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This paper considers large-scale stochastic simulations with correlated inputs having normal-to-anything (NORTA) distribu-
tions with arbitrary continuous marginal distributions. Examples of correlated inputs include processing times of workpieces
across several workcenters in manufacturing facilities and product demands and exchange rates in global supply chains.
Our goal is to obtain mean performance measures and confidence intervals for simulations with such correlated inputs
by accounting for the uncertainty around the NORTA distribution parameters estimated from finite historical input data.
This type of uncertainty is known as the parameter uncertainty in the discrete-event stochastic simulation literature. We
demonstrate how to capture parameter uncertainty with a Bayesian model that uses Sklar’s marginal-copula representation
and Cooke’s copula-vine specification for sampling the parameters of the NORTA distribution. The development of such a
Bayesian model well suited for handling many correlated inputs is the primary contribution of this paper. We incorporate
the Bayesian model into the simulation replication algorithm for the joint representation of stochastic uncertainty and
parameter uncertainty in the mean performance estimate and the confidence interval. We show that our model improves
both the consistency of the mean line-item fill-rate estimates and the coverage of the confidence intervals in multiproduct
inventory simulations with correlated demands.

Subject classifications : Bayesian; correlation; design of experiments; sampling; statistical analysis.
Area of review : Simulation.
History : Received April 2008; revisions received November 2008, August 2009, January 2010, March 2010; accepted

April 2010.

1. Introduction
In recent years, large-scale discrete-event stochastic simula-
tion has become a tool that is used routinely for the design
and analysis of manufacturing and service systems. Two
important components of the large-scale stochastic simu-
lation are multivariate input modeling and output analysis.
Multivariate input modeling is the estimation of an appro-
priate multivariate probability distribution that characterizes
the stochastic behavior of the system inputs. Output analy-
sis is the study of the simulation output data to estimate the
distributional properties (e.g., mean, probability, or quan-
tile) of the performance measure.

In this paper, we are interested in the case where the
objective of the output analysis is to predict a mean per-
formance measure and a confidence interval. There are
three main sources of uncertainty to account for in the out-
put analysis: stochastic uncertainty, model uncertainty, and
parameter uncertainty. Stochastic uncertainty arises from
the dependence of the output on the simulation’s random
input streams (Helton 1997). Model uncertainty arises due
to the uncertainty around the selection of an appropri-
ate family of distributions for the system inputs, whereas
parameter uncertainty arises due to the uncertainty around

the parameter values of a given probability distribution
(Raftery et al. 1996).

The goal of this paper is to account for the stochastic
uncertainty and the parameter uncertainty in the estimation
of the mean performance measure and the confidence inter-
val of the stochastic simulation with correlated inputs.
Accounting for parameter uncertainty in a stochastic simu-
lation is not common practice. The simulation often starts
with fitting a probability distribution to the historical input
data of finite length. Although the parameters of the fitted
distribution are shown to have asymptotical properties (e.g.,
consistency and normality) for the number of historical data
points approaching infinity, the simulation is driven with
the probability distribution estimated from the finite histori-
cal input data. The output data obtained from the simulation
are analyzed for predicting the mean performance mea-
sure and constructing the confidence interval. This practice
of using the estimated probability distribution for driving
the simulation ignores both the model uncertainty and the
parameter uncertainty, and accounts only for the stochastic
uncertainty in the output analysis. Consequently, the simu-
lation analyst obtains not only an inconsistent estimate for
the mean performance measure, but also an inconsistent
coverage for the confidence interval.
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The problem of accounting for model uncertainty and/or
parameter uncertainty in stochastic simulations has been
studied by a number of researchers, including Cheng and
Holland (1997, 1998, 2004), Chick (1997, 1999, 2001),
Barton and Schruben (2001), and Zouaoui and Wilson
(2003, 2004). Cheng and Holland (1997) made the first
attempt to show the dependence of the simulation out-
put on stochastic and parameter uncertainties. They con-
tinued the study of this problem in Cheng and Holland
(1998 and 2004). However, using frequentist techniques to
represent parameter uncertainty did not allow the incor-
poration of any relevant information other than the his-
torical input data into the simulation output. Furthermore,
the problem of accounting for model uncertainty remained
unsolved. As a result of following the Bayesian Model
Averaging (BMA) approach, Chick (1999, 2001) captured
not only stochastic uncertainty and parameter uncertainty,
but also model uncertainty. Although the BMA approach
had been used in a number of different settings to cap-
ture model uncertainty and/or parameter uncertainty (e.g.,
Draper 1995, Hoeting et al. 1999, and George 1999), it was
Chick (1997, 1999, 2001) who outlined the basic methodol-
ogy for implementing the BMA approach in discrete-event
stochastic simulations.

Chick’s formulation led to the simulation replication
algorithm that allowed the simulation analyst to cap-
ture both model uncertainty and parameter uncertainty by
sampling input distributions and their parameters from
Bayesian posterior density functions before each replica-
tion. This made it possible to drive the simulation without
using a single distribution and a single set of parameter
values. Consequently, the use of the simulation replication
algorithm improved the consistency of the mean perfor-
mance estimate and the coverage of the confidence interval.
However, the simulation replication algorithm did not pro-
vide separate estimates for the variances due to different
sources of uncertainty. The Bayesian simulation replica-
tion algorithm introduced by Zouaoui and Wilson (2003)
provided a solution for the problem of decomposing the
variance in the simulation output data into variances due
to stochastic and parameter uncertainties. They extended
their framework to also account for model uncertainty in
Zouaoui and Wilson (2004).

The focus in these papers has been on discrete-event
stochastic simulations with independent inputs. However,
building large-scale simulations may require the devel-
opment of multivariate input models. Examples of mul-
tivariate inputs include the processing times of a work-
piece across several workcenters in a manufacturing facility
(Xu 1999) and the product demands and exchange rates
in a global supply chain (Kouvelis and Su 2007). In this
paper, we focus on simulations with multivariate inputs that
have stochastic dependencies among them, and we describe
how to account for both stochastic uncertainty and parame-
ter uncertainty in their output analyses. Although the BMA
approach formulated in Chick (2001) can accommodate the

stochastic dependencies among the inputs, the simulation
analyst still needs a Bayesian model that works for simula-
tions with many correlated inputs. Also, it is not clear how
to sample the parameters of the joint distribution of the cor-
related inputs before each replication so that the Bayesian
model is easily incorporated into the simulation replication
algorithm. The development of a Bayesian model, which
overcomes these challenges and leads to a fast sampling
algorithm well suited for handling a large number of cor-
related inputs, is the primary contribution of our paper to
the discrete-event stochastic simulation literature.

We represent multivariate inputs using random vector
X = 4X11 X21 0 0 0 1Xk5

′ denoting a collection of k correlated
components, each of which is a real-valued input random
variable. We characterize the joint stochastic behavior of
these correlated inputs with the flexible normal-to-anything
(NORTA) distribution of Cario and Nelson (1997). Thus,
we construct our k-dimensional random vector X = 4X11
X21 0 0 0 1Xk5

′ by first taking Zi as the ith component
of a k-dimensional standard normal random vector Z =

4Z11Z21 0 0 0 1Zk5
′ with positive definite k× k correlation

matrix èk. Then we obtain Xi = F −1
i 4ê4Zi53ëi5 for i =

1121 0 0 0 1 k, where Fi is the arbitrary continuous marginal
cumulative distribution function (cdf) of component i with
parameter vector ëi and ê is the cdf of the standard nor-
mal random variable. A random vector constructed in this
way is said to have a k-dimensional NORTA distribution.
From this point on, we call the parameters of this distribu-
tion, ëi, i = 1121 0 0 0 1 k, and èk, the NORTA parameters.

Considering a stochastic simulation with inputs having
a k-dimensional NORTA distribution, we demonstrate how
to account for parameter uncertainty (i.e., the uncertainty
around the values of the NORTA parameters estimated from
finite historical input data) in the mean performance esti-
mate and the confidence interval. More specifically, we
develop a Bayesian model that samples NORTA parame-
ters from their Bayesian posterior density functions before
each replication of the simulation replication algorithm.
This allows us to drive the stochastic simulation without
using a single set of NORTA parameters. However, it is a
challenging task to develop such a Bayesian model as the
number of NORTA parameters needed to sample increases
very quickly with k, the number of components. For exam-
ple, if each of the k components are exponentially dis-
tributed, we need to sample k different parameters for the
component marginal distributions and 2k different parame-
ters for the gamma distributed components. In addition to
the parameters of the component marginal distributions, we
need to sample k4k−15/2 correlations of èk in a way that
the resulting correlation matrix is positive definite.

We overcome the challenge of sampling a large number
of NORTA parameters using Sklar’s marginal-copula repre-
sentation together with Cooke’s copula-vine specification.
Sklar’s marginal-copula representation allows us to write
the joint posterior density function as the multiplication of
the marginal posterior density functions and the posterior
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normal copula density function. Thus, we separate the prob-
lem of sampling the parameters of the component marginals
from the problem of sampling the dependence parameters
of the NORTA distribution. Furthermore, Cooke’s copula-
vine specification enables us to represent the k-dimensional
posterior normal copula density function as the product of
k4k − 15/2 two-dimensional posterior normal copula den-
sity functions. Therefore, we do not need to satisfy any
algebraic constraints for positive definiteness.

We organize the remainder of the paper as follows.
In §2, we describe the NORTA distribution and present a
copula-based representation for its joint density function.
We use this representation in §3 for developing a Bayesian
model that samples NORTA parameters. In §4, we describe
how to incorporate the Bayesian model into the simula-
tion replication algorithm for estimating the mean perfor-
mance measure and the confidence interval that accounts
for both stochastic uncertainty and parameter uncertainty.
In §5, we show that our model allows the simulation ana-
lyst to improve both the consistency of the mean line-item
fill-rate estimates and the coverage of the confidence inter-
vals in multiproduct inventory simulations with correlated
demands. We conclude with a summary of results in §6.
For clarity in the presentation of the results, we moved
the implementation details of sampling NORTA parameters
to an electronic companion that is available as part of the
electronic version at http://or.journal.informs.org/.

2. The NORTA Distribution and Its
Copula-Based Representation

We introduce the k-dimensional NORTA distribution
in §2.1 and provide a copula-based representation for its
joint density function in §2.2.

2.1. The k-Dimensional NORTA Distribution

We characterize the joint stochastic behavior of correlated
inputs Xi, i = 1121 0 0 0 1 k using the NORTA distribution of
Cario and Nelson (1997). The central idea is to transform
a standard multivariate normal random vector into the ran-
dom vector referred to as having a NORTA distribution.
Specifically, we let

X =
(

F −1
1 4ê4Z153ë151 F

−1
2 4ê4Z253ë251 0 0 0 1

F −1
k 4ê4Zk53ëk5

)′
1

where Fi4·3ëi5, i = 1121 0 0 0 1 k are arbitrary marginal cdfs
with parameter vectors ëi, i = 1121 0 0 0 1 k and the base
vector Z = 4Z11Z21 0 0 0 1Zk5

′ is a k-dimensional standard
normal random vector with k × k positive definite cor-
relation matrix èk ≡ 6�4i1 j53 i1 j = 1121 0 0 0 1 k7. In this
characterization, �4i1 j5 is the Pearson product-moment
correlation between Zi (i.e., ê−16Fi4Xi3ëi57) and Zj

(i.e., ê−16Fj4Xj3ëj57), whereas the transformation Xi =

F −1
i 4ê4Zi53ëi5 ensures that Xi has cdf Fi4·3ëi5. A more

detailed description of the NORTA distribution is available
in Biller and Ghosh (2006).

2.2. A Copula-Based Representation for the
NORTA Distribution

First, we present a brief review of the copula theory
in §2.2.1. Then, we derive a copula-based representation
for the NORTA distribution using Sklar’s marginal-copula
representation in §2.2.2 and Cooke’s copula-vine specifica-
tion in §2.2.3.

2.2.1. Copula Theory. We begin this section with the
definition of a k-dimensional copula (Nelsen 2006, Defini-
tion 2.10.6). The first condition of this definition provides
the lower bound on the distribution function and insures
that the marginal distributions of the copula are uniform,
whereas the second condition insures that the probability
of observing a point in a k-box is nonnegative:

Definition 1. A k-dimensional copula is a function Ck:
60117k → 60117 with the following properties: (1) For
every u = 4u11 u21 0 0 0 1 uk5 in 60117k, Ck4u5 = 0 if at
least one coordinate of u is 0, and if all coordinates
of u are 1 except ul, then Ck4u5 = ul for l = 1121
0 0 0 1 k. (2) For every a = 4a11 a21 0 0 0 1 ak5 and b = 4b11 b21
0 0 0 1 bk5 in 60117k such that a ¶ b, i.e., al ¶ bl, l = 11
21 0 0 0 1 k, and for every k-box 6a1b7, i.e., 6a11 b17 ×

6a21 b27×· · ·× 6ak1 bk7, the Ck-volume given by ãb
aCk4t5=

ãbk
ak
ãbk−1

ak−1
· · ·ãb2

a2
ãb1

a1
Ck4t5 with ãbl

al
Ck4t5 = Ck4t11 0 0 0 1 tl−11

bl1 tl+11 0 0 0 1 tk5−Ck4t11 0 0 0 1 tl−11 al1 tl+1, 0 0 0, tk5 is ¾0.

The use of a copula for understanding the joint distribu-
tion of a random vector has been studied extensively for
the last two decades (Schweizer 1991, Joe 1997, Nelsen
2006). In this paper, we restrict our attention to Sklar’s
theorem, which describes how to extract the dependence
structure of a random vector from its joint distribution with
arbitrary continuous marginal distributions (Nelsen 2006,
Theorem 2.10.9):

Theorem 1. Let Hk be a k-dimensional distribution func-
tion with continuous marginal cdfs Fi4·3ëi5, i = 1121
0 0 0 1 k. Then there exists a k-dimensional unique copula Ck

such that for all xi, i = 1121 0 0 0 1 k in <,

Hk4x11 x21 0 0 0 1 xk5

=Ck4F14x13ë151 F24x23ë251 0 0 0 1 Fk4xk3ëk550 (1)

Conversely, if Ck is a k-dimensional copula and Fi4·3ëi5,
i = 1121 0 0 0 1 k are continuous distribution functions with
parameter vectors ëi, i = 1121 0 0 0 1 k, then the function Hk

defined in (1) is a k-dimensional distribution function with
marginal cdfs Fi4·3ëi5, i = 1121 0 0 0 1 k.

The major implication of this theorem is that copula Ck

is the joint distribution function of Ui ≡ Fi4Xi3ëi5,
i = 1121 0 0 0 1 k, where Ui, i = 1121 0 0 0 1 k are the probability
integral transforms of Xi, i = 1121 0 0 0 1 k. Thus, each of the
random variables Ui, i = 1121 0 0 0 1 k follows a uniform dis-
tribution in 60117, regardless of the distributions of the input
random variables Xi, i = 1121 0 0 0 1 k. More importantly,
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Ck can be interpreted as the dependence structure of
the joint cdf Hk and written as Ck4u11 u21 0 0 0 1 uk5 =

Hk4F
−1

1 4u13ë151 F
−1

2 4u23ë251 0 0 0 1 F
−1
k 4uk3ëk55, where

F −1
i 4·3ëi5 is the generalized inverse of marginal cdf

Fi4·3ëi5 (Nelsen 2006, Corollary 2.10.10).
Another important implication of the representation

in (1) is that a joint probability density function (pdf) can
be written as a product of marginal pdfs and copula den-
sity function, which encodes all of the information about
the stochastic dependencies among the components. More
specifically, for differentiable marginal cdfs Fi4·3ëi5, i =

1121 0 0 0 1 k and differentiable copula Ck, the k-dimensional
pdf, which is denoted by hk below, can be written as

hk4x11 x21 0 0 0 1 xk5

=

k
∏

i=1

fi4xi3ëi5

× ck4F14x13ë151 F24x23ë251 0 0 0 1 Fk4xk3ëk550

In this representation, fi4·3ëi5 is the pdf of Xi, i.e.,
fi4x3ëi5 ≡ ¡Fi4x3ëi5/¡x, and ck is the k-dimensional
copula density function given by ¡kCk4u11 u21 0 0 0 1 uk5/
4¡u1¡u2 0 0 0 ¡uk5. This copula density function takes the
value of 1 when Xi, i = 1121 0 0 0 1 k are independent and
therefore, the joint density function reduces to the product
of only the marginal pdfs.

2.2.2. Sklar’s Marginal-Copula Representation and
NORTA. The use of Sklar’s theorem for representing a
k-dimensional NORTA distribution shows that the k-dimen-
sional random vector with the NORTA distribution and
the k-dimensional normal random vector share the same
copula:

Corollary 1. Let X = 4X11X21 0 0 0 1Xk5
′ correspond to

a k-dimensional random vector with a NORTA distribu-
tion characterized by continuous marginal cdfs Fi4·3ëi5,
i = 1121 0 0 0 1 k and positive definite correlation matrix èk.
Then there exists a k-dimensional unique normal copula
that represents the dependence structure of X.

The key to the proof of this corollary is that the joint
cdf Hk of Xi, i = 1121 0 0 0 1 k is given by

Hk4x11 x21 0 0 0 1 xk5

=êk4ê
−16F14x13ë1571ê

−16F24x23ë2571 0 0 0 1

ê−16Fk4xk3ëk573èk51

where ê−1 is the functional inverse of ê and êk (·3èk)
is the k-dimensional standard normal cdf with correlation
matrix èk. Because the normal copula is the dependence
function implicitly assumed whenever the multivariate
normal distribution is used, the dependence structure of
a k-dimensional NORTA distribution is represented by a
k-dimensional normal copula.

The joint pdf of the k-dimensional NORTA distribution,
hk, can now be written as the multiplication of the k com-
ponent marginal density functions and the k-dimensional
normal copula density function; i.e.,

hk4x11 x21 0 0 0 1 xk5

=

k
∏

i=1

fi4xi3ëi5×�k

(

ê−16F14x13ë1571ê
−16F24x23ë2571

0 0 0 1ê−16Fk4xk3ëk573èk

)

0 (2)

The normal copula density function �k is further given by

�k

(

ê−16u171ê
−16u271 0 0 0 1ê

−16uk73èk

)

≡
¡kêk4ê

−16u171ê
−16u271 0 0 0 1ê

−16uk73èk5

¡u1¡u2 0 0 0 ¡uk

1

≡ �èk�
−1/2 exp

{

−
1
2
Ü′4è−1

k − Ik5Ü
}

1 (3)

where ui ≡ Fi4xi3ëi5 for i = 1121 0 0 0 1 k, Ü ≡ 4ê−16u171
ê−16u271 0 0 0 1ê

−16uk75
′, and Ik is the k-dimensional iden-

tity matrix. Thus, the copula density function �k captures
all of the information about the dependence structure of X
using correlations �4i1 j5, i1 j = 1121 0 0 0 1 k.

2.2.3. Cooke’s Copula-Vine Specification and NORTA.
A vine is a graphical model for constructing high-dimen-
sional joint distributions using a series of two-dimensional
(conditional) distributions. It was introduced in Cooke
(1997), studied extensively in Bedford and Cooke (2001,
2002) and Kurowicka and Cooke (2003), and described
comprehensively in Kurowicka and Cooke (2006). In this
paper, we use a vine for representing NORTA’s normal
copula density function in (3). More specifically, we rep-
resent the joint distribution of the base random vari-
ables of the k-dimensional NORTA distribution (i.e., Zi ≡

ê−16Fi4Xi3ëi57, i = 1121 0 0 0 1 k) with a regular vine defined
as follows (Kurowicka and Cooke 2006, Definition 4.4).

Definition 2. V is a vine on k elements under the fol-
lowing conditions: (1) V = 4T11T21 0 0 0 1Tk−15. (2) T1 is
a connected tree with nodes N1 = 81121 0 0 0 1 k9 and edges
E1; for i = 2131 0 0 0 1 k − 1, Ti is a connected tree with
nodes Ni = Ei−1. V is a regular vine on k elements if
additionally the following condition is satisfied: (3) For
i = 2131 0 0 0 1 k − 1, if 8a1 b9 ∈ Ei, then #aãb = 2, where
ã denotes the symmetric difference. In other words, if a
and b are nodes of Ti connected by an edge in Ti, where
a= 8a11 a29 and b = 8b11 b29, then exactly one of the ai

equals one of the bi.

No unique regular vine exists for representing the depen-
dence structure of the NORTA distribution. Figure 1 pro-
vides examples of three different regular vines, each of
which can be used for representing the dependence struc-
ture of the 5-dimensional NORTA distribution. The first
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Figure 1. Three different regular vine specifications for the five-dimensional NORTA distribution.
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two vines are known as the C-vine and the D-vine, respec-
tively, and described in Kurowicka and Cooke (2006),
whereas the last one is introduced in Bedford and Cooke
(2002). Our solution approach works for any of these vines
as well as any regular vine constructed as described in Defi-
nition 2. Because using different regular vine specifications
leads to different sampling algorithms for NORTA’s depen-
dence parameters, we use a C-vine for describing our solu-
tion approach in the remainder of the paper due to the ease
of its implementation (Kurowicka and Cooke 2006, §6.4.2).

We represent NORTA’s k-dimensional normal copula
density function in (3) with a C-vine on ê−16Fi4Xi3ëi57,
i = 1121 0 0 0 1 k. This vine has the following uncondi-
tional and conditional correlations assigned to its edges:
�411 i5, i = 2131 0 0 0 1 k and �4j − 11 i; 1, 21 0 0 0 1 j − 25,
i = j1 j + 11 0 0 0 1 k, j = 31 41 0 0 0 1 k. Whereas �411 i5
is the (unconditional) correlation between random vari-
ables ê−16F14X13ë157 and ê−16Fi4Xi; ëi57, �4j − 11 i;
1121 0 0 0 1 j−2) is the (conditional) correlation between con-
ditional random variables ê−16Fj−14Xj−1; ëj−157 � ê−1 ·

6Fl4Xl; ël57, l = 11 21 0 0 0 1 j − 2 and ê−16Fi4Xi; ëi57 �

ê−1 · 6Fl4Xl; ël57, l = 11 21 0 0 0 1 j − 2. Because the depen-
dence structure of the NORTA distribution is represented
by a normal copula (Corollary 1), the conditional correla-
tion �4j −11 i;1, 21 0 0 0 1 j −25 is also the partial correlation
(i.e., the correlation between the orthogonal projections of
ê−16Fj−14Xj−1; ëj−157 and ê−16Fi4Xi; ëi57 on the plane
orthogonal to the space spanned by ê−16Fl4Xl; ël57, l = 11
21 0 0 0 1 j−2) (Morales et al. 2006). Recursive formulas exist
that allow the identification of the partial correlations from
the correlations of èk (Yule and Kendall 1965).

All of the (partial) correlations in the C-vine specification
of the k-dimensional NORTA distribution are algebraically
independent. Therefore, they do not need to satisfy any alge-
braic constraints for positive definiteness. Furthermore, the
resulting copula-vine specification uniquely determines the
correlation matrix èk:

Corollary 2. For the C-vine on ê−16Fi4Xi3ëi571 i = 11
21 0 0 0 1 k, there is a one-to-one correspondence between the
set of k× k positive definite correlation matrices of the
form èk and the set of correlations �411 i5, i = 21 31 0 0 0 1 k
and partial correlations �4j − 11 i; 1121 0 0 0 1 j − 25, i = j ,
j + 11 0 0 0 1 k, j = 31 41 0 0 0 1 k of the k-dimensional NORTA
distribution.

The proof of this corollary is from the application of
Theorem 4.4 of Kurowicka and Cooke (2006) to the copula-
vine specification of the NORTA distribution. Therefore, all
assignments of the numbers between −1 and 1 to the edges
of the C-vine (and to the edges of any arbitrary regular
vine) are consistent in the sense that there is a NORTA
distribution realizing these (partial) correlations.

We are now ready to replace hk4x11 x21 0 0 0 1 xk5, the joint
pdf of the k-dimensional NORTA distribution in (2), with
the product of the k component marginal density functions
and the k4k − 15/2 two-dimensional normal copula den-
sity functions, each of which is associated with an edge of
the C-vine:

=

k
∏

i=1

fi4xi3ëi5

×

k
∏

i=2

�2

(

F14x13ë151 Fi4xi3ëi53è2411 i5
)

×

k
∏

j=3

k
∏

i=j

�2

(

êj−1 �11210001j−2

(

ê−16Fj−14xj−13ëj−157
∣

∣

ê−16Fl4xl3ël571 l = 1121 0 0 0 1 j − 2
)

1

·êi �11210001j−2

(

ê−16Fi4xi3ëi57
∣

∣ê−16Fl4xl3ël571

l = 1121 0 0 0 1 j − 2
)

3

·è24j − 11 i31121 0 0 0 1 j − 25
)

0 (4)

In this representation, è2411 i5 is the two-dimensional cor-
relation matrix with correlation �411 i5 as its 41125th entry
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(i.e., è2411 i5≡ 61�411 i53 �411 i517). Similarly, è24j − 11 i3
1121 0 0 0 1 j − 25 ≡ 61�4j − 11 i31121 0 0 0 1 j − 253�4j − 11 i3
1121 0 0 0 1 j − 2517. Additionally, ês �11210001j−2 is the marginal
cdf of the conditional random variable ê−16Fs4Xs3
ës57 � ê−16Fl4Xl3ël57, l = 1121 0 0 0 1 j − 2 with mean
�s �11210001j−2 and variance �2

s �11210001j−2 that can be obtained
using Theorem 3.3.4 of Tong (1990) with the recursive for-
mulas of Yule and Kendall (1965). Appendix B describes
how to do this for a 5-dimensional NORTA distribution.

3. Bayesian Model for Sampling
NORTA Parameters

The key to the development of our Bayesian model is to
separate the sampling of the component parameter vectors
from the sampling of the (partial) correlations using Sklar’s
marginal-copula representation and Cooke’s copula-vine
specification. Therefore, in §3.1 we first focus on the
ith component of the NORTA vector and describe how to
sample parameter vector ëi. Then we discuss the sam-
pling of correlation �411 i5 and partial correlation �4j−11 i3
1121 0 0 0 1 j − 25 in §3.2. Finally, in §3.3 we describe how
to sample all parameters of the k-dimensional NORTA dis-
tribution (i.e., ëi, i = 1121 0 0 0 1 k, �411 i5, i = 2131 0 0 0 1 k,
and �4j − 11 i31121 0 0 0 1 j − 25, i = j1 j + 11 0 0 0 1 k, j =

3141 0 0 0 1 k) using the sampling algorithms of §§3.1 and 3.2.

3.1. Sampling the Parameters of the Component
Marginal Distributions

Well-established literature exists on Bayesian probability
theory for sampling the parameters of the standard fami-
lies of distributions (Gelman et al. 2000, Carlin and Louis
2000). Assuming the availability of the historical data of
finite length, this section describes how to use this litera-
ture to sample the parameters of the ith component having
the exponential distribution or the gamma distribution of
the standard input-modeling packages.

First, we choose the distribution of the ith component
Xi as exponential with scale parameter �i; i.e., fi4xi3�i5=

�−1
i exp4−xi�

−1
i 5. Therefore, we can write the likelihood

function
∏n

t=1 fi4xi1 t3�i5, which describes the joint pdf
of the historical data xi1 t , t = 1121 0 0 0 1 n of length n, as
�−n
i exp4−�−1

i

∑n
t=1 xi1 t5. The next step is to construct a

prior density function �i4�i5 on scale parameter �i. We
do this with the conjugate,1 inverse gamma prior with
shape parameter �i and scale parameter �i; i.e., �i4�i5 =

�
�i
i â

−14�i5�
−4�i+15
i exp4−�i�

−1
i 5. Finally, we denote the vec-

tor of the historical data available for the ith component
with xi and combine the prior density function with the
likelihood function using Bayes’ rule to obtain the poste-
rior density function pi4�i � xi5 of parameter �i (Bernardo
and Smith 1994):

pi4�i � xi5∝�i4�i5
n
∏

t=1

fi4xi1 t3�i5

∝ �
−4n+�i+15
i exp

{

−
�i +

∑n
t=1 xi1 t

�i

}

0 (5)

Thus, representing parameter uncertainty for component Xi

reduces to the sampling of �−1
i from a gamma distribu-

tion with shape parameter n+�i and scale parameter 4�i +
∑n

t=1 xi1 t5
−1, for which an efficient algorithm is available in

Appendix A.1. The appendix is part of the online version
that can be found at http://or.journal.informs.org/.

Next, we consider a gamma component with shape
parameter �i and scale parameter �i; i.e., fi4xi3�i1�i5 =

x
�i−1
i â−14�i5�

−�i
i exp4−xi�

−1
i 5. We use Bayes’ rule for

combining Jeffreys’ prior density function �i4�i1�i5∝ �−1
i

with the likelihood function of xi and obtain the following
joint posterior density function for the parameters of the
gamma component (Son and Oh 2006):

pi4�i1�i � xi5∝�i4�i1�i5
n
∏

t=1

fi4xi1 t3�i1�i5

=
�

−�in−1
i

6â4�i57
n

( n
∏

t=1

x
�i−1
i1 t

)

exp
{

−

∑n
t=1 xi1 t
�i

}

0

Parameters �i and �i can be sampled from this joint poste-
rior density function using the Markov Chain Monte Carlo
(MCMC) method. The idea behind the MCMC method is
to simulate a random walk in the space of 4�i1�i5 that con-
verges to the joint posterior density function pi4�i1�i � xi5
(Gilks et al. 1996). A widely used MCMC method is
the Gibbs sampler algorithm (Geman and Geman 1984,
Gelfand and Smith 1990). We describe the implementation
of this algorithm for the parameters of the gamma distribu-
tion in Appendix A.2.

3.2. Sampling the (Partial) Correlations

First, we describe the sampling of correlation �411 i5.
Because the focus is on the correlation between random
variables ê−16F14X13ë157 and ê−16Fi4Xi3ëi57, we pro-
vide an explicit representation of their joint density function
�24F14x13ë151 Fi4xi3ëi53è2411 i55:

�è2411 i5�
−1/2 exp

{

−
1
2

(

ê−16F14X13ë157

ê−16Fi4Xi3ëi57

)′

4è−1
2 411 i5− I25

(

ê−16F14X13ë157

ê−16Fi4Xi3ëi57

)}

0

Thus, defining

S2411 i �ë11ëi1x11xi5≡

n
∑

t=1

(

ê−16F14x11 t3ë157

ê−16Fi4xi1 t3ëi57

)

·

(

ê−16F14x11 t3ë157

ê−16Fi4xi1 t3ëi57

)′

and using the trace operator (tr), we can represent the likeli-
hood function associated with the dependence structure (i.e.,
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∏n
t=1 �24F14x11 t3ë151 Fi4xi1 t3ëi53è2411 i55) as follows:

�è2411 i5�
−n/2 exp

{

tr
(

−
1
2 S2411 i �ë11ëi1x11xi5

·
(

è−1
2 411 i5− I2

))}

0 (6)

The form of this likelihood function suggests the use
of the inverse Wishart density function as a conjugate
prior for è2411 i5 (Rossi et al. 2006). Therefore, we fol-
low Jeffreys’ invariance principle (Kass and Wasserman
1996) and choose prior density function �4è2411 i55 ∝

�è2411 i5�
−3/2 for correlation matrix è2411 i5. The right-

hand side of this representation corresponds to the inverse
Wishart density function with zero degrees of freedom and
serves as a diffuse prior density function. Furthermore, it
coincides with the beta prior density function of Barnard
et al. (2000) with � = 0.

Combining the prior density function �4è2411 i55 with
the likelihood function in (6), using Bayes’ rule leads to
the following conditional posterior copula density function:

p4è2411 i5 �ë11ëi1x11xi5

∝ �è2411 i5�
−4n+35/2 exp

{

tr
(

−
1
2 S2411 i �ë11ëi1x11xi5

·è−1
2 411 i5

)}

0

Thus, sampling �411 i5 reduces to the sampling of the cor-
relation matrix è2411 i5 from the inverse Wishart density
function with parameters n and S2411 i � ë11ëi1x11xi5.
An algorithm for sampling è2411 i5 is provided in
Appendix A.3.

Next, we consider the partial correlation �4j − 11 i3
1121 0 0 0 1 j − 25 between conditional random variables
ê−16Fj−14Xj−13ëj−157 �ê

−16Fl4Xl3ël57, l = 1121 0 0 0 1 j − 2
and ê−16Fi4Xi3ëi57 � ê−16Fl4Xl3 ël57, l = 1121 0 0 0 1 j − 2.
Similarly, we choose the conjugate, inverse Wishart prior
density function

�
(

è24j − 11 i31121 0 0 0 1 j − 25
)

∝è2

∣

∣4j − 11 i31121 0 0 0 1 j − 25
∣

∣

−3/2

for partial correlation matrix è24j − 11 i31121 0 0 0 1 j − 25.
This leads to the conditional posterior copula density func-
tion p4è24j − 11 i31121 0 0 0 1 j − 25 �åj1x5 of the form

∝
∣

∣è24j − 11 i31121 0 0 0 1 j − 25
∣

∣

−4n+35/2

× exp
{

tr
(

−
1
2 S24j − 11 i31121 0 0 0 1 j − 2 �åj1x5

·è−1
2 4j − 11 i31121 0 0 0 1 j − 25

)}

1

where x is the kn-dimensional vector of the histori-
cal data; åj is the vector of NORTA parameters ëm,
m = 1121 0 0 0 1 k, �411m5, m = 2131 0 0 0 1 k, and �4l − 11m3
1121 0 0 0 1 l− 25, m= l1 l+ 11 0 0 0 1 k, l = 3141 0 0 0 1 j − 1; and
S24j − 11 i31121 0 0 0 1 j − 2 � åj1x5 is the two-dimensional

matrix defined by

n
∑

t=1













ê−16Fj−14xj−11 t3ëj−157−�j−1 �11210001j−2

�j−1 �11210001j−2

ê−16Fi4xi1 t3ëi57−�i �11210001j−2

�i �11210001j−2













·













ê−16Fj−14xj−11 t3ëj−157−�j−1 �11210001j−2

�j−1 �11210001j−2

ê−16Fi4xi1 t3ëi57−�i �11210001j−2

�i �11210001j−2













′

0

Therefore, sampling �4j − 11 i31121 0 0 0 1 j − 25 reduces
to the sampling of the partial correlation matrix è24j −

11 i31121 0 0 0 1 j − 25 from the inverse Wishart density func-
tion with parameters n and S24j − 11 i31121 0 0 0 1 j − 2 �

åj1x5.
An alternative to the use of conjugate, inverse Wishart

priors for the (partial) correlations of the copula-vine spec-
ification is to use noninformative priors (Liechty et al.
2004). These priors include Jeffreys’ prior (Jeffreys 1961),
log-matrix prior (Leonard and Hsu 1992), reference prior
(Berger and Sun 2008), uniform shrinkage prior (Daniels
1999), and uniform prior (Barnard et al. 2000). Barnard
et al. (2000) further note that �4�5= 41−�254�−35/2, which
is a beta density function with shape parameters 4� − 15/2
as well as a uniform density function for � = 3, can be cho-
sen as a prior density function for � ∈ 6−1117. Selecting
any of these prior density functions for the (partial) corre-
lation requires the use of the MCMC method. Therefore,
more computational effort is needed than that required by
the sampling of the (partial) correlation from the inverse
Wishart density function.

3.3. Sampling All NORTA Parameters

Motivated by the decomposition of the joint pdf in (4)
into separate terms associated with the component marginal
distributions and the (partial) correlations, we indepen-
dently choose a prior density function for each of the
NORTA parameters. Specifically, we select prior density
functions �i4ëi5, i = 1121 0 0 0 1 k for component parame-
ter vectors ëi, i = 1121 0 0 0 1 k, utilizing the well-established
Bayesian literature on standard families of distribution
as described in §3.1. Assuming the probabilistic inde-
pendence of the (partial) correlations, we choose prior
density functions �4è2411 i55, i = 2131 0 0 0 1 k for correla-
tion matrices è2411 i5, i = 2131 0 0 0 1 k, and �4è24j − 11 i3
1121 0 0 0 1 j − 255, i = j1 j +11 0 0 0 1 k, j = 3141 0 0 0 1 k for par-
tial correlation matrices è24j − 11 i31121 0 0 0 1 j − 25, i =

j1 j + 11 0 0 0 1 k, j = 3141 0 0 0 1 k. The selection of the prior
density functions for the (partial) correlation matrices is
discussed in §3.2.

Because different regular vine specifications are char-
acterized by different (partial) correlations, the probabilis-
tic independence of the partial correlations of the C-vine
does not imply the probabilistic independence of the par-
tial correlations of any other regular vine. Therefore, if
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the simulation analyst chooses to represent the depen-
dence structure of the NORTA distribution with a differ-
ent regular vine, then she must assume the probabilistic
independence of the partial correlations of that vine. This
assumption not only provides flexibility in choosing prior
density functions for NORTA’s dependence parameters, but
also allows the use of the existing literature on Bayesian
inference for correlation matrices without being challenged
by the high-dimensional nature of the large-scale stochastic
simulations.

Assuming the availability of the k-dimensional his-
torical data of length n (i.e., xi1 t , i = 1121 0 0 0 1 k,
t = 1121 0 0 0 1 n), we use Bayes’ rule for combining
the prior density functions with the likelihood function
∏n

t=1 hk4x11 t1 x21t1 0 0 0 1 xk1t5, i.e.,

n
∏

t=1

k
∏

i=1

fi4xi1t3ëi5

×

n
∏

t=1

k
∏

i=2

�2

(

F14x11t3ë151Fi4xi1t3ëi53è2411i5
)

×

n
∏

t=1

k
∏

j=3

k
∏

i=j

�2

(

êj−1�11210001j−2

(

ê−16Fj−14xj−11t3ëj−157
∣

∣

ê−16Fl4xl1t3ël571 l=11210001j−2
)

1

êi�11210001j−2

(

ê−16Fi4xi1t3ëi57
∣

∣

ê−16Fl4xl1t3ël571 l=11210001j−2
)

3

è24j−11i311210001j−25
)

1

and obtain the following joint posterior density function:

∝

k
∏

i=1

pi4ëi �xi5
︷ ︸︸ ︷

[

�i4ëi5
n
∏

t=1

fi4xi1 t3ëi5

]

×

k
∏

i=2

p4è2411i5�ë11ëi1x11xi5
︷ ︸︸ ︷

[

�4è2411i55
n
∏

t=1

�2

(

F14x11t3ë151Fi4xi1t3ëi53è2411i5
)

]

×

k
∏

j=3

k
∏

i=j

p4è24j−11 i311210001j−25�åj 1x5
︷ ︸︸ ︷

[

�4è24j − 11 i31121 0 0 0 1 j − 255

·

n
∏

t=1

�2

(

êj−1�11210001j−2

(

ê−16Fj−14xj−11t3ëj−157
∣

∣

ê−16Fl4xl1t3ël571 l = 1121 0 0 0 1 j − 2
)

1

êi �11210001j−2

(

ê−16Fi4xi1 t3ëi57
∣

∣

ê−16Fl4xl1t3ël571 l = 1121 0 0 0 1 j − 2
)

3

è24j − 11 i31121 0 0 0 1 j − 25
)

]

0 (7)

Thus, the joint posterior density function of the NORTA
parameters is the product of the k marginal posterior density

functions pi4ëi � xi5, i = 11 21 0 0 0 1 k; the two-dimensional
posterior copula density functions p4è2411 i5 � ë11 ëi1
x1, xi5, i = 2, 31 0 0 0 1 k associated with the first tree of
the C-vine; and the two-dimensional posterior copula den-
sity functions p4è24j − 11 i31121 0 0 0 1 j − 25 �åj1 x5, i = j ,
j +11 0 0 0 1 k associated with the 4j −15th tree of the C-vine
for j = 31 41 0 0 0 1 k. Appendix B provides an explicit repre-
sentation of this posterior density function for the 5-dimen-
sional NORTA random vector with exponentially distributed
components.

The form of the joint posterior density function in (7)
allows us to develop a fast, 4k4k+15/25-stage algorithm for
sampling the NORTA parameters. We provide the result-
ing algorithm in Figure 2. In the first k stages, we sample
parameter vectors ëi, i = 1, 21 0 0 0 1 k (i.e., ë̃i, i = 1, 21
0 0 0 1 k) from posterior density functions pi4ëi � xi5, i = 1,
21 0 0 0 1 k, as described in §3.1 for exponentially and gamma
distributed components. This allows us to account for the
uncertainty around the parameters of the marginal distri-
butions of the components. The next k − 1 stages sample
è2411 i5, i = 21 31 0 0 0 1 k (i.e., è̃2411 i5, i = 21 31 0 0 0 1 k) from
posterior density functions p4è2411 i5 � ë̃11 ë̃i, x1, xi5,
i = 2131 0 0 0 1 k using ë̃i, i = 1121 0 0 0 1 k obtained in the
first k stages of the algorithm. We sample each of these
k − 1 correlation matrices as described in §3.2 and set
the 41125th entry of è̃2411 i5 to �̃411 i5 for i = 2, 31 0 0 0 1 k.
This allows us to account for the uncertainty around the
(unconditional) correlations of the C-vine specification. In
the remaining stages, we capture the uncertainty around the
partial correlations. To do this, we first construct vector
å̃j with the sampled NORTA parameters; i.e., ë̃m, m =

1, 21 0 0 0 1 k, �̃411m5, m = 2, 31 0 0 0 1 k, and �̃4l − 1, m; 1,
21 0 0 0 1 l− 25, m= l, l+ 11 0 0 0 1 k, l = 3, 41 0 0 0 1 j − 1. Then,
we characterize the conditional normal cdfs êi �11210001j−2

and êj−1 �11210001j−2 by obtaining their means �i �11210001j−2 and
�j−1 �11210001j−2 and variances �2

i �11210001j−2 and �2
j−1 �11210001j−2

from å̃j via Theorem 3.3.4 of Tong (1990) and the recur-
sive formulas of Yule and Kendall (1965). We use the
resulting cdfs for determining the posterior density func-
tion p4è24j − 1, i; 1, 21 0 0 0 1 j − 25 � å̃j1x5. We sample
è24j − 1, i; 1, 21 0 0 0 1 j − 25 (i.e., è̃24j − 1, i; 1, 21 0 0 0 1 j −

25) from this posterior density function as described in §3.2
and set the 41125th entry of è̃24j − 1, i; 1, 21 0 0 0 1
j−25 to �̃4j−1, i; 1, 21 0 0 0 1 j−25. Repeating this for i = j ,
j + 11 0 0 0 1 k and j = 3, 41 0 0 0 1 k allows us to account for
the uncertainty around the partial correlations of the C-vine
specification. Appendix B provides a detailed implementa-
tion of this NORTA parameter-sampling algorithm for the
5-dimensional NORTA distribution with exponentially dis-
tributed components.

4. Estimation of the Mean Performance
Measure and the Confidence Interval

In this section, we let Y be the performance measure whose
mean is relevant to the decision-making process. Our goal
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Figure 2. An algorithm that samples NORTA parameters for capturing parameter uncertainty in a stochastic simulation
with k correlated inputs having a k-dimensional NORTA distribution.

for i = 1121 0 0 0 1 k do
sample the ith component parameter vector ëi (i.e., ë̃i) from pi4ëi � xi5

end loop
for i = 2131 0 0 0 1 k do

sample correlation matrix è2411 i5 (i.e., è̃2411 i5) from p4è2411 i5 � ë̃11 ë̃i1x11xi5
end loop
for j = 3141 0 0 0 1 k do

construct vector å̃j consisting of the sampled NORTA parameters
for i = j1 j + 11 0 0 0 1 k do
(a) compute the means and variances of cdfs êi �11210001j−2 and êj−1 �11210001j−2 using å̃j ,

Theorem 3.3.4 of Tong (1990), and recursive formulas of Yule and Kendall (1965),
and insert them into the density function p4è24j − 11 i31121 0 0 0 1 j − 25 � å̃j 1x5

(b) sample partial correlation matrix è24j − 11 i31121 0 0 0 1 j − 25 (i.e., è̃24j − 11 i31121 0 0 0 1
j − 25) from the posterior density function p4è24j − 11 i31121 0 0 0 1 j − 25 � å̃j 1x5

end loop
end loop

is to incorporate the Bayesian model of §3 into the simu-
lation replication algorithm of Chick (2001) and generate
a point estimate and a confidence interval of EY �x4Y � x5
(i.e., the posterior mean of the output random variables Yr ,
r = 1121 0 0 0 1R of a stochastic simulation with R replica-
tions, given the historical input data vector x and the prior
information about the NORTA parameters).

We present the resulting simulation replication algorithm
in Figure 3. Step 1 uses our Bayesian model to sample
NORTA parameters for each of the R replications of Step 2.
We denote the parameters sampled in the r th replication by
ë̃ r

i , i = 1, 21 0 0 0 1 k, �̃r411 i5, i = 2, 31 0 0 0 1 k, and �̃r4j − 1,
i; 1, 21 0 0 0 1 j − 25, i = j , j + 11 0 0 0 1 k, j = 3, 41 0 0 0 1 k. Step
2 captures both stochastic uncertainty and parameter uncer-
tainty by generating k correlated input variates x̃r

i , i = 1,
21 0 0 0 1 k from the k-dimensional NORTA distribution with
parameters ë̃ r

i , i = 1, 21 0 0 0 1 k, �̃r411 i5, i = 2, 31 0 0 0 1 k,
and �̃r4j − 1, i; 1, 21 0 0 0 1 j − 25, i = j , j + 11 0 0 0 1 k, j =

3141 0 0 0 1 k for r = 1, 21 0 0 0 1R. Thus, the key difference of
this algorithm from the one presented in Chick (2001) is its
first step, where the NORTA parameters are sampled from
their Bayesian posterior density functions.

The proper implementation of the simulation replica-
tion algorithm requires the consideration of two important
issues: the independent sampling of the NORTA parameters
for each of the R replications and the analysis of the simu-
lation output data yr , r = 1121 0 0 0 1R for estimating a point
estimate and a confidence interval of EY �x4Y � x5. The first
issue arises when the prior density functions chosen for the
component parameter vectors and/or the (partial) correla-
tions are not conjugate. In this case, we sample the NORTA
parameters using the Gibbs sampler algorithm. When this
algorithm is used for generating a distribution parameter
from its posterior density function, there often appear auto-
correlations between the values sampled within the chain.
There might also appear cross correlations between differ-
ent parameters sampled in different chains. However, the

simulation replication algorithm requires the independent
sampling of the NORTA parameters for each of its repli-
cations. Therefore, it is important to implement the Gibbs
sampler algorithm in a way that it provides statistically
independent values of a NORTA parameter for each of the
R replications. Appendix C describes how to do this using
the method of batching.

There are also cases in which the sampling of the
NORTA parameters does not require the use of an MCMC
method and thus, the independent sampling of the NORTA
parameters is easy to achieve. One such case occurs when
the components of the NORTA vector are exponentially
distributed and conjugate inverse gamma density functions
are chosen as the priors for the scale parameters of the
components, whereas conjugate inverse Wishart prior den-
sity functions are used for the (partial) correlations. There-
fore, we can easily generate R independent sets of NORTA
parameters using well-known algorithms for sampling from
gamma and Wishart density functions (Appendix A).

Despite obtaining statistically independent sets of
NORTA parameters in the first step of the simulation repli-
cation algorithm, this is an approximation to the indepen-
dent sampling of the NORTA parameters when the prior
density functions chosen for the component parameter vec-
tors and/or the (partial) correlations are not conjugate. The
failure to independently sample NORTA parameters often
leads to dependent simulation output data. Therefore, the
second issue that might arise in the implementation of the
simulation replication algorithm is related to the lack of
independence in the output data yr , r = 1121 0 0 0 1R. Law
(2007) provides an excellent overview of the methods that
have been proposed for the analysis of dependent simula-
tion output data. In Appendix D, we describe how to use
the method of batching for analyzing the (dependent) out-
put data yr , r = 1121 0 0 0 1R to obtain a point estimate and
a confidence interval of EY �x4Y � x5.
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Figure 3. The simulation replication algorithm that captures stochastic uncertainty and parameter uncertainty, and gen-
erates a point estimate and a confidence interval of EY �x4Y � x5.

Step 1
for i = 1121 0 0 0 1 k do

sample R independent variates of component parameter vector ëi (i.e., ë̃ r
i , r = 1121 0 0 0 1R5

from pi4ëi � xi5, independent of the parameters generated for other components
end loop
for i = 2131 0 0 0 1 k do

for r = 1121 0 0 0 1R replications do
sample è2411 i5 (i.e., è̃r

2411 i5) from p4è2411 i5 � ë̃ r
1 1 ë̃

r
i 1x11xi5, independent of the

correlation matrices generated in other replications, and set è̃r
2411 i561127 to �̃r411 i5

end loop
end loop
for j = 3141 0 0 0 1 k do

for i = j1 j + 11 0 0 0 1 k do
for r = 1121 0 0 0 1R replications do

sample è24j − 11 i31121 0 0 0 1 j − 25 (i.e., è̃r
24j − 11 i31121 0 0 0 1 j − 25) from p4è24j − 11

i31121 0 0 0 1 j − 25 � å̃r
j 1x5, independent of the partial correlation matrices of other

replications, and set è̃r
24j − 11 i31121 0 0 0 1 j − 2561127 to �̃r4j − 11 i31121 0 0 0 1 j − 25

end loop
end loop

end loop
Step 2
for r = 1121 0 0 0 1R replications do

sample input random variates (i.e., x̃ri , i = 1121 0 0 0 1 k) given NORTA parameters of the
r th replication (i.e., ë̃ r

i , i = 1121 0 0 0 1 k, �̃r411 i5, i = 2131 0 0 0 1 k, �̃r4j − 11 i31121 0 0 0 1 j − 25,
i = j1 j + 11 0 0 0 1 k, j = 3141 0 0 0 1 k) and calculate the output yr as a function of the input
random variates x̃ri , i = 1121 0 0 0 1 k

end loop
analyze the simulation output data yr , r = 1121 0 0 0 1R and generate a point estimate and
a confidence interval of EY �x4Y � x5

5. An Inventory Simulation Example
This section performs a numerical study demonstrating the
importance of the joint representation of stochastic and
parameter uncertainties in the estimation of the mean line-
item fill rates2 and the confidence intervals of multiproduct
inventory simulations with correlated demands. We refer
the reader to §5.1 for the experimental design and §5.2 for
the results.

5.1. Experimental Design

We consider a periodic-review inventory system with k¾ 1
different products whose demands follow a k-dimensional
NORTA distribution. We assume the following proper-
ties for the true NORTA distribution: (i) The ith product
demand has an exponential distribution with a mean of
104k+ 1 − i5/k units for i = 1121 0 0 0 1 k. (ii) Each (partial)
correlation in the C-vine specification of the k-dimensional
NORTA demand distribution is 0030. We let the number of
different products, k, take the values of 1, 2, 3, 5, and 10
and manage the inventories of the products with the base-
stock policy assuming zero ordering cost and zero lead
time. More specifically, we identify the base-stock levels
Ii, i = 1121 0 0 0 1 k via the use of the single-product models,
each of which has a nonstockout probability of 0090; i.e.,
Ii ≡ F −1

i 400903104k + 1 − i5/k5 for i = 1121 0 0 0 1 k. This

results in a true mean line-item fill rate of 0090 in each of
the k-product inventory simulations.

We assume the availability of the historical demand data
of length 100 generated from the true NORTA distribution.
We let Y be the line-item fill rate whose mean is rele-
vant to the inventory manager and use x for denoting the
vector of the historical demand data. We implement the
simulation replication algorithm as described in §4 for gen-
erating a point estimate and a 95% confidence interval of
EY �x6Y � x7. Our goal is to compare the performances of
the point estimates and the confidence intervals obtained
from the implementation of our approach to those obtained
from stochastic simulations that consider only stochastic
uncertainty. We assess the performance of the point esti-
mate using the mean absolute percentage error (MAPE)
and the mean square error (MSE), while we evaluate the
performance of the confidence interval using the average
confidence-interval half-width (HW) and the average cov-
erage probability (CP) (Zouaoui and Wilson 2003).

5.2. Results

Table 1 presents the results obtained when the view of a fre-
quentist is taken and the exponentially distributed product
demands are assumed to be independent. Table 2 uses the
Bayesian model and presents the results obtained assum-
ing independent product demands, despite the increas-
ing strength of dependence with the number of products.
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Table 1. The results obtained via frequentist approach
assuming independent demands.

Mean fill rate 95% confidence interval

k MAPE (%) MSE HW CP (%)

R= 11000
1 1.64 3044 × 10−4 4012 × 10−2 79.90
2 2.01 6060 × 10−4 2093 × 10−2 73.60
3 2.88 1021 × 10−3 2044 × 10−2 70.90
5 4.45 2056 × 10−3 1019 × 10−2 67.10

10 8.98 5098 × 10−3 1035 × 10−2 49.40

R= 51000
1 1.53 3040 × 10−4 1034 × 10−2 59.50
2 1.94 6030 × 10−3 9043 × 10−3 55.20
3 2.60 1012 × 10−3 7078 × 10−3 52.30
5 4.15 2013 × 10−3 6005 × 10−3 44.80

10 8.41 5073 × 10−3 4027 × 10−3 31.70

R= 101000
1 1.52 3031 × 10−4 4026 × 10−3 57.10
2 1.73 3061 × 10−4 3002 × 10−3 53.20
3 2.37 8091 × 10−4 2047 × 10−3 48.70
5 4.12 2009 × 10−3 1091 × 10−3 41.90

10 8.36 5029 × 10−3 1032 × 10−3 30.20

Finally, Table 3 presents the results obtained when both the
view of the Bayesian is taken and the stochastic depen-
dencies among the product demands are considered. Each
of these tables reports the results for three different val-
ues of R (i.e., run length) of the simulation replication
algorithm: 1,000, 5,000, and 10,000. As the run length
increases, we observe that the average confidence-interval
half-width approaches zero, whereas the accuracy in the
estimation of the mean absolute percentage error and the

Table 2. The results obtained via Bayesian approach
assuming independent demands.

Mean fill rate 95% confidence interval

k MAPE (%) MSE HW CP (%)

R= 11000
1 1.48 3006 × 10−4 4086 × 10−2 88.35
2 1.77 5070 × 10−4 3005 × 10−2 83.12
3 2.12 9070 × 10−4 2097 × 10−2 79.88
5 3.24 1085 × 10−3 1082 × 10−2 76.10

10 5.63 3047 × 10−3 2001 × 10−2 68.24

R= 51000
1 1.38 2090 × 10−4 3026 × 10−2 87.29
2 1.72 5030 × 10−4 2041 × 10−2 82.18
3 1.94 6000 × 10−4 9003 × 10−3 78.57
5 3.08 1052 × 10−3 6082 × 10−3 73.36

10 5.34 2099 × 10−3 5094 × 10−3 66.87

R= 101000
1 1.35 2073 × 10−4 5012 × 10−3 82.83
2 1.68 3046 × 10−4 4002 × 10−3 79.52
3 1.88 5087 × 10−4 2098 × 10−3 78.04
5 3.01 1050 × 10−3 1062 × 10−3 72.96

10 5.14 2082 × 10−3 2062 × 10−3 64.24

Table 3. The results obtained via Bayesian approach
assuming correlated demands.

Mean fill rate 95% confidence interval

k MAPE (%) MSE HW CP (%)

R= 11000
2 1.32 3027 × 10−4 5020 × 10−2 88.76
3 2.08 6054 × 10−4 3098 × 10−2 84.02
5 2.67 1017 × 10−3 3001 × 10−2 81.45

10 4.34 2032 × 10−3 2062 × 10−2 80.00

R= 51000
2 1.26 3001 × 10−4 3065 × 10−2 87.93
3 1.83 5078 × 10−4 9087 × 10−3 84.00
5 2.19 6067 × 10−4 8005 × 10−3 80.43

10 3.92 2007 × 10−3 6013 × 10−3 78.12

R= 101000
2 1.23 2092 × 10−4 7002 × 10−3 84.72
3 1.82 5076 × 10−4 4072 × 10−3 82.61
5 2.12 6054 × 10−4 3061 × 10−3 79.28

10 3.41 2002 × 10−3 3006 × 10−3 77.83

mean square error increases. We also observe that the use
of our model allows the simulation analyst to obtain point
estimates with lower mean absolute percentage errors and
confidence intervals with higher coverage than those of
the stochastic simulations that account only for stochastic
uncertainty.

Specifically, the comparison of the results tabulated in
Table 1 to those in Table 2 and Table 3 shows that the
point estimator accuracy for the Bayesian approach is bet-
ter than the point estimator accuracy for the frequentist
approach. The mean absolute percentage error is 1023% in
the 2-product setting, whereas it is 2012% in the 5-product
setting for the Bayesian approach with a run length of
10,000 replications (Table 3). On the other hand, for the
frequentist approach the mean absolute percentage errors
are 1073% and 4012% in the 2-product and 5-product set-
tings (Table 1). Although the average confidence-interval
half-widths are tighter than their Bayesian counterparts, the
frequentist approach delivers decreasing coverage proba-
bilities with increasing number of products. Because the
confidence intervals of the frequentist approach are cen-
tered on biased estimates of the mean line-item fill rate,
the confidence-interval coverage eventually drops to zero
as the number of products increases.

On the other hand, the confidence intervals based on the
Bayesian approach, even under the assumption of indepen-
dent product demands, show much higher coverage prob-
abilities as they account for the uncertainty around the
parameters of the component marginal distributions as well
as the stochastic uncertainty. We find that the mean abso-
lute percentage error is 3001% and the coverage probability
is 72096% in the 5-product setting under the assumption of
independent demands (Table 2). However, the mean abso-
lute percentage error increases to 5014% and the coverage
probability decreases to 64024% in the 10-product setting,
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while accounting for the correlations among the product
demands results in a mean absolute percentage error of
3041% and a coverage probability of 77083%. Thus, the
consideration of the demand correlations further improves
both the mean absolute percentage error of the point esti-
mates and the coverage probability of the confidence inter-
vals, especially as the number of products increases.

6. Conclusion
We consider a large-scale stochastic simulation whose
correlated inputs have a NORTA distribution with arbi-
trary continuous marginal distributions. We investigate
how to account for stochastic and parameter uncertain-
ties in the estimation of the mean performance measure
and the confidence interval of this simulation. Utiliz-
ing Sklar’s marginal-copula representation together with
Cooke’s copula-vine specification, we develop a Bayesian
model for the fast sampling of the parameters of the
NORTA distribution. The development of such a Bayesian
model, which enables simulation analysts to capture param-
eter uncertainty in stochastic simulations with correlated
inputs, is the primary contribution of this paper to the
discrete-event stochastic simulation literature. We incor-
porate the Bayesian model into the simulation replication
algorithm for the joint representation of stochastic uncer-
tainty and parameter uncertainty in the computation of the
mean performance estimate and the confidence interval.

We demonstrate the effectiveness of the Bayesian model
in decreasing the mean absolute percentage error of the
mean line-item fill-rate estimate and increasing the cover-
age of the confidence interval in a multiproduct inventory
simulation with correlated stochastic demands. It may be
possible to improve the performance of the mean line-item
fill-rate estimate and the confidence interval further with
additional multivariate demand data. However, the collec-
tion of data for many inputs of a large-scale stochastic
simulation might be a challenging task, in which case it
becomes necessary to focus the data-collection effort on the
inputs with significant impact on the performance. A way
of achieving this is to decompose the total variation of the
simulation output into distinct terms representing stochastic
uncertainty and parameter uncertainty. Such decomposition
of the output variance in simulations with correlated inputs
is the subject of ongoing work.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. A prior density function is said to be conjugate to a like-
lihood function if the resulting posterior density function
is in the same family of distributions as the prior density
function (Bernardo and Smith 1994).

2. The line-item fill rate compares the number of different
products shipped complete to the number of different prod-
ucts demanded. The use of the line-item fill rate, which
is joint across products, is common in settings where the
demands for the items can be correlated as they are fre-
quently used in sets.
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