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Protein flexibility plays a major role in biomolecular
recognition. In many cases, it is not obvious how
molecular structure will change upon association with
other molecules. In proteins, these changes can be
major, with large deviations in overall backbone struc-
ture, or they can be more subtle as in a side-chain
rotation. Either way the algorithms that predict the
favorability of biomolecular association require rela-
tively accurate predictions of the bound structure to
give an accurate assessment of the energy involved in
association. Here, we review a number of techniques
that have been proposed to accommodate receptor
flexibility in the simulation of small molecules binding
to protein receptors. We investigate modifications to
standard rigid receptor docking algorithms and also
explore enhanced sampling techniques, and the com-
bination of free energy calculations and enhanced
sampling techniques. The understanding and allow-
ance for receptor flexibility are helping to make com-
puter simulations of ligand protein binding more
accurate. These developments may help improve the
efficiency of drug discovery and development. Effi-
ciency will be essential as we begin to see personal-
ized medicine tailored to individual patients, which
means specific drugs are needed for each patient’s
genetic makeup.
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The advent of pharmacogenomics has opened up many
new and exciting avenues to optimize drug treatment for a
variety of diseases (1). While often used to correlate drug
efficiency or toxicity with specific mutations, it has great
potential in combination with structure-based drug discov-
ery as well. Particularly in the realm of computer-aided drug
design, it is very conceivable that studies on individual
mutant receptors can yield ’personalized drugs’ tailored to
target specific mutant protein forms only. These studies
ideally will include full receptor and ligand flexibility to find
the most optimally suited inhibitors. This review will focus
on techniques that are used to account for receptor flexibil-
ity in computer-aided drug discovery studies.

Introduction to Receptor Flexibility

Often it is of great interest to know the manner in which
different molecules interact. Gibbs free energy can be
related to the favorability of one state over another such
as state A, a drug bound to its protein target, or state B,
unbound. The free energy can be related to the concen-
tration bound and unbound, and affinity can be quantita-
tively expressed in this way. A large number of methods
have been proposed to calculate the free energy of bind-
ing in biomolecular recognition, because this property is of
great interest to those that develop drugs for biological tar-
gets. If one only needs to know the structure of a com-
pound to calculate its binding affinity to a target of
interest, it would save a great effort in screening com-
pounds and synthesizing them. In addition, the vast major-
ity of the chemical space possible for drug-like molecules
has not been probed by chemists, but could in theory be
more efficiently explored via computation if rapid and
accurate methods are developed. In fact, in terms of drug-
sized molecules, it is estimated that only a very small
percentage of the chemical space available has been
synthesized (2). Of great relevance and application have
been docking and scoring functions, which provide rapid

ª 2012 John Wiley & Sons A/S. doi: 10.1111/cbdd.12051 41

Chem Biol Drug Des 2013; 81: 41–49
Special Issue-Review
Virtual Screening and Estimation of Binding Energies



ranking of compounds, sometimes estimating binding
energies, by generating and scoring poses, which are
three-dimensional orientations of ligands interacting with
receptors. There are numerous examples of docking pro-
grams; the first widely used method was DOCK (3) and
more recent versions are still in use today (4). Other com-
monly used programs are AUTODOCK (5), which is freely
available, and GLIDE (6) distributed with the Schrödinger
suite of toolsa. These methods have proved of great use
(7) because of their speed and simplicity in setup, but suf-
fer from numerous errors because they do not account
well for entropy, water effects, or protein structural
changes upon ligand binding (8).

Often proteins adopt different conformations upon ligand
binding than they do in their unbound form. Significant
changes can be seen in the backbone structure of some
proteins, while minor changes like side-chain rotations or
subtle rearrangements are often important in terms of bind-
ing affinity as well. Some cytochrome P450s (CYP) includ-
ing CYP2B4 undergo alpha-helical rearrangements to allow
different substrates to bind (9). The infamous CYP3A4 iso-
form adopts major changes in conformation during binding,
which is believed to be necessary for metabolism of many
substrates, which vary greatly in size (1000 daltons varia-
tion), geometry, and composition. These changes have
been verified by ligand co-crystallography (10–12). With all
the degrees of freedom and flexibility inherent in protein
structure, the changes in receptor conformation are very
important in calculating the binding free energy. If the basic
geometric shape of the binding site is not described cor-
rectly, then it will be quite difficult to predict compound
binding correctly using methods like docking and scoring.
Two theories have been proposed to describe receptor
configurational change upon ligand interaction. The first is
conformational selection (13,14) in which all conformations
are present in the unbound receptor, but the populations of
each configuration change in the bound form, meaning that
the average structure is different from bound to unbound.
The second theory is induced fit (15), in which one configu-
ration is forced into another configuration by the ligand-
binding event. See Figure 1 for a schematic of these two
theories of biomolecular recognition and many methods to
account for these conformational changes in protein–ligand
interactions.

Docking and Scoring Functions that
Account for Receptor Flexibility

Docking combined with a scoring function is a fast method
for ranking compound binding or complementarity to a tar-
get of interest. First, the poses are generated by perform-
ing a three-dimensional conformational search of the
binding pocket with a molecule of interest (docking), and
then poses are evaluated based on a scoring function
(scoring). Docking functions may perform three-dimen-
sional searches, randomly, systematically, or by performing

MD simulation of ligand conformations and then mapping
to the three-dimensional structure of the receptor. Many
scoring functions have been developed, and they may
score using a force field-based, empirically based, knowl-
edge-based, or consensus-based algorithm. A fine review
of docking and scoring functions is given by Kitchen et al.

(8). Often only a single rigid receptor conformation is used
to dock and score each pose for computational efficiency;
however, there are ways in which docking programs try to
account for receptor flexibility. Soft docking, or the soften-
ing of van der Waals potentials, can allow for small over-
laps between the ligand and receptor without large steric
penalties (16,17). However, this may increase the rate of
false positives because more diverse structures are
allowed to bind. It also does not allow for larger conforma-
tional changes like side-chain rotations or protein back-
bone motions. Allowing for certain side chains near the
active site to rotate can also account partially for receptor
flexibility (18).

Induced Fit Docking

Additionally, one can use induced fit docking where the
receptor is modeled with flexibility to accommodate the
induced fit associated with ligand binding. One example of
induced fit docking is the procedure outlined by Sherman
et al. and implemented in the popular Schrödinger suite of
tools as an option in the GLIDE docking program (19,20).
Here, residue side chains are changed to alanine residues
to prevent steric clashes in the initial docking. Then,
side-chain predictions are used to generate possible

Figure 1: Schematic representation of the possible pathways
taken in ligand binding. The induced fit pathways and conforma-
tional selection pathways are shown via dashed and solid lines.
Various methods for binding energy calculations, which account
for receptor flexibility, are listed in the gray box. Simulation meth-
ods for sampling receptor flexibility are listed in the purple box.
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conformations, and the binding site and ligand are energy
minimized. This protocol allows for local movements
around the protein upon ligand binding, and significant
reductions of the root mean square deviation (RMSD) of
some binding poses as compared with crystal structures
in flexible receptors (19). Nonetheless, it remains a chal-
lenge to predict larger-scale motions that may lead to dif-
ferent binding conformations.

RosettaLigand

An alternate method that accounts for receptor flexibility is
RosettaLigand. RosettaLigand is based on the popular
modeling software Rosetta (21). In contrast to the afore-
mentioned methods, RosettaLigand does not split the
receptor and ligand ensemble generation into separate
steps that are combined during docking. Rather it allows
for both receptor and ligand structural changes during the
docking stage. Also, in contrast to the previously men-
tioned methods, Rosetta uses knowledge-based scoring
functions to assess protein conformations while the pro-
tein–ligand interactions are modeled employing first princi-
ples. In its original implementation, RosettaLigand allowed
for ligand flexibility as well as receptor side-chain flexibility
(22). In a subsequent release, the developers went beyond
just accounting for side-chain flexibility in the active site to
incorporating full protein backbone and side-chain flexibility
(23). An extensive blind docking benchmark revealed that
the performance of RosettaLigand is comparable with that
of other commercial software (24). In its latest release,
RosettaLigand can dock multiple ligands simultaneously,
allowing for the redesign of the binding interface during
docking, and it has a more user-friendly xml script inter-
face (25).

Ensemble-Based Screening Methods

Ensemble-based screening methods rely on using varied
receptor conformations in a docking protocol. The confor-
mations can be determined from crystallographic or NMR
structures, Monte Carlo simulation, molecular dynamics
simulation, or enhanced sampling methods. See Figure 2
for a schematic of ensemble-based docking methods. The
relaxed complex scheme (RCS) (26,27) is a type of ensem-
ble docking, which relies on previously determined confor-
mations from molecular dynamics simulation to perform
docking studies against. This ensemble of structures is
then used in conjunction with a docking and scoring func-
tion rather than a single structure, with the idea that an
ensemble of low energy structures will bind a larger variety
of compounds, and thus more hits will be obtained from a
compound library (26–28). While one could just extract
structures at equidistant time-points, it seems more logical
to perform a clustering-type analysis and use a single rep-
resentative of related structures (28) to cover a large con-
formational space without redundant structures. In the final

scoring of compounds, it may be useful to weight the
score from each structure based on how often that struc-
ture was present in the original simulation, or one can sim-
ply take the highest score given. The problem remains,
though, that perhaps very rare structures will be the most
important in compound binding. The protein structure can
be simulated in the apo state with the hope that without
any compounds bound more states will be sampled as
the structure will not be biased by ligand–protein interac-
tions. However, in some structures the binding pocket
may adopt a structure that does not bind ligands or
occludes itself completely without a ligand bound. In this
case, it is best to simulate with a ligand bound; however,
the structures will be biased toward the ligand-bound state
and may fail to explore a larger variety of potential ligand-
binding structures.

This method has been successfully used in a number of
studies to find compounds for various targets. McCam-
mon et al. described a novel binding trench in HIV in-
tegrase using RCS methods and docking, which helped
inspire the discovery of the FDA-approved drug raltegra-
vir (29). Other diketo acid HIV integrase inhibitors have
been modeled and designed using RCS (30). In addition,
inhibitors of essential enzymes for Trypanosoma brucei

have been found using the RCS method (31). The selec-
tion of appropriate configurations based on compound
class and active site volume has been described for the
proposed antibacterial target undecaprenyl pyrophos-
phate synthase (32). New compounds have been
described, which inhibit neuraminidase in avian influenza
(33). Although molecular dynamics (MD) structures can
enrich active compound predictions, some structures
may perform worse than X-ray structures, and a broadly

Figure 2: Schematic representation of ensemble-based docking.
Examples of methods or data used at each step are given inside
the dashed gray lined squares.
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applicable protocol for a priori determining the most pre-
dictive structures from the simulations has not been deter-
mined (34). Indeed, ensemble-based screening can
generate more hits with more chemical diversity than a sin-
gle structure, but if many crystal structures are available
with varied binding site geometries, the enrichment may be
better for ensembles of crystal structures than for ensem-
bles of simulation structures (35). This leads us to the con-
clusion that ensemble-based screening is superior to a
single structure screening, but simulation-based ensemble
screening may be more applicable when extensive crystal-
lographic data is not available. Generally, the configurational
changes observed with these RCS methods and induced fit
methods are smaller changes. The short timescale upon
which most molecular simulations are run does not fully
map out biomolecular phase space. Greater sampling of
biomolecular phase space as well as a broadly applicable
method for determining the most predictive structures a pri-

ori would both be big steps forward in ensemble-based
docking.

Enhanced Sampling: Hardware
Improvements

Over the course of MD simulations if there is a high energy
barrier between two low-energy states, it is unlikely that
the simulation will cross this barrier and describe the sec-
ond low-energy state, unless the simulation is very long. In
addition, the free energy surface of proteins is vast and
rugged and exploration is slow. The timescales often simu-
lated with MD using today’s computers are nanoseconds
to microseconds and sometimes even milliseconds (36).
However, many interesting events occur on the timescales
of milliseconds to seconds. In addition, if one wishes to
recover a Boltzmann ensemble of structures, then the
crossing of energy barriers must be performed many times
to generate converged statistics. It is of interest then to
speed the crossing of high energy barriers, and numerous
methods have been proposed to perform this.

Conceptually, the simplest improvements come from
increased speed and efficiency of computer hardware and
software. Two recent hardware advances have been
graphics processing unit (GPU) accelerated computing
and the construction of a special purpose machine Anton
for running long MD simulations. GPU computing has
shown impressive benchmarks for MDb. The common test
case DHFR runs with AMBER11 was benchmarked at
30.79 ns ⁄ day on 48 Intel X5670 2.93 GHz processors,
while a single NVIDIA GTX580 GPU ran 40.74 ns ⁄ day, and
the GPU performance could be improved by running in
parallelc. Also, GPUs may provide a more reasonably
priced solution compared with traditional CPU-based high-
performance computing (HPC). Popular simulation pack-
ages like NAMD (37), AMBER

c, GROMACS, and ACEMD
b have

released code, which runs on GPUs. A fine review of GPU
computing in the context of molecular modeling is given

by Stone et al. (38). In addition, special purpose machines
like Anton have been built for running fast MD simulations
and extending brute force MD simulation into the millisec-
ond timescale (36). These extremely long simulations have
been used to show drug binding events to their protein
target (39). They have also been used to show in full
atomic resolution how small proteins fold and that in many
cases a very accurate representation of the folded state
can be obtained from MD simulation (40). The accuracy of
force fields on these millisecond timescales has never truly
been tested before, and these new hardware develop-
ments have been an exciting development in molecular
modeling. Protein flexibility on longer timescales is now
being accessed much more routinely. In addition to the
hardware changes, simulation techniques that help
improve sampling have been developed and continue to
show promise and efficiency over brute force descriptions
of conformational flexibility.

Enhanced Sampling: Methodologies

One can speed sampling in a number of ways by introduc-
ing artificial biases into the model upon which the simula-
tion is based. The simplest of artificial biases is raising the
temperature, which causes more rapid fluctuations in
structure by increasing the average velocity of all atoms.
Temperature accelerated replica exchange uses many rep-
licas at varying temperatures to increase sampling, and
these replicas exchange with each other based on a
Metropolis criterion, finally recovering the canonical
ensemble (41). In addition, one may use a Hamiltonian
modifying technique like accelerated molecular dynamics
(aMD) in a replica exchange framework to modify only the
potential energy surface at a given temperature (42). Other
methods like umbrella sampling (43–45) and metadynam-
ics (46,47) have also been used to enhance sampling.
However, many of these methods suffer from the need to
define a reaction coordinate a priori to simulating the sys-
tem. This is not advantageous if one is looking for new
configurations to bind a drug-like compound to a protein
active site without knowledge of what that configuration is,
but can be quite useful in determining the free energy
change between known conformations.

Umbrella Sampling

The calculation of free energy differences from molecular
dynamics simulations requires enhanced sampling tech-
niques to probe the energy landscape effectively. Free
energy difference calculations are facilitated by the use of
a reaction coordinate, a parameter that measures the
degree to which the system is near each of the two or
more thermodynamic states of interest. One major chal-
lenge is the finite simulation time that results in regions
close to energy minima being sampled well, whereas
regions of higher energy are rarely or never sampled (48).
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Sufficient sampling of the entire space along the reaction
coordinate is necessary to derive the free energy differ-
ence. Umbrella sampling is one such technique that
enforces adequate sampling of high energy regions. In
umbrella sampling (or biased MD) (43–45), the underlying
energy potential is modified to allow for an easier transition
over the energy barrier. For this, an additional energy term,
often referred to as bias or bias potential, is applied to the
system to ensure efficient sampling along the entire reac-
tion coordinate (48). This is carried out in separate simula-
tions or windows, which overlap. Bias potentials should be
chosen to ensure that sampling along the reaction coordi-
nate is as uniform as possible. Umbrella sampling fre-
quently employs harmonic biasing potentials in a series of
windows along the reaction coordinate. An alternative to
this is the use of a single window in combination with an
adaptive biasing potential aimed at matching the free
energy profile along the reaction coordinate as well as
possible. This method is referred to as adaptive bias
umbrella sampling. The sampling in each individual win-
dow can be performed using conventional molecular
dynamics (cMD) or employing enhanced sampling tech-
niques such as Hamiltonian replica exchange (41,49).
Careful choice of the reaction coordinate is crucial for cor-
rect umbrella sampling results (50). The free energy curves
are combined using techniques such as the weighted his-
togram analysis method [WHAM, (51,52)].

Metadynamics

Metadynamics is another technique designed to acceler-
ate rare events and reconstruct the free energy profile
(47). Metadynamics (46) relies on the introduction of a set
of collective variables (CVs), which best describe the pro-
cess of interest. Within the space of these CVs, a history-
dependent potential is built up by dropping Gaussians
along the sampled trajectory effectively discouraging the
system from revisiting configurations that have already
been sampled (53). The overall sum of these Gaussians is
then used to compute a free energy profile along the
CVs. For an excellent example of a metadynamics simula-
tion, see Figure 1 in (47). The main difference to umbrella
sampling is the non-systematic sampling along the collec-
tive variable(s). Important user-defined parameters are the
height, width, and dropping frequency of Gaussians.
Choosing the right set of CVs is crucial to the success of
the simulation, and criteria for picking good CVs have
been outlined in the literature (47,53). An instructive
example of what happens if the correct CVs are not cho-
sen is given in (54). Unfortunately owing to the complexity
of large biological systems, determining a set of appropri-
ate collective variables is challenging. However, this has
not deterred a large number of applications using the
method. Most notably to mention for this review is work
that used metadynamics to characterize small molecule–
protein interactions accounting for full receptor flexibility
(55–59).

Accelerated Molecular Dynamics

Accelerated molecular dynamics (60), an extension of hy-
perdynamics (61), is a simulation method that does not
require the selection of a reaction coordinate or CVs and
is ideally suited for efficiently exploring configurational
space. Accelerated MD modifies the potential energy sur-
face based on the difference between a user-defined ref-
erence energy E and the normal potential energy of the
underlying MD force field at each point. Accelerated MD
speeds sampling by decreasing the size of energy barriers
and smoothing the energetic ruggedness of phase space
exploration according to a parameter a. See Figure 3 for
the equations used to modify the potential energy surface
and a hypothetical two-dimensional representation of the
effect of aMD on a potential energy landscape. Acceler-
ated MD has been used to simulate small benchmark sys-
tems like alanine dipeptide and reproduce the
Ramachandran plot from MD (60). Originally, aMD was
only applied to torsional angles (60) but was subsequently
extended to all force field terms including explicit solvent
(62). These two forms were combined in the dual-boost
approach (63). Accelerated MD has been used for com-
plex systems and validated with experimental results such
as the improved prediction of experimental NMR observ-
ables in large protein systems (64). Grant et al. (65) sug-
gested that conformational selection is the dominant
mechanism for nucleotide binding-dependent conforma-
tional changes in G proteins, while induced fit plays a
smaller role based on data from aMD simulations.

It is, however, important to note that recovery of Boltz-
mann statistics in large simulations remains a challenge
because of sampling limitations in simulating large biomol-
ecules. A non-Boltzmann simulation like aMD requires that
each configuration be reweighted in a way that recovers
the canonical ensemble (60). Often when longer timescales
are accessed with aMD, the reweighting procedure is sub-
ject to statistical error in the estimate of the weighting fac-
tor for each point. An excellent review of the statistical
issues with reweighting is given by Shen and Hamelberg

Figure 3: Accelerated Molecular Dynamics. Equations used to
calculate the boost energy and modified potential energy surface
in aMD (61). A two-dimensional representation of the modified
potential, V*(r) (dashed lines), and the unmodified potential energy
surface, V (thick black line). a was varied as indicated E was
always fixed at 60 and is indicated by a thin solid black line.
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(66). However, as the underlying shape of the energy sur-
face is preserved, although flattened, one can consider the
most common configurations from aMD to be likely struc-
tures although the calculation of the exact ratios of their
populations is still challenging. In simulations with the goal
of conformational exploration where the exact free energy
of the conformation is not desired, simulations are often
described without reweighting, with the risk that a high-
energy state may have been over-represented. Recently,
Wereszczynski et al. explored the conformational space of
GET3 (a protein involved in the guided entry of tail-
anchored proteins into the membrane) with aMD and then
performed rigorous potential of mean force calculations to
determine the energetics of conformational change in the
presence of various bound nucleotides. GET3 simulation
results agreed with experiments and were able to capture
the conformational biases between open, semi-open, and
closed states associated with nucleotide binding. Addition-
ally, simulations with aMD showed much greater confor-
mational exploration than classical MD simulations and
helped suggest that the apo GET3 may explore a semi-
open state when free in solution (67). Accelerated MD was
also recently used to study the dynamics of the important
cardiomyocyte calcium-binding protein troponin C (68).
Indeed, enhanced sampling methods can play a critical
role in the generation of structural ensembles with larger
conformational changes, and these methods are also see-
ing increased use in combination with rigorous free energy
calculations.

Accelerated MD in Free Energy
Calculations

Free energy calculations based on computer simulations
have been pursued for a few decades now, although they
are not as ubiquitous in pharmaceutical settings as quicker
methods of structure-based compound binding prediction
like docking combined with scoring functions. Part of the
problem is that they are not well automated like many dock-
ing and scoring algorithms. Another major issue is that the
computational power required for these calculations is
great, and a large investment in computing resources is
needed before one can predict the affinity of a single ligand
let alone a large compound library. We now have the com-
putational power to make predictions of free energy, for
pharmaceutically relevant ligand–receptor interactions,
using methods like free energy perturbations (FEP) and ther-
modynamic integration (TI). These methods rely on defining
a thermodynamic cycle where alchemical transitions can be
used to change between states and then one can calculate
a free energy difference between two states. Often the
states will be the bound and unbound form of the ligand,
but variations allow calculation of other properties such as
the free energy of solvation, or the difference in free energy
of binding between two ligands (69). One of the reasons
behind the slow speed of these calculations is that the
alchemical change must be made so that there is appropri-

ate phase space overlap between the successive states
along the reaction coordinate between the different end
states. In thermodynamic integration calculations, similar
convergence challenges arise. This requires considerable
sampling of any conformational changes around the modi-
fied portion of the system, as well as accurate convergence
of the energy of those conformations, which can lead to
large amounts of simulation. As free energy methods rely on
sampling, each simulation will be different and one can gen-
erate a simple estimate of error by running simulations in
replicate, further increasing the need for computation.

Because rapid generation of low energy configurations is
necessary for accurate free energy estimations, it is logical
that enhanced sampling methods may be beneficially
applied to these calculations. Accelerated MD has been
applied in a number of ways to free energy calculations.
Fajer et al. (42) used a replica exchange framework where
the difference between replicas was the level of
acceleration applied via varied boost parameters. As the
ground-state replica was run on an unaltered potential
energy surface, there were no issues with reweighting it as
long as the replicas were spaced closely enough that they
would exchange rapidly. There are, however, many ways
to incorporate data from replicas at different levels of accel-
eration, and multistate Bennett acceptance ratio (MBAR)
was determined to be roughly four times more efficient at
recovering data than the ground state alone (70).

Oliveira created upside down aMD to overcome some of
the issues of reweighting and calculate free energies with
a single replica. The simple test system of a butane to
butane symmetric transformation was used to show that
one can increase the accuracy and speed of convergence
by enhancing sampling with aMD in free energy calcula-
tions (71). This method allows the simulation to populate
statistics by running at low to no acceleration in low
energy regions, and then jumping energy barriers to rapidly
move between different configurations. While quite promis-
ing in simple systems, this method proved challenging to
parameterize so that high energy barriers were not flat-
tened more than low energy barriers in simulations with
many degrees of freedom. To ameliorate this issue, we
proposed a boost limiting factor and created windowed
aMD. This method efficiently reproduced the free energy
surface of alanine dipeptide. In addition, the new boost
equation was used to calculate the free energy difference
between the antibiotic vancomycin and two of its glyco-
peptide-binding partners using TI. The overall results dem-
onstrated more rapid convergence of free energy
calculations and easily reweighted statistics; however,
more parameters were required (72).

As the reweighting statistical error is directly related to the
amount of acceleration and the complexity of the system,
it seems reasonable to limit the portion of the simulation to
which boost is applied. Acceleration of just the dihedral
angles was the original way aMD was applied, and in
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biomolecular systems, these dihedral terms provide much
of the restraint in conformational exploration (60). This also
provided a convenient limitation of the energetic terms to
which acceleration was applied because water molecules,
which make up the majority of the atoms in explicit solvent
simulations, have no dihedral angles. Selectively applied
aMD took this idea one step further and limited accelera-
tion only to predefined dihedral angles in alanine dipeptide,
and in a free energy simulation of decoupling oseltamivir’s
binding to neuraminidase. This work demonstrated that re-
weighting a small subset of dihedral angles helped over-
come reweighting issues and that the free energy results
converged to the same answer as cMD simulations, but in
less time (73). Although this provides for better statistical
recovery, it requires the prediction of which dihedral angles
are important in ligand recognition or protein flexibility,
which may be non-trivial.

Concluding Remarks

There has been tremendous progress in the field of per-
sonalized sequencing of genetic code within the past
20 years. The ’$100 genome’ is within reach in our gener-
ation. The possibility of personalized genetic knowledge of
specific diseases has unprecedented potential for targeted
drug treatment. This exciting development goes hand in
hand with advances in computer-aided drug design that
can be used to discover novel leads targeting specific
mutant receptors. Here, we presented recent develop-
ments in computational algorithms and hardware used in
drug discovery with a focus on using enhanced protein
dynamics sampling techniques to aid in the incorporation
of full receptor flexibility in structure-based drug discovery.
In the near future, it should be possible to include the
effects of genetic variation in models of drug targets and
speed the choice of therapies appropriate for individual
patients. The effects of genetic variation not only lead to
sequence changes, but structural and dynamical changes
too. Thus, we anticipate that computer-aided drug discov-
ery, which accommodates receptor flexibility, will be an
important component of pharmacogenomics in the near
future opening many new and exciting opportunities for
combining the two techniques.
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