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Recent years have seen the introduction of many surface characterization instruments and other spectral
imaging systems that are capable of generating data in truly prodigious quantities. The challenge faced
by the analyst, then, is to extract the essential chemical information from this overwhelming volume of
spectral data. Multivariate statistical techniques such as principal component analysis (PCA) and other
forms of factor analysis promise to be among the most important and powerful tools for accomplishing
this task. In order to benefit fully from multivariate methods, the nature of the noise specific to each
measurement technique must be taken into account. For spectroscopic techniques that rely upon counting
particles (photons, electrons, etc.), the observed noise is typically dominated by ‘counting statistics’ and
is Poisson in nature. This implies that the absolute uncertainty in any given data point is not constant,
rather, it increases with the number of counts represented by that point. Performing PCA, for instance,
directly on the raw data leads to less than satisfactory results in such cases. This paper will present a
simple method for weighting the data to account for Poisson noise. Using a simple time-of-flight secondary
ion mass spectrometry spectrum image as an example, it will be demonstrated that PCA, when applied
to the weighted data, leads to results that are more interpretable, provide greater noise rejection and are
more robust than standard PCA. The weighting presented here is also shown to be an optimal approach
to scaling data as a pretreatment prior to multivariate statistical analysis. Published in 2004 John Wiley &
Sons, Ltd.
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INTRODUCTION

Spectral imaging techniques are becoming the tools of
choice for performing comprehensive surface and near-
surface microcharacterization. Such instruments are capable
of collecting a full spectrum at each point in a spatial
array of points. In this paper, we will use the term
‘spectrum image’ expansively to describe data sets obtained
as line scans, traditional two-dimensional images and
data sets having three spatial dimensions. A time-of-flight
secondary ion mass spectrometry (ToF-SIMS) depth profile
would exemplify a typical three-dimensional image. Very
large spectrum images can be acquired using current
generation instruments. For instance, one commercially
available energy-dispersive x-ray spectrometer1 can collect a
full 1024-channel spectrum at each pixel on a 1024 ð 1024
grid. The spectrum image, in this case, comprises over
1 billion individual data elements. Once a third spatial
dimension is allowed, the potential size of a spectrum
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image is seemingly unlimited. The remaining challenge
is to extract the relevant chemical information from the
mountain of spectral data. In this pursuit, multivariate
statistical techniques have a prominent role to play.

Principal component analysis2 (PCA) and other factor
analysis methods3 have a long history in analyzing very
diverse types of multivariate data. Much of the large body
of relevant literature is summarized in the works referenced
above. Multivariate techniques also have been employed
for some time to analyze surface spectroscopic data. Factor
analysis was applied to SIMS images more than 15 years
ago.4 More recently, multivariate techniques have been
used to advantage when analyzing electron energy-loss
spectroscopy (EELS) elemental maps5,6 and spectrum images
obtained from x-ray fluorescence spectroscopy (XRF),7,8 x-
ray photoelectron spectroscopy (XPS),9,10 energy-dispersive
spectrometry (EDS),11 ToF-SIMS12 – 15 and a variety of other
surface spectroscopies.16 – 18 In these spectroscopic imaging
applications, factor analysis may be used alone to extract the
spectral characteristics of the pure chemical components
that exist in the sample and to determine their spatial
distributions. Alternatively, factor analysis can be used
to denoise spectral data and reduce its dimension as
a preprocessing step prior to cluster analysis or other
classification procedure.19 Because PCA is probably the most
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ubiquitous form of factor analysis and is often the first step
in many multivariate statistical methods, it will be the focus
of this paper. It must be kept in mind, however, that the basic
principles discussed here have a more general application.

Although the aforementioned imaging techniques exploit
a varied set of physical phenomena, they share a common
characteristic, namely that they count particles in order
to form their respective spectra. The particles might be
photons (XRF), electrons (XPS) or ions (ToF-SIMS), but
the fact that they are counted means that the noise or
variability in the measured spectra will likely be governed
by Poisson statistics. An accessible review of the Poisson
probability distribution has been given recently20 but, for
our purposes, the main result is that the estimated variance
of any individual measurement is equal to the magnitude
of the measurement itself. In other words, the absolute
magnitude of the uncertainty is not constant over an
entire data set but, rather, varies from datum to datum.
The implication of this variation is that standard PCA,
although providing an optimal model for the total variance
in a data set, is not optimal in terms of describing the
chemically relevant variance,2,21 i.e. variance arising from
small, chemically significant factors may be ignored while
attempting to account for large, but chemically insignificant
noise in major features. A number of approaches, including
weighted PCA22 and maximum likelihood PCA (ML-PCA),21

have been taken to overcome the shortcomings of standard
PCA in the presence of heteroscedastic noise. What these
approaches share in common is the incorporation of error
covariance information into the analysis. Similar approaches
have achieved success in the analysis of remotely sensed
multi- and hyperspectral images23,24 but they do not appear
to be applied commonly in the surface analysis community.

The remainder of this paper will be devoted to describing
a weighted PCA method that is suitable for use with spectral
data sets that exhibit Poisson statistics. Owing to the direct
relationship between a Poisson variable and its uncertainty,
the error covariance structure can be estimated directly
from the data itself and has a particularly simple form
in the absence of correlated errors. The method will be
demonstrated by applying it to the analysis of a simple ToF-
SIMS spectrum image whose interpretation is intuitively
obvious. Using both the original data and reconstructions of
the data at different noise levels, the advantages of weighting
will become apparent. In particular, the process of selecting
the number of significant factors is made more obvious,
and these factors will be shown to represent the chemical
information with higher fidelity. Improved noise rejection
and robustness are also characteristic of the new method.

EXPERIMENTAL

The ToF-SIMS spectrum image that will be used to illustrate
the Poisson-weighted PCA method is shown in Fig. 1. The
sample itself consists of a copper grid that has been plated
on aluminum and whose central region has been sputter-
cleaned with a gallium ion beam. This data set, which is
distributed as part of PHI’s25 WinCadence software for their
TRIFT ToF-SIMS instrument, contains slightly more than

2.1 million ion counts in the mass range 7–149 amu. The ions
detected were binned to a resolution of 1 amu, giving a 143-
channel mass spectrum at each pixel. Because the spectrum
image is 256 ð 256 pixels in size, each spectrum contains
approximately 33 total counts, on average.

All of the calculations presented here were performed
using Matlab26 Version 6.5. For the simulated spectrum
images, Poisson noise was added to varying levels using
the POISSRND function in the Matlab Statistics toolbox.

PRINCIPAL COMPONENT ANALYSIS

The application of PCA in the specific case of multivariate
image analysis has been described at length in a book of
the same title.27 Consider an m ð n matrix D comprising the
spectral data where m is the number of spectra (i.e. pixels)
and n is the number of spectral channels. Assuming, without
loss of generality, that m > n, the goal of PCA is to extract the
useful information in the n-dimensional data set into a lower
dimensional subspace. From a geometric point of view, PCA
begins by finding that single direction in n-dimensional
space that best describes the location of the data. That
vector gives the direction of the first principal component.
Once found, a second direction orthogonal to the first is
determined that best accounts for the variation in the data
that is not described by the first. This represents the second
principal component. The process continues, with each new
principal component maximally accounting for the variation
in the data that is orthogonal to all preceding components.
Typically, the first few principal components will contain
the chemical information of interest. If there are p such
components, the remaining n � p components are assumed
to describe experimental noise. Limiting further analysis to
the p-dimensional subspace defined by the first p principal
components provides the desired noise and dimensional
reduction.

In matrix terms, PCA seeks to factor the data matrix D

D D TPT �1�

where the superscript T represents a matrix transpose. As
PCA is commonly implemented, T is an m ð p matrix having
orthogonal columns and is traditionally called the score
matrix, whereas P is an n ð p matrix having orthonormal
columns and is called the loading matrix. Often, the data are
‘centered’ by subtracting the mean of all of the spectra from
each individual spectrum prior to performing the matrix
factorization. Recently, Bro and Smilde28 have shown that
the fit obtained by performing PCA on mean-centered data
is equivalent to fitting the original data to Eqn. (1) plus a
common offset. Because there is no common offset in ToF-
SIMS data (i.e. there is a true zero), mean centering has
no effect on the quality of the fit. Consequently, we will
use the original, non-centered data in all of the calculations
presented here.

There is a strong connection between PCA and the
singular value decomposition (SVD)29 of D, which is a
common technique for computing the principal components.
The SVD of the data matrix can be written

D D UVT �2�
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Figure 1. Total ion image (a) and mean spectrum (b) for the ToF-SIMS example spectrum image. The area of the sample imaged is
100 ð 100 µm in size.

where U and V are orthogonal matrices and 6 is a diagonal
matrix with the singular values of D being placed along the
diagonal. Comparison with Eqn. (1) shows that the scores
and loadings can be obtained simply as

T D �U�p and P D Vp �3�

The subscript p indicates that only the first p columns
of the respective matrices are being retained. A principal
component reconstruction of the data OD then can be
computed as

OD D TPT �4�

The singular values themselves have important significance.
The squares of the singular values are equal to the
eigenvalues of the cross-product of the data matrix DTD.
Each individual eigenvalue, in turn, quantifies the amount
of variance in the data set that is accounted for by
the corresponding principal component. Malinowski30,31

has shown that for errors that are uncorrelated and
uniform (i.e. a measurement’s variance is independent
of the measurement’s magnitude) all of the eigenvalues
that describe error are statistically equal once they have
been normalized by the degrees of freedom inherent in
their calculation. Assuming uniform error, a plot of the
sorted eigenvalues should be a virtually horizontal line
over the range of components that describes only noise
and should exhibit positive deviation from that line when
the principal components begin to describe systematic
spectroscopic variation in addition to the error. This result is
of fundamental importance. It says that if the assumption of
uniform, uncorrelated error is satisfied, all of the information
arising from the p spectroscopically active pure components
in a sample will be localized in the first p principal
components. Principal component analysis, in this case, will
provide a model that is optimal in the sense that the chemical
information is captured in the smallest possible number of
components.

Of course, for the spectroscopic techniques considered
here, where the observed spectra derive from Poisson
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Figure 2. Sorted eigenvalues obtained using standard PCA for
the copper grid example.

processes, the noise is far from uniform and the standard
PCA model will not be optimal in the sense outlined
above. Principal components describing real, but small,
spectroscopic features may be interspersed among, and
confounded with, principal components that describe the
noise. Figure 2 shows the eigenvalues of the copper grid data
set as computed using standard PCA. Given the simplicity of
the sample, one might intuitively expect that four principal
components would be sufficient to describe the chemical
variation in the spectrum image. These would include
copper and aluminum, sputtered and not. The eigenvalue
plot, on the other hand, suggests that there are perhaps
12 or 13 significant components. Figures 3 and 4 show the
first six score images and loading vectors, respectively, as
computed with standard PCA. Because the data have not
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Figure 3. First six score images for the copper grid data set computed by standard PCA.
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Figure 4. First six loading vectors for the copper grid data set computed with standard PCA.

been mean-centered, the first loading vector resembles the
mean spectrum and is the single vector that best describes
the data in a least-squares sense. The second component
represents the anticorrelation of aluminum and copper, and
the third component shows gallium from the sputtering
process together with sodium and potassium. The latter

species are likely to be residual from the plating process and
were uncovered by the cleaning operation.

Component 3 together with components 5 and 6 describe,
primarily, correlations and anticorrelations among gallium,
sodium and potassium. Perhaps component 4 is the most
interesting of the principal components. This component
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describes, primarily, the anticorrelation of masses 63 and 65,
which correspond to the two naturally occurring isotopes
of copper. Because there is no obvious physical reason why
the copper isotope ratio should vary on the scale of the
measurement, the observed anticorrelation is curious. To
gain some insight into what this component represents,
consider that in the absence of noise and non-copper-related
fragments the difference between the mass 63 signal and the
mass 65 signal should be zero once each has been normalized
by its respective natural abundance in copper. Deviations
from zero simply reflect noise in the copper channels.
Figure 5 compares an image of the copper noise computed
in this fashion with the magnitude of the component 4
score. Clearly, the copper noise and component 4 are highly
correlated (correlation coefficient D 0.97). Thus, we are
left to conclude that component 4, although undeniably
important in accounting for the overall variation of the
data, is describing noise rather than meaningful chemical
information. In other words, by assuming that noise is
uniform, standard PCA finds that it can most effectively
account for spectral variation by fitting large magnitude
noise associated with high intensity signals rather than trying
to fit small magnitude, yet chemically important, features.

WEIGHTED PRINCIPAL COMPONENT
ANALYSIS

The shortcomings of standard PCA for describing the
chemically interesting content of spectral data become
apparent in the case when noise is not uniform. Several
approaches have been taken to adapt PCA to accommodate
heteroscedastic noise. These approaches include maximum
likelihood PCA21 and various forms of weighted PCA.2,22 The
maximum likelihood approach is perhaps the most general
in that it allows each individual data element to have its own
associated uncertainty. For the Poisson data considered here,
such estimates are readily obtained because the estimated
variance of a Poisson variable is simply equal to the value
of the variable itself. In other words, if dij is the number of

counts in the ijth data element, one estimate of its variance is

var�dij� D dij �5�

Unfortunately, the maximum likelihood PCA method makes
extreme computational demands. In addition, although we
have individual estimates of uncertainty, they may not be
good estimates. Typical ToF-SIMS spectrum image data
sets, for instance, reflect low counting rates that, in turn,
yield large relative uncertainties and highly sparse data
matrices containing many zeros (>92% of the copper grid
data elements are zero).

A different approach was presented by Cochran and
Horne.22 Their basic idea is to transform the data into an
alternate space so that the uncertainty in the data is more
uniform in that space. Standard PCA then can be performed
in the alternate space to obtain a model that is optimal for
describing the chemical information. Finally, the model can
be back-transformed to give scores and loadings that can
be interpreted in real, physical terms. Cochran and Horne
showed that the optimal transformation is easily obtained
by scaling the data when the estimated variance can be
separated into the product of two factors: a row factor and a
column factor

var�dij� D gihj �6�

In this equation, gi is a function assumed to be constant for
all elements across the ith row and, likewise, hj is a function
that is assumed to be constant for all elements down the jth
column. This expression can be written as the outer product

var�D� D ghT �7�

Here, the vectors g and h are assumed to be column vectors.
The optimally weighted data QD are then given by

QD D �aG��1/2D�bH��1/2 �8�

where a and b are arbitrary constants (they simply scale
the eigenvalues) and G and H are diagonal matrices with
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Figure 5. (a) Noise in the copper isotope ratio measured as the absolute difference between the abundance-normalized counts in
mass channels 63 and 65. (b) Magnitude of the component 4 scores. (c) The pixel-by-pixel correlation between copper noise and the
component 4 score. Some extreme values (<1% of the total number of pixels) were clipped in the images to improve contrast. All of
the data is included in (c).
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the elements of g and h, respectively, along the diagonals.
Performing standard PCA in the weighted space gives

QD D QT QPT �9�

Equations (1), (8) and (9) can be combined to provide the
transformations needed between the principal components
in the weighted and physical spaces, namely

T D �aG�1/2 QT
P D �bH�1/2 QP

�10�

Note that the term ‘principal component’ is being used
somewhat loosely here. The columns of T and P will no longer
be orthogonal after the back-transformation. However, T
and P can be considered principal components in the sense
that they provide a basis that maximally accounts for the
chemically related variation in the data.

The foregoing arguments were cast in terms of an optimal
data transformation. In fact, the weighted PCA solution
itself can be shown to be optimal in a maximum likelihood
sense. Assuming that individual uncertainties are described
identically by the rank-one model in Eqn. (7), weighted
PCA and maximum likelihood PCA yield identical fits.
The equivalence of scaling (i.e. weighting with diagonal
matrices) and maximum likelihood estimation given rank-
one uncertainty estimates was pointed out recently28 and
we have verified the result using a published maximum
likelihood PCA algorithm21 on the copper grid data.

The weighted PCA procedure outlined above is straight-
forward. The primary difficulty resides in making the rank-
one estimate of the data variance that is required in Eqn. (7).
Fortunately, this estimation is considerably simplified in the
case of Poisson statistics where Eqn. (5) holds. Assuming that
counts in the spectral domain are statistically independent
of counts in the spatial domain, and that row and column
sums will be preserved, the best estimate of var(D) in a
maximum likelihood sense can be achieved readily. This is
accomplished by relating gi and hj to the probabilities of
finding a count in the ith row and jth column, respectively.
If pi is the probability of finding a count in the ith row and qj

is the probability of finding a count in the jth column, then
the expected value of var�dij� is simply

E[var�dij�] D E�dij� D piqjdÐÐ �11�

where E represents an expectation and a subscript dot
indicates summation over the corresponding index (thus,
dÐÐ represents the total number of counts in D). The
requisite probabilities are readily computed from the row
and column sums

pi D diÐ/dÐÐ

qj D dÐj/dÐÐ
�12�

Then, letting dm D [ d1Ð d2Ð Ð Ð Ð dmÐ ]T be a vector whose
elements are the m row sums and dn D [ dÐ1 dÐ2 Ð Ð Ð dÐn ]T

be the corresponding vector of the n column sums, the
expectation of var(D) can be written

E[var�D�] D 1
dÐÐ

dmdT
n �13�

Comparison with Eqn. (7) shows that g and h can be
expressed as

g D dm/
√

dÐÐ

h D dn/
√

dÐÐ
�14�

The weighting factors can be made more physically intuitive
by setting a D p

dÐÐ/n and b D p
dÐÐ/m in Eqn. (8). With this

choice, the weighting matrix aG is simply a diagonal matrix
with the properly unfolded mean image along its diagonal,
and the diagonal of the matrix bH consists of the mean
spectrum.

It is worthwhile at this point noting the fundamental
difference between the estimates of var(D) represented by
Eqn. (13) and those computed directly via Eqn. (5). In the
latter case, the uncertainties associated with each individual
data element are assumed to be independent of one another.
No use is made of the fact that correlations exist within
the data. The rank-one estimate of variance, on the other
hand, assumes that the variance, just like the data itself,
can be described by a linear model. Through the statistical
aggregation of the uncertainty estimates, as embodied in
the mean spectrum and mean image, improved estimates of
individual uncertainties are realized.

The superiority of the weighted PCA method for captur-
ing chemical information and producing more interpretable
results is readily demonstrated with the copper grid exam-
ple. Figure 6 shows the eigenvalues obtained for the copper
grid data set after weighting.

In contrast to the results from the unweighted analysis,
the eigenvalue plot obtained here unambiguously shows
the presence of four significant factors. The first five score
images obtained by weighted PCA are shown in Fig. 7, and
Fig. 8 displays the corresponding loading vectors. The first
three components appear quite similar to the corresponding
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Figure 6. Sorted eigenvalues obtained by PCA of the
weighted data matrix for the copper grid example.
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Figure 7. The first five score images obtained by weighted PCA of the copper grid data set.
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components found by the unweighted PCA analysis. The
fourth component, however, rather than describing noise
in the copper isotope ratio, is helping to describe the real
hydrocarbon layer present in the non-sputtered region of
the sample. A fifth component is also shown that appears
to detect a small inclusion in the sample. A comparison of
the actual spectra in the inclusion with the spectra of the
surrounding uncleaned copper suggests that this is in fact
a real feature containing several characteristic masses not
found elsewhere in the image. This demonstrates the critical
need for proper weighting of the data if one is seeking to
solve the needle-in-a-haystack problem.

SIMULATION RESULTS

Several assertions regarding the relative performances of
the weighted and unweighted PCA methods were made
in the previous sections in the context of the copper grid
example. A quantitative comparison of the two techniques,
however, requires that ‘truth’ be known. For instance, it
can be shown that unweighted PCA fits noisy experimental
data more closely than does the weighted PCA method.
To demonstrate that weighted PCA provides a better
explanation of the real chemical information, on the other
hand, presupposes that we know the precise chemistry of
the sample. Although such precise knowledge is difficult
to come by in a real sample, it is easy to incorporate into
realistic simulations. In the present case, the copper grid
data set was semi-simulated by constructing a noise-free
version of the data from a weighted PCA model comprising

0 5 10 15 20 25

105

106

107

Sorted Eigenvalue Index

E
ig

en
va

lu
e

250

100

50

25

10

5

2.5

Figure 9. Eigenvalues obtained by the weighted PCA method
for the simulated copper grid data at several counting rates.
The numbers on the curves represent the average counts per
pixel in the data set.

the first five principal components. Noise was then added
using a Poisson random number generator to simulate
counting rates ranging from 2.5 to 250 counts per pixel,
on average. The eigenvalues obtained by the weighted PCA
method for the simulated data sets are shown in Fig. 9. At
the higher counting rates, the presence of all five of the
chemical components is clearly indicated. In these cases, the
principal components derived are virtually indistinguishable
from the corresponding components computed using the
original data. At the lower counting rates, the signals arising
from minor constituents become insignificant with respect
to the noise and fewer non-noise principal components are
detected. In the following comparisons, data reconstructions
were made using the number of significant components
appropriate to each noise level.

Two metrics were used to assess the performance of
the weighted and unweighted PCA methods. The first, the
relative sum of squared residuals RSSR, is defined by

RSSR D
∥∥∥ OD � D

∥∥∥
2

F

/∥∥∥D
∥∥∥

2

F
�15�

and provides a measure of how closely the model fits the

raw data. In this expression,
∥∥∥ ž

∥∥∥
2

F
represents the squared

Frobenius norm of the matrix, which is computed simply as
the sum of the squared elements of the matrix. The second
metric is the relative sum of squared errors RSSE, which
measures how the model deviates from the true values

RSSE D
∥∥∥ OD � DTrue

∥∥∥
2

F

/
kDTruek2

F �16�

The relative performances of the two PCA methods are
compared in Fig. 10. Standard PCA provides a better fit
to the raw data than does weighted PCA. This is in
keeping with the well-known2 characteristic of PCA that
it produces, for a given number of components, the best
possible representation of the data in the least-squares sense.
Owing to the non-uniform noise, however, unweighted PCA
does not provide the best fit to the underlying chemical
model. Clearly, weighted PCA outperforms standard PCA
when it comes to describing the real chemical content of the
data.

As a final comparison, the ability of the weighted and
standard PCA methods to detect the minor inclusion can
be evaluated. Whether or not this inclusion is ‘real’ in
the original data, it is truly real by construction in the
simulations. Figure 11 shows the score images and portions
of the loading vectors for the single principal component that
best describes the inclusion. For this particular comparison,
the 100-counts-per-pixel simulation was employed. The
inclusion is clearly identified by both PCA methods. It is
interesting to note, however, that while the weighted PCA
method finds the inclusion to be the fifth most important
component of the five known sources of chemical variation,
the standard PCA method detects the inclusion in the 14th
principal component. In other words, standard PCA finds at
least nine components, which primarily represent noise, that
are deemed more important than the real chemical inclusion
for describing the overall variance in the data. It would seem
highly unlikely that this component would be discovered in
a typical standard PCA analysis.
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Figure 11. Score images and loading vectors for the single principal component that best describes the six-pixel inclusion in the
copper grid data set simulated at 100 counts per pixel on average.
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SUMMARY AND CONCLUSION

The statistical properties of spectroscopic data that arise
from techniques that rely upon particle counting have been
explored. The Poisson nature of such data ensures that its
uncertainty is inherently non-uniform throughout the data
set. This violates a fundamental assumption of standard
multivariate techniques, such as PCA, which assume that
the absolute magnitudes of the uncertainties are uniform
and independent of the size of the respective individual data
elements. A simple approach to weighting the data to make
the uncertainties more uniform was presented. The optimal
weighting under the constraints that the weighting matrices
are diagonal and row and column sums are preserved
during variance modeling was shown to involve simply the
mean observation intensity (or mean image in the case of a
spectrum image) and the mean spectrum. Using a simple and
intuitive example, the clear superiority of the weighted PCA
approach as compared to standard PCA was demonstrated.
The weighted analysis provides eigenvalues that are more
reliable for estimating the number of chemically important
components. In addition, weighted PCA is more effective at
segregating the chemically important information into the
most significant principal components. Although ToF-SIMS
data and PCA were used as exemplars of Poisson data and
the multivariate statistical technique, respectively, the same
ideas are directly applicable to other Poisson spectroscopies
and multivariate analyses as well.
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