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Abstract

1. Popular frameworks for studying habitat selection include resource-selection

functions (RSFs) and step-selection functions (SSFs) estimated using logistic

and conditional logistic regression, respectively. Both frameworks compare

environmental covariates associated with locations animals visit with environ-

mental covariates at a set of locations assumed available to the animal. Con-

ceptually, random coefficients could be used to accommodate inter-individual

heterogeneity with either approach, but straightforward and efficient one-step

procedures for fitting SSFs with random coefficients are currently lacking.

2. We take advantage of the fact that the conditional logistic regression

model (i. e., the SSF) is likelihood-equivalent to a Poisson model with stratum-

specific intercepts. By interpreting the intercepts as a random effect with a

large (fixed) variance, inference becomes feasible with standard Bayesian tech-

niques, but also with frequentist methods that allow one to fix the variance of

a random effect. We compare this approach to other commonly applied alter-

natives, including random intercept-only models, and to a two-step algorithm

for fitting mixed-effects models.

3. We also reinforce the need to weight available points when fitting RSFs,

since models fit using“infinitely weighted logistic regression”have been shown

to be equivalent to an inhomogeneous Poisson process (IPP). We generalize

this result to “infinitely weighted Poisson regression”, which converges to the

same underlying IPP distribution.

4. Using data from Eurasian otters (Lutra lutra) and mountain goats (Ore-

amnos americanus), we illustrate that our models lead to valid and feasi-

ble inference. In addition, we conduct a simulation study to demonstrate

the importance of including random slopes when estimating individual- and

population-level habitat-selection parameters.
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5. By providing coded examples using integrated nested Laplace approxima-

tions (INLA) and Template Model Builder (TMB) for Bayesian and frequen-

tist analysis via the R packages R-INLA and glmmTMB, we hope to make effi-

cient estimation of RSFs and SSFs with random effects accessible to anyone in

the field. SSFs with individual-specific coefficients are particularly attractive

since they can provide insights into movement and habitat-selection processes

at fine-spatial and temporal scales, but these models had previously been very

challenging to fit.

Keywords: Conditional logistic regression, conditional Poisson regression, glmmTMB,

integrated nested Laplace approximations (INLA), multinomial regression, matched/unmatched

sampling designs, random effects, resource-selection functions, step-selection functions

1 Introduction

Ecologists have long been interested in understanding how animals select habitat and

the resulting fitness consequences from different space-use strategies. Habitat-selection

analyses typically quantify preference for various resources by comparing environmental

covariates at visited locations to environmental covariates at a set of locations assumed

available to the animal (Manly et al., 2002). Most telemetry studies result in locations

from multiple animals (e. g. equipped with Very High Frequency (VHF) radio collars or

Global Positioning System Satellite (GPS) collars), providing an opportunity to study

individual variation in habitat-selection strategies and the resulting consequences for

animal fitness (Leclerc et al., 2016).

Regression models that incorporate random effects offer a powerful approach to study-

ing inter-individual variability and are frequently used to accommodate non-independent

data in ecological studies (Fieberg et al., 2009; Muff et al., 2016). Gillies et al. (2006)

recommended using random intercepts to account for unequal sample sizes in habitat-

selection studies, and random slope coefficients (equivalently denoted as random coeffi-
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cients or random slopes) to account for individual-specific differences in habitat selection.

Similarly, Hebblewhite and Merrill (2008) recommended random intercepts to account for

correlation within nested groupings of locations from socially-structured populations (e. g.

repeated observations from individual wolves and observations from wolves in the same

pack). Gillies et al. (2006) and Hebblewhite and Merrill (2008) further emphasized that

random coefficients could be used to model variation in habitat selection attributable to

differences in habitat availability – i. e., functional responses (Mysterud and Ims, 1998).

Soon thereafter, Matthiopoulous et al. (2011) and Aarts et al. (2013) developed a for-

mal framework for modelling functional responses using a combination of random effects

and fixed effects constructed from the first few moments (mean, variance) of habitat

covariates.

The above papers all focus on what Johnson (1980) called 3rd order selection, with

available points sampled randomly or systematically from within an animal’s estimated

home range. In the wildlife literature, the combined observed and available locations

are typically analyzed using logistic regression, with specific focus on estimating the

exponential of the linear predictor (with the intercept removed), referred to as a resource-

selection function (RSF). Warton and Shepherd (2010) provided context for interpreting

RSFs by showing that slope parameters in logistic regression models are asymptotically

equivalent to slope parameters in an inhomogeneous Poisson point process (IPP) model.

Thus, regression parameters describe relationships between environmental covariates and

the relative density of observed locations in space. Fithian and Hastie (2013) further

showed that equivalence between logistic regression and an IPP only holds when the model

is correctly specified or when available points are “infinitely” weighted. Interestingly,

several other modelling approaches, including the maximum entropy method (Maxent,

Phillips et al., 2006), weighted distribution theory (Lele and Keim, 2006), and resource

utilization functions (Millspaugh et al., 2006) have also been shown to be equivalent to

fitting an IPP model (Aarts et al., 2012; Fithian and Hastie, 2013; Hooten et al., 2013;
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Renner and Warton, 2013).

Most modern statistical software platforms provide methods for fitting generalized

linear mixed effects models (e. g. logistic regression with random intercepts and slopes),

and therefore, allow for the possibility of studying individual-specific variation in studies

focused on 3rd order habitat selection. However, Fieberg et al. (2010) questioned whether

random intercepts are effective, or even necessary to include, when attempting to account

for within-individual autocorrelation. In particular, they pointed out that the intercept

depends on the probability of a location being used (relative to available), which is

something under control of the analyst. We will come back to this point later in the

paper.

Recent methodological development has focused on modelling habitat selection at finer

temporal and spatial scales, in part driven by concerns associated with non-independence

of animal locations (Arthur et al., 1996; Rhodes et al., 2005; Fortin et al., 2005). Recog-

nizing that not all areas of the home range are equally available at all time points, Fortin

et al. (2005) suggested resampling step lengths (distances between successive observed

locations) and turn angles (deviations from previous bearings) to generate random move-

ments and hence available points conditional on the previously observed location. This

process results in stratified datasets with a different set of available points associated

with each observed location. The combined (stratified) observed and available location

data are typically analyzed using conditional logistic regression, with the exponential of

the linear predictor referred to as a step-selection function (SSF). Forester et al. (2009),

Duchesne et al. (2015) and Avgar et al. (2016) further refined this approach and demon-

strated the utility of using common statistical distributions to model and simulate step

lengths and turn angles. Specifically, they showed that it was possible to fit the equivalent

of a biased random walk model when random points were generated using specific statis-

tical distributions and when movement-related covariates (e. g. turn angles, step length,

log-step-length) were included in conditional logistic regression models. These methods
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have recently been implemented in the amt R package (Signer, 2018; Signer et al., 2018),

making SSFs an exciting and accessible approach for studying habitat selection at the

scale of the movement step.

Duchesne et al. (2010) demonstrated the utility of random coefficients when modelling

fine-scale habitat selection via SSFs. In particular, mixed conditional logistic regression

models allow the influence of habitat covariates to depend on what is available to the

animal, that is, they allow for functional responses. Unfortunately, these models are

extremely challenging to fit, especially with large numbers of strata (Craiu et al., 2011).

To circumvent this problem Craiu et al. (2011) developed a two-step estimation approach

to fitting mixed-effects models. This approach works well when the number of strata

per individual is large, but can fail (or lead to numerical instabilities) when including

categorical predictors. For instance, it is not possible to use this approach in cases where

one or more individuals do not encounter all factor levels of a categorical predictor.

Our objectives for this paper are to: 1) review current use of mixed effects modelling

in the context of habitat-selection studies; 2) reiterate the importance of including ran-

dom coefficients (not just random intercepts) in habitat-selection models; 3) reiterate the

importance of weighting available points when fitting RSFs; and 4) develop computa-

tionally efficient and consistent methods for fitting RSFs and SSFs with random effects.

To allow fitting of SSFs, we propose to reformulate the conditional logistic regression

model as a (likelihood-equivalent) Poisson regression, where stratum-specific intercepts

are modeled as a random effect with a fixed large prior variance, namely to avoid shrink-

age. In addition, we explain why, for the same reason, random intercept variances in

RSFs should also be fixed at a large value. We illustrate that these models are easy to fit

in R (R Core Team, 2018), either employing a Bayesian approach via integrated nested

Laplace approximations (INLA, Rue et al., 2009) using the R-interface R-INLA, or in a

frequentist approach using Template Model Builder (TMB) via the glmmTMB R-package

(Brooks et al., 2017; Magnusson et al., 2017). To illustrate the efficiency and accuracy
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of these methods, we reanalyzed data from a study on mountain goats (Oreamnos amer-

icanus) and Eurasian otters (Lutra lutra), and carried out a simulation study. We also

compare these methods to existing two-step procedures. To facilitate uptake of these

methods, we include ready-to-use R code to replicate all of our analyses.

2 Literature review

We reviewed the current literature to quantify the use of random effects in habitat-

selection studies. We focused our review on RSFs because of the computation challenges

of fitting SSFs with random effects; for many applications two-step methods offer the

only feasible approach (Craiu et al., 2011). We were interested in model specification

(i. e., did studies use random intercepts, random slopes, or both?) and the statistical

framework used for parameter estimation (Bayesian or frequentist). We downloaded all

publications that cited Gillies et al. (2006) from Jan 2016 to May 2018 (n = 121), and

then selected application papers that were peer-reviewed, written in English, fit an RSF,

and claimed to use random effects (n = 69). Of these 69 publications, 68.1 % used a

random intercept, and 18.9 % used both a random intercept and random slopes. For the

remaining 13 %, it was not possible to determine from the publication text if they used

random intercepts, random slopes or both, as they did not describe the model specification

in further detail. With regard to the estimation method, we found a strong preference for

frequentist Maximum Likelihood (ML) based estimation (72.5 %) over Bayesian methods

(8.7 %). For the remaining 18.8 % of the publications it was not clear from the text

which method was used for parameter estimation.

3 Background on analyzing RSFs and SSFs

Both RSFs and SSFs quantify habitat selection by comparing environmental covariates

associated with locations that animals visit (encoded as y = 1) with environmental
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covariates at a set of locations assumed available to the animal (encoded as y = 0). The

main difference between the RSF and the SSF approach is that the latter conditions

the set of available points on the current location of the animal, resulting in a stratified

dataset, whereas RSFs use a single set of (pooled) available locations for each animal,

with these locations usually generated by sampling randomly or systematically from

within an animal’s home range (e. g. Manly et al., 2002). The sampling scheme used

to generate available points dictates how the respective data should be analyzed (Warton

and Aarts, 2013). RSFs can be estimated by fitting a standard logistic regression model

(e. g. Warton and Shepherd, 2010; Fithian and Hastie, 2013). On the other hand, SSFs

need to account for the fact that a unique set of available points is chosen for (or“matched”

to) each observed location, which can be accomplished by fitting a conditional logistic

regression model. Each observed location thus forms a stratum along with its set of

matched available locations, with exactly one point per stratum selected by the individual

(McDonald et al., 2006; Duchesne et al., 2010).

3.1 Unmatched designs (RSFs)

Assume we have n = 1, . . . , N individuals and j = 1, . . . , Jn locations that are either used

by or available to animal n. In the absence of any random effects, the probability that a

point ynj with covariate vector xxxnj is used, Pr(ynj = 1 |xxxnj) = πnj, can then be modeled

as

logit(πnj) = βββ⊤xxxnj , ynj ∼ Bern(πnj) , (1)

with logistic (logit) link and covariate vector βββ that is the target of interest (Warton and

Shepherd, 2010). Standard generalized linear model (GLM) software, such as the glm()

function in R, can be used to estimate βββ. An extension of model (1) to include individual-

specific random effects is conceptually straightforward, and the respective mixed model

can for example be fit by the glmer() function from the lme4 package (Bates et al.,

2015).
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It is important to note that, unlike prospective sampling designs involving a binary

response variable, the ynj in unmatched RSF designs are not Bernoulli random variables.

Rather, the Bernoulli likelihood formed by (1) results in a set of estimating equations that

produce consistent estimators of βββ in an equivalent log-linear IPP model (Warton and

Shepherd, 2010). This equivalence holds whenever the RSF model is correctly specified

or when available points are given infinite weights, as described by Fithian and Hastie

(2013). For the respective weighted logistic regression approach, the likelihood for the

available “background” samples (i. e., y = 0) is weighted with a weight W , while the used

points (y = 1) keep weight 1. Fithian and Hastie (2013) demonstrated how, for W → ∞,

the likelihood converges to the IPP likelihood, but in our experience values of W = 1000

typically lead to good approximations. If uncertainty remains, larger values may be tried

for comparison. Weights are easily incorporate into most GLM software (e.g., glm()

or glmer()). We do not reiterate the logistic regression likelihood here, but refer the

reader to Hosmer and Lemeshow (2000) for more on logistic regression, and to Warton

and Shepherd (2010) and Fithian and Hastie (2013) for a description and justification of

its use for studying habitat selection.

3.2 Matched designs (SSFs)

In contrast to unmatched RSF designs, it seems more challenging to fit a conditional

logistic regression model that emerges in the context of an SSF. Assume we have n =

1, . . . , N individuals with realized steps at time points t = 1, . . . , Tn, with j = 1, . . . , Jn,t

locations that were either used or available to animal n at time step t. Note that, for

notational simplicity, we may replace Jn,t by J , because it is common practice to match

a constant number of available points to each observed location. Used and available

locations associated with each step form a choice set or stratum. This implies that the

probability the nth animal selects the jth unit with habitat-specific covariates xxxntj at time
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point t is

Pr(yntj = 1 |xxxnt·) = πntj =
exp(βββ⊤xxxntj)

∑J

i=1 exp(βββ
⊤xxxnti)

, yntj ∼ Bern(πntj) , (2)

with covariate vector βββ that is the target of estimation. Probably the currently most

popular and computationally most efficient way to fit the discrete choice model (2) in

the context of habitat-selection studies is by interpreting it as a specific version of the

stratified proportional hazards model (Manly et al., 2002; McDonald et al., 2006). In the

absence of random effects, this “Cox trick” provides a framework for efficient inference

using ML, for instance by using the clogit() function from the survival package in

R (Therneau, 2015b). Unfortunately, however, the approach breaks down when random

effects enter the model.

4 Mixed effects modelling of RSFs and SSFs

4.1 The importance of random slopes

Virtually all resource selection studies monitor multiple animals, and the respective data

are combined and modeled jointly. However, it is well known that such a sampling de-

sign generally leads to non-independence among data points (see e. g. Gillies et al., 2006;

Duchesne et al., 2010; Fieberg et al., 2010). In particular, resource selection will not be

constant across individuals, namely due to individual-specific preferences and/or func-

tional responses in habitat selection (Mysterud and Ims, 1998; Hebblewhite and Merrill,

2008; Matthiopoulous et al., 2011; Aarts et al., 2013; Matthiopoulos et al., 2015). Gen-

eralized linear mixed models (GLMM) offer a powerful approach that can account for

correlations induced by repeated measures designs (often denoted as pseudoreplication),

where “repeats” in resource selection studies typically denote the ensemble of measure-

ments taken on the same animal.
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Our literature review (Section 2) suggests that it is common to include individual-

specific random intercepts, but not random slopes when modelling habitat selection.

This is remarkable for three reasons: First and most importantly, random intercept-only

models cannot (by definition) account for among-animal variation in the regression slopes,

that is, they cannot account for functional responses, and therefore parameter estimators

are likely biased. Second, omitting random slopes induces too little uncertainty in the

estimated parameters (e. g. Schielzeth and Forstmeier, 2009), thus it is possible that

researchers end up with too high confidence in their potentially biased estimators of

effect sizes. The problem is particularly acute when there are lots of observations for

each animal, which is typically the case in telemetry studies. And third, the intercept

reflects the probability of a location being used when all covariates are set equal to 0, and

is thus heavily influenced by the sampling ratio of used versus available points (Fieberg

et al., 2010). Given constant ratios for all animals (which is often the case and assumed

here), it is not surprising that random intercepts will sometimes return an among-animal

variance component of 0. We demonstrate these issues by comparing random-intercept

only and random intercept and slope models that we fit to data from mountain goats and

Eurasian otters in Section 6.

4.2 Computational challenges

Fitting a GLMM is generally known to be a difficult and computationally demanding

task, and the user can choose among various model fitting procedures. The main chal-

lenge is that random effects lead to likelihoods given by integrals without closed form so-

lutions. Thus, maximizing the likelihood requires numerical integration techniques (e.g.,

quadrature-based methods) or, alternatively, the function to be integrated can be approx-

imated so that a closed form solution exists (an overview is given by e. g. Bolker et al.,

2009, Table I). Note, however, that while standard logistic mixed models (i. e., RSFs) can

be fit with several available software packages and functions (such as lme4::glmer()),
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random effects modelling is even more challenging for matched (SSF) designs, that is, for

conditional logistic regression, especially when the number of cases per stratum is greater

than 1, or when the strata are unbalanced (Craiu et al., 2011). In principle, these models

can be interpreted as survival models with random effects (denoted as frailty models),

for which software solutions exist (e. g. Therneau, 2015a; Elff, 2016), but computation

quickly becomes prohibitive for telemetry data with large numbers of strata.

Given the challenges with fitting mixed conditional logistic regression models, it is

not surprising that several approaches to circumvent direct random effects estimation

have been proposed, such as the use of generalized estimating equations (GEEs, Craiu

et al., 2008) or a two-step estimation approach (Craiu et al., 2011). GEEs, however,

provide marginal parameter estimates that tend to underestimate the true effect sizes

experienced by individual animals (Lee and Nelder, 2004; Fieberg et al., 2009; Muff

et al., 2016); thus, we do not generally recommend them for habitat-selection studies.

The two-step approach is an efficient alternative that combines estimates of individual-

specific regression parameters from standard ML methods for independent data with an

expectation-maximization algorithm in conjunction with conditional restricted maximum

likelihood (REML). It is available via the Ts.estim() function from the TwoStepCLogit

package in R (Craiu et al., 2016). This approach is an approximate method that works

best when the number of strata per animal is large (Craiu et al., 2011) and when the

data are not too unbalanced (e. g. all animals visited all levels of a categorical covari-

ate). However, fitting SSFs with random effects in a single modelling step is currently

considered to be unfeasible with standard GLM or GLMM software.

4.3 An efficient alternative for SSFs

We will now illustrate how relatively simple model reformulations allow one to fit mixed

conditional logistic regression models in a standard GLMM. Starting for notational

simplicity with the fixed effects-only model introduced in equation (2), we take advantage
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of the fact that a multinomial model (of which the conditional logistic regression model

is a special case, see e. g. McCullagh and Nelder, 1989) is likelihood-equivalent to the

Poisson model

E(yntj) = µntj = exp(αnt + βββ⊤xxxntj) , with yntj ∼ Po(µntj) (3)

(Whitehead, 1980; McCullagh and Nelder, 1989; Baker, 1994; Chen and Kuo, 2001; Lu

and Zeger, 2007), where αnt is the stratum-specific intercept of animal n at time point t.

Since a predefined fixed number of successes (usually one) is allowed within a stratum,

the “success probability”, conditional on the outcomes of the other observations in that

stratum, is thus

Pr(yntj = 1 |xxxnt·) = πntj =
exp(αnt + βββ⊤xxxntj)

∑J

i=1 exp(αnt + βββ⊤xxxnti)
=

exp(βββ⊤xxxntj)
∑J

i=1 exp(βββ
⊤xxxnti)

, (4)

where the second equality holds because the stratum-specific intercepts αnt cancel out.

This illustrates that model (3) is maximizing the same likelihood-kernel as the conditional

logistic model given in (2). Thus model (3), which is sometimes denoted as conditional

Poisson model, and conditional logistic regression models give equivalent parameter esti-

mates, β̂ββ, but also the same standard errors (e. g. McCullagh and Nelder, 1989, Chapter

6.4.2). Note that these considerations are not limited to the presence of only one used

point per stratum, but are valid for any number of cases per stratum, and even hold

when the different strata in a dataset contain an unequal number of cases. In addition,

the reformulation also works when random effects are added to the linear predictors in

(3), in which case any convenient GLMM software can be used to fit the resulting mixed

Poisson model. This option to fit SSFs has already been pointed out by Duchesne et al.

(2010), but it has only rarely been used to analyze mixed conditional logistic regression

models that arise from habitat-selection studies (but see Bruun and Smith, 2003).

The obvious disadvantage of formulation (3) – and a potential reason why the ap-
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proach is rarely used – is that a large number of stratum-specific intercepts αnt must be

estimated, which might again make the procedure prohibitive for movement data with

tens of thousands of realized steps, given that each step induces a stratum. Luckily, while

the αnt are fixed-effects terms in the model, they are not actually of interest. It is thus

possible to circumvent their explicit estimation by interpreting them as a random effect

αnt ∼ N(0, σ2
α), where the variance σ2

α is fixed to a large value to ensure that stratum-

specific intercepts are not shrunk towards their overall mean, and are thus estimated like

fixed-effects parameters. This idea is easy to implement in a Bayesian approach, where

such information can be specified in the priors. In fact, exactly such models have been

previously implemented in a Bayesian setting under the multinomial modelling frame-

work see e. g. the WinBUGS manual section 9.7 (Lunn et al., 2000). Let us finally also

add random effects to the linear predictor, which leads to the mixed Poisson model

E(yntj) = µntj = exp(µ+ αnt + βββ⊤xxxntj + uuu⊤

nzzzntj) , with yntj ∼ Po(µntj) , (5)

with overall mean µ, individual-specific random slopes uuu⊤

n , design vector zzzntj (typically

a sub-vector of xxxntj), and αnt ∼ N(0, σ2
α) with σ2

α fixed at a large value, for example 106.

It may be prudent to verify that the results are robust when even larger values of σ2
α are

used. Priors for the remaining parameters can be specified as in any Bayesian procedure.

Importantly, while fixing a variance in a Bayesian analysis is straightforward and

natural, it is of course also possible in a likelihood framework. Model (5) can therefore

also be fitted with a frequentist GLMM software, provided that there is an option to

constrain σ2
α to a fixed, large value to avoid shrinkage of the intercepts. To our knowledge,

this is currently not implemented in glmer() in the lme4 package in R, but it is possible

with the glmmTMB package (Brooks et al., 2017; Magnusson et al., 2017). Consequently,

we will fit frequentist GLMMs using glmmTMB::glmmTMB().
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4.4 Logistic or Poisson regression?

We have now seen that a conditional logistic regression model can be reformulated as a

Poisson model, which leads to feasible inference for parameters in SSFs using statistical

software that allows one to fix the variance of the random intercepts. However, it may

seem confusing to use a Poisson model for SSFs, while a logistic regression model is

needed for RSFs. This is less surprising when considering that Poisson GLMs have

been suggested for approximate inference of IPP models long before logistic regression

entered the stage (Berman and Turner, 1992). Moreover and importantly, it turns out the

likelihood of a Poisson model converges to the IPP likelihood when points are weighted

in the manner proposed by Fithian and Hastie (2013), that is, with weights W → ∞

for available points and weight 1 for the observed points (as we show in Appendix 1).

Consequently, RSFs can be fit using logistic or Poisson regression upon convenience,

because the results converge to the same limit and are practically indistinguishable for

large enough weights.

It may seem a logical consequence to suggest infinitely weighted Poisson regression to

estimate the model parameters of equation (5) for SSFs. Unfortunately, convergence to

an IPP is then not guaranteed, because the sampling of available points differs from that

of the RSF, and weighting introduces an additional bias. We will illustrate this point

with a simulation (see Section 6.3.2 and Figure S2 in Appendix 1), which indicates that

the bias decreases for larger strata, that is, when larger numbers of available points are

generated for each realized step. Here, we therefore continue with unweighted likelihoods

to fit SSFs.

4.5 Individual-specific intercept in RSFs

As briefly mentioned in Section 4.1, the (individual-specific) intercept term in an RSF is

largely determined by the sampling ratio of used and available points for each individual
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(Warton and Shepherd, 2010, Theorem 3.2). For example, if all covariates x in equation

(1) have been mean-centered, the intercept reflects the probability that a point is used

(versus available) at an “average” point in the habitat ensemble of all individuals. Thus,

individual-specific intercepts may vary due to either among-individual variability in the

ratio of used to available points, or due to differences in the distribution of habitat

covariates within each individual’s home range (e. g. varying availability of woodland).

Importantly, in the same way that the intercept is used to condition on habitat availability

at the current position of an individual in an SSF, the intercept conditions on the habitat

availability in the home range of the respective individual in an RSF. As a consequence,

these individual-specific intercepts should not be shrunk towards an overall mean, but

instead should also be given a large, fixed prior variance just like the stratum-specific

intercepts in SSF models in Section 4.3. Alternatively, they can be treated as fixed

effects (similar to other categorical covariates), which may be feasible for studies with

only a few animals.

In summary, the intercepts of RSF and SSF models should both be treated in the

same manner, namely as individual-specific fixed intercept effects, or equivalently, as

random effects with fixed, large variance, with the latter being computationally much

more efficient.

5 Bayesian computation for RSFs and SSFs

Our literature review suggests that in the majority of applications, RSFs and SSFs are

estimated with a frequentist approach (see Section 2). Bayesian computation is thus

clearly underrepresented, and it seems useful to briefly discuss some computational and

conceptual aspects of the latter. Note, however, that a thorough comparison of frequentist

and Bayesian paradigms is not the scope of this paper. Both have their own intrinsic

advantages and disadvantages, and the choice may also depend on the preference or the
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background of the analyst.

The Bayesian route is often perceived to be more challenging, including reservations

regarding the need to specify priors. However, thanks to the availability of Markov chain

Monte Carlo (MCMC) samplers like JAGS (Plummer, 2003) or Stan (Carpenter et al.,

2017), or the computationally efficient alternative provided by INLA, Bayesian com-

putation has become increasingly accessible and more popular in the past decade. An

advantage of the INLA approach used here over existing algorithms is that it circumvents

time-consuming MCMC sampling by providing efficient approximations of marginal pos-

terior distributions, and it has proven to be particularly useful for fitting GLMMs (Fong

et al., 2010; Wang et al., 2018), spatial and space-time models (Blangiardo et al., 2013;

Bakka et al., 2018), for modelling abundance data collected using distance sampling

(Yuan et al., 2016), and for modelling species distributions more generally (Illian et al.,

2013; Bakka et al., 2016). Here we discuss how to take advantage of INLA via its R inter-

face R-INLA in the context of RSF and SSF modelling. From Sections 3 and 4 we know

that weighted versions of logistic or Poisson regression models are required to estimate

RSF parameters, and it is straightforward to incorporate the respective weights into the

likelihood that is evaluated by R-INLA.

Priors for the parameters in βββ can be specified upon convenience. As is common,

we used independent priors βk ∼ N(0, σ2
β) with large prior variance for all components

βk. For the priors on the variances of the random slopes, we used penalized complex-

ity (PC) priors. These were recently proposed as robust and intuitive alternatives to

inverse gamma priors, and were shown to have excellent robustness properties (Simpson

et al., 2017). PC priors are parameterized as PC(u, α), where the interpretation of the

parameters (u, α) is that Pr(σ > u) = α for the standard deviation σ, thus the user can

specify how likely it is (0 < α < 1) that σ is larger than a specific value u > 0. Note

that we use independent priors on the random effects throughout the paper. Accounting

for dependencies among the random coefficients through covariance parameters is pos-
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sible, although the number of hyperparameters (variances and covariances) then grows

quickly. As a consequence, the computation using INLA may become inefficient, because

it is an intrinsic assumption that latent variables form a Gaussian random field, and that

each non-Gaussian parameter, such as a variance, is treated as a hyperparameter over

which the procedure needs to numerically integrate. Efficiency thus strongly depends the

number of hyperparameters, and it should not exceed 20 (Rue et al., 2016).

6 Applications

6.1 Habitat selection of mountain goats: an RSF analysis using un-

matched data

To reiterate the problems with fitting random-intercept only models, we considered data

collected from GPS-collared mountain goats in British Columbia, previously analyzed by

Lele and Keim (2006) and available in the ResourceSelection R package (Lele et al.,

2017). This dataset consists of use and availability locations for each of 10 different

mountain goats, with a use to available ratio of 1:2 for each goat, and a total number

of 6338 used points. We first fit a RSF containing a single predictor, elevation (cen-

tered and scaled to have mean 0 and sd 1) along with a random intercept (variance not

fixed) for each goat. The model was fit with an unweighted logistic regression using

glmmTMB::glmmTMB(), and returned a variance estimate for the among-animal variability

in intercepts very close to 0 (Table 1, model M1). Interestingly, a variance estimate of

exactly 0 was obtained when using the lme4::glmer() function (results not shown).

We next considered RSFs that included elevation plus a centered and scaled measure

of aspect, and compared the estimates from a random intercept-only model (model M2)

to those from a model containing both independent random intercepts and slopes (model

M3), both fit with glmmTMB(). In the latter model, the standard errors associated with

the slope coefficients for aspect and elevation were an order of magnitude larger when they
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were modeled as random effects. These results clearly demonstrate the problems noted

by Schielzeth and Forstmeier (2009), namely that random intercept-only models tend to

underestimate standard errors of (potentially biased) fixed effects parameters. Finally,

we fitted the weighted logistic regression model (using W = 1000) with random intercept

and slopes, with fixed intercept variance at 106 (model M4), because this is the procedure

we recommend. Weighting the likelihood and fixing the variance of the intercepts led to

a noticeable increase in the estimate of βele and a decrease in the estimate of σ2
ele, while

it had little effect on the estimated values of βasp and σ2
asp. This example illustrates how

an inappropriate analysis can lead to misleading conclusions, but that fitting the right

model requires only little additional effort.

6.2 Habitat selection of otters: an SSF analysis using matched data

We reanalyzed data collected and presented by Weinberger et al. (2016) involving nine

radio-collared otters that were tracked between six months and three years in the Eu-

ropean Alps. To fit SSFs to these data, each observed location was matched with nine

random (available) points generated by resampling step lengths and turning angles from

their empirical distribution (Fortin et al., 2005). This process naturally resulted in a

matched sampling design, with each step inducing a stratum consisting of 10 (1 used

and 9 available) locations, thus a conditional regression model was needed. Due to the

absence of an efficient alternative, the original analysis was performed with a two-step

estimation method provided by the TwoStepCLogit::Ts.estim() function. The original

model included 12 covariates and random effects for all of them. Here, however, we only

included the variables of main interest, namely the factorial covariate habitat type (with

levels main discharge, reservoir and residual water), the continuous variable river width,

plus a variable that accounts for step length to reduce bias, as suggested by Forester et al.

(2009). The data contained a total of 41 670 data points with 4 167 realized steps, where

the latter thus corresponds to the number of strata.
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For illustration, we started by fitting fixed effects-only models. To this end, the well

established stratified Cox model was fit via the survival::clogit() function. The re-

spective results were compared to the outcome from the conditional Poisson model as

given by equation (3), where the stratum-specific intercepts are implicitly estimated by

modelling them as a random intercept with a fixed variance αnt ∼ N(0, 106). We esti-

mated the parameters both with the frequentist approach using glmmTMB, and with the

Bayesian approach using R-INLA, with independent βββ ∼ N(0, 104) priors for all compo-

nents in the vector of slope parameters. Importantly, this led to parameter estimates

that were essentially indistinguishable from those obtained via the stratified Cox model

(Table 2), confirming that the conditional Poisson model is equivalent to the conditional

logistic model, and that we can circumvent the explicit estimation of the stratum-specific

intercepts (denoted as αnt in equation 3) by a random effect with large fixed variance.

Note that this equivalence does not hold when σ2
α is freely estimated instead, and that

this would lead to invalid results, as will be illustrated in the simulation below (Section

6.3.2). Computation times were on the order of a few seconds for all procedures.

Next, we included independent individual-specific random slopes for all covariates (ex-

cept for step length). We again estimated parameters with glmmTMB and R-INLA, using

the conditional Poisson model (5). For the Bayesian model, the same priors as above

were used, and PC(3, 0.05) priors on the precisions of the random slopes (but results

were insensitive to this choice). These results were compared to the outcome of the two-

step procedure via Ts.estim(), where it was also assumed that the random effects are

independent. Note that the point estimates reported from the Bayesian models are pos-

terior means (for the fixed effects) and posterior modes (for the variances), respectively,

following the recommendations by He and Hodges (2008).

The results (Table 2) illustrate two important points: First, the inclusion of individual-

specific random slopes in the Poisson regression model leads to different parameter esti-

mates and to much larger standard errors for the fixed effects than when fixed effects-only
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models are used, which again confirms that fixed effects-only models might lead to invalid

conclusions in the presence of inter-individual heterogeneity. And second, the reformula-

tion of the conditional logistic regression model as a Poisson model with random stratum-

specific intercept, as given in (5), leads to feasible estimation of mixed effects parameters

in a single modelling step. While computations with other single-step R procedures, such

as adding random effects (frailties) to survival models using coxme::coxme(), were un-

feasible even when only 1 000 out of the more than 4 000 strata were used (we interrupted

the sessions after 24h of non-convergence), glmmTMB() terminated in roughly 5 seconds

and R-INLA in 90 seconds on an Intel Core i7-6500U 4 x 2.50GHz processor for the full

dataset. On the other hand the Ts.estim() procedure was still considerably faster (on

the order of 1.5 seconds), although the parameter estimates from the Poisson model are

not in perfect agreement with those from the approximate two-step procedure, especially

for βREST and σ2
REST.

6.3 Simulated data

To provide a systematic overview of the performance of the different estimation meth-

ods and model specifications, we simulated and analyzed scenarios for matched and un-

matched designs with known true coefficient values. All simulations of movement tracks

involved two continuous covariates: elevation and habitat. We simulated elevation and

habitat as independent unconditional Gaussian Random Fields (GRF; as implemented in

Ribeiro Jr and Diggle, 2016) with range σ2 = 0.1 and a partial sill of φ = 50. We sampled

and analyzed movement data for unmatched (RSF) and matched (SSF) designs, where

each setup was replicated 500 times to obtain a sampling distribution of the estimated

coefficients and to investigate bias and variance of the different estimators.
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6.3.1 Unmatched (RSF)

We simulated data according to an unmatched sampling design by drawing used points

at locations with covariate values xxx, where animal n was present in the landscape with

probability proportional to

π(xxx) ∝ exp(βββ⊤xxx+ uuu⊤

nzzz) . (6)

Selection coefficients were set to βββ⊤ = (βele, βhab) = (−4, 4) for elevation (ele), and habitat

(hab), respectively. Both variables were given individual-specific slopes uuun, generated

from uncorrelated Gaussian distributions with mean zero and variances σ2
ele = 10 and

σ2
hab = 5. Data were generated for 20 animals and 200 locations per animal, plus nine

times more (thus 1 800 per animal) background points from the landscape with uniform

probability.

The simulated data were first analyzed with the correct, data-generating model that

included fixed effects and independent random slopes for both covariates. For each simu-

lated dataset, we fit mixed logistic regression models, using both unweighted and weighted

likelihoods (withW = 1000). To illustrate that the logistic and Poisson regression models

converge to the same limit for large W , all models were also fit using a Poisson likelihood.

And finally, to illustrate how model misspecification may result in biased parameter es-

timators, we used weighted logistic regression to compare the fixed-effects model and a

random-intercept-only model to the correctly specified mixed model. Simulated datasets

were analyzed in a Bayesian framework using R-INLA, and by a likelihood approach using

glmmTMB, where the individual-specific intercept variance was fixed at 106 for the reason

discussed in Section 4.5. For comparison, we also repeated the analyses with a freely

estimated intercept variance. For the Bayesian setup, we used N(0, 103) priors on the

fixed effects, and relatively vague PC(10, 0.01) priors on σ2
ele, and PC(5, 0.01) priors on

σ2
hab.

Weighted regression models with appropriate specification of random effects led to
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consistent estimators, both for the logistic and Poisson likelihood, while the unweighted

models resulted in biased estimators when the Poisson model was used (Figure 1, left

panel). Note that the unweighted logistic model would also be expected to produce biased

estimators in the presence of model misspecification (Fithian and Hastie, 2013), but given

that the fitted model matches the sampling scheme (6), the unweighted logistic regression

model (i. e., W = 1) is also consistent here. Estimators of all fixed-effects coefficients

were biased in the fixed-effects-only and random-intercept-only models (Figure 2). Lastly,

we obtained similar results when we treated the variance of the random intercepts as a

free parameter (Figure S1 in Appendix 1). Allowing the variance of the intercepts to

be estimated may introduce bias, however, for data sets with smaller (or more variable)

sample sizes of observed locations and will be particularly problematic for SSFs as shown

in the next section.

These results confirm and highlight: 1) the importance of using weighted likelihoods,

2) that both weighted logistic and weighted Poisson regression can be used to analyze

unmatched RSF data, and 3) the importance of including cluster-specific random slopes

in real applications, given that animals living in different landscapes will usually exhibit

different habitat-selection patterns.

6.3.2 Matched (SSF)

To compare different estimation approaches for SSFs, that is, for matched sampling de-

signs, we simulated movements of 20 animals according to a biased random walk starting

at the center of the landscape at time t = 0. To find the position at time t + 1, each

animal n was given 200 candidate locations, where the coordinates for each candidate

location were determined by drawing a random step length from an exponential distribu-

tion with rate parameter λ = 1, and a random turning-angle from a uniform distribution.

One candidate location was then selected at random with probability proportional to

exp(βββ⊤xxx), where xxx are the covariate values at the end point of each potential step and
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βββ⊤ = (−4, 4) was again the vector of selection coefficients. Animals were again assigned

individual-specific slopes for both variables, generated from uncorrelated Gaussian dis-

tributions with mean βββ and variances σ2
ele = 10 and σ2

hab = 5. For each animal, we

simulated 200 time steps, and each observed step was paired with 9 random (control)

steps. Following Forester et al. (2009), we generated random steps with step lengths

from an exponential distribution with rate λ = 1/(2l̄), with l̄ equal to the mean realized

step length, and with the direction of random steps drawn from a uniform distribution

distribution of turning angles between −π and π. We then included step length (l) in the

linear predictor to correct for the bias due to the way we generated random step lengths

(i. e., exponential with λ = 1/(2l̄) rather than λ = 1).

These data were analyzed with the mixed conditional Poisson model of equation (5)

using frequentist (glmmTMB) and Bayesian (R-INLA) inference including random slopes

for elevation and habitat. The variance of the stratum-specific intercept was fixed to

σ2
α = 106. To illustrate that fixing this variance is important, we also fit the same model

with σ2
α estimated instead (only with glmmTMB to avoid redundancy). For INLA we again

used N(0, 103) priors on the fixed effects, and σ2
ele ∼ PC(10, 0.01) and σ2

hab ∼ PC(5, 0.01)

priors on the random effects. As a comparison, we also estimated regression parameters

using the two-step approach implemented in Ts.estim() assuming independent slopes,

and fit fixed-effects models with Cox models using the clogit() function. All these

models were fit with unweighted likelihoods for the reason mentioned in Section 4.4.

As before, the Poisson models with fixed σ2
α fit with glmmTMB and R-INLA retrieved

consistent estimators of the fixed-effects parameters, and the two-step estimator was

also nearly unbiased (Figure 3). This was not true, however, when the stratum-specific

intercept variance was estimated by the Poisson model rather than fixed, in which case

all estimators were heavily biased. Importantly, we again observe that ignoring random

effects leads to biased estimators of fixed-effects parameters when there is inter-individual

heterogeneity in the slopes. All variance estimators were slightly underestimated for all
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methods, namely because the step-length variable in the predictor absorbs some of the

variability in the selection coefficients. Weighted regression models also resulted in biased

estimators except for very large numbers of random steps (Figure S2 in Appendix 1);

therefore, weighted alternatives were not further investigated here.

7 Discussion

Recent technological advances have made it possible track a wider range of species for

longer durations, leading to an explosion of high-temporal resolution location data (Kays

et al., 2015). For example, Movebank, an online platform for storing, managing, and

sharing data now includes more than 700 million locations from over 4000 studies of

close to 800 different taxa (Kranstauber et al., 2011; Wikelski and Kays, 2018). The

widespread availability of fine-scale temporal data is fueling the development of new

statistical approaches for modelling animal movement data (e. g. Hooten et al., 2017;

Jonsen et al., 2018) and also provides unique opportunities to study among-individual

variability in movement and habitat-selection patterns.

Step-selection functions were developed to address concerns regarding statistical in-

dependence in habitat selection studies that utilize fine-scale location data, and they are

appealing because they provide an objective approach to determining habitat availability

based on movement characteristics of the study species (Fortin et al., 2005; Thurfjell et al.,

2014). Although fitting step-selection models to individual animals is straightforward,

efficient estimation procedures for models fit to multiple animals have been lacking, hin-

dering our ability to quantify among-animal variability in their habitat-selection patterns.

Mixed-effects models are an attractive option, but these models are well acknowledged

to be computationally challenging to fit in this context (Duchesne et al., 2010).

We proposed to fit RSFs and SSFs in a unified, standard GLMM framework, which

is possible by combining three statistical results. First, we make use of the fact that the
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conditional logistic regression model, which needs to be fit to derive SSFs, is actually

a multinomial model, and as such it is likelihood-equivalent to a Poisson model. This

renders mixed-effects modelling for SSFs equivalent to fitting any Poisson GLMM, which

implies that incorporating individual-specific variation in SSFs is no more challenging

than doing so for RSFs. Second, because individual- or stratum-specific intercepts are not

actually of interest in RSFs or SSFs, and because they are determined by sampling ratios

and habitat availability, these intercepts should be treated as fixed effects, or equivalently

and more efficiently, as random effects with large, fixed variance. Doing so prevents

these parameters from being shrunk towards the overall mean. By contrast, treating the

intercepts as random effects with estimated variance results in biased estimators of the

slope parameters that are the target of inference. The magnitude of the shrinkage, and

hence bias, may be minimal for RSFs that include many observations for each individual

(as in the goat example of Section 6.1 and our simulation study in 6.3.2), but can be

substantial for SSFs which tend to include only a few observations in each stratum (Figure

3). And third, we reiterated that the weighted logistic regression likelihood, with weights

W on the available points, converges to the IPP likelihood for W → ∞ (Fithian and

Hastie, 2013), and have expanded this result to the Poisson likelihood Appendix 1. RSFs

can therefore both be fit with weighted logistic or weighted Poisson regression upon

convenience.

Poisson and/or logistic regression mixed-effects models with fixed intercept variance

led to consistent inference for all model parameters, both for RSFs and SSFs. Thus, we

have demonstrated that it is feasible to fit SSFs with random coefficients in a single step

using standard statistical software, both for Bayesian or frequentist inference. It is par-

ticularly straightforward to fix the individual- or stratum-specific intercept variance in a

Bayesian framework, where the user is required to specify priors on all unknown parame-

ters. To ensure efficient Bayesian inference we have relied on the INLA approach via the

R-INLA interface, which in preliminary tests using simulated datasets was considerably

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/411801doi: bioRxiv preprint 

https://doi.org/10.1101/411801
http://creativecommons.org/licenses/by-nc-nd/4.0/


faster than implementations using MCMC sampling via Stan (Carpenter et al., 2017).

Users that prefer frequentist inference should choose a software package that allows to

fix a random effect variance to a prespecified value. Here we fitted these models using

glmmTMB, which provides fast inference, and has previously proven useful for analyzing

large telemetry data sets (Jonsen et al., 2018). Table 3 gives an overview of models and

procedures that we recommend for efficient and accurate inference on either fixed-effects

or random-effects RSFs and SSFs.

Prior to now, fitting random coefficient SSFs was often only feasible via two-step

procedures (Craiu et al., 2011; Hooten et al., 2016). An advantage of using Ts.estim()

is that it is typically much faster than glmmTMB() and (even more so) than R-INLA, as

illustrated by the computation times of the otter data analysis of Section 6.2. As a

second benchmark, we also fit an SSF model including 14 fixed and 14 random effects on

a real dataset from 13 GPS-collared Eurasian lynx (Gehr et al., 2017) with 18 762 realized

steps (strata) and a total of 144 810 data points on our Intel Core i7-6500U 4 x 2.50GHz

processor with 16GB RAM. The respective R-INLA procedure terminated in a bit less

than 10 hours, whereas the same model could be fit in 13 minutes with glmmTMB() and in

a few seconds with Ts.estim(). However, it must be kept in mind that Ts.estim() is an

approximate procedure and may fail to converge, for example, when at least one animal

does not encounter and use all habitat types available. Still, for very large datasets and

models, where GLMMs may demand too much computational power, it certainly remains

a convenient and efficient alternative.

We have seen that frequentist analyses with glmmTMB can be considerably faster than

the Bayesian route using R-INLA. In fact, efficiency gain will rarely be the reason to

choose Bayesian over likelihood inference. An interesting benefit of Bayesian procedures

is that they give (marginal) posterior distributions of all parameters, whereas frequentist

approaches only return point estimates and standard errors for fixed effect parameters,

but no measures of uncertainty for variance parameters. In addition, various modelling
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extensions, such as spatial or temporal dependencies (e. g. Lindgren et al., 2011; Blan-

giardo et al., 2013) or measurement error in covariates (e. g. Muff et al., 2015) are often

much more straightforward to incorporate, or even only computationally feasible, in a

Bayesian setup. For further comparison of frequentist and Bayesian approaches, we refer

the reader to an extensive body of literature (e. g. Efron, 1986; Bayarri and Berger, 2004;

Gelman et al., 2009, just to mention a few).

Although the importance of including random coefficients in regression models of

habitat-selection studies has been stressed repeatedly (Gillies et al., 2006; Duchesne et al.,

2010), our literature review suggests that random-effects models are often understood as

models that merely include a random intercept. Here we have reiterated and illustrated

that such practice may lead to too high confidence in results that are potentially biased.

By providing coded examples using R-INLA and glmmTMB, we hope to make efficient esti-

mation of RSFs and SSFs with random effects accessible to anyone in the field. SSFs with

individual-specific coefficients are particularly attractive since they can provide insights

into movement and habitat-selection processes at fine-spatial and temporal scales (Avgar

et al., 2016; Signer et al., 2018), but these models had previously been very challenging

to fit.
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Model β̂ele β̂asp σ̂2
intercept σ̂2

ele σ̂2
asp

M1 (Random intercept) 0.12 (0.05) 0.008
M2 (Random intercept) 0.14 (0.03) 0.52 (0.02) 0.013

M3 (Random intercept + slopes) 0.07 (0.38) 0.66 (0.11) 0.96 1.40 0.10
M4 (Random intercept + slopes) 0.12 (0.31) 0.65 (0.11) 0.93 0.12

Table 1: Results from four models fit to data from 10 GPS-collared mountain goats.
Models M1 – M3 were fit with an unweighted likelihood. Model M4, which is the recom-
mended model, was fit with weighted logistic regression (W = 1000) and fixed intercept
variance (σ2

int = 106). All models were fit using glmmTMB().
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Slope estimates βSTAU βREST βWidth

I. Fixed effects models

clogit −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

cPois (INLA) −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

cPois (glmmTMB) −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

II. Mixed effects models (random intercept & slopes)

Two-step 0.04 (0.17) −0.24 (0.24) 0.10 (0.12)

cPois (INLA) 0.02 (0.18) −0.33 (0.22) 0.11 (0.14)

cPois (glmmTMB) −0.004 (0.14) −0.35 (0.16) 0.12 (0.11)

Variance estimates σ2
STAU σ2

REST σ2
Width

(Mixed models only)

Two-step 0.17 0.35 0.08

cPois (INLA) 0.08 (0.02,0.78) 0.10 (0.03,1.03) 0.05 (0.02,0.47)

cPois (glmmTMB) 0.07 0.10 0.07

Table 2: Estimated fixed effects and variance parameters of the Eurasian otter example
when using the Cox model (clogit), the Poisson model with stratum-specific intercept
(cPois) fit with R-INLA or glmmTMB(), and the two-step procedure Ts.estim() (Two-
step). For the INLA output, posterior means are given for the slope estimates, and
posterior modes for the variances. Values in brackets are standard errors (for the slope
estimates) and 95% credible intervals (for the variances); Ts.estim() and glmmTMB() do
not provide measures of uncertainty for variance parameters.
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Unmatched designs (RSFs) Matched designs (SSFs)

Example Mountain goats (sec. 6.1) Eurasian otters (sec. 6.2)

F
ix
e
d

e
ff
e
ct
s Models: Logistic regression Conditional logistic regression

Poisson regression(⋆) Conditional Poisson regression

(models (2) and (3) in text)

R procedures: inla(), glm(), glmmTMB() clogit() function
or inla()/glmmTMB() for Poisson models
with stratum-specific random effect
and large fixed variance σ2

α.

M
ix
e
d

e
ff
e
ct
s Models: Mixed logistic regression

Mixed Poisson regression(⋆)

Mixed conditional Poisson
regression (model (5) in text)

R procedures: inla(), glmer(), glmmTMB() inla(), glmmTMB(), Ts.estim()

Table 3: Overview of sampling designs and procedures in R that we recommend for
efficient computation. Please note that we recommend to carry out RSF analyses using
the infinitely weighted version. (⋆)Poisson regression for RSFs is equivalent to logistic
regression in the limit of W → ∞.
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Bayes (R-INLA) Frequentist (glmmTMB)
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Figure 1: Sampling distribution of estimated RSF coefficients from the model that cor-
rectly included random intercept and random slopes, for weighted and unweighted ver-
sions (W = 1000) and either using a Bayesian (left) or ML approach (right). The variance
of the random effect for the intercept was fixed at 106. Boxplots show the distribution
of 500 replications, where posterior means were used for the fixed effects and posterior
modes for the variances in the Bayesian case. The horizontal red dashed lines indicate
the true value used to generate the data in the simulations.
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Bayes (R-INLA) Frequentist (glmmTMB)
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Figure 2: Sampling distribution for estimated RSF coefficients from weighted logistic re-
gression models including only fixed effects (FE), or including also random effects (RE),
either only a random intercept, or both a random intercept and random slopes. Shown
are only models with weights (W = 1000) and fixed intercept variance of 106 (for random
intercept and random slope models only) estimated with R-INLA and glmmTMB. In the
Bayesian case, the distribution of posterior means is shown. Boxplots show the distribu-
tion of 500 replications. The horizontal red dashed lines indicate the true value used to
generate the data in the simulations.
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Figure 3: Sampling distribution for estimated SSF coefficients from the conditional Pois-
son regression model using a frequentist approach (glmmTMB), a Bayesian approach (R-
INLA), the two-step approach implemented in the Ts.estim() function, and conditional
logistic regression (clogit) without random effects. In the Bayesian case, posterior means
are shown for the fixed effects and posterior modes for the variances. The frequentist
approach was implemented both with σ2

α = 106 fixed (as recommended) or by estimating
σ2
α (for illustration). Boxplots show the distribution of 500 replications. The horizontal

red dashed lines indicated the true value used for the simulations.
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