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ABSTRACT OF THESIS 

 

 

ACCOUNTING FOR SPATIAL AUTOCORRELATION  

IN MODELING THE DISTRIBUTION OF WATER QUALITY VARIABLES 

 

Several studies in hydrology have reported differences in outcomes between models in 

which spatial autocorrelation (SAC) is accounted for and those in which SAC is not. 

However, the capacity to predict the magnitude of such differences is still ambiguous. In 

this thesis, I hypothesized that SAC, inherently possessed by a response variable, 

influences spatial modeling outcomes. I selected ten watersheds in the USA and analyzed 

them to determine whether water quality variables with higher Moran’s I values undergo 

greater increases in the coefficient of determination (R²) and greater decreases in residual 

SAC (rSAC) after spatial modeling. I compared non-spatial ordinary least squares to two 

spatial regression approaches, namely, spatial lag and error models. The predictors were 

the principal components of topographic, land cover, and soil group variables. The results 

revealed that water quality variables with higher inherent SAC showed more substantial 

increases in R² and decreases in rSAC after performing spatial regressions. In this study, I 

found a generally linear relationship between the spatial model outcomes (R² and rSAC) 

and the degree of SAC in each water quality variable. I suggest that the inherent level of 

SAC in response variables can predict improvements in models before spatial regression 

is performed. The benefits of this study go beyond modeling selection and performance, it 

has the potential to uncover hydrologic connectivity patterns that can serve as insights to 

water quality managers and policy makers. 

KEYWORDS: spatial autocorrelation; water quality variables; spatial regression 

modeling; coefficient of determination; residual autocorrelation 
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CHAPTER 1: INTRODUCTION 

 

Water is an element crucial for life on Earth and is closely linked to the well-being 

of societies as well as the sustainability of aquatic ecosystems. A combination of natural 

and anthropogenic factors can adversely impact water quality. Human impacts involve 

general land use practices (e.g., agriculture, irrigation practices, urbanization, and 

deforestation), while natural factors include slope, elevation, vegetation cover, soil type, 

precipitation, and streamflow (Calow & Petts, 1992; Pratt & Chang, 2012; Yu et al., 2013). 

River characteristics are generally dependent upon land use and geomorphological features 

of the watershed. In addition, water use patterns associated with the location of a region 

and its interactions with neighboring regions influence the quality of water bodies 

(Franczyk & Chang, 2009). These factors are responsible for the spatial variability of water 

quality and are often treated as predictor variables in many hydrologic models (Vrebos et 

al., 2017). To provide better insights to future watershed management policies, 

understanding spatial trends associated with water quality variables is of extreme 

importance.  

Space serves a vital role in structuring hydrological systems. Spatial autocorrelation 

(SAC) is an inherent property of spatial features such as streams and rivers (Legendre & 

Fortin, 1989). Legendre loosely defined the concept of SAC as “the property of random 

variables taking values, at pairs of locations a certain distance apart, that are more similar 

(positive autocorrelation), or less similar (negative autocorrelation) than expected for 

randomly associated pairs of observations” (p. 1659) (Legendre, 1993). For example, 

causes of positive autocorrelation in stream water quality could be associated with 

similarities in local habitats or turbulent mixing and water chemistries of stream flows. In 
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contrast, specific local built structures, such as beaver dams, fallen trees in stream channels, 

and territorial fishes, could be causes of negative SAC (Isaak et al., 2014). Given these 

interactions over space (i.e., water flow from upstream to downstream areas, local biota, 

and water use patterns), it is necessary to consider the presence and potential effects of 

SAC in water quality modeling. 

Numerous studies in ecology, geography, and hydrology have noted the importance 

of accounting for SAC (Miller et al., 2007; Chang, 2008; Tu, 2011; Kim, 2013). These 

studies show that ignoring SAC can bias model outcomes and parameter estimates, leading 

to poor statistical inference and violation of the independence assumption of conventional 

regression approaches (Cliff & Ord, 1972; Dormann, 2007; Beale et al., 2010; Isaak et al., 

2014; Kim et al., 2016). For example, models that ignore spatial effects (e.g., ordinary least 

squares; OLS) are likely to produce autocorrelated residuals violating the independent 

errors assumption. This can inflate the Type I error rate, wrongfully rejecting a null 

hypothesis. Many spatial approaches have been developed in order to overcome such 

limitations of non-spatial counterparts. These approaches include, but are not restricted to, 

regression kriging, simultaneous autoregressive modeling, conditional autoregressive 

modeling, spatial lag modeling, spatial error modeling, spatial eigenvector mapping, and 

geographically weighted regression (Griffith, 2000; Lichstein et al., 2002; Hengl et al., 

2004; Griffith & Peres-Neto, 2006; Ver Hoef et al., 2006; de Marco et al., 2008; Kissling 

& Carl, 2008; Bini et al., 2009; Miller, 2012; Václavik et al., 2012; Kim, 2013; Isaak et al., 

2014). 

Several water quality studies have compared outcomes between spatial and non-

spatial regressions (Chang, 2008; Franczyk & Chang, 2009; Tu, 2011; Chang et al., 2012; 
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Pratt & Chang, 2012; Yu et al., 2013; Huang et al., 2014; Netusil et al., 2014). In general, 

spatial models presented significant increases in R² values and decreases in residual SAC 

(rSAC), indicating that spatial model performance exhibited clear improvements over the 

non-spatial approach. However, according to the literature on hydrological modeling, it is 

still uncertain when such improvements become large or small. Assuming that each water 

quality variable presents a unique degree of inherent SAC, I hypothesize that this SAC 

(possessed by a response variable; i.e., a water quality variable) influences the outcomes 

of spatial modeling. This study tests if water quality variables with a higher amount of SAC 

would exhibit greater improvement in model outcomes than those with a lower amount of 

SAC (see Figure 1). I evaluate this hypothesis across divergent regions of the USA to 

enable a general understanding of the effect of SAC possessed by water quality variables. 

I examine if SAC is a consistent determinant of the magnitude of model improvements 

even when watershed characteristics diverge. If this is indeed the case, I can potentially 

determine the degree of improvement in model fit before performing a spatial regression 

simply by measuring the inherent SAC level of a water quality variable. This study can 

also serve as a useful screening technique where modelers could use a SAC metric to 

predict the spatial pattern in the independent variable using a spatially explicit method. 
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Figure 1. Conceptualization of the main ideas of the study (PC, principal components; 

OLS, ordinary least squares; SAC, spatial autocorrelation) (from Miralha & Kim, 2018). 

Following this chapter, Chapter 2 will provide the necessary background 

information to understand the problem addressed. I discuss the definition of SAC, 

conceptual background, its importance, and sources, as well as techniques to measure SAC 

and account for it.  In the second part of this chapter, I give emphasis on the importance of 

water quality and the sources of SAC in aquatic ecosystems. I also explain the necessity of 

accounting for SAC in water quality modeling and provide examples of models that are 

used in water research as well as studies that accounted explicitly for SAC applying spatial 

modeling approaches. In Chapter 3, I will discuss the study areas, dependent and 

independent variables, techniques, and models used to achieve the objective of this study. 

Chapter 4 will cover the findings of this research. In Chapter 5, I discuss the findings and 

limitations. Finally, Chapter 6 concludes this thesis with a discussion of potential future 

research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Spatial Autocorrelation (SAC) 

2.1.1. Definition 

Spatial autocorrelation (SAC) has become one of the major points in modeling over 

a variety of fields in the past decades. According to Griffith (2009), the word auto is a 

prefix that literally means self while correlation is a description of the nature and the degree 

of a relationship between a pair of quantitative variables (p.1). Therefore, if we think about 

a variable and connect it to the concept of autocorrelation, we can infer that it is a variable 

that is correlated (has a degree of relationship) to itself. SAC is a common phenomenon in 

environmental and ecological data, where heterogeneity tends to be a function of clusters 

in environmental conditions and ecological processes (Bocard et al., 1992; Miller et al., 

2007). Following this idea, we can understand what exactly spatial autocorrelation means.  

SAC was defined by different authors such as Hubert, Golledge and Constanza 

(1981): “Given a set S containing n geographical units, spatial autocorrelation refers to the 

relationship between some variable observed in each of the n localities and a measure of 

geographical proximity defined for all n (n-1) pairs chosen from n (p. 224).” Tobler in 

1970, loosely defined SAC through the attempt to establish the First Law of Geography: 

“everything is related to everything else, but near things are more related than distant things 

(p.236).” However, it is important to state that a variable can be related to itself through 

distance, but it does not always happen through the same mechanism (Griffith, 2009). 

Legendre (1993) stated that SAC is “the property of random variables taking values, at 

pairs of locations a certain distance apart, that are more similar (positive autocorrelation) 
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or less similar (negative autocorrelation) than expected for randomly associated pairs of 

observation (p. 1659).” He pointed out that SAC can be negative or positive depending on 

the distance class between the observations. Legendre and Fortin (1989) explained that 

positive autocorrelation (when variable takes similar values) is very common in ecology 

for short distances among samples. In a positive SAC scenario, when distance increases, 

negative SAC occurs where more distant observations have a higher chance to present 

significantly different values. If for short distances negative SAC occurs, it can be the result 

of a unique/local phenomenon or the sampling interval is too large compared to the cluster 

size. Several ways to explain and account for SAC have been developed. Although in 

different ways, the association to spatial relationship, similarity between variables per 

distance, and spatial dependence were always left explicitly in each definition. Therefore, 

SAC is a way to understand and measure the observations relationship intensity through 

the distance they are apart. However, the source of this phenomenon can vary, thus ways 

to account for and explain SAC in geographical, environmental, and ecological data are 

still in demand.  

 

2.1.2. Sources of SAC 

Several studies have pointed the sources of SAC in environmental, ecological, and 

hydrological data (Cliff & Ord, 1981; Diniz-Filho et al., 2003; Dormann et al., 2007; Beale 

et al., 2010).  Fortin et al. (2002) explained that SAC results from four sources: spurious, 

interpolative, true, and induced autocorrelation. The first happens when hidden processes 

affect the spatial arrangement of the data. Interpolative autocorrelation comes from 

interpolated, extrapolated, or smoothed spatial surfaces. The true SAC is associated with 
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causal interactions among samples near to each other while the induced SAC is related to 

the relationship between a dependent variable and another spatially autocorrelated variable. 

The last two SAC sources arise from spatial processes and have been the focus of spatial 

studies (Cliff & Ord, 1981; Legendre & Legendre, 1998).  

There are four types of spatial processes (i.e., that operate in geographic space): 

diffusion, dispersal, interaction, and processes involving exchange and transfer (Haining, 

2003). A diffusion process happens when an attribute spreads in a population and it is 

possible to observe areas or individuals that have this attribute. It is also different from the 

dispersal process because dispersal involves the spread of a population itself. Interaction 

involves the outcomes in one location that influence and are influenced by outcomes in 

other locations. Finally, processes of exchange and transfer are highly linked to the urban 

and economic studies creating inter-linked economic spaces. 

The importance of SAC in explaining spatial processes is scale dependent (Haining, 

2003), thus understanding hidden mechanisms will depend on the scale of the observed 

phenomenon or event. Václavik et al. (2012) explained that there are two types of 

recognized factors associated with scale, exogenous and endogenous. Exogenous factors 

are linked to broad-scale spatial trends and include underlying environmental conditions 

such as soil, topography, and hydrology. Endogenous factors occur at fine-scale and are 

usually associated with biological processes such as dispersal, vegetative reproduction, 

metapopulation dynamics, predation, and competition (Lichstein et al., 2002; Miller, 2012; 

Kim & Shin, 2016). These factors are also known in the literature as extrinsic (exogenous) 

and intrinsic (endogenous) causes of SAC (Koenig, 1999; Beale et al., 2010). The 

exogenous factors can easily be inserted in statistical models as environmental covariates. 
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However, endogenous factors are difficult to account for because their quantification is 

limited by data availability (Dormann, 2007). In practice, these two causes of SAC are 

expected to be found simultaneously (Diniz-Filho et al., 2003). Thus, to correctly account 

for these SAC sources, decisions should involve the use of appropriate spatial modeling 

approaches.  

 

2.1.2. Importance of accounting for SAC 

Environmental and ecological processes are structured over space. Thus, 

understanding the contribution of the pure spatial component in these processes structure 

can be beneficial. Miller et al. (2007) stated that different scales of vegetation spatial 

distribution have the potential to explain the mutual environmental patterns and processes 

as well as help in large-scale biodiversity assessment and ecosystem management. For 

instance, biological processes operating in a spatially patterned environment generate the 

structured spatial distribution of species. Hawkins (2012) emphasized that any broad-scale 

samples or representation of nature have a spatially structured distribution, and he pointed 

that if spatial structure is not observed, it means that valuable information is missing to 

reveal key spatial patterns. In other words, everything is related to everything else in nature, 

thus nature is spatially autocorrelated. Therefore, it is of our interest as biogeographers, 

ecologists, geomorphologists, and hydrologists to understand the influence of spatial 

autocorrelation (SAC) as well as try to explain how it occurs and changes in the 

environment considering distinct scenarios in terms of scale and sampling design.  
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Ecological and environmental studies suggested that ignoring SAC in statistical 

analysis can violate the independence assumption of traditional regression approaches 

because of autocorrelated residuals (Cliff & Ord, 1968, 1972; Dormann, 2007; Peres-Neto 

& Legendre, 2010; Václavik et al., 2012; Kim, 2013). SAC would not cause inconsistency 

in analyses in cases where (1) the causes of spatial pattern in the dependent variable are 

fully explained by the measured independent variables, or when (2) the causes of SAC in 

a dependent variable does not exist (Beale et al., 2010). In other words, since sources of 

SAC are associated with environmental and ecological variables, in some cases, SAC may 

be fully explained if these variables are sufficiently taken in consideration. Also, if the 

variable of modeling interest has no spatial structure characteristic, then causes of SAC 

may not exist. However, these two conditions are never met simultaneously, thus errors are 

expected to be autocorrelated violating the basic statistics assumption. This lack of 

independence can lead to difficulties in the hypothesis testing causing inflation of the Type 

I error, when the null hypothesis is rejected while it is true (Lennon, 2000; Dormann et al., 

2007; Peres-Neto & Legendre, 2010; Miller, 2012). Additionally, SAC can inflate the 

significance of measured relationships as well as bias the model parameters when non-

spatial techniques are used to model spatially structured data (Anselin, 2002; Bini et al., 

2009; Václavik et al., 2012). Lennon (2000) called this issue as the red shift problem. He 

argued that, with non-spatial models, these spatially dependent predictors have their 

magnitudes inflated and errors underestimated. In other words, ignoring SAC can lead to 

bias in predictions and in the interpretation of patterns. Therefore, incorporating SAC is 

important to clarifying the effect of explanatory variables and improving inferences.  
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Considering SAC will also depend upon whether spatial dependence exists in the 

chosen scale and sample interval in the data acquisition process. Large plot sizes reduce 

the ability to discriminate finer spatial variation, while small plot sizes may not represent 

the area adequately. Additionally, densely collected samples (i.e., narrow intervals) can 

present strong SAC because different processes may not be identified within a small 

distance while a wide sampling interval may not detect spatial dependence at all 

(Bellehumeur & Legendre, 1998; Miller et al., 2007). An approach to solve this scale issue 

is to choose an appropriate sampling unit size for a predictor variable considering the 

ecological scale that the response variable operates. Data availability can also limit the 

potential to detect SAC. For example, one of the factors that result in spatial dependence 

in species distribution is dispersal, but data and the knowledge to estimate dispersal 

processes may be unavailable (Václavik et al., 2012). In this case, evaluating SAC at 

various scales may be crucial to unveil these dynamic processes.  

SAC is often seen as a problem or, sometimes, is totally ignored (Lennon, 2000; 

Hawkins, 2012). For example, studies used subsampling strategies to eliminate the effect 

of SAC in model outcomes (e.g. Barringer et al., 1990). However, SAC is not an issue, it 

is what we need to understand. Griffith (1987) explained that natural phenomenon can 

generate patterns, and, as a researcher, understanding these patterns may answer important 

concerns. He gave an example of land parcels where the spreading of fertilizer was also a 

result of rainfall events. He claimed that the rainfall in those lands have created a spillover 

effect, and this effect if understood can explain crops distribution, correct for bias in 

modeling, and uncover independent elements responsible for the creation of spatial 

patterns. Furthermore, in an ecological study, Chase and Knight (2013) argued that spatial-
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scale dependent approaches may help addressing questions about the most important 

drivers of patterns in biodiversity. Therefore, understanding how nature is structured over 

space (i.e., spatial autocorrelation) is important. It can help unveiling the quality and 

quantity of information on spatial data as well as answer complex questions about driving 

processes in the environment. 

Overall, answering questions about drivers of processes in nature can help in the 

management of natural resources and in the development of solutions to problems such as 

climate change and human activity impacts. Thus, SAC may be a key tool to examine these 

processes at multiple scales and improve spatial prediction of variables that play a vital 

role in structuring spatial patterns. 

 

2.1.4. Methods to measure and account for SAC 

2.1.4.1 Measuring SAC 

Cliff and Ord (1968) published a study that proposed to derive SAC from statistics. 

They used statistical approaches from Moran (1950) and Geary (1954). Moran’s I and 

Geary’s c are SAC coefficients useful to estimate the spatial intensity and scale of adjacent 

or noncontiguous sampling units (Fortin et al., 2002). Moran’s I computes the degree of 

correlation between neighboring values of a variable, and can be comparable to the 

Pearson’s correlation coefficient. Moran’s I varies from -1 (perfect negative 

autocorrelation) to 1 (perfect positive autocorrelation), where 0 represents the absence of 

SAC (Fortin et al., 2002; Diniz-Filho et al., 2003; Dormann, 2007; O'sullivan & Unwin, 

2014). Moran’s I is computed as: 
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𝐼 =  𝑛∑ (𝑋𝑖 − �̅�)𝑛𝑖=1 2 ∑ ∑ 𝑊𝑖𝑗𝑛𝑗 (𝑋𝑖 − �̅�)(𝑋𝑗 − �̅�)𝑛𝑖=1 ∑ ∑ 𝑊𝑖𝑗𝑛𝑗𝑛𝑖=1  , 
 

where, 𝑋𝑖  and 𝑋𝑗  refer to the value of a certain variable at the location 𝑖 and location 𝑗, 

respectively. �̅�  is the overall mean of the variable, and 𝑊𝑖𝑗 is the spatial weight matrix. 

Geary’s c measures the degree of difference between the values of a variable in neighboring 

locations. Geary’s c varies from 0, which indicates perfect positive autocorrelation, to 

around 2 for negative autocorrelation. When no SAC is detected, Geary’s c is 1. We 

calculate Geary’s c using: 

𝑐 =  ∑ ∑ 𝑤𝑖𝑗(𝑑)(𝑥𝑖 − 𝑥𝑗)²𝑊(𝑑)∑(𝑥𝑖 − �̅�)2(𝑛 − 1)  , 
where 𝑤𝑖𝑗 is the spatial weight matrix, 𝑑 is the distance class, 𝑊(𝑑) is the sum of 𝑤𝑖𝑗(𝑑). 

As in Moran’s I,  𝑥𝑖 and 𝑥𝑗 indicates the value of a certain variable at the location 𝑖 and 𝑗, 

respectively. Users of these techniques must pay attention to normalize the data set of the 

analyses because Moran’s I and Geary’s c are sensitive to extreme values as well as 

asymmetric data distribution (Legendre & Legendre, 1998). Overall, both measurements 

are used to the entire study area and produce global values (Fortin et al., 2002).  However, 

Moran’s I is the most used metric for SAC because of its direct comparison with Pearson’s 

correlation coefficient, while the same comparison with Geary’s c values would require a 

transformation. Therefore, they are considered global statistics and are useful when high 

spatial autocorrelation is possible to occur as well as when few samples are available to 

describe an area with distinct spatial settings.  



 

13 

 

 Global statistics are not appropriate to investigate local spatial association. Thus, 

local statistics were developed to measure the spatial dependence in a portion or geographic 

subset of the study area, where the general pattern does not hold. Where the investigation 

of local spatial dependence can potentially reveal interesting findings, local index of spatial 

association (LISA) can be used (Anselin, 1995; Longley & Batty, 1996). Local statistics 

of spatial dependence can identify hot spots, cases of non-stationarity and heterogenous 

data (Fotheringham et al., 2002). Anselin (1995) illustrated how global autocorrelation 

statistics such as Moran’s I and Geary’s c can also be a case of LISA and explained four 

more metrics for local spatial association measurement. LISA is a statistic of the form:  

Γ = ∑ 𝑤𝑖𝑗 𝑗 𝑦𝑖𝑗 , 

where the 𝑤𝑖𝑗 and 𝑦𝑖𝑗 are elements of matrices W and Y, and the focus is on the value of  Γ at location i. W is the spatial association between site i and other sites 𝑗, while Y is the 

association of values of a random variable at the site i with values at other sites. The Y 

matrix is the one from which other local statistics are formed. For local Moran’s statistic 

(𝐼𝑖), which is based on covariance, the 𝑦𝑖𝑗 are of the form of (𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�). For Geary’s 

local statistics (𝑐𝑖, 𝐾1𝑖, 𝐾2𝑖), the 𝑦𝑖𝑗  has a difference structure form like (𝑥𝑖 − 𝑥𝑗)². For 

local Getis-Ord (𝐺𝑖 and 𝐺𝑖∗), the 𝑦𝑖𝑗 takes the form of either 𝑥𝑗 or (𝑥𝑖 + 𝑥𝑗). These evaluate 

spatial association by comparing local weighted averages to global averages for ‘hot spots’ 

checking.  

Bocard et al (1992) and Legendre (1993) also worked to quantify SAC. They 

separated the variation of the response variables into four parts: 1) unexplained variation, 

which represents the model error; 2) explained environmental variation (e.g. climate and 
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topography); 3) variation explained by both spatial and environmental variables; and 4) 

variation explained only by spatial structure. To identify each part usually partial regression 

analysis is performed (Legendre and Legendre 1998; Miller, 2007). 

In sum, these metrics are useful to quantify the degree of SAC possessed by any 

spatial structured variables, which can be a response or an explanatory variable in the 

modeling procedure.  

 

2.1.4.2 Accounting for SAC 

Here, I review the main methods used to account for SAC in different scales. To 

overcome limitations of non-spatial techniques different modeling approaches have been 

used in the literature. In sum, these methods are applied according to the scale of interest 

in the study and, determined by sampling units and design (Miller et al., 2007; Franklin, 

2010). Common methods used in ecological, species distribution, soil-landform, and 

hydrological modeling are regression kriging, simultaneous autoregressive modeling, 

conditional autoregressive modeling, spatial lag modeling, spatial error modeling, spatial 

eigenvector mapping, and geographically weighted regression (GWR) (Griffith, 2000; 

Lichstein et al., 2002; Hengl et al., 2004; Griffith & Peres-Neto, 2006; Ver Hoef et al., 

2006; de Marco et al., 2008; Kissling & Carl, 2008; Bini et al., 2009; Miller, 2012; Václavik 

et al., 2012; Kim, 2013; Isaak et al., 2014). 

Autoregressive models (AR) are linear regression models with an additional term 

that incorporates SAC (Anselin, 2003; Kissling & Carl, 2008). This additional term has a 

spatial weights matrix that requires the distance between neighbors of each location and 
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the weight of each neighbor, where closer neighbors receive higher weights. This 

information serves as input to calculate the spatial dependence of a location and produce a 

variance-covariance matrix (Anselin, 1988; Cressie, 1993; Kissling & Carl, 2008). These 

approaches can describe fine-scale spatial patterns that are associated with local factors 

such as dispersal, disturbance, and competition (Lichstein et al., 2002; Miller et al., 2007). 

AR models can be defined as: 𝑦 = 𝛼 + 𝜌𝑊𝑦 + 𝜀 

where 𝛼 is the constant, 𝜌 is the autoregressive coefficient, 𝑊𝑦 the spatial lag for variable 𝑦 where 𝑊 is the neighborhood based on distance or other topology, and 𝜀 is the error term 

(Anselin, 1993). This model is known as spatial lag model and it assumes that the 

autoregressive process occurs in the response variable 𝑦 , also called inherent SAC 

(Anselin, 1988; Kissling & Carl, 2008). This model can be generalized with the addition 

of other predictor variables:  𝑦 = 𝛼 + 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 

where 𝑋𝛽  are the predictor variables and coefficients. This addition can improve the 

predictive ability of the associated model. For cases where the spatial autoregressive 

process occurs in the error term, which can happen when the explanatory variables do not 

fully explain SAC, it is advised to use the spatial error model (Haining, 2003; Kissling & 

Carl, 2008). This model is represented as: 𝑦 = 𝛼 + 𝑋𝛽 + 𝜆𝑊𝜇 + 𝜀 
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where 𝜆 is the autoregressive coefficient, 𝑊𝜇 the spatial matrix for the 𝜇  which is the 

spatially dependent error term, and 𝜀 is the spatially independent error (Dormann et al., 

2007). Kissling & Carl (2008) compared a non-spatial model (ordinary least square (OLS)) 

to three autoregressive spatial approaches (spatial lag (SARlag), spatial error (SARerr), 

and mixed (lagged and error together; SARmix) in species distribution data. They found 

that SARerr in all cases is more reliable and that OLS, SARlag and SARmix can perform 

poorly in terms of type I error and present unpredictable biases in parameter estimates.  

 Geostatistical methods such as regression kriging, one of the most widely used 

interpolation techniques (Cressie, 1993), model SAC explicitly through a variogram 

separating it from the deterministic variation and noise. These methods consider a 

stationary environment where the mean and the variance are constant over space (Anselin, 

2002; Legendre & Fortin, 1989). Assuming stationarity, these methods describe the spatial 

structure through a variogram as a function of distance (Fortin et al., 2002). Distance, in 

kriging methods, is the most important predictor, except for co-kriging and universal 

kriging that allow the addition of a second variable. Co-kriging adds co-variation 

information between two variables to model one of them (Miller et al., 2007). The quality 

and amount of sample data may affect the ability of these techniques to detect local 

information or local spatial dependence. Therefore, geostatistical methods are more 

adequate to model broad-scale SAC which is compared to the true gradient defined by 

Legendre and Legendre (1998), where the environmental gradient coincides with the 

geographical gradient.  

 Another approach to explicitly account for broad-scale SAC that has been widely 

used in ecological and soil modeling is trend surface analysis (TSA; Legendre & Legendre, 
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2012). Lichstein et al. (2002) emphasized that while autoregressive models account for 

fine-scale variations, models based on trend surface polynomials account for broad-scale 

spatial patterns. TSA is a polynomial technique that, based on a plane, determines the broad 

trend in the spatial data with the objective of minimizing the error between the interpolated 

value at a known location and the original value (Lichstein et al., 2002; Kim, 2013). 

Comparing a non-spatial model with TSA model outcomes, Kim (2013) explained that 

TSA performed better than the non-spatial approach. TSA presented lower AIC (Akaike 

information criterion) and greater R² values compared to the non-spatial method outcomes. 

However, compared to other spatial models such as spatial eigenvector mapping (SEVM), 

TSA did not have the best performance.  

It is hard to separate processes that occur only in one scale in nature, thus methods 

that have the potential to explain multiple scale SAC are necessary. Eigenfunction spatial 

filtering has been introduced to deal with the multiple scale SAC. This approach is a 

nonparametric technique that accounts for the inherent SAC in spatial models by 

introducing appropriate variates called spatial filters (Legendre & Legendre, 2012).  It is 

considered an alternative methodology to account for a specific type of SAC originated 

from missing variables that are spatially correlated (Getis & Griffith 2002; Griffith & 

Peres-Neto, 2006; Fischer & Griffith, 2008; Kim, 2013). Griffith (2000) emphasized that 

the eigenvector function can handle very well the conversion from spatially autocorrelated 

to spatially non-autocorrelated data. He also pointed it as a solution to the difficulties that 

autoregressive models face to deal with normalizing factors. Václavík et al. (2012) 

explained the issues of predicting invasive species distribution and showed how models 

can be improved by accounting for SAC at multiple scales. The authors used four models, 
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one that ignores SAC and three that incorporates SAC at different scales. They used TSA 

(trend surface analysis) to account for broad-scale SAC, autocovariates for local-scale, and 

SEVM (spatial eigenvector mapping), a filtering technique to account for SAC at multiple 

scales. In the results, the authors argued that accounting for SAC at multiple scales can 

improve our understanding of dynamic processes that drive the distribution of invasive 

species as well as the predictive performance of statistical techniques.  

 There are methods to account for SAC in a variety of fields. The manifestation of 

SAC can be differentiated (sometimes superficially) by the scale in which its influence is 

observed (Franklin, 2010; Václavik et al., 2012). The previous methods (AR, TSA, 

Kriging, and SEVM) describe consistently the relationships throughout a region of interest, 

thus representing global parameter estimates (Fortin et al., 2002; Miller et al., 2007). Thus, 

the decision among statistical methods that investigate SAC effects will depending on the 

scale of an observed phenomenon, and the patterns that the researcher is looking for to 

understand or explain.  
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2.2. Water Quality  

2.2.1. Importance of water quality 

Streams and rivers represent a considerable part of Earth’s biodiversity and are 

responsible for crucial ecosystem services that are beneficial to the human population (e.g. 

drinking water, irrigation use, industrial purposes). Natural and anthropogenic factors can 

impact river systems. Calow (1992) notes that natural factors include soils, atmospheric 

precipitation, slope, elevation, vegetation cover, and river discharge while anthropogenic 

aspects include urbanization, agricultural practices, and deforestation. Praskievicz & 

Chang (2009) explain that hydrological responses are affected by processes such as 

urbanization because it leads to changes in the magnitude of peak flow during rainfall 

events (i.e., as the impervious surface increases, the entire water balance of the watershed 

is altered). These factors can directly or indirectly impact the hydrological, biological, and 

chemical processes of aquatic ecosystems as well as degrade water quality conditions (Pratt 

& Chang, 2012). Therefore, assessing the condition of aquatic resources has become one 

of the major concerns worldwide and one of the most important areas of interdisciplinary 

environmental research. 

 

2.2.2. SAC and water quality  

Analyses of water quality are complicated by various sources of SAC in 

hydrological data. As previously mentioned, SAC is the likelihood of the value of a 

variable in one location to be similar to the measurement of the same variable in a 

neighboring location. Closer samples tend to be similar, thus resulting in positive spatial 
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autocorrelation, while far samples are usually different, representing cases of negative 

autocorrelation. Isaak et al. (2014) explained that positive autocorrelation in water quality 

may result from local habitat similarities or turbulent stream flows. However, even though 

cases of negative spatial autocorrelation are rare in ecological data (Dale & Fortin 2002; 

Beale et al., 2010), negative autocorrelation in water quality may still occur as a result of a 

too wide sampling interval for a specific variable within a watershed, as well as local 

existent structures or ecosystems (Pringle, 2001). SAC originates from exogenous (e.g. 

topography) and endogenous (e.g. dispersal) factors (Miller, 2012). Nonetheless, this will 

all depend on the scale of interest. Stream water quality patterns can present spatial 

homogeneity at different scales because of sink-source relationships (Valett et al., 2008). 

However, it can also be heterogeneous at both fine and broad scales because of channel 

and catchment characteristics (Pringle et al., 1988; Cooper et al., 1997).   

SAC is particularly important for water quality modeling because water quality 

conditions are influenced by human factors (e.g. land use practices), and natural factors, 

such as topography, climate, and hydrological processes (Pringle, 2001; Chang et al., 

2012). Some hydrological processes that influence the nearby water quality samples are 

rainfall intensity and channel characteristics. Also, it is well-known that physical and 

biological processes such as metapopulation dynamics and disturbance regimes occur in 

the catchment area and influence the characteristics of streams and rivers (e.g. network 

structure, connectivity, stream-flow direction) (Johnson & Gage, 1997; Peterson et al., 

2013).  These hydrological, physical, and biological processes in conjunction with the 

resulting stream characteristics typically create spatially structured patterns that should not 

be ignored.  For example, the physical structure of a stream may serve as an ecological 
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corridor to an organism or a material, but the efficiency of this corridor will also depend 

on the processes that involve the organism or material in observation (Peterson et al., 2013). 

Accounting for SAC in water quality studies may reveal these complex spatial patterns and 

help water quality experts to understand what drives main changes in hydrological systems, 

thus enhancing water quality management laws and practices.  

 

2.2.3. Spatial approaches to water quality modeling 

Hydrological modeling is an important tool in the investigation of processes that 

drive changes in water resources. Modeling water quality is difficult because water quality 

conditions significantly depend on complex characteristics, such as basin hydrology and 

vegetation dynamics, that would require their own models (Praskievicz & Chang, 2009). 

These characteristics can be considered the causes of SAC and, thus, ignoring SAC may 

prevent researchers from acquiring valuable information about stream attributes and 

decrease the accuracy and validity of statistical inferences.  

To account for the sources of SAC existent in hydrological ecosystems, spatial 

techniques are necessary. Several studies in hydrology have attempted to consider SAC to 

understand the influence and the selection of scale and key predictors such as land use and 

climate in water quality. Therefore, models that explicitly accounts for SAC such as 

autoregressive regression (AR), geostatistical approaches, and spatial filtering techniques 

are necessary and have been used to investigate the causes and patterns in water quality 

studies. For instance, Cooper et al. (1997) pointed out that geomorphological 

characteristics resultant from meanders or pool-riffle spacing can be associated with spatial 
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relationships in streams, and to detect these spatial patterns spatial techniques such as 

autoregressive functions may be efficient. 

Vrebos et al. (2017) attempted to account for SAC to examine if spatial processes 

have significant impacts on predicting water quality trends. As river systems are 

hierarchically organized, and with directional nature, Vrebos et al. (2017) applied a spatial 

filtering technique (AEM - Asymmetric Eigenvector Mapping) to evaluate the influence of 

land use and spatial scales in water quality changes from up to downstream within a 

catchment in Belgium. They compared this technique with MEM (Moran's Eigenvector 

Mapping), which performed better than AEM. Using MEM, they found that land use and 

a variety of spatial predictors of different scales were significantly impacting the water 

quality conditions in the region. They also pointed that human activities affected the entire 

chemistry balance supporting the complex characteristics of the catchment. Therefore, 

even though they did not identify unidirectional changes of water chemistry in the selected 

catchment, meaning that different directions can be affecting the trends of water quality, 

spatial structure proved to be significant.  

Huang et al. (2014) examined the effects of natural and anthropogenic factors in 

the spatial variation of water quality conditions within a coastal watershed. To choose the 

best model that can identify significant explanatory variables for each water quality 

variable (response variable), they compared model outcomes (R², AIC  and Moran’s I 

values) of a non-spatial technique (OLS) to two spatial approaches (i.e., spatial lag and 

error models). They found that the spatial techniques had greater R² results, and lower AIC 

values compared to OLS. Huang et al. (2014) also pointed that the spatial error model 

presented a slightly better performance than the spatial lag technique.  
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Pratt & Chang (2012) compared OLS and GWR model outcomes to observe the 

relationship between land cover and stream water quality, considering scale and 

seasonality. They concluded that scale and seasonality can impact model results. 

Additionally, they pointed out GWR presented greater predictive power and account for 

more local water quality sources of variation than OLS.  

Chang (2008) applied autoregressive regression (both spatial error and lag models) 

to understand the complex relationships between landscape and water quality, addressing 

spatial and temporal trends, as well as anthropogenic and scale effects. The results showed 

different trends for each water quality variable. Land cover was an important predictor in 

explaining the spatial and temporal variation in water quality. Spatial models explained the 

variation of water quality better than the OLS model. Overall, Chang addressed that to 

understand the complex and dynamic behavior of water quality variables, the integration 

of landscape analysis and spatially intensive monitoring is of vital importance. 
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CHAPTER 3: METHODOLOGY1 

 

3.1. Study Areas 

 

The study areas are basins located in 10 states of the USA. I analyzed water quality 

variables in watershed and sub-watershed segments in Arizona (AZ), California (CA), 

Colorado (CO), Delaware (DE), Idaho (ID), Iowa (IA), Kansas (KS), Kentucky (KY), 

Louisiana (LA), and Virginia (VA). The basins were delineated by the U.S. Geological 

Survey (USGS), which states that as per the fifth and sixth levels of classification, these 

basins are smaller scale hydrologic units. Overall, their areas ranged from 150 to 764 km². 

The climate and geology of the regions vary significantly due to their differences in 

latitude, longitude, and altitude. Tables 1 and 2 briefly present the climatological and 

geological characteristics of each state, and specific site characteristics in terms of area and 

water quality variables, respectively. Figure 2 illustrates the watershed shapes and their 

land cover characteristics.

                                                             
1 The main content of this section has been published in Miralha & Kim (2018). 
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Figure 2. Land cover characteristics of each state and watershed shape. Idaho (a); Kansas (b); Iowa (c); Delaware 

(d); California (e); Virginia (f); Arizona (g); Colorado (h); Louisiana (i); and Kentucky (j). To better visualize the 

water quality stations spatial organization, refer to Appendix A. 

(a) (b) (c) (d) 

(e) 

(f) 

(g) (h) 
(i) (j) 



 

 

 

2
6

 

 

Table 1. Description of the ten study sites investigated in this research. 

Region Coordinatesa Land Cover 
Biogeographic 

Regionb 
Geology Climateb Soilc Surficial Lithologyb 

Arizona 
34°40′54″ N,  

112°00′47″ W 

Herbaceous, low-intensity 

urbanization, and evergreen 

forest 

North American 

Warm Desert 

Late and middle Pleistocene 

surficial deposits and Pliocene 

to middle Miocene deposits 

Cold semi-arid (BSk) 
Alfisols/ 

Inceptisols 

Non-Carbonate and Silicic Residual 

Material; Alluvium and Fine-textured 

Coastal Zone Sediment 

California 
38°00′00″ N,  

119°21′33″ W 

Evergreen Forest, Barren 

Land, and Shrubs 

Mediterranean 

California 

Mesozoic granitic rocks, unit 3 

(Sierra Nevada, Death Valley 

area, Northern Mojave Desert, 

and Transverse Ranges) 

Temperate Mediterranean 

(Csb) 

Rock 

outcrop/ 

Entisols 

Silicic Residual Material  

Colorado 
37°56′58″ N,  

107°56′10″ W 

Predominantly Evergreen 

and Deciduous Forest 
Rocky Mountain 

Mancos Shale; Pre-ash-flow 

andesitic lavas, breccias, tuffs, 

and conglomerates; Morrison, 

Wanakah, and Entrada Fms 

Warm-summer humid 

continental (Dfb) 

Rock 

outcrop/ 

Mollisols 

Non-Carbonate and Silicic Residual 

Material 

Delaware 
39°43′36″ N, 
75°40′07″ W 

High-, medium-, and low- 

intensity urbanization with 

some deciduous forest and 

pasture 

Gulf and Atlantic 

Coastal Plain 
Wissahickon Schist  Humid Subtropical (Cfa) Ultisols 

Non-Carbonate and Silicic Residual 

Material; Alluvium and Fine-textured 

Coastal Zone Sediment 

Idaho 
47°31′01″ N,  

116°04′27″ W 

Evergreen forest, shrub, and 

some medium-intensity 

urbanization 

Rocky Mountain 

Siltite, argillite, dolostone, and 

quartzite; Middle Proterozoic 

Wallace Formation 

Temperate Mediterranean 

(Csb)/Warm, dry-summer 

continental (Dsb)  

Andisols Non-Carbonate Residual Material 

Iowa 
41°37′38″ N,  
91°29′31″ W 

High and medium 

urbanization level with 

crops and pasture 

Eastern Great Plains Cedar Valley Limestone  Humid Continental (Dfa) Mollisols 

Glacial Till, Loamy; Glacial Outwash 

and Glacial Lake Sediment, Coarse-

textured; Alluvium and Fine-textured 

Coastal Zone Sediment  

Kansas 
38°55′00″ N,  
94°41′14″ W 

Predominantly high-, 

medium-, and low- 

intensity urbanization 

Eastern Great Plains 
Limestone—Kansas City and 

Lansing Group 
Humid Subtropical (Cfa) Mollisols 

Non-Carbonate Residual Material

  

Kentucky 
37°25′01″ N, 
82°49′04″ W 

Predominantly Deciduous 

Forest 

Central Interior and 

Appalachian 
Middle part of Breathitt Group Humid Subtropical (Cfa) Inceptisols Colluvial Sediment 

Louisiana 
31°48′17″ N,  
91°42′21″ W 

Predominantly cultivated 

crops  

Gulf and Atlantic 

Coastal Plain 
Sub/supra-glacial sediment Humid Subtropical (Cfa) Vertisols 

Alluvium and Fine-textured Coastal 

Zone Sediment  

Virginia 
38°55′51″ N, 
77°18′25″ W 

Deciduous Forest and 

developed open space 

Central Interior and 

Appalachian 
Schist Humid Subtropical (Cfa) 

Alfisols/ 

Inceptisols 
Non-Carbonate Residual Material 

*Study site names are given in the next table. 
a The coordinates indicate the central point of the watershed in study.  

b Biogeographic regions, Climate, and Lithology are according to Sayre, 1984. 
c Soil information is according to US soil taxonomy at soil order level. 



 

 

 

2
7

 

Table 2. Study areas (10 watersheds each in one state of the USA and their areas), number of stations per study area, and water quality 

parameters (response variables) with the respective Moran’s I values in parentheses. 
Study Areas 

State LA AZ KS VA CA CO DE ID IA KY 

Watershed 

Bayou 

Louis/ 

Lake 

Louis  

Cherry 

Creek 

Indian 

Creek 

Difficult 

River 

Headwaters 

Tuolumne 

River 

Upper 

San 

Miguel 

River 

Clay, Mill, 

Bradywine 

Creek, and 

Cristina River 

Lower 

South Fork 

Coeur 

d’Alene 
River 

Iowa River 
Beaver 

Creek 

Area (km2) 288.58 586.26 193.8 150.84 553.66 763.71 352.24 308.49 193.96 407.07 

Stations 29 31 33 33 31 32 36 32 32 54 

Water quality 

parameter 

(Moran’s I) 

pH (0.13) DO (−0.08) * TN (0.013) Tur (−0.28) * Csu (−0.20) * DO (0.39) SC (−0.05) * Pb (0.11) DO (0.18) Al (0.005) 

T (0.15) pH (−0.07) * SC (0.022) TDS (−0.26) * T (0.30) SC (0.36) T (−0.006) * T (0.15) pH (0.34) Ba (0.06) 

SC (0.20) T (0.54) DIN (0.07) SC (0.06) Mg (0.42) pH (0.37) Chla (0.02) Zn (0.24) NO3
− (0.36) Alk (0.11) 

DO (0.28) SC (0.59) KjN (0.10) Br (0.09) K (0.46) T (0.67) TN (0.03) pH (0.31) T (0.49) Na (0.14) 
 TDS (0.53)  TP (0.15) Cl (0.12) Ca (0.55)  Nin (0.05) Cd (0.35) PO4

3− (0.66) Cl (0.23) 
   T (0.20) Mg (0.15) Cl (0.58)  Alk (0.08) As (0.47) Cl (0.67) K (0.26) 
   Tur 0.25) Na (0.15) Na (0.59)  TP (0.12) SC (0.56)  Nin (0.29) 
   DO (0.44) DO (0.16) SiO2 (0.62)  DO (0.15)   TDS (0.32) 
   pH (0.72) Ca (0.17) SO4

2− (0.65)  pH (0.16)   SO4
2− (0.38) 

    SiO2 (0.19) TDS (0.73)  Cl (0.23)   Fe (0.40) 
    Fe (0.21) Alk (0.80)  TOC (0.32)   KjN (0.43) 
    K (0.25) pH (0.82)  DOC (0.32)   Mg (0.47) 
    CO2 (0.34)      Ca (0.55) 
    Mn (0.34)      Mn (0.58) 
    pH (0.39)       

    Alk (0.40)       

    TP (0.42)       

    SO4
2− (0.45)       

    F (0.54)       

    T (0.69)       

* Moran’s I values treated as absolute values. Note: Specific conductance (SC), dissolved oxygen (DO), total dissolved solids (TDS), total 

nitrogen (TN), dissolved nitrogen (DIN), total ammonia plus organic nitrogen (also known as Kjeldahl nitrogen, KjN), total phosphorus 

(TP), turbidity (Tur), alkalinity (Alk), suspended carbon (Csu), chlorophyll (Chla), inorganic nitrogen (Nin), total organic carbon (TOC), 

dissolved organic carbon (DOC), dissolved lead (Pb), dissolved zinc (Zn), dissolved cadmium (Cd), and dissolved arsenic (As).
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3.2. Dependent Variables 

Water quality data from 2011 to 2017 were obtained online from the national Water 

Quality Portal (WQP) (NWQMC, accessed throughout the year 2017). The WQP integrates 

publicly available water quality data from three very important and widely used sources 

for research in the US: the USGS National Water Information System (NWIS), the EPA 

STOrage and RETrieval (STORET) Data Warehouse, and the United States Department of 

Agriculture (USDA) Sustaining the Earth’s Watersheds Agricultural Research Data 

System (STEWARDS) through the Water Quality eXchange (WQX). 

Based on the data availability and site locations, 29–54 sampling stations were 

selected from each study watershed (Table 2). Accounting for the temporal variability in 

each watershed, the data were selected within the same week, month, or season. Therefore, 

no seasonality effect was considered in this study. Because I collected water quality data 

from different sources as explained above, the number and type of variables varied across 

watersheds (Table 2). These water quality variables were treated as dependent variables in 

this research.  

 

3.3. Delineation of Upstream Area 

Characteristics of the sub-watershed area upstream of sampling stations should 

affect water quality variables downstream (Chang, 2008). Thus, sub-watershed boundaries 

were delimited using the ‘ArcHydro’ package tool of ArcGIS 10.3 (Environmental 

Systems Research Institute, Redlands, CA, USA). I downloaded spatial stream data from 

the 2016 US Geological Survey (USGS) National Hydrography Dataset (USGS, accessed 
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on 2017). The distance between stations varied, as did the size of each upstream area 

delineated. Land use characteristics as well as topography and soil far from the stream 

channel might contribute less to changes in water quality across space (Pratt & Chang, 

2012). Thus, I used the upstream area to separate the stream network specific to each station 

and delineated the riparian zone around the stream. Many studies have conducted analyses 

at the riparian area scale, mainly by considering a buffer zone on each side of the stream. 

Overall, there was no specific buffering distance recommended (Chang, 2008; Li et al., 

2009; Pratt & Chang, 2012). In this study, I used a buffer zone of 50 m each side of the 

stream (i.e., a 100 m buffer in total) as the area that can contribute the maximum to water 

quality changes (Figure 3). I performed these analyses for all watersheds in this study. 

Figure 3. Upstream area delineation example of the Beaver Creek watershed in Kentucky, 

and their respective buffer zones in tones of gray. The solid circles are water quality stations 

(sites). 

Buffer zones (100 m) 

Water quality stations 

Upstream sub watershed area 



 

30 

 

 

3.4.  Independent Variables 

Using the buffer zones of the upstream area, I extracted the land use, topography, 

and soil types associated with each sampling station. These variables were treated as 

independent variables in the subsequent modeling. The summary of these variables is 

shown in Table 3. I downloaded the land use raster with 30 m resolution from USGS The 

National Map—2011 National Land Cover Database (USGS TNM-NLCD) (USGS, 

accessed in 2017). In this study, I considered the percentage of four major land use types 

surrounding stream networks: urban, agriculture, forest, and wetland. To extract this 

information, I used the ‘Zonal Statistics’ toolset in ArcGIS 10.3. The percentage of urban 

area in each upstream buffer zone was calculated using the sum of the low-, medium-, and 

high-intensity urbanization, and open space values in the land use raster. The sum of the 

values for pasture and cultivated crop was used to calculate the percentage of agricultural 

land in the area. The values for deciduous forest, evergreen forest, and mixed forest were 

used to estimate the percentage of forest, while the values for woody wetlands and 

emergent herbaceous wetland were combined to calculate wetland percentage. For the 

topographic variables, I used 10 m resolution digital elevation models (DEMs) downloaded 

from USGS The National Map Elevation Products (USGS TNM 3DEP) (USGS, accessed 

in 2017). Using the same upstream area and zonal statistic toolset, I extracted the mean and 

standard deviation of the elevation and slope respectively for each station’s upstream area. 

These variables were used to account for topographic complexity.  

I downloaded the hydrological soil groups (HSGs) from the Natural Resources 

Conservation Service’s (2017 NRCS) Soil Survey Geographic (SSURGO) database (Soil 
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Survey Staff, accessed in 2017). I extracted the percentages of A, B, C, D, A/D, B/D, and 

C/D categories of soil for each site. The HSGs are categorized by the hydraulic 

conductivity level of a soil and how much runoff it produces. This is usually associated 

with the percentage of sediment grain sizes a soil presents. Typically, group A soils have a 

low runoff capacity because the water transmissivity through the soil profile is very high. 

Thus, group A soils are composed of a high percentage of sediments with large grain size, 

such as sand or gravel. Group B soils have a moderate runoff capacity. Nevertheless, water 

flows freely through the soil profile and the percentage of large-sized grains is high. In this 

case, however, small grain size sediments such as clay can reach up to 20 percent of the 

total. Group C soils have a moderately high runoff capacity and have a higher clay percent, 

with less than 50 percent of sand. Group D soils are characterized as having the highest 

percentage of fine grains such as clay and silt. The dual HSGs (A/D, B/D, and C/D) are 

wet soils where water table is within 60 cm below the surface but can still be drained 

adequately. The first letter indicates well-draining conditions, and the second, represents 

poorly drained conditions (USDA-NRCS, 2009).



 

 

 

3
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Table 3. Data sources and details of dependent and independent variables. 

Agency 

Source 
Variable Year/Data PC Group Derived Variable Original Data 

WQP Dependent 
2011 to 2017—Water 

quality parameters 
 - Physical water quality data 

USGS Independent 
2017—National 

Elevation dataset (10 m) 
Topographic Mean elevation Elevation 

    Elevation standard deviation  

    Mean slope  

    Slope standard deviation  

USGS Independent 
2011—National Land 

Cover dataset (30 m) 
Land use Agriculture Pasture, cultivated crops 

    Forest 
Deciduous forest, evergreen 

forest, mixed forest 

    Urban 

Low-, medium-, high-

intensity urbanized areas, 

open space 

    Wetland 
Woody wetland, emergent 

herbaceous wetland 

USDA, NRCS Independent 
2017—Hydrologic Soil 

Groups 
Soil A, B, C, D, A/D, B/D, C/D  

Soil Survey Geographic 

(SSURGO) database 

Note: PC (Principal Component); WQP (Water Quality Portal); USGS (United States Geological Survey); USDA, NRCS (United States Department of 

Agriculture, Natural Resources Conservation Service). 
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3.5 Data Preprocessing 

I tested the normality of each dependent and independent variable using IBM SPSS 

Statistics for Windows Version 23.0 (Armonk, NY, USA). In this study, the 

independent variables are likely to present a high level of correlation due to their nature. 

For example, agriculture and urban zones are land use types that might express a 

significant negative relationship because, as the area under agricultural use increases, 

the urbanized areas will tend to decrease. Thus, to account for the multicollinearity in 

the subsequent modeling, I applied principal component analysis (PCA). This technique 

reduces the dimensionality of a multivariate dataset where variables are significantly 

interrelated. This reduction results in principal components (PCs), which are considered 

uncorrelated variables (Jolliffe, 1986; Abdi &Williams, 2010). PCA is useful because 

it simplifies the description of the independent variables and the modeling procedure. I 

divided the independent variables into three main groups: land use, topography, and 

soil. Land use considered the percentage of urban, agriculture, wetland, and forest areas. 

The topographic group encompassed the mean and standard deviation values of slope 

and elevation. The soil groups represented the percentage of A, B, C, D, A/D, B/D, and 

C/D soil types (Table 3). Overall, I had three main PC groups used as the predictors in 

the models. Each variable category presents one to three PCs, depending on how 

significantly the variables in each group are correlated. This means that a model can 

have three to nine principal components as independent variables. 
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3.6. Testing for Spatial Autocorrelation (SAC) 

Moran’s I is the most used metric to measure SAC in spatial studies because of its 

similarity to the Pearson’s correlation coefficient, which facilitates interpretation. Thus, 

I quantified the inherent degree of SAC for each water quality variable using Moran’s 

I. I used the geographic coordinate system based on angular values (longitude and 

latitude) considering the North American 1983 as the datum for the distance calculation. 

I did not perform a projection in this study, which would have been a serious issue if I 

had been concerned with region-scale modeling crossing multiple states. Instead, the 

current study examined the water quality of several stations within local watersheds (< 

ca. 764 km2). Therefore, using the Euclidean distance is appropriate. 

 

3.7. Statistical Models 

GeoDa version 1.8 (Chicago, IL, USA) was used to run three models in this paper. 

First, OLS, representing the non-spatial model, is a multiple linear regression approach 

(Equation (1)), where the response variable is the water quality variable and the 

independent variables are the PCs of the topographic, land cover, and soil groups:  

𝑌𝑖 = 𝛽𝑜+ 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖 + ε𝑖, (1) 

where Yi is the response variable, 𝛽o is the constant in a linear model, 𝛽𝑖 are coefficients 

associated with the independent variables, and ε𝑖 is the error term. Notably, the same 

independent and dependent variables were used as in the spatial modeling approaches. 

The second model was a spatial lag model (Equation (2)): 

𝑌𝑖 = 𝑋𝑖𝛽𝑖 + 𝜌𝑊𝑌𝑗 + 𝜀, (2) 
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where Yi and Yj are the dependent variables at locations i and j, respectively, Xi is the 

independent variable at i, 𝛽𝑖 is the regression coefficient, 𝜌 is the spatial autoregressive 

coefficient, WYj is the spatially lagged dependent variable, and 𝜀 is the error term. This 

model accounts for the fact that the dependent variable is affected by the independent 

variables in adjacent places, and, thus, the dependent variable is spatially lagged as a 

predictor. The third model used was the spatial error model (Equation (3)): 

𝑌𝑖 = 𝑋𝑖𝛽𝑖 + ε; ε = ƛ𝑊ε + ε, (3) 

where Yi is the dependent variable at location i, Xi is the independent variable, 𝛽𝑖 is the 

regression coefficient, ε is the error term, ƛ is the autoregressive coefficient, 𝑊ε is the 

spatially lagged error term, and ε is the homoscedastic and independent error term. This 

model accounts for the error terms that are correlated across different spatial units. 

 Spatial lag and error models are based on spatial weights matrix construction as 

presented in the literature (Dorman et al., 2007; Chang, 2008; Kissling & Carl, 2008). 

Among several methods used to account for SAC, I chose these spatial techniques 

because of their great flexibility in describing spatial organization in cases where the 

sampling sites are neighboring points separated by non-equal distance intervals 

(Anselin, 2002; Dray et al., 2012), which is the case of this study. In addition, these 

methods are the most common used spatial techniques in a variety of fields, including 

water quality modeling.  

 

3.8. Model Comparison 

After measuring the inherent degree of SAC for each water quality variable, I 

compared the outcomes of non-spatial OLS and spatial regression approaches in terms 

of R2 and rSAC. To quantify rSAC, I estimated Moran’s I for residuals. After the 
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modeling procedure, I evaluated the hypothesis by plotting Moran’s I values of the 

water quality variables against the R2 and rSAC values for each water quality variable 

(Figure 4). A few water quality variables presented negative inherent SAC values and 

were treated as positive in this graph. This is because I intended to concentrate on the 

magnitude of SAC.  

 

Figure 4. Evaluation of the hypothesis—Moran’s I values of the water quality 

variables appear on the x-axis, and the model outcomes, R2 and residual SAC, 

appear on the y-axis. After spatial regression, water quality variables with a 

higher amount of spatial autocorrelation (SAC) were hypothesized to exhibit 

improved hydrologic modeling (i.e., more increases in R2 and more decreases 

in residual SAC) than those with lower SAC. 
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CHAPTER 4: RESULTS 

 

4.1. Changes in R² Values 

Overall, Moran’s I values pertaining to water quality variables varied widely, from 

0.01 to 0.82, across all watershed sites (Figure 5). The relationships shown in Figure 5 

indicate that the improvements in R² were proportional to the degree of inherent SAC 

in water quality variables (i.e., the hypothesis predicting increases in R² as a function 

of the degree of SAC is supported). Whether I treated each state separately or combined 

them as a whole, strongly autocorrelated water quality variables over space (i.e., having 

higher Moran’s I values) exhibited greater increases in R² values after spatial regression 

compared to weakly autocorrelated variables (i.e., having lower Moran’s I values). For 

example, suspended carbon (Csu; I = 0.20) presented the lowest degree of SAC in the 

California study area, and pH had the highest (I = 0.82). For Csu, non-spatial OLS 

resulted in a R² of 0.12 while the spatial lag and error models resulted in R² values of 

0.24 and 0.32, respectively. The OLS performance for pH improved (R² = 0.49), but 

spatial regression showed better results (i.e., spatial lag - R² = 0.81 and spatial error - 

R²= 0.72). This pattern seemed to be less clear when water quality variables within a 

watershed had a relatively narrow range of Moran’s I (e.g., Delaware). A detailed 

example in the Kentucky study site is the variable aluminum (Al; I = 0.01) that 

presented no significant changes in R² values among non-spatial OLS, spatial lag and 

spatial error. R² values were equal to 0.17, 0.17 and 0.18 for OLS, spatial lag and spatial 

error models, respectively. 

  Overall, as the degree of inherent SAC increased the performance of non-spatial 

OLS worsened compared to spatial lag and error model R² results. Examples of this 

evidence are also specific conductance (SC) in the Arizona basin (I = 0.59; OLS - R² = 
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0.09, spatial lag - R²= 0.54, spatial error R² = 0.61), and  temperature (T) in the Virginia 

site (I = 0.70; OLS - R² = 0.27, spatial lag - R²= 0.60, spatial error R² = 0.76). These 

results also illustrate the inability of non-spatial OLS model to handle the degree of 

SAC inherent in water quality variables.  

 

 

Figure 5. Relationship between the spatial autocorrelation (SAC) of each 

water quality variable (represented by Moran’s I values) and the R² indicating 

the amount of variance in each water quality variable, explained by 

topographic, land use, soil groups, and spatial terms (Appendix B shows model 

results per water quality variable in each watershed). 
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4.2. Changes in residual Spatial Autocorrelation (rSAC) 

The values of Moran’s I indicating rSAC produced by non-spatial OLS presented 

a wider range than those from spatial regression (Figure 6; i.e., rSAC for non-spatial 

OLS from 0.01 to 0.72, while spatial lag rSAC ranged from 0.00 to 0.44, and spatial 

error, from 0.00 to 0.07). I found a positive correlation between the degree of SAC in 

water quality variables and rSAC from non-spatial OLS. Conversely, as expected, 

rSAC values acquired by spatial regressions were in general near zero. Therefore, the 

larger the Moran’s I values possessed by water quality variables, the greater the 

reduction in rSAC after running models that consider spatial dependence (i.e., the 

hypothesis predicting greater decreases in rSAC, proportional to the degree of SAC in 

water quality variables, is supported). For example, in Colorado, the variable 

temperature (T) presented I = 0.67, and comparing rSAC values after all modeling 

procedure, non-spatial OLS revealed a significantly high rSAC value of 0.37 while 

spatial models (lag and error) reached rSAC results nearly zero (0.01 and 0.03, 

respectively). In Iowa, non-spatial OLS model for the variable Cl (I = 0.67) presented 

rSAC = 0.12 while spatial lag rSAC was 0.01 and spatial error rSAC reached 0.05. 

Another example of this reduction evidence was the rSAC values after modeling the 

variable pH (I = 0.72) in Kansas, spatial regression rSAC results were almost zero 

(spatial lag – 0.09 and spatial error – 0.05) while non-spatial OLS revealed rSAC = 

0.65. Although the sites are distinct in terms of climate, geology, soil, and land use 

characteristics, I observed that the amount of rSAC remaining after non-spatial and 

spatial modeling revealed a relationship with the degree of inherent SAC in the water 

quality variables. Overall, all states presented a significant reduction in rSAC after 

spatial regression except Delaware, showing a narrow range of Moran’s I values of 

water quality variables.  
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Figure 6. Relationship between the spatial autocorrelation (SAC) of each 

water quality variable (represented by Moran’s I values) and the SAC of model 

residuals (also represented by Moran’s I values). “All states combined” 

showed a general reduction in residual SAC after accounting for spatial 

autocorrelation in the models of each water quality variable (Appendix B 

shows model results per water quality variable in each watershed). 

 

4.3. Overall Changes between Non-Spatial OLS and Spatial Regression Models 

In general, the improvement in R² and reduction in rSAC after spatial regression 

were positive, and the changes of R² and rSAC showed to be a linear function of the 

degree of SAC possessed by water quality variables. I found this relationship in each 

study area, and the results were summarized in Table 4.  
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Table 4. Summary of mean values of spatial autocorrelation (I) in response variables, mean values of the non-spatial OLS outcomes 

and mean improvement in R² and reduction rSAC after spatial regression per state. Additionally, the linear regression model coefficients, 

R², and p-value of the Changes in R² and rSAC per state.  

   California Colorado Delaware Idaho Iowa Kentucky Arizona Kansas Louisiana Virginia 
All States 

Combined 

  Samples 12 4 12 7 6 14 4 9 5 20 93 
  I 0.56 0.45 0.13 0.31 0.45 0.30 0.31 0.22 0.26 0.29 0.32 
 

OLS 
R² 0.28 0.31 0.27 0.25 0.44 0.23 0.34 0.23 0.15 0.37 0.29 

 rSAC 0.39 0.21 0.09 0.19 0.12 0.19 0.19 0.26 0.16 0.17 0.21 

After spatial 

regression 

Improvement 

in R² 

lag-ols 0.26 0.16 0.03 0.09 0.05 0.09 0.13 0.11 0.09 0.03 0.10 

error-ols 0.29 0.18 0.04 0.09 0.04 0.08 0.15 0.17 0.10 0.07 0.12 

Reduction in 

rSAC 

ols-lag 0.37 0.13 0.05 0.09 0.02 0.15 0.13 0.14 0.11 0.04 0.12 

ols-error 0.40 0.13 0.07 0.12 0.07 0.16 0.17 0.21 0.12 0.14 0.17 

Linear 

regression 

models for 

the Change 

in R² vs. I 

Model fit 

Spatial Lag 

R² 0.55 0.12 0.07 0.85 0.68 0.61 0.51 0.91 0.94 0.46 0.58 

βo 0.00 0.07 0.01 −0.09 −0.07 −0.04 −0.04 −0.07 −0.09 −0.05 −0.15 

β1 0.46 0.19 0.11 0.58 0.26 0.44 0.55 0.86 0.70 0.30 0.74 

p-value <0.001 * 0.10 * 0.60 0.10 * 0.53 0.08 * 0.39 0.09 * 0.38 0.28 <0.001 * 

Model fit 

Spatial Error 

R² 0.40 0.03 0.00 0.77 0.64 0.55 0.42 0.77 0.93 0.29 0.36 

βo 0.07 0.11 0.03 −0.13 −0.04 −0.04 −0.02 −0.01 −0.10 −0.04 −0.04 

β1 0.39 0.15 0.02 0.68 0.19 0.40 0.56 0.83 0.75 0.40 0.60 

p-value <0.001 * 0.06 * 0.52 0.15 0.62 0.10 * 0.33 0.02 * 0.39 0.06 * <0.001 * 

Linear 

regression 

models for 

the Change 

in rSAC vs. I 

Model fit 

Spatial Lag 

R² 0.33 0.56 0.58 0.66 0.42 0.60 0.67 0.67 0.80 0.03 0.31 

βo 0.14 −0.32 0.01 −0.21 −0.10 −0.03 −0.07 −0.03 0.00 −0.01 −0.05 

β1 0.41 1.01 0.36 0.98 0.27 0.57 0.66 0.80 0.42 0.17 0.18 

p-value <0.001 * 0.18 0.01 * 0.20 0.71 <0.001 * 0.34 0.08 * 0.09 * 0.32 <0.001 * 

Model fit 

Spatial Error 

R² 0.32 0.87 0.42 0.84 0.28 0.45 0.77 0.60 0.74 0.17 0.39 

βo 0.22 −0.26 0.02 −0.15 −0.03 0.01 −0.05 0.05 0.00 0.05 −0.03 

β1 0.32 0.88 0.33 0.87 0.22 0.51 0.70 0.71 0.46 0.30 0.17 

p-value <0.001 * 0.17 0.00 * 0.11 0.15 <0.001 * 0.25 0.02 * 0.08 * <0.001 * <0.001 * 

* significant at the 0.10 level. I: Moran’s I values; OLS: ordinary least squares; rSAC: residual spatial autocorrelation; lag-ols: improvement in R² 

from non-spatial ols to spatial lag regression; error-ols: improvement in R² from non-spatial ols to spatial error regression; ols-lag: reduction in 

rSAC from non-spatial ols to spatial lag regression; ols-error: reduction in rSAC from non-spatial ols to spatial error regression. 
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4.4. Summary of Findings 

The magnitude of model improvement (i.e., increases in R2 and decreases in rSAC), 

after both spatial lag and error modeling, is significantly and linearly a function of the SAC 

inherently possessed by water quality variables (i.e., response variables) (Figure 7). This, 

in turn, supported the hypothesis that water quality variables with a higher amount of SAC 

would exhibit greater improvement in model outcomes than those with a lower amount of 

SAC.  

 

Figure 7. Linear regression models demonstrating that the magnitude of 

improvement of model performance after spatial lag and error modeling is 

significantly and linearly explained by the SAC inherently possessed by water 

quality variables. The Moran’s I (x-axis) and Change in R² (y-axis) values were 

transformed using square-root transformation, while the Change in rSAC (y-axis) 

were log-transformed. 
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CHAPTER 5: DISCUSSION 

The results support the hypothesis and offer insights into the field of water quality 

modeling. Most importantly, the level of SAC in water quality variables has the 

potential to indicate how much improvement a non-spatial model would experience if 

SAC was appropriately considered (i.e., increases in R² values and decreases in rSAC). 

I have demonstrated across divergent watersheds in the USA that the higher the SAC 

in a water quality variable, the greater the improvements in the model after accounting 

for SAC. Water quality studies, as previously mentioned, achieved better results when 

considering spatial modeling approaches that account for SAC (Franczyk & Chang, 

2009; Pratt & Chang, 2012; Yu et al., 2013; Vrebos et al., 2017). However, these 

studies have not considered the magnitude of SAC in the response variable as the main 

driver of model improvements. Furthermore, I observed that variables with lower 

degree of inherent SAC (i.e., lower Moran’s I values) underwent smaller changes in 

model outcomes compared to those that presented larger Moran’s I values. In this 

sense, higher Moran’s I values imply more spatial organization (e.g., strong connection 

among water quality stations through the stream network) than smaller Moran’s I 

values. This indicates that the need for (and potentially the benefit from) accounting 

for SAC in water quality modeling increases as the degree of SAC increases.  

In this study, I investigated water quality variables from 10 watersheds, each 

distinct in geology, land use, soil, and topography. I analyzed a total of 93 water quality 

variables, many of which also differed among the watersheds. Despite such variations, 

this study reveals a consistent and linear relationship between the SAC of water quality 

variables and changes in the model outcomes (R² and rSAC). This finding perfectly 
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accords with the study of Kim et al. (2016), who evaluated the effect of SAC in soil–

landform modeling to find that the degree of SAC in soil variables (i.e., dependent 

variables) influenced model improvements after the SAC was properly accounted for. 

These findings suggest that future water quality modeling studies should account 

for SAC in order to improve the performance of non-spatial approaches, principally 

when the predictors in the model cannot sufficiently account for all SAC in the model 

(Legendre & Fortin, 1989; Legendre, 1993; Dormann, 2007; Miller et al., 2007; Kim, 

2013; Kim et al., 2016). Overall, the improvements include increasing R² and 

decreasing rSAC. The most important point is that the degree of these increases and 

decreases showed to be linearly correlated with the level of SAC in water quality 

variables. Therefore, water quality studies should not only focus on accounting for the 

presence of SAC, but also on understanding the magnitude of SAC inherent in water 

quality variables. Doing so, we could point out the degree of connectivity within water 

quality variables, as well as the improvement in model outcomes of a non-spatial 

approach before performing a spatial regression. 

Adequate information on the degree of hydrologic connectivity among water 

quality variables is needed in watershed management and policy decisions (Pringle, 

2001, 2003). The level of SAC inherent in a variable can allow managers to reveal the 

complex spatial relationship of water quality as well as its changes from up to 

downstream. For example, pH values were available in several distinct watersheds in 

this study. For Cherry Creek, AZ, pH values revealed a SAC degree of 0.07, while in 

Headwaters Tuolumne River, CA, pH values presented an almost perfect positive SAC 

degree of 0.82. This differences in variable spatial distribution over distinct regions 
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can provide insights to the studies of hydrologic connectivity helping in the 

development of more efficient strategies to inherence the quality of aquatic 

ecosystems. It can uncover dissimilarity patterns among water quality variables 

throughout the stream network and help with the implementation of policies that are 

ecologically beneficial to the aquatic ecosystem. Therefore, I conclude that the 

investigation of SAC in water quality modeling is not only beneficial in the model 

results, but also in the process of watershed management.  

Streams can be considered spatially structured ecological networks, where 

patterns are usually associated with the in-stream flow and habitat, or even the physical 

structure of the network. The understanding of these patterns can be limited when only 

using Euclidean distance (Peterson et al., 2013). For example, two sites that are near 

to each other can be considered neighbors due to the distance measured through the 

Euclidean technique, but they can present distinct water quality measures simply due 

to the water quality origins from vastly different drainage areas. It is also important to 

point out the directionality factor in streams that may impact the neighboring detection. 

Therefore, I highlight that this is a limitation in this study and further studies should 

focus on applying spatial network distance techniques and detecting directionality 

influence to better understand the SAC phenomenon.  
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CHAPTER 6: CONCLUSIONS & FUTURE WORK 

Spatial autocorrelation (SAC) is a property possessed by any ecological or 

environmental variable. Consequently, its incorporation and impacts on modeling results 

have been studied in much detail in a variety of scientific fields. This study demonstrates 

that analyzing SAC in water quality modeling provides benefits beyond just improving in 

model outcomes (R² and rSAC): It can potentially lead to a better understanding of the 

extent of spatial organization of water quality variables, as well as serve as a useful 

screening technique to anticipate the predictability of the spatial pattern in the independent 

variable used in a spatially explicit model. I also highlight the benefits of understanding 

the level of SAC possessed by a water quality variable in the process of watershed 

management, and the limitation of not using network distances techniques in this study, 

which could better account for the spatial pattern that exist in spatially structured ecological 

networks such as streams. 

Future research 

 

Seasonality and scale 

 This study aimed to compare the impact of inherent SAC in water quality variables 

between non-spatial and spatial modeling outcomes without explicitly taking into account 

seasonal and scale variability. Several water quality studies argued that seasonality and 

scale are significant factors that can even change the conclusions of water quality 

modeling. Thus, to understand if spatial modeling outcomes would generally present a 

linear relationship with the degree of inherent SAC in water quality, future works should 

consider the potential effect of seasonality and scale by acquiring intensively data at 
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different times of the year and scales for each watershed. These considerations would allow 

us to understand if the linear relationship between the spatial model outcomes and the 

degree of SAC holds true across broad and fine extent as well as in dry or wet conditions. 

Conclusions from these studies could advance water quality modeling practices as well as 

serve as a management action source. 

 

Coefficient shift 

It is still necessary to understand the influence, source, and behavior of spatially 

dependent variables in river ecosystems. Studies that aimed to compare non-spatial and 

spatial modeling techniques argued that the coefficients of the independent variables can 

undergo a change in their predictive power after incorporation of SAC into the modeling 

procedure (Lennon, 2000; Kim, 2013). This “shift” can change our understanding of key 

explanatory variables in the prediction of water quality. Thus, future research should focus 

on understanding this shift in the predictive power of independent variables used to model 

water quality variables because it has the potential to change our knowledge about the 

causes of spatially structured water quality patterns.  

 

Spatial heterogeneity and specific water quality variable studies 

Ecologists and hydrologists are aware of main water quality variables that are 

important to maintaining the good condition of aquatic ecosystems. For example, specific 

conductance (SC), dissolved oxygen (DO), and water temperature (T) are water quality 

variables important in the prediction of habitat quality for fishes and other aquatic animals. 
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Studying one of these variables in distinct watersheds (i.e., different topography, shape, 

soil, and land use characteristics) may reveal the impact of spatial heterogeneity in water 

quality conditions as well as improve the interpretation of explanatory variables that are 

commonly used to model water quality. To understand the spatial heterogeneity and the 

importance of predictors in modeling specific water quality variables, future research 

should consider SAC in different scales, its influence, and its sources. Thus, this study may 

provide insights on best watershed practices for controlling habitat quality over divergent 

conditions.  
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APPENDIX A: Larger maps for better visualization of water stations location.  

Idaho (a) – Lower South Fork Coeur d’Alene River 
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 Kansas (b) – Indian Creek 
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  Iowa (c) – Iowa River 
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Delaware (d) – Clay, Mill, Bradywine Creek, and Cristina River 
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California (e) – Headwater Tuolumne River 
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Virginia (f) – Difficult River 
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Arizona (g) – Cherry Creek 
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Colorado (h) – Upper San Miguel River 
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Louisiana (i) – Bayou Louis/ Lake Louis 
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Kentucky (j) - Beaver Creek 
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APPENDIX B: Model outcomes and Moran’s I values per water quality variables on each watershed.  

 

Abbreviations Meaning 

R2 Coefficient of determination 

rSAC residual Spatial Autocorrelation 

abs rSAC absolute residual Spatial Autocorrelation 

I Moran's I 

abs I absolute Moran's I 

OLS Ordinary least squares 

Lag Spatial lag model 

Error Spatial error model 

SC Specific Conductance 

DO Dissolved oxygen 

TDS Total Dissolved Solids 

TN Total Nitrogen 

DIN Dissolved Nitrogen 

KjN Kjeldahl Nitrogen 

TP Total Phosphorus 

Tur Turbidity 

Alk Alkalinity 

Csu suspended Carbon 

Chla Chlorophyll 

Nin inorganic Nitrogen 

TOC Total Organic Carbon 

DOC Dissolved Organic Carbon 

Pb Dissolved Lead 

Zn Dissolved Zinc 

Cd Dissolved Cadmium 

As Dissolved Arsenic 
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Idaho (a) – Lower South Fork Coeur d’Alene River 

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

SC 0.56 0.56 0.21 0.46 0.53 0.40 0.08 0.07 0.40 0.08 0.07 

pH 0.31 0.31 0.24 0.27 0.26 0.18 0.06 0.11 0.18 0.06 0.11 

T 0.15 0.15 0.22 0.23 0.23 -0.05 -0.13 -0.04 0.05 0.13 0.04 

Pb 0.11 0.11 0.46 0.47 0.47 -0.04 -0.07 -0.07 0.04 0.07 0.07 

Cd 0.35 0.35 0.24 0.30 0.26 0.08 -0.16 -0.02 0.08 0.16 0.02 

Zn 0.24 0.24 0.24 0.30 0.28 0.11 -0.13 -0.07 0.11 0.13 0.07 

As 0.47 0.47 0.13 0.36 0.35 0.44 0.04 0.09 0.44 0.04 0.09 
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Kansas (b) – Indian Creek 

 

 

 

 

 

 

 

 

 

 

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

DIN 0.07 0.07 0.40 0.40 0.51 0.27 0.23 0.10 0.27 0.23 0.10 

KjN 0.10 0.10 0.28 0.28 0.29 0.10 0.06 0.01 0.10 0.06 0.01 

TN 0.01 0.01 0.39 0.39 0.47 0.22 0.22 0.09 0.22 0.22 0.09 

DO 0.44 0.44 0.09 0.39 0.52 0.51 0.05 0.05 0.51 0.05 0.05 

pH 0.72 0.72 0.09 0.69 0.72 0.65 -0.09 -0.05 0.65 0.09 0.05 

TP 0.15 0.15 0.24 0.31 0.46 0.34 0.12 0.01 0.34 0.12 0.01 

T 0.20 0.20 0.25 0.27 0.27 0.11 -0.04 -0.04 0.11 0.04 0.04 

Tur 0.25 0.25 0.15 0.19 0.17 0.03 -0.15 -0.08 0.03 0.15 0.08 

SC 0.02 0.02 0.22 0.22 0.26 0.09 0.05 -0.02 0.09 0.05 0.02 
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 Iowa (c) – Iowa River 

  

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

Cl 0.67 0.67 0.65 0.73 0.72 0.12 -0.01 0.05 0.12 0.01 0.05 

DO 0.18 0.18 0.32 0.32 0.32 -0.03 0.00 0.00 0.03 0.00 0.00 

PO4
3- 0.66 0.66 0.31 0.47 0.42 0.29 -0.18 -0.08 0.29 0.18 0.08 

NO3- 0.36 0.36 0.52 0.52 0.56 -0.20 -0.20 -0.09 0.20 0.20 0.09 

pH 0.34 0.34 0.38 0.40 0.38 -0.05 -0.15 -0.04 0.05 0.15 0.04 

T 0.49 0.49 0.49 0.53 0.50 0.05 -0.07 -0.05 0.05 0.07 0.05 
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Delaware (d) - Clay, Mill, Bradywine Creek, and Cristina River 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

Alk 0.08 R²+A33:L47 0.22 0.22 0.23 -0.02 0.00 0.05 0.02 0.00 0.05 

Cl 0.23 0.23 0.52 0.55 0.60 -0.14 -0.03 0.03 0.14 0.03 0.03 

Chla 0.02 0.02 0.19 0.20 0.20 0.09 0.06 0.03 0.09 0.06 0.03 

DO 0.15 0.15 0.43 0.43 0.43 -0.06 -0.05 0.00 0.06 0.05 0.00 

Nin 0.05 0.05 0.19 0.19 0.22 -0.10 -0.09 -0.03 0.10 0.09 0.03 

TN 0.03 0.03 0.16 0.16 0.17 -0.05 -0.05 -0.03 0.05 0.05 0.03 

TOC 0.32 0.32 0.33 0.39 0.36 0.16 -0.02 0.01 0.16 0.02 0.01 

DOC 0.32 0.32 0.33 0.39 0.36 0.16 -0.02 0.01 0.16 0.02 0.01 

pH 0.16 0.16 0.36 0.36 0.37 -0.03 -0.03 0.01 0.03 0.03 0.01 

TP 0.12 0.12 0.17 0.18 0.17 0.05 0.01 0.05 0.05 0.01 0.05 

SC -0.05 0.05 0.24 0.40 0.43 -0.18 0.10 0.09 0.18 0.10 0.09 

T -0.01 0.01 0.12 0.12 0.13 0.06 0.02 0.00 0.06 0.02 0.00 
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 California (e) - Headwater Tuolumne River 

  

   R2 rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

Alk 0.80 0.80 0.45 0.76 0.81 0.52 0.01 0.04 0.52 0.01 0.04 

Ca 0.55 0.55 0.39 0.62 0.68 0.46 0.01 0.00 0.46 0.01 0.00 

Csu -0.20 0.20 0.12 0.24 0.32 -0.42 -0.08 0.08 0.42 0.08 0.08 

Cl 0.58 0.58 0.14 0.48 0.54 0.47 0.03 0.01 0.47 0.03 0.01 

Mg 0.42 0.42 0.28 0.48 0.51 0.38 0.07 0.02 0.38 0.07 0.02 

pH 0.82 0.82 0.49 0.81 0.84 0.50 0.08 0.10 0.50 0.08 0.10 

K 0.46 0.46 0.35 0.51 0.60 0.41 0.27 0.10 0.41 0.27 0.10 

SiO2 0.62 0.62 0.14 0.38 0.42 0.47 -0.08 -0.09 0.47 0.08 0.09 

Na 0.59 0.59 0.28 0.46 0.41 0.30 -0.13 -0.05 0.30 0.13 0.05 

SO4
2- 0.65 0.65 0.19 0.68 0.72 0.72 0.18 0.10 0.72 0.18 0.10 

T 0.30 0.30 0.21 0.28 0.33 0.29 0.05 0.04 0.29 0.05 0.04 

TDS 0.73 0.73 0.33 0.70 0.70 0.55 0.05 0.06 0.55 0.05 0.06 
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 Virginia (f) - Difficult River 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

   R² rSAC abs SAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

Alk 0.40 0.40 0.50 0.51 0.67 -0.26 -0.30 0.02 0.26 0.30 0.02 

Br 0.09 0.09 0.40 0.41 0.41 -0.06 0.02 0.02 0.06 0.02 0.02 

Ca 0.17 0.17 0.42 0.42 0.51 -0.26 -0.25 0.04 0.26 0.25 0.04 

CO2 0.34 0.34 0.38 0.40 0.38 0.08 -0.09 -0.03 0.08 0.09 0.03 

Cl 0.12 0.12 0.38 0.38 0.41 0.18 0.13 0.04 0.18 0.13 0.04 

F 0.54 0.54 0.45 0.49 0.46 -0.04 -0.20 0.01 0.04 0.20 0.01 

Fe 0.21 0.21 0.44 0.44 0.44 0.03 0.05 0.02 0.03 0.05 0.02 

Mg 0.15 0.15 0.25 0.25 0.48 -0.26 -0.23 0.05 0.26 0.23 0.05 

Mn 0.34 0.34 0.33 0.35 0.34 0.12 -0.04 0.04 0.12 0.04 0.04 

DO 0.16 0.16 0.32 0.33 0.33 0.06 0.02 0.02 0.06 0.02 0.02 

pH 0.39 0.39 0.41 0.42 0.42 -0.12 -0.21 -0.01 0.12 0.21 0.01 

TP 0.43 0.43 0.22 0.25 0.22 -0.02 -0.15 -0.01 0.02 0.15 0.01 

K 0.25 0.25 0.35 0.39 0.40 0.28 0.07 0.00 0.28 0.07 0.00 

SiO2 0.19 0.19 0.37 0.38 0.37 0.04 0.09 0.03 0.04 0.09 0.03 

Na 0.15 0.15 0.39 0.40 0.43 0.22 0.15 0.04 0.22 0.15 0.04 

SC 0.06 0.06 0.43 0.43 0.43 0.08 0.08 0.02 0.08 0.08 0.02 

SO4
2- 0.45 0.45 0.49 0.51 0.70 -0.32 -0.44 0.07 0.32 0.44 0.07 

T 0.70 0.70 0.27 0.60 0.76 0.53 0.00 -0.04 0.53 0.00 0.04 

TDS -0.26 0.26 0.18 0.23 0.22 -0.22 0.00 -0.03 0.22 0.00 0.03 

Tur -0.28 0.28 0.34 0.37 0.37 -0.15 -0.04 -0.05 0.15 0.04 0.05 
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Arizona (g) – Cherry Creek 

  

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

pH -0.07 0.07 0.25 0.27 0.26 -0.01 0.06 0.03 0.01 0.06 0.03 

T 0.52 0.52 0.63 0.68 0.66 0.19 -0.09 0.02 0.19 0.09 0.02 

SC 0.59 0.59 0.09 0.54 0.61 0.52 0.06 0.04 0.52 0.06 0.04 

DO -0.08 0.08 0.41 0.42 0.47 -0.03 -0.02 -0.01 0.03 0.02 0.01 
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Colorado (h) - Upper San Miguel River 

 

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

DO 0.39 0.39 0.25 0.34 0.37 0.18 -0.12 -0.12 0.18 0.12 0.12 

pH 0.37 0.37 0.40 0.48 0.46 0.02 -0.13 -0.01 0.02 0.13 0.01 

T 0.67 0.67 0.41 0.62 0.64 0.37 0.01 -0.03 0.37 0.01 0.03 

SC 0.36 0.36 0.18 0.44 0.51 0.26 -0.06 -0.14 0.26 0.06 0.14 
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Louisiana (i) - Bayou Louis/ Lake Louis 

 

 

 

 

 

 

 

 

 

 

 

 

 

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

pH 0.13 0.13 0.02 0.05 0.06 0.13 -0.02 -0.03 0.13 0.02 0.03 

T 0.15 0.15 0.13 0.15 0.14 0.09 -0.03 0.01 0.09 0.03 0.01 

SC 0.20 0.20 0.32 0.33 0.32 0.07 0.01 0.05 0.07 0.01 0.05 

DO 0.28 0.28 0.04 0.17 0.17 0.20 -0.10 -0.07 0.20 0.10 0.07 

TDS 0.53 0.53 0.24 0.53 0.54 0.34 -0.10 -0.09 0.34 0.10 0.09 



 

 

 

6
9

 

Kentucky (j) – Beaver Creek 

 

   R² rSAC abs rSAC 
 I abs I OLS Lag Error OLS Lag Error OLS Lag Error 

Alk 0.11 0.11 0.04 0.05 0.05 0.10 0.00 -0.01 0.10 0.00 0.01 

Al 0.01 0.01 0.17 0.17 0.18 -0.02 0.03 0.03 0.02 0.03 0.03 

Ba 0.06 0.06 0.26 0.28 0.31 -0.17 -0.08 -0.02 0.17 0.08 0.02 

Ca 0.55 0.55 0.23 0.52 0.50 0.42 -0.04 -0.01 0.42 0.04 0.01 

Nin 0.29 0.29 0.44 0.45 0.45 0.15 0.07 0.05 0.15 0.07 0.05 

Cl 0.23 0.23 0.15 0.16 0.15 0.07 0.00 0.05 0.07 0.00 0.05 

Fe 0.40 0.40 0.41 0.43 0.42 0.08 -0.02 0.04 0.08 0.02 0.04 

KjN 0.43 0.43 0.15 0.29 0.28 0.30 -0.03 0.00 0.30 0.03 0.00 

Mg 0.47 0.47 0.22 0.49 0.49 0.38 -0.05 -0.03 0.38 0.05 0.03 

Mn 0.58 0.58 0.35 0.50 0.50 0.23 0.00 0.07 0.23 0.00 0.07 

K 0.26 0.26 0.23 0.27 0.23 0.08 -0.06 0.02 0.08 0.06 0.02 

Na 0.14 0.14 0.14 0.14 0.16 -0.05 -0.08 -0.01 0.05 0.08 0.01 

SO4
2- 0.39 0.39 0.19 0.39 0.36 0.32 -0.02 0.00 0.32 0.02 0.00 

TDS 0.32 0.32 0.22 0.34 0.30 0.22 -0.07 -0.02 0.22 0.07 0.02 
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