race 

Independent 

Variable 

Male 

Female 

White 

Nonwhite 

1979 1999 

Mean Std Dev Mean Std Dev 

Experience Potential experience 

Potential experience squared 

Schooling Less than complete high school 

High school grad 

Some college 

College grad and beyond 

Occupation Executive, professional, and technical 

Sales & admin support 

All other 

Industry Public administration, professional, & related services 

All other services, finance, trade, transport 

Manufacturing, construction, mining, agriculture 

Region Northeast 

North Central 

South 

West 

0.62 

0.38 

0.89 

0.11 

16.64 

438.48 

0.17 

0.41 

0.21 

0.21 

0.29 

0.24 

0.47 

0.28 

0.35 

0.38 

0.22 

0.27 

0.22 

0.28 

0.48 

0.48 

0.32 

0.32 

12.71 

524.31 

0.38 

0.49 

0.41 

0.41 

0.46 

0.42 

0.50 

0.45 

0.48 

0.48 

0.42 

0.44 

0.42 

0.45 

0.56 

0.44 

0.83 

0.17 

19.03 

482.59 

0.09 

0.32 

0.29 

0.30 

0.36 

0.25 

0.39 

0.31 

0.42 

0.27 

0.17 

0.24 

0.25 

0.34 

0.50 

0.50 

0.37 

0.37 

10.97 

461.27 

0.29 

0.47 

0.46 

0.46 

0.48 

0.43 

0.49 

0.46 

0.49 

0.45 

0.38 

0.43 

0.43 

0.47 



Table 2. 

United States: Earnings Equation Results, 1979 and 1999. 

Dependent Variable: Logarithm of Labor Earnings. 

Schooling Measured in Categories 

(t-statistics in parentheses) 

Variable 

Group 

Independent 

Variable 1979 1999 

Gender 

Race 

Experience 

Male 

White 

Potential experience 

Potential experience squared 

Schooling High school grad 

(Less than complete high school 

omitted) Some college 

College grad and beyond 

Occupation Sales & admin support 

(Executive, prof, and technical 

omitted) All other 

Industry 

(Public administration, 

professional & related services 

omitted) 

Region 

(Northeast 

omitted) 

Constant 

All other services, finance, trade, transport 

Manufacturing, construction, mining, agriculture 

North Central 

South 

West 

Adjusted R
2 

F-statistic 

N 

0.432 

(98.08) 

0.097 

(15.83) 

0.033 

(62.24) 

-0.001 

(-46.86) 

0.191 

(32.43) 

0.289 

(41.11) 

0.447 

(55.73) 

-0.171 

(-28.56) 

-0.226 

(-39.03) 

0.038 

(7.34) 

0.149 

(27.64) 

0.042 

(7.78) 

-0.080 

(-13.91) 

0.012 

(2.28) 

5.540 

(482.59) 

.4146 

2128.02 

42,045 

0.316 

(55.79) 

0.066 

(9.50) 

0.040 

(48.50) 

-0.001 

(-34.01) 

0.272 

(27.33) 

0.417 

(40.09) 

0.729 

(63.62) 

-0.233 

(-30.98) 

-0.341 

(-45.34) 

0.067 

(10.14) 

0.172 

(23.02) 

-0.054 

(-6.63) 

-0.106 

(-13.07) 

-0.085 

(-11.14) 

5.439 

(330.59) 

.3833 

1578.61 

35,579 



Table 3. 

United States: The Contribution of Each Explanatory Factor to 

Earnings Inequality and to the Change in Inequality, 

1979-1999. 

(Schooling Measured in Categories) 

Factor Inequality Weight of 

That Factor in That Year 

Contribution of that Factor to the 

Change in Inequality as Measured by: 

Gender 

Race 

Experience 

Schooling in categories 

Occupation 

Industry 

Region 

Residual 

sj(ln Y), 
1979 

(1) 

0.180 

0.008 

0.072 

0.080 

0.053 

0.012 

0.010 

0.585 

sj(ln Y), 

1999 

(2) 

0.057 

0.004 

0.066 

0.161 

0.091 

0.000 

0.005 

0.617 

Ttj (Gini), 

1979-1999 

(3) 

-0.55 

-0.02 

0.04 

0.56 

0.28 

-0.06 

-0.02 

0.77 

πj (log-

variance), 

1979-1999 

(4) 

-0.22 

-0.01 

0.05 

0.34 

0.18 

-0.03 

0.00 

0.69 

Notes: For definition of sj(ln Y), see equation (8.a). 

For definition of  πj (.), see equation (17.b). 



Table 4. 

United States: Decomposing the Contribution of Years of Education to 

Changing Inequality of Labor Earnings, 

1979 and 1999. 

Components of Education's 

Factor Inequality Weight 

1979 1999 

Percentage of Change in Education's 

Factor Inequality Weight Explained by: 

(19) (21) (26) 

Education's factor inequality weight 0.089 0.161 

Coefficient on years of education 

Standard deviation of years of education 

Correlation between labor earnings and years of 

education 

Standard deviation of labor earnings 

0.054 

2.812 

0.301 

0.512 

0.088 

2.570 

0.438 

0.617 

.84 

-.15 

.64 

-.32 

1.69 

-.31 

na 

-.64 

1.05 

-.05 

Total 1.01 .74 1.00 



Table 5. 

Analyzing Rising Earnings Inequality for Women and Men Separately. 

Part A. United States: Rising Earnings Inequality for Women, 1979-1999. 

Inequality Index 

Gini Coefficient 

Log-Variance 

1979 

0.236 

0.175 

1999 

0.317 

0.330 

United States: The Contribution of Each Explanatory Factor to 

Earnings Inequality and to the Change in Inequality for Women, 

1979-1999. 

Race 

Experience 

Schooling in years 

Occupation 

Industry 

Region 

Residual 

sj(ln Y), 

1979 

(1) 

0.000 

0.028 

0.112 

0.131 

0.000 

0.009 

0.720 

sj(ln Y), 

1999 

(2) 

0.000 

0.041 

0.183 

0.137 

-0.008 

0.006 

0.641 

Ttj (Gini), 

1979-1999 

(3) 

0.00 

0.08 

0.39 

0.15 

-0.03 

0.00 

0.41 

πj (log-variance), 

1979-1999 

(4) 

0.00 

0.06 

0.26 

0.14 

-0.02 

0.00 

0.55 

United States: Decomposing the Contribution of Years of Education to 

Changing Inequality of Labor Earnings for Women, 

1979 and 1999. 

Components of Education's 

Factor Inequality Weight 

1979 1999 

Share of Change in Education's 

Factor Inequality Weight Explained by: 

(19) (21) (26) 

Education's Factor 

Inequality Weight: 0.112 0.183 

Coefficient on years of schooling 

Standard deviation of years of schooling 

Corr between earnings and schooling 

Standard deviation of labor earnings 

Total 

0.048 

2.536 

0.386 

0.419 

0.090 

2.427 

0.482 

0.575 

1.27 

-0.09 

0.46 

-0.65 

0.98 

2.54 

-.018 

na 

-1.31 

1.05 

.97 

.03 

1.00 

Notes: For definition of sj(ln Y), see equation (8.a). 

For definition of  πj (.), see equation (17.b). 



Part B. United States: Rising Earnings Inequality for Men, 1979-1999. 

Inequality Index 

Gini Coefficient 

Log-Variance 

1979 

0.256 

0.233 

1999 

0.336 

0.385 

United States: The Contribution of Each Explanatory Factor to 

Earnings Inequality and to the Change in Inequality for Men, 

1979-1999. 

Race 

Experience 

Schooling in years 

Occupation 

Industry 

Region 

Residual 

sj(ln Y), 

1979 

(1) 

0.018 

0.125 

0.115 

0.047 

-0.001 

0.013 

0.683 

sj(ln Y), 

1999 

(2) 

0.007 

0.093 

0.166 

0.093 

-0.007 

0.005 

0.642 

Hj (Gini), 

1979-1999 

(3) 

-0.03 

-0.01 

0.33 

0.24 

-0.03 

-0.02 

0.51 

πj (log-variance), 

1979-1999 

(4) 

-0.01 

0.04 

0.24 

0.16 

-0.02 

-0.01 

0.58 

United States: Decomposing the Contribution of Years of Education to 

Changing Inequality of Labor Earnings for Men, 

1979 and 1999. 

Components of Education's 

Factor Inequality Weight 

1979 1999 

Share of Change in Education's 

Factor Inequality Weight Explained by: 

(19) (21) (26) 

Education's Factor 

Inequality Weight: 0.115 0.166 

Coefficient on years of schooling 

Standard deviation of years of schooling 

Corr between earnings and schooling 

Standard deviation of labor earnings 

Total 

0.057 

2.966 

0.326 

0.483 

0.086 

2.671 

0.448 

0.621 

1.10 

-0.29 

0.87 

-0.68 

.99 

2.20 

-0.57 

na 

-1.37 

.25 

1.05 

-.05 

1.00 

Notes: For definition of sj(ln Y), see equation (8.a). 

For definition of  πj (.), see equation (17.b). 



Appendix Table 1. 

United States: Earnings Equation Results, 1979 and 1999. 

Dependent Variable: Logarithm of Labor Earnings. 

Schooling Measured in Categories 

(t-statistics in parentheses) 

Variable 

Group 

Independent 

Variable 1979 1999 

Gender 

Race 

Experience 

Schooling 

Male 

White 

Potential experience 

Potential experience squared 

High school grad 

Occupation Sales & admin support 

(Executive, prof, and technical 

omitted) All other 

Industry 

(Public administration, 

professional & related services 

omitted) 

Region 

(Northeast 

omitted) 

Constant 

All other services, finance, trade, transport 

Manufacturing, construction, mining, agriculture 

North Central 

South 

West 

Adjusted R
2 

F-statistic 

N 

0.432 

(98.96) 

0.098 

(15.94) 

0.032 

(60.84) 

-0.001 

(-44.89) 

0.054 

(60.23) 

-0.164 

(-28.14) 

-0.222 

(-39.46) 

0.046 

(8.82) 

0.157 

(29.19) 

0.043 

(7.83) 

-0.077 

(-13.44) 

0.021 

(3.81) 

5.080 

(304.02) 

0.4200 

2538.46 

42,045 

0.316 

(55.9) 

0.071 

(10.13) 

0.039 

(47.14) 

-0.001 

(-32.75) 

0.088 

(70.65) 

-0.236 

(-31.92) 

-0.353 

(-47.72) 

0.079 

(11.80) 

0.185 

(24.70) 

-0.055 

(-6.78) 

-0.108 

(-13.37) 

-0.074 

(-9.65) 

4.678 

(199.50) 

0.3842 

1850.63 

35,579 



Appendix Table 2. 

United States: The Contribution of Each Explanatory Factor to 

Earnings Inequality and to the Change in Inequality, 

1979-1999. 

(Schooling Measured in Years) 

Factor Inequality Weight of 

That Factor in That Year 

Contribution of that Factor to the 

Change in Inequality as Measured by: 

Gender 

Race 

Experience 

Schooling in categories 

Occupation 

Industry 

Region 

Residual 

sj(ln Y), 
1979 

(1) 

0.180 

0.008 

0.070 

0.089 

0.051 

0.012 

0.010 

0.580 

sj(ln Y), 

1999 

(2) 

0.057 

0.004 

0.064 

0.161 

0.094 

0.000 

0.005 

0.616 

Ttj (Gini), 

1979-1999 

(3) 

-0.55 

-0.02 

0.03 

0.52 

0.30 

-0.06 

-0.02 

0.79 

πj (log-

variance), 

1979-1999 

(4) 

-0.22 

-0.01 

0.05 

0.32 

0.19 

-0.03 

0.00 

0.70 

Notes: For definition of sj(ln Y), see equation (8.a). 

For definition of  πj (.), see equation (17.b). 




