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Abstract

In this dissertation, we present a numerical method for tracking surfactants on an interface in
multiphase flow, along with applications of the method to two physical problems. We also present
an extension of our method to track charged droplets. Our method combines a traditional volume
of fluid (VOF) method with marker tracking. After describing this method in detail, we present a
series of tests we used to validate our method. The applications we consider are the coalescence of
surfactant-laden drops, and the rising of surfactant-laden drops in stratifications.

In our study of the coalescence of surfactant-laden drops, we describe conditions under which
coalescence is partial, rather than total. In particular, we examine the dependence of the critical
Ohnesorge number, above which coalescence is total, on surfactant effects. We find that the surfac-
tant potency has a surprising non-monotonic effect on the critical Ohnesorge number. This effect is
explained by a balancing interface area loss and tangential stresses, which we describe using a scaling
argument. Our argument is confirmed by forming a predicted critical Ohnesorge number profile,
which qualitatively matches the data. We also discuss gravity effects, varying initial conditions, and
daughter drops resulting from partial coalescence.

In our study of rising drops, we examine three distinct physical setups. In the first setup, we
examine a drop coated in insoluble surfactant rising in a uniform ambient. Our results for an
unstratified ambient show good agreement with earlier work, and fill a gap between results for zero
Reynolds number and intermediate Reynolds number. In our second setup, we study drops rising in
a linear density stratification, with and without surfactant. Entrainment effects on the rising drop
are isolated and used to compute an effective buoyancy of entrained fluid. In our third setup, we
present velocity profiles of a clean drop entering a layer of soluble surfactant. The surfactant layer
“sucks” the drop in, before it transitions to a terminal Rising speed.

Lastly, we extend our method to track electric fields and charges in the bulk fluid and on the
surface. Such a numerical method has applications to electrically induced drop deformation, the
coalescence of charged droplets, and electro-wetting. This extension of our method is validated by
examining a simple test case.



Acknowledgements

We acknowledge support from NSF grant DMS 0808129, and from the UC Merced Graduate Dean’s
Dissertation Fellowship for 2015-2015, and for the summer of 2015.

I would like to thank my advisor, Francois Blanchette, for teaching me how think, to write, and
to speak like a scientist for celebrating my successes, and patiently encouraging me through setbacks
and disappointments, and for showing me how research is done.

I would also like to thank the other members of my committee, Mayya Tokman and Karin Lei-
derman, for their helpful advice, and the professors whove had me as a student: Arnold Kim, Boaz
Ilan, Harish Bhat, and Yue Lei thank you for training me in applied math; and thank you to Mike
Sprague for inspiring me to go into fluid dynamics.

Thank you to my friends and colleagues, Mac, Terese, and Anna for keeping me sane during the
course of my work at UC Merced. In addition, I would like to thank my parents, Doug and Vera
Martin, for supporting me, and for coming to my dissertation defense.

i



Contents

1 Introduction 1

1.1 Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Numerical Methods for Tracking Multiphase Flow . . . . . . . . . . . . . . . . . . . 4

1.5 In this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Equations of Multiphase Flow 7

2.1 Equations of Fluid Motion (Dimensional) . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Surfactant Tracking (Dimensional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Surface Tension (Dimensionless) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Method 10

3.1 Marker and Cell (MAC) Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Viscous Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Advection Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Scalar Field Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Scalar Field Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Front Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Computation of Surface Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Projection Method for Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ii



3.5.1 Pressure on a Stationary Drop . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Pressure Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.1 Spurious Currents Near a Stationary Drop . . . . . . . . . . . . . . . . . . . . 18

3.7 Surfactant Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Surfactant Exchange Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8.1 Desorption Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.2 Surfactant Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Oscillations of an Irrotational Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Additional Conservation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10.1 A Pair of Merging Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10.2 A Rising Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Coalescing Drops and Bubbles 27

4.1 The Problem of Partial Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Dimensionless Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Application of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Surfactant Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2 Effects of Variations in Initial Surfactant Distribution . . . . . . . . . . . . . 39

4.5.3 Gravity Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.4 Daughter Drops and Coalescence Cascade . . . . . . . . . . . . . . . . . . . . 46

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Rising Drops 51

5.1 Introduction to Rising Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Setup and Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 A Drop Rising in an Unstratified Ambient . . . . . . . . . . . . . . . . . . . . . . . . 55

iii



5.4 Entrainment Effects in a Linear Density Stratification . . . . . . . . . . . . . . . . . 57

5.5 A Clean Drop Entering a Surfactant Layer . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Extension to Electric Fields 67

6.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Dimensional Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Dimensionless Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Charge Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Electric Forcing Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion 75

A Appendices 79

A.1 Computation of the Viscous Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Surfactant Mass Conservation in the Cap Angle Problem . . . . . . . . . . . . . . . 79

iv



Chapter 1

Introduction

1.1 Multiphase Flow

Fluid mechanics is the study of materials, such as liquids and gases, that deform freely under an
applied stress, and assume the shape of their container. Although the study of fluid mechanics dates
back to ancient times [1], it reached its modern form in the mid 19th century, with the derivation
of a set of governing equations - the Navier-Stokes equations. Derived from Newton’s second law
and the law of mass conservation, the Navier-Stokes equations accurately model a vast number of
problems, in physical settings ranging from the motion of a single cell in the human body, to flow
in a pipe, to the earth’s atmosphere, and even to astrophysical settings, such as accretion disks.

Due to the presence of a highly nonlinear inertial term, the Navier-Stokes equations do not admit
an exact analytic solution in most settings. However, George Gabriel Stokes, one of the founders of
modern fluid mechanics, managed to obtain a number of solutions in the special case of creeping flow
- also called Stokes flow - in which inertia is negligible. One of his best known solutions concerns
flow around a solid sphere falling at a steady speed in a homogeneous liquid. Stokes was able to
compute the flow field of the surrounding fluid and the drag it exerted on the sphere - from which
he obtained an expression for the speed of the falling sphere, given by [2]:

USt =
2

9
R2

0g
ρs − ρf
µ

(1.1)

where R0 is the radius of the sphere, g is the coefficient of gravity, µ is the viscosity of the surrounding
fluid, ρs is the density of the sphere, and ρf is the density of the fluid. In 1911, the fluid flow about
of a steadily moving spherical drop was solved simultaneously by Jacques Hadamard [3] and Witold
Rybczynski [4]. By computing the flow field both inside and outside the drop, they managed to
obtain the speed of the rising drop:

UHR =
2

3
R2

0g
ρE − ρI
µE

µE + µI

2µE + 3µI
(1.2)

where ρE , ρI and µE , µI represent the respective density and viscosity of the exterior, interior fluid.
Notice that as the viscosity of the interior fluid goes to infinity, i.e. µE/µI −→ 0, the stokes speed
(Eq. (1.1)) is recovered.

The problem considered by Hadamard and Rybczynski is an example of multiphase flow - fluid
flow near an interface between two or more immiscible fluids where surface tension plays a dominant
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role. Multiphase flow abounds in nature and in everyday life: water in a sink, raindrops, mists,
capillary waves, oil in water, tears of wine, lava flows, condensation, air and liquid in the respiratory
system - all are examples of multiphase flow. A better understanding of multiphase flow holds the
promise of advances in the fields of biology, medicine, climate science, weather prediction, and a
variety of applications in industry. Painting and jet printing are examples of applications in which
the interactions of tiny droplets on a scale difficult to directly observe produce unwanted results
(such as splattering). In the pharmaceutical industry, it is often important to mix fluids containing
medicine on a very small scale, at which direct mechanical motion (like stirring with a straw) cannot
be applied. In that case, gradients in surface tension can be used to produce the mixing effects
automatically.

A good understanding of multiphase flow is also essential to the rapidly growing field of mi-
crofluidics - the manufacture of devices designed to precisely manipulate tiny amounts of fluid.
Microfluidic devices have applications to a wide range of fields, including the handling of quantum
dots, the manufacture of plastics, inkjet printing, and especially to microbiology, where they are
revolutionizing the field. DNA molecules, proteins, individual cells, bacterial colonies - all can be
precisely manipulated, often on a massive scale, using microfluidic devices. The behavior of in-
fectious bacteria, for instance, can be studied under carefully controlled circumstances. Electric
fields, chemical gradients, and populations of competing microorganisms can all be introduced in a
controlled manner. The manipulation of fluids, particularly droplets, with such precision requires a
profound understanding of surface tension, which is a dominant force at such length-scales.

1.2 Surface Tension

Surface tension arises as a consequence of intermolecular attraction. Given two substances whose
molecules have differing levels of intermolecular attraction, the substance whose molecules have
greater attraction will draw together and exclude those molecules with a weaker attraction. For
instance, water, with its highly polar molecules, exhibits a much stronger intermolecular attraction
than oil. As a result, water and oil are said to be immiscible - they don’t mix. In miscible fluids,
such as water and ethanol, the two species of molecules exhibit similar levels of intermolecular
attraction. When two immiscible fluids come into contact, the molecules of each kind are drawn
by intermolecular forces toward the interior of their own fluid body. This results in a tendency to
minimize the surface area of the interface between the two fluids. Given that a spherical body has a
minimal surface area, surface tension is the reason why jets of fluid often break apart into spherical
drops, and why, in the absence of exterior forces, drops naturally assume a spherical shape. Surface
tension can be measured by computing the amount of energy that is added to the fluid interface per
unit area:

γ =
∂E

∂A
(1.3)

where E is the surface energy and A is surface area. For a given pressure and temperature, the
coefficient, γ, of surface tension is a characteristic physical property of two substances. For exam-
ple, the surface tension of air and water at room temperature (20◦C) and atmospheric pressure is
γair/water = 72.86× 10−3N/m.

Surface tension affects the stress at the interface, as described by the Young-Laplace equations:

[n · T̃] = γκn+∇γ (1.4)

where [n·T̃] represents the stress jump across the interface,1 κ is the total (twice the mean) curvature
of the interface, and n is the unit normal to the interface. The first term on the right accounts for

1Here, T̃ is the total stress. We later use T (no tilde) to represent the viscous stress.
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the change in pressure across the interface, while the second term on the right accounts for the
tangential stress jump due to local variations in surface tension. The curvature term represents the
energy minimizing potential of the surface. Flat interfaces have already minimized area locally, but
curved interfaces have extra molecules at or near the surface - leading to a stress at the interface. For
example, in the absence of external forces, a spherical drop is at equilibrium because it has globally
minimized its surface area, but locally, at each point the surface seeks to flatten out, resulting in a
stress across the interface that is proportional to the curvature.

In many applications, the surface tension is assumed constant and uniform throughout the sys-
tem, so that ∇γ = 0, and this is often a good approximation. In general, however, γ can vary locally
due to a variety of factors, including variations in temperature within the fluid body, variations in
chemical composition of a fluid mixture (such as alcohol and water), and the presence of surfactants.
Local variations in surface tension cause tangential motion along the surface as fluid moves in the
direction of increasing tension. Thus, regions of low surface tension tend to expand, while regions
of high surface tension tend to contract. For instance, when a bar of soap floats on top of a body of
water - as in a sink, the soap lowers the surface tension of the air/water interface. As a consequence,
the portion of the surface contaminated by the soap will flow outward, seeking to bring the surface
into equilibrium by covering it entirely. The forces associated to this motion are called Marangoni
forces.

1.3 Surfactants

We focus on Marangoni forces generated by surfactants - molecules that prefer to reside on fluid
interfaces. A wide range of chemical substances can act as surfactants, and every day examples
include soaps, oils, detergents, foaming agents, wetting agents, and dispersants. Even dust can act
as a surfactant. Many surfactant molecules have hydrophillic (polar) and hydrophobic (non-polar)
components, so that when they reside on an interface between water and some other fluid, such as
air or oil, they can minimize energy by having the hydrophillic component face the water, and the
hydrophobic component face away from the water. Thus, surfactants find it energetically favorable to
reside on fluid interfaces. As a consequence, surfactants reduce surface tension on the fluid interface.
By locally altering surface tension, surfactants affect flow near fluid interfaces on a macroscopic
level, and can fundamentally alter the dynamics of a given problem, generating Marangoni flows
from areas of high concentration toward areas of low concentration.

Depending on the species of surfactant, and the fluids with which it interacts, the surfactant may
be soluble (able to dissolve in the fluid), or insoluble - only able to reside on the surface. The process
by which surfactants move from the bulk to the interface is called adsorption, the process by which
they leave the interface is called desorption. Collectively, these two processes are called sorption.
Because surfactants prefer to reside on interfaces, adsorption often takes place more quickly than
desorption. However, when the concentration of surfactant molecules on the surface is sufficiently
high, the process of desorption can dominate. Indeed, because there is only a finite amount of space
on a fluid interface, there exists a maximum packing concentration of surfactant molecules on the
surface which cannot be exceeded. If the surfactant is soluble, the molecules will rapidly desorb from
the surface when the maximum packing concentration is approached. If the surfactant is insoluble,
then the surface pressure of the interface increases without bound.

Accounting for surfactant effects on surface tension is a complex physiochemical problem that
has inspired decades of research, and is still the subject of ongoing investigation [5,6]. The simplest
approach is to use a linear elasticity relation between local surfactant concentration, Γ, and surface
tension, γ. This approach yields a good approximation in many cases, and is frequently used by
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researchers [7–11]. However, it does not account for the carrying capacity of the surface. In general,
the amount of surfactant a surface can adsorb is limited by a maximum packing concentration,
Γ∞, of surfactant molecules on the surface. The simplest surfactant relation that accounts for the
maximum packing concentration is the Langmuir relation [11]:

γ − γmax = RTΓ∞ ln

(
1− Γ

Γ∞

)
. (1.5)

Here, γmax is the maximum surface tension, obtained on a clean (surfactant free) interface, R is
the ideal gas constant, T is the temperature, and Γ∞ is the maximum packing concentration of
surfactant molecules on the surface. The Frumkin relation, given as [12]

γ − γmax = RTΓ∞

(
ln
(
1− Γ

Γ∞

)
+
λ

2

( Γ

Γ∞

)2)
(1.6)

generalizes the Langmuir relation by accounting for intermolecular attraction. In particular, this is
done by the rightmost term in equation (1.6), which is scaled by an interaction parameter, λ. In
what follows, we will be using a linear elasticity relation, for simplicity. However, we remain mindful
of the limitations of this approach.

1.4 Numerical Methods for Tracking Multiphase Flow

Since computers came to widespread use in the 1960’s, numerical methods have become a major
force in fluid dynamics, opening up avenues of mathematical analysis out of reach of direct theoreti-
cal calculation. Numerical methods employ computer algorithms to obtain approximate solutions to
partial differential equations. This allows researchers to study systems of equations far too complex
to admit an analytic solution. However, a major problem with numerical methods is that errors
can accumulate over numerous iterations - particularly when advancing a physical system in time
- resulting in serious inaccuracies, or even the complete breakdown of the simulation. As a conse-
quence, a field of numerical analysis has been developed, in which researchers carefully examine the
potential pitfalls of existing methods, determining under what circumstances the method is stable
(i.e. accurately and reliably solves the problem), and under what circumstances it is unstable (i.e.
the simulation breaks down).

Within the last two or three decades, numerical methods have been developed that accurately
track interfaces between fluids [13–18]. Many approaches to multiphase flow combine the two fun-
damental approaches to fluid dynamics: the Eulerian approach, and the Lagrangian approach. In
the Eulerian approach, the fluid velocity field is tracked relative to a fixed spatial domain. In the
Lagrangian approach, the spatial positions of individual particles are tracked in time - so that the
coordinates represent the locations of individual particles, rather than fixed locations in space [15].

In most numerical approaches to multiphase flow, the Navier-Stokes equations are solved on
an Eulerian grid using either finite differences (FD) or finite element methods (FEM). In finite
element methods, the governing equations are rewritten in integral, rather than differential form,
and the physical domain is partitioned into small elements, usually triangles, or in the case of fully
3D simulations, tetrahedrons. Finite element methods have the advantage that they can handle
arbitrary domains, but they can be difficult and computationally expensive to implement. Finite
differences, on the other hand, take a simple and direct approach to solving differential equations:
approximating derivatives with ratios of small, incremental differences.

On solving the Navier-Stokes equations numerically, the Eulerian velocity field is obtained. The
velocity is then coupled to a moving interface, which is tracked using more specialized methods. One
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such approach, the level set (LS) method, treats the interface as a level set of a continuous function
[14, 16]. This approach is frequently combined with adaptive meshes to get good conservation
properties at the interface [17,19]. The Volume Of Fluid (VOF) method computes the concentration
of a particular fluid in each grid cell, and advects it with the fluid [13, 20]. This method was
later coupled with a front tracking method, which advects markers with the fluid, and interpolates
between them with cubic splines [15]. Together with marker tracking, the VOF method achieves
excellent accuracy at the interface, but does not easily handle topological changes. We use a VOF
method coupled with marker tracking, and focus on applications where topological changes are not
a significant issue.

As numerical methods of studying fluid interfaces have improved, researchers been able to ex-
amine increasingly realistic settings, even accounting for surfactant effects. Within the last decade,
there has been an outpouring of numerical studies employing a wide range of methods to track
surfactant on a fluid interface. Tryggvason, et al. [21] developed a front tracking method to track
surfactant on an interface, by advecting markers with the moving front. Another front tracking
method [22] solves for surface concentration of surfactant by interpolating from a bulk concentra-
tion. Lai, et al. [23] developed an immersed boundary (IB) method for tracking surfactant, which
has been adapted by others for the study of vesicles [24] and rapid sorption [25]. Khatri and Torn-
berg [26, 27] introduced an embedded boundary method for tracking surfactant, in which the fluid
interface is “embedded” in the Eulerian grid. Further methods that employ Eulerian bulk fluid
domains include an arbitrary Lagrangian-Eulerian (ALE) finite element mesh [28]; level sets [29];
and a complex phase field domain [30]. Non-continuum methods, such as purely Lagrangian particle
tracking [31,32], and lattice Boltzmann methods [33] have also been employed.

1.5 In this Dissertation

In this dissertation, we track the surfactant using a Lagrangian approach similar to that of Tryggva-
son, et al. [21], that automatically conserves mass, and employ our method to account for surfactants
for the first time in two widely studied problems: coalescing drops and bubbles, and drops rising
in a stratified medium. Our method uses numerical simulations based on the VOF method with
front tracking. We solve the Navier-Stokes equations using finite differences on a staggered MAC
(marker and cell) grid. The system is advanced in time using a second order Runge-Kutta method in
some cases, and a first order Euler, in others. The viscous and nonlinear terms in the Navier-Stokes
are both computed using centered finite differences. The pressure is computed using the projection
method [34], which results in a Poisson-type equation for the pressure that enforces conservation of
mass. This is inverted using iterative methods, executed on a linear multigrid, for computational
efficiency.

In chapter 2, we introduce the equations of multiphase flow in a general, dimensional form. Then,
in chapter 3, we present in detail our numerical method and its validation. In chapter 4, we present
our study of coalescing drops. In particular, we focus on the phenomenon of partial coalescence, in
which a drop merging with a reservoir - or another drop - pinches off to form a daughter drop. Partial
coalescence happens in a variety of natural settings, such as cloud formation, mists, and aerosols in
the earth’s atmosphere; and in a variety of industrial settings, such as painting and inkjet printing.
By tracking the merging interface numerically, we determine circumstances under which coalescence
is total (the drop completely merges with the reservoir) or partial. Although this process has been
studied for the idealized case in which surfactants are not present, we account for surfactants on the
merging interface, for the first time, thereby providing a much more realistic picture of coalescence
events. In addition, we examine gravity effects, differing initial conditions, and the daughter drops
produced by partial coalescence, to obtain a complete physical picture.

5



In chapter 5, we apply our method to rising surfactant-laden drops. This is directly applicable
to oil drops rising in the ocean, as happened in the 2010 BP oil spill. We study three setups: a drop
coated with insoluble surfactant rising in a uniform ambient; a drop coated with insoluble surfactant
rising in a density stratification, as happens in pycnoclines in the ocean; and a clean drop entering
a layer of dissolved surfactant, as happens if dispersants have been applied, as is usually done in
the case of oil spills in the ocean. Being able to predict the rise time of oil drops is essential to
containing large oil spills, and this study promises to improve the accuracy of such predictions.

In chapter 6, we present an extension of our method to a whole new class of problems: tracking
electric charge on a fluid interface. The coalescence of charged drops occurs in a variety of settings,
most notably in thunder clouds. The study of charged drops is also important in dewetting solid
surfaces. In particular, solid surfaces can be cleaned by applying an electric field, causing the drops
to jump from the interface. The application to electric fields is a natural extension of our method for
tracking surfactants. In §6.1, we present the equations electro-hydrodynamics, first in dimensional,
then in dimensionless form. In §6.2, we describe our method for solving these equations numerically,
and in §6.3, we present a validation of our method, by examining a simple test case that admits an
analytic solution. We then conclude this dissertation in Chapter 7.
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Chapter 2

Equations of Multiphase Flow

2.1 Equations of Fluid Motion (Dimensional)

All phases of the fluid obey the incompressible Navier-Stokes equations, given in dimensional form
as

∇ · u = 0 (2.1)

ρ
∂u

∂t
+ ρu · ∇u = −∇P +∇ ·

(
µ(∇u+∇uT )

)
− g(ρ− ρa)k+ δsFs . (2.2)

Equation (2.1) describes incompressibility, or volume conservation, and is valid even in the presence
of varying density and viscosity - so long as these variations are based on fluid composition rather
than fluid compression. Equation (2.2) is a momentum balance. The two terms on the lefthand
side represent the convective and advective derivatives of the fluid velocity, and the righthand side
contains the forcing terms, representing, from left to right: pressure, viscosity, gravity, and surface
forces. P is the dynamic pressure, obtained by subtracting the static pressure from the mechanical
pressure: P = Pmech − ρazg, where z is the vertical position coordinate. Here, ρa is a constant
background density. In many problems, ρa is the density of the ambient fluid, such as air or water.
The viscous term does not reduce to the familiar form µ∇2u because the viscosity is not constant
in our domain. In the gravity term, k is a unit vector in the vertical direction.

The delta function, δs(x), in Eq. (2.2) is nonzero only on the interface, and can be defined as a
distributional derivative of an indicator function, φ, which equals 1 on one fluid and 0 on the other.
It multiplies the surface force, Fs. In the applications we consider, the surface force takes the form

Fs = γκn+∇sγ − gh(ρf − ρa)k (2.3)

where n is the outward unit normal to the surface, κ is the curvature of the interface, γ is the surface
tension, and ∇s = (I − nn) · ∇ is the projection of the gradient operator onto the surface. The
term γκn, as described by [13], accounts for the stress jump across the interface. Previous work [35]
described how the term ∇sγ accounts for tangential stresses (Marangoni forces) on the surface, due
to surface tension gradients. The term −gh(ρf − ρa)k accounts for the buoyancy of a soap film: h
is the film thickness and ρf is the density of the film. This term, described by [36], does not appear
in multiphase flow equations, except when one is tracking soap films, which we do in one of our
applications. In addition, we move the interface with the fluid, according to the rule

dxs

dt
= u|s . (2.4)
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The density and viscosity depend on the aforementioned indicator function, φ, which equals 1
when we are on the drop or interior fluid, and 0 when we are on the ambient (background fluid).
They may also depend on the concentration, c, of a chemical or stratifying agent, such as salt or
temperature. Assuming both dependencies are linear, the density and viscosity are given by

ρ = φρd + (1− φ) (cρc + (1− c)ρa) (2.5)

µ = φµd + (1− φ) (cµc + (1− c)µa) (2.6)

where ρd, ρa, ρc and µd, µa, µc are the respective densities and viscosities of the drop, the ambient,
and the ambient in the presence of a stratification agent, c - particularly, when c = 1.

The stratifying agent, c, satisfies an advection-diffusion equation, given by

∂c

∂t
+ u · ∇c = ∇ · (kD∇c) (2.7)

where kD is a diffusion coefficient.

2.2 Surfactant Tracking (Dimensional)

The surfactant concentration can also be tracked using advection-diffusion equations. The surfactant
concentration, Λ, in the bulk fluid, satisfies the relation

∂Λ

∂t
+ u · ∇Λ = ∇ · (kΛ∇Λ)− δsJ(Γ,Λ|s) (2.8)

where J(Γ,Λ|s) accounts for surfactant adsorption onto the interface, Γ is the concentration of
surfactant on the interface, and kΛ is a diffusion coefficient for surfactant in the bulk. The surfactant
concentration on the interface satisfies an advection-diffusion equation restricted to the interface [37]:

∂Γ

∂t
+∇s · (Γu) = ∇s · (kΓ∇Γ) + J(Γ,Λ|s) (2.9)

where kΓ is a diffusion coefficient for Γ. Here, the surface divergence of an arbitrary vector v with
normal component vn is given by ∇s ·v = ∇·v−∂vn/∂n, where n is a spatial coordinate normal to
the interface. The bulk exchange is described by the Langmuir-Hinshelwood kinetic equation [11,38]:

J(Γ,Λ|s) = kadΛ|s
(
1− Γ

Γ∞

)
− kdeΓ . (2.10)

The coefficients kad, kde are kinetic constants of adsorption and desorption, respectively, and Γ∞ is
the maximum packing concentration on the surface.

2.3 Surface Tension (Dimensionless)

In general, the surface tension may depend on two factors: the concentration, Γ, of surfactants
on the interface, and the concentration, c, of a stratifying agent, such as temperature or salinity,
or chemical composition. In the problems we study, we will not be accounting for surface tension
variations due to changes in chemical composition or a stratifying agent.
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The linear relation we use can be derived from a Taylor expansion of the Langmuir relation (1.5).
If we scale our surface tension and surfactant concentration using equilibrium values: γnew = γold/γ0,
Γnew = Γold/Γ0, then Eq. (1.5) becomes

αγγ = 1 + El ln (1− αΓΓ) (2.11)

where we have used the nondimensional numbers

αγ =
γ0
γmax

αΓ =
Γ0

Γ∞

and El =
RTΓ∞

γmax
.

Here, El is known as the elasticity number. Putting equilibrium values into Eq. (2.11), obtain

αγ = 1 + El ln (1− αΓ) (2.12)

and hence

γ =
1 + El ln (1− αΓΓ)

1 + El ln (1− αΓ)
. (2.13)

We wish to reduce the number of parameters further by following other authors [10, 11], and
approximating Eq. (2.13) with a linear relation. Compute

γ′(1) = − El

αγ

αΓ

1− αΓ
.

Then a Taylor expansion about Γ = 1 gives

γ = 1− El

αγ

αΓ

1− αΓ
(Γ− 1) +O((Γ− 1)2) .

Define

β =
El

αγ

αΓ

1− αΓ
.

Then we arrive at a linear approximation to Eq. (2.13):

γ = 1 + β(1− Γ) . (2.14)

We will be using Eq. (2.14) everywhere, except in a few cases where we wish to validate against the
nonlinear relation. The elasticity coefficient β, defined in Eq. (2.14) as

β = −∂γ
∂Γ

∣∣∣∣
Γ0

, (2.15)

represents the amount by which the surface tension decreases in response to a unit increase in
surfactant concentration. Due to our choice of scales γ0 and Γ0, β is proportional to the equilibrium
concentration of surfactant. For fixed γ0,Γ0, the parameter β measures the potency of the surfactant.

Next, we would like to determine the range of values of Γ for which this approximation is valid.
For this, we compute the nth order derivative:

γ(n)(1) = − El

αγ

(
αΓ

1− αΓ

)n

.

Thus, Eq. (2.13) has Taylor expansion

γ = 1− El

αγ

∞∑

n=1

1

n!

(
αΓ(1− Γ)

1− αΓ

)n

and our approximation should hold when
∣∣∣∣
αΓ(1− Γ)

1− αΓ

∣∣∣∣ =
∣∣∣∣
Γ− Γ0

Γ∞ − Γ0

∣∣∣∣≪ 1 .
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Chapter 3

Method

All setups we consider are axially symmetric, and as such, we model the fluid interface as a surface of
revolution of a 1D curve, and use axisymmetric cylindrical coordinates (see figure 3.1). In particular,
points in polar half plane that constitutes our computational domain are represented by the ordered
pair (r, z), where r is the distance to the axis and z is the vertical position coordinate. The velocity
vector is written u = (u, v) where u is the radial coordinate and v is the vertical coordinate.

Points on the interface are modeled as functions (r(s), z(s)) of the arclength, s, from some point
on the axis. Whenever we are modeling a single drop, then this point is at the top of the drop.
In that case, we let R0 be the drop radius, z0 be the vertical coordinate of the drop center (the
horizontal coordinate will be zero, since the drop is always on the axis), and R = (r2 + (z− z0)

2)1/2

is the distance to the drop center. Other quantities on the surface, such as surfactant concentration,
Γ(s), and surface tension, γ(s), are treated similarly.
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Figure 3.1: Left: The axially symmetric domain considered. Right: Close-up of the front, parame-
terized in terms of arc length, s, starting from the crest. The functions Γ(s), γ(s), h(s) represent the
surfactant concentration on the surface, surface tension, and film thickness, respectively. A force
diagram for the surface forces is included (see equation (4.11)).
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Following the front tracking algorithm presented by [15], the interface is tracked using markers
that are advected with the fluid in a Lagrangian manner. We interpolate between the markers using
cubic splines, allowing for a smooth curvature on the surface. The Lagrangian front is related to
the Eulerian grid using linear interpolation. The markers are redistributed at every timestep, to
maintain a distance between markers of roughly one grid square. Corrections are made that account
for the discontinuous pressure jump at the interface, and surface forces are computed by averaging
over one grid square.

3.1 Marker and Cell (MAC) Grid

Position coordinates for the Eularian grid are given by (ri, zj), where i = 0, . . . , nr and j = 0, . . . , nz

are indices for the radial and vertical directions, respectively. The position coordinates satisfy
ri+1 = ri + h and zj+1 = zj + h, where h is a mesh-width. The staggered MAC grid divides the
physical domain into square cells, with dimensions h×h, whose sides are positioned at the grid-lines,
r = ri, z = zj (see figure 3.2). Scalar quantities are stored at nodes in the cell centers. For instance,
the pressure component, Pi,j is stored at the location (ri+1/2, zj+1/2). Vector quantities are stored
on the sides of grid-cells. The horizontal component of velocity, Ui, is stored at position (ri, zj+1/2),
and the vertical component, Vj , is stored at (ri+1/2, zj).

A major advantage of the MAC grid is that differentiating scalar quantities, like the pressure,
can be done by taking centered differences across the length of a single cell, thus eliminating the
need for physical boundary conditions for scalar fields. The gradient of the pressure, ∇hPi,j , yields
two components, defined by backward differences:

D−
r [Pi,j ] =

Pi,j − Pi−1,j

h
and D−

z [Pi,j ] =
Pi,j − Pi−1,j

h

where D−
r Pi,j resides on the left wall of cell i, j and D−

z Pi,j resides on the bottom wall of the cell.
The divergence is taken using forward differences, so as to ensure that the resultant scalar resides
at cell centers. In particular,

∇h · (Ui,j , Vi,j) =
ri+1Ui+1,j − riUi,j

ri+1/2h
+
Vi,j+1 − Vi,j

h

(recall that we are using axisymmetric cylindrical coordinates).

3.1.1 Viscous Term

In an axially symmetric system with non-constant viscosity, care must be taken in writing the viscous
term, ∇ · T. The viscous stress tensor, T, has components

T = µ(∇u+∇uT ) =




τrr τrθ τrz
τθr τθθ τθz
τzr τzθ τzz


 =




2µ∂u
∂r 0 µ

(
∂u
∂z + ∂v

∂r

)

0 2µu
r 0

µ
(
∂u
∂z + ∂v

∂r

)
0 2µ∂v

∂z


 (3.1)

Here, u and v are the respective radial and vertical components of the velocity field. Taking the
divergence yields

∇ · T · er =
1

r

∂

∂r
(rτrr) +

∂τrz
∂z

− 2µ
u

r2
(3.2)

∇ · T · ez =
1

r

∂

∂r
(rτzr) +

∂τzz
∂z

(3.3)
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Pi,j

Ui,j Ui+1,j

Vi,j

Vi,j+1

Figure 3.2: A staggered Marker and Cell (MAC) grid. Scalar fields, such as the pressure, are tracked
on markers at the cell centers, while vector fields like the velocity are tracked on cell walls.

After some simplification1, we obtain the following form for the viscous term in the Navier-Stokes:

∇ · T =

(
µ

r

∂

∂r

(
r
∂u

∂r

)
+ µ

∂2u

∂z2
− µ

u

r2

)
er +

(
µ

r

∂

∂r

(
r
∂v

∂r

)
+ µ

∂2v

∂z2

)
ez . (3.4)

This can be computed in a straightforward manner by taking differences on the MAC grid.

3.1.2 Advection Term

In axisymmetric cylindrical coordinates, the advection term takes on the same form as in cartesian
coordinates:

u · ∇u =

(
u
∂u

∂r
+ v

∂u

∂z

)
er +

(
u
∂v

∂r
+ v

∂v

∂z

)
k

Because this term is nonlinear, their is no “natural” way to approximate it on a MAC grid, and
there is more than one possible approach. We chose to approximate the derivatives using centered
differences across two grid-squares:

Dc
r[Ui,j ] =

Ui+1,j − Ui−1,j

2h

and similarly for the other derivatives. Altogether, we put

advri,j = Ui,jD
c
r[Ui,j ] + Vi−1/2,j+1/2D

c
z[Ui,j ]

advzi,j = Ui+1/2,j−1/2D
c
r[Vi,j ] + Vi,jD

c
z[Vi,j ]

(3.5)

where the velocities at the half indices are computed using linear interpolation from the velocities
at the whole indices.

1See Appendix A.1 for details of the computation.
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3.2 Scalar Field Tracking

We track scalar fields in the bulk by discretizing equations of the form (2.7):

∂c

∂t
+ u · ∇c = ∇ · (kD∇c)

on our MAC grid. The discrete scalar field, cti,j at timestep t, is computed at the centers of cell i, j,
along with the pressure (see figure 3.2). For an Euler timestep, the successive value at that location
is given by

ct+1
i,j = cti,j +∆t

(
−(U t

i,j , V
t
i,j) · ∇hcti,j +∇h · (ki,j∇hcti,j)

)
(3.6)

where (U t
i,j , V

t
i,j) is the velocity field associated to cell i, j, ∇h is a vector of backwards differences

described in §3.1, and ki,j is the diffusion coefficient, which can vary (in particular, it can change
values across the interface). Because ∇hcti,j resides on the cell walls, as do the components of the
velocity field, we can take the dot product without loss of accuracy. After that, however, we must
interpolate to estimate the value of (U t

i,j , V
t
i,j) · ∇hcti,j at the cell center, where ct+1

i,j . The laplacian
in the last term of Eq. (3.6) combines the differential operations described in §3.1.

3.2.1 Scalar Field Conservation

We validate our method for tracking scalar fields by modeling a drop rising through a sharp density
stratification and measuring how well the mass of the stratifying agent is conserved over time for
different resolutions. We use a small cylindrical domain with a radius of 4 drop radii and a height
of 8 drop radii. After beginning our simulation with the drop a distance of 1.5 drop radii above
the bottom of the container, we allowed the drop to rise through a sharp density stratification at
z = 4, and stop the simulation when the drop is 1.5 radii away from the top of the container. We
allow the stratification agent to diffuse in both the drop and the ambient, with a diffusion coefficient
of 1/4000. The error in mass conservation is the percent variation in the mass Mf of the scalar
field. The results, shown in table 3.1 show an objectively small error and better than second order
convergence. The dimensionless time, t, of the simulation is also given. We chose not to use a fixed
time increment because the error in mass conservation is not uniform in time. Instead, it peaks
while the drop is entering the stratification, and decreases by an order of magnitude before the drop
reaches the top.

h ∆Mf t Order
1/4 3.73× 10−4 25.16 NA
1/8 3.68× 10−5 22.12 3.34
1/16 2.26× 10−6 20.70 4.02
1/32 1.93× 10−7 20.04 3.54

Table 3.1: Error in scalar field mass conservation (second column) against resolution (first column).
The third column shows the duration of the simulation in dimensionless time, and the last column
shows the order of convergence. The drop rose in a cylinder with radius 4 drop radii and height 8,
with a density stratification at z = 4. The stratification agent diffused freely inside and outside the
drop, with a diffusion coefficient of 1/4000 everywhere.
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3.3 Front Tracker

The interface is modeled as a surface of revolution of a two-dimensional front (see figure 3.3), which
is tracked using markers that are advected with the fluid. We interpolate between the markers using
cubic splines. In particular, we associate to each of N markers, an arc-length sk, measured from some
initial marker on the axis, and position coordinates (rk, zk), which are treated as functions of the
arc-length, s. These are advanced in time using Eq. (2.4). By tabulating second derivatives (r′′k , z

′′
k )

associated to the front, we are able to compute position coordinates x(s), and their derivatives,
x′(s),x′′(s). The Lagrangian front is connected to the Eulerian grid using linear interpolation.
Intersections of the front with gridlines are carefully tabulated, along with first derivatives. Finally,
the markers are redistributed at every timestep, in order to maintain a distance between markers of
roughly one gridsquare: ∆s ≈ h.

Figure 3.3: The Eulerian grid is shown in red. The solid lines mark grid cells, while the dotted lines
pass through cell centers. The front is shown in blue, with asterisks for the markers. Between each
marker, the position coordinates are tracked using cubic splines.

3.4 Computation of Surface Force

To track the surface force,
Fs = γκn+∇sγ − gh(ρf − ρa)k

given by Eq. (2.3), we follow the axially symmetric front tracking algorithm, presented by Zaleski and
Popinet in 1999 [15]. We decompose the curvature term into radial and two dimensional components,
and apply one of the Frenet-Serret formulas (dt/ds = κ2Dn) to the 2D term:

κn = (κaxi + κ2D)n = κaxin+
dt

ds
. (3.7)

Here, t is the unit tangent vector in the direction of increasing s. The radius κ−1
axi of curvature with

respect to the axis of symmetry goes from the point on the curve to the axis of symmetry along a
perpendicular trajectory. Geometrically,

rκaxi = cosϕ =
dz

ds
(3.8)
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where ϕ is the angle the radius of curvature κ−1
axi makes with the axis of symmetry. In addition, the

gradient of the surface tension can be rewritten in terms of the unit tangent:

∇sγ = t
dγ

ds
. (3.9)

Now, write the average surface force Fij in grid cell i, j using equations (3.7), (3.8), and (3.9):

Fij =
1

h2

∫∫

cell

δsFsdA =
1

h2

∫∫

cell

δs

(
γ

r

dz

ds
n+ γ

dt

ds
+ t

dγ

ds
− gh(ρf − ρa)k

)
dA .

We can collapse two terms using the product rule:

γ
dt

ds
+ t

dγ

ds
=

d

ds
(γt) .

The delta function turns the area integral into a line integral along the interface. Altogether,

h2Fij = γ(s2)t(s2)− γ(s1)t(s1) +

∫ s2

s1

(
γ

r

dz

ds
n− gh(ρf − ρa)k

)
ds (3.10)

where s1, s2 are the values of arc-length at which the front intersects the bounds of cell i, j.

Since the parametrization is in terms of arc-length,

t(s) =
(
r′(s), z′(s)

)
and n(s) =

(
− z′(s), r′(s)

)
.

Thus, the surface force in each cell has the following expression in cylindrical coordinates:

Fij · er = γ(s2)r
′(s2)− γ(s1)r

′(s1)−
∫ s2

s1

γ

r

(dz
ds

)2
ds (3.11)

Fij · k = γ(s2)z
′(s2)− γ(s1)z

′(s1) +

∫ s2

s1

(
γ

r

dz

ds

dr

ds
− gh(ρf − ρa)

)
ds . (3.12)

Because we track the values of r, r′, z, z′ at intersections between the front and the grid, a
numerical computation of the terms (3.11) and (3.12) can be done using trapezoidal integration and
spline interpolation.

3.5 Projection Method for Pressure

The pressure is computed using a projection method developed by Brown, et al, in 2001 [34], which
results in a Poisson equation for the pressure that enforces conservation of mass. This is inverted
using iterative methods, executed on a linear multigrid, for computational efficiency.

Supposing, for a moment, we use a simple Euler timestep, the Navier-Stokes solver could be
described as follows

ut+1 = ut − ∆t

ρ
∇P +∆tf(ut) (3.13)

where ∆t is the time increment, t indexes the timestep, and the function f encompasses all of the
forcing terms except the pressure. We wish to compute the pressure that will enforce continuity:
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∇ · u = 0. To accomplish this, we will need to deal with the divergence of the partially updated
velocity, u∗, that we obtain before taking the pressure into account. So define

u∗ = ut +∆tf(ut)

Then Eq. (3.13) becomes

ut+1 = u∗ − ∆t

ρ
∇P (3.14)

Taking the divergence of Eq. (3.14), we seek to solve the following Poisson equation

∇ · ut+1 = ∇ · u∗ −∆t∇ ·
(1
ρ
∇P

)
= 0 (3.15)

for the pressure, P . We apply Neumann conditions (no normal derivative) at the walls. Numerically,
this gives rise to a finite difference equation:

∇h · (ρ−1
i,j ∇hPi,j) = ∆t−1∇h · (U∗

i,j , V
∗
i,j) (3.16)

where we use the derivatives, ∇h, defined in §3.1. In keeping with our use of the MAC grid, the
inverse density is evaluated on cell walls, along with the components of velocity (see figure 3.2). Eq.
(3.16) can be written as an affine equation in terms of the component Pi,j :

Ai,jPi,j +Bi,j = φi,j

where

Ai,j = −
riρ

−1
i−1/2,j + ri+1ρ

−1
i+1/2,j

rih2
−
ρ−1
i,j−1/2 + ρ−1

i,j+1/2

h2

Bi,j =
riPi−1,jρ

−1
i−1/2,j + Pi+1,jri+1ρ

−1
i+1/2,j

rih2
+
Pi,j−1ρ

−1
i,j−1/2 + Pi,j+1ρ

−1
i,j+1/2

h2

and φi,j = ∆t−1∇h · (U∗
i,j , V

∗
i,j) .

A one-step inversion is not possible, since the constant term, Bi,j , depends pressure components

Pi±1,j , Pi,j±1. This equation can be inverted iteratively, by putting P
(n+1)
i,j = (φ

(n)
i,j −B

(n)
i,j )/A

(n)
i,j .

A straightforward approach would be extremely costly in computational terms, requiring an
enormous number of iterations to arrive at the correct, updated pressure. The linear multigrid for
the Poisson equation reduces the workload enormously. The pressure is updated (“relaxed on”) a
few times, first on a full 2N × 2N grid. The result is coarsened to a 2N−1× 2N−1 grid - and we relax
on this grid a few times. This process is repeated until we arrive at a 2× 2 grid, and the residuals
are stored at each stage. The problem is then solved exactly on the 2× 2 grid, using a large number
of iterations. Next, we begin refining the grid again, by copying the newly computed pressure, and
subtracting the previously stored residuals, until we again arrive at a 2N × 2N grid. This entire
process is repeated until the final residual is sufficiently small.

3.5.1 Pressure on a Stationary Drop

We validated our method for computing a discontinuous pressure field by computing the pressure
field for a stationary spherical drop, centered on the axis. We used a cylindrical domain of 0 ≤ r ≤ 4
and 0 ≤ z ≤ 8, centered the drop at (r, z) = (0, 4), and computed the pressure over one timestep for
different resolutions. The drop radius used was R0 = 1 and the surface tension was γ = 10, so that
the pressure inside the drop should be P0 = 2γ/R0 = 20. This yields a theoretical pressure field
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over the domain of P0φ, where φ is an indicator function that is 1 inside the drop and 0 outside.
We compute the error as a function of the meshwidth, h, as

ǫp(h) =

∥∥P c
i,j − P th

i,j

∥∥
p

P0
where P th

i,j = φi,jP0. (3.17)

Here, ‖·‖p is the p-norm of a grid function, and φi,j is a discrete indicator function, which returns
the fraction of cell i, j that is inside the drop.

Table 3.2 gives the results for two norms: the 1-norm (p = 1) and the max norm (p = ∞).
For p = 1, convergence is first order, but for the max norm, the error is not converging at all. In
particular, the error takes the form of spikes on cells that intersect the interface. Although the
proportion of the domain that is occupied by these spikes decreases with order 1, the magnitude of
the spikes does not decrease with increasing resolution. This is a consequence of the discontinuity
across the interface, and is unavoidable given the method we use.

Error vs Resolution in Pressure Computation

Meshwidth 1/8 1/16 1/32 1/64 1/128 1/256
Error (1-norm) 3.695× 10−3 2.150× 10−3 1.065× 10−3 5.95× 10−4 3.00× 10−4 1.55× 10−4

Max Error 0.271 0.299 0.280 0.328 0.359 0.364

Table 3.2: Error in pressure computation against meshwidth for a stationary spherical drop, com-
puted over 1 timestep. The resolution is given by the meshwidth, h. The error is computed using
Eq. (3.17), for p = 1,∞.

3.6 Pressure Correction

Following Zaleski and Popinet (1999) [15], corrections are made that account for the discontinuous
pressure jump at the interface. In the standard method, errors in computing the pressure jump at
the interface result in significant spurious currents, which are orthogonal to the grid and are present
even if the corresponding physical system is stationary. By correcting the standard computation
with a much more careful accounting, Zaleski and Popinet managed to reduce the spurious currents
by several orders of magnitude.

Let X be the point of intersection between the front and some horizontal line z = zj , between
the vertical lines r = ri−1/2, r = rj+1/2. Denote by A and B, respectively, the intersections of these
lines with z = zj (see Figure 3.4). Then the closest pressure node will be Pi,j , and the traditional
method for computing the pressure jump across the front is given by

∫ A

B

Pdr ≈ P 0
i,j =

{
(Pi,j − Pi−1,j)h if AX < h/2

(Pi+1,j − Pi,j)h if AX ≥ h/2

A much better approximation is obtained by using the distances AX, BX as weights, placing

∫ A

B

Pdr ≈ P e
i,j =

{
AX · Pi−1,j +BX · Pi,j if AX < h/2

AX · Pi,j +BX · Pi+1,j if AX ≥ h/2

The corresponding corrections to the normal pressure increment hPi,j are defined as

Ii,j [P ] = P e
i,j − hPi,j =

{
AX(Pi,j−1 − Pi,j) if AX < h/2

BX(Pi,j+1 − Pi,j) if AX ≥ h/2
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Figure 3.4: A horizontal pressure correction for the pressure jump across the front, centered at X.
In this case, AX < h/2, so the pressure correction is Ii,j = AX(Pi,j−1 − Pi,j).

Then the gradient, approximated as a backward difference,

D−Ii,j =
Ii,j − Ii,j−1

∆z

is added in the velocity Vi−1/2,j−1/2 in the Navier-Stokes solver, as a forcing term. Vertical pressure
corrections are computed similarly.

3.6.1 Spurious Currents Near a Stationary Drop

The effectiveness of our pressure correction routine can be measured by how well it suppresses
spurious currents near a stationary drop. We ran simulations of a spherical drop of radius R0 = 1
at rest in the absence of gravity, on a domain of 0 ≤ r ≤ 4 and 0 ≤ z ≤ 8. As with the pressure test,
the drop is centered on the axis, at z0 = 4. The viscosity used is µ = 0.05, and the surface tension
is γ = 10. We measure the spurious currents using the 1-norm of the array of velocity magnitudes,
computed at cell centers. In particular, we put

Umax =
∥∥∥
√
U2
i+1/2,j + V 2

i,j+1/2

∥∥∥
1

. (3.18)

The half-indices in equation (3.18) represent values averaged over the cell center, and were chosen
to make sure that the velocity magnitude resides at cell centers on the MAC grid.

Figure 3.5 show the magnitude of the spurious currents against the number of timesteps taken,
for a meshwidth of h = 1/32. The spurious currents develop unevenly in time, and level off before
3000 timesteps, at which point they are quite large. We ran simulations of stationary drops for 3000
timesteps with and without pressure corrections, and measured the spurious currents at the end of
the simulation. The results, shown in table 3.3, demonstrate that the pressure correction reduces
the spurious currents by 2 or 3 orders of magnitude.
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Figure 3.5: The magnitude of spurious currents around a stationary drop, for a meshwidth of
h = 1/32. Umax is described in equation (3.18).

Magnitude of Spurious Currents

Meshwidth 1/8 1/16 1/32 1/64 1/128 1/256
Umax Uncorrected 0.0811 0.0215 0.0121 2.50× 10−3 7.46× 10−4 1.79× 10−4

Umax Corrected 2.06× 10−4 1.50× 10−4 1.31× 10−5 5.97× 10−6 7.22× 10−7 2.79× 10−7

Improvement 393 143 922 419 1032 641

Table 3.3: The magnitude of spurious currents around a stationary drop, after 3000 timesteps, with
and without pressure corrections. The improvement is defined as Umax without corrections divided
by Umax with corrections. Umax is described in equation (3.18).

3.7 Surfactant Tracking

Because we already keep track of the position of the markers on the front, it is convenient to track
surfactant using a Lagrangian approach that automatically conserves mass in the absence of sorption.
The surfactant concentration at each marker is advanced in time in three stages (see figure 3.6, left):
updating the surfactant concentrations using local masses computed before and after advancing the
front; redistributing the front and the surfactant masses to maintain equal spacing between markers
and conserve surfactant mass; and adding forcing terms, such as diffusion and sorption, to the new
concentration. For clarity, we use a different notation for each stage of advancement:

Γt−1
j

advance front, update using local masses−−−−−−−−−−−−−−−−−−−−−−−−−−→ Γ∗
j

redistribute using total masses−−−−−−−−−−−−−−−−−−−→ Γ′
k

add sorption and diffusion−−−−−−−−−−−−−−−−→ Γt
k .

In what follows, we discuss how to track surfactant on a single spheroidal drop, centered on the
axis. Tracking surfactant on other types of fronts, such as a drop merging with a reservoir, is done
similarly.

At time t− 1, we have a front consisting of nt−1 markers, indexed by j, where 0 ≤ j ≤ nt−1. We
compute the mass of surfactant near the jth marker at time t− 1:

mt−1
j = Γt−1

j ∆At−1
j (3.19)
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Figure 3.6: Left: An illustration of the front being advanced. The rounded squares represent
redistributed markers. Right: An illustration of the area elements being computed. The first (top)
and last area elements are approximated as portions of a small cap on the axis. In between (bottom),
the area elements are approximated as revolutions of arcs between the points described by st−1

j−1/2

and st−1
j+1/2. The black dotted lines bound the relevant areas.

where Γt−1
j is the surfactant concentration at the jth marker at time t−1, and ∆At−1

j represents the

associated area element (see figure 3.6, right). On the axis, ∆At−1
j is approximated by the surface

area of a small cap about the axis:

∆At−1
0 =

1

4
πst−1

1 rt−1
1 and ∆At−1

nt−1−1 =
1

4
π(st−1

nt−1−1 − st−1
nt−1−2)r

t−1
nt−1−2 .

Away from the axis, it is a narrow strip made by revolving the arc from st−1
j−1/2 to st−1

j+1/2 about the
axis:

∆At−1
j = 2πrtj∆s

t−1
j .

Here, rt−1
j is the distance of the jth marker to the axis at time t − 1, and ∆st−1

j = 1
2 (s

t−1
j+1 − st−1

j−1)

for 1 ≤ j ≤ nt−1 − 2. After the markers are advected with the fluid to positions (x∗j , y
∗
j ) and new

arc-lengths s∗j are computed, but before they are redistributed, we update surfactant concentration
to a temporary value Γ∗

j , by inverting Eq. (3.19):

Γ∗
j =

mt−1
j

∆A∗
j

=
∆At−1

j

∆A∗
j

Γt−1
j . (3.20)

Notice that Eq. (3.20) conserves the mass associated to each marker by definition.

Next, we redistribute the markers to equally spaced positions, (xtk, y
t
k), and compute new arc-

lengths, stk, associated to these positions. The redistributed markers are indexed by k, such that
0 ≤ k ≤ nt − 1, where nt is the new number of markers. We also redistribute the surfactant
concentrations in such a way as to conserve surfactant mass. We begin by forming arc-length
intervals of

∆s∗j =
1

2
(s∗j+1 − s∗j−1) and ∆stk =

1

2
(stk+1 − stk−1)

before and after redistribution, respectively, and write the arc-lengths midway between markers as

s∗j−1/2 =
s∗j−1 + s∗j

2
and stk−1/2 =

stk−1 + stk
2

.
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We would like to chose our redistributed surfactant concentrations, Γ′
k, to enforce mass conserva-

tion. This can be done by going through the markers and choosing the redistributed surfactant
concentrations to conserve total mass up to that point. Since the first marker doesn’t change, we
set Γ′

0 = Γ∗
0. This fixes the redistributed mass in a small area about the axis of radius rt1/2 to

m′
0 =

1

4
πst1r

t
1Γ

∗
0

Now, suppose 1 ≤ k. Each marker k is associated to a surfactant concentration Γ′
k, and a mass

element m′
k on a strip between stk−1/2 and stk+1/2. We begin by computing the total surfactant mass

up to stk−1/2 using redistributed surfactant concentrations:

M ′
k−1/2 = 2π

∫ stk−1/2

0

Γ(s)r(s)ds =
1

4
πst1r

t
1Γ

′
0 + 2π

k−1∑

i=1

Γ′
ir

t
i∆s

t
i . (3.21)

Next, we compute the surfactant mass up to stk+1/2 using the non-redistributed markers:

M ′
k+1/2 = 2π

∫ stk+1/2

0

Γ(s)r(s)ds = 2π

∫ s∗J−1/2

0

Γ(s)r(s)ds+ 2π

∫ stk+1/2

s∗
J−1/2

Γ(s)r(s)ds

where J = max{j : s∗j−1/2 ≤ stk+1/2}. The above integrals on the right can be computed separately:

M∗
J−1/2 ≡ 2π

∫ s∗J−1/2

0

Γ(s)r(s)ds =
1

4
πs∗1r

∗
1Γ

∗
0 + 2π

∑

1≤j<J

Γ∗
jr

∗
j∆s

∗
j

Mgap ≡ 2π

∫ stk+1/2

s∗
J−1/2

Γ(s)r(s)ds = 2πΓ∗
Jr

∗
J∆sgap where ∆sgap = stk+1/2 − s∗J−1/2

Then the new surfactant concentration, Γ′
k, should correspond to a mass of 2πrtkΓ

′
k∆s

t
k =M ′

k+1/2−
M ′

k−1/2. Solve to obtain

Γ′
k =

M ′
k+1/2 −M ′

k−1/2

2πrtk∆s
t
k

. (3.22)

Continuing in this manner, it is possible to choose the redistributed surfactant concentrations
for all of the markers so as to conserve surfactant exactly. However, because the mass element
associated to the last marker is quite small in comparison to other mass elements, this will result in
sharp gradients in surfactant concentration near the last marker. As such, instead of moving from
the top of the drop to the bottom, we move independently from the ends (top and bottom) toward
the middle. It is convenient to choose our new number of markers to be odd: nt = 2ℓ+1 where ℓ is
the index of the middle marker, which has the greatest associated area element. Thus, we apply the
method described in the previous paragraph to all markers indexed by k such that 0 ≤ k < ℓ, and we
apply a similar method to the markers by k such that ℓ < k ≤ nt−1, except that we move backward
from the last marker at k = nt − 1. The middle marker is chosen to conserve total surfactant mass:

Γ′
k =

M∗ −M ′
ℓ+1/2 −M ′

ℓ−1/2

2πrtℓ∆s
t
ℓ

, (3.23)

where M∗ is the total surfactant mass before redistribution; M ′
ℓ−1/2 is the total surfactant mass

from the top to sℓ−1/2, computed after redistribution by moving from k = 0 to k = ℓ − 1; and
M ′

ℓ+1/2 is the total surfactant mass from the bottom to sℓ+1/2, computed after redistribution by

moving from k = nt − 1 to k = ℓ+ 1.
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After redistributing, we add the diffusion and sorption terms:

Γt
k = Γ′

k +∆t
(
kD∇2Γ′

k + J(Γ′
k, (Λ|s)k)

)

where kD is a diffusion coefficient. The diffusive term is a discretization of the Laplacian

∇2Γ =
1

r

∂

∂s

(
r
∂Γ

∂s

)

(here we have neglected the time dependence). We approximate as

(∇2Γ)k =
rk+ 1

2
Dk+ 1

2
− rk− 1

2
Dk− 1

2

rk(sk+ 1
2
− sk− 1

2
)

where Dk+ 1
2
=

Γk+1 − Γk

sk+1 − sk
. (3.24)

At the axis, we must use an alternate method, because r = 0. So use L’hopitals rule to compute an
alternate representation, and apply the fact that ∂r

∂s = ±1 at the axis:

lim
r→0

∇2Γ = lim
r→0

(
∂2Γ

∂s2
± 1

r

∂Γ

∂s

)
= lim

r→0

(
∂2Γ

∂s2
±

∂
∂s
∂
∂s

∂Γ
∂s

r

)
= 2

∂2Γ

∂s2

∣∣∣∣
r=0

.

With symmetry at the axis, the end terms become

(∇2Γ)0 =
4

s21
(Γ1 − Γ0) and (∇2Γ)n−1 = −4(Γn−1 − Γn−2)

(sn−1 − sn−2)2
(3.25)

where the markers are indexed from k = 0 to k = n− 1. Notice that the above form for (∇2Γ)n−1

is valid whether or not the front ends on the axis, so long as the front is horizontal at the wall.
This diffusion is mass-conserving if the arc-length is constant between different markers - which is
enforced by redistributing the markers every timestep. To see this, sum over the n markers (again,
ignoring the time dependence):

MNew =

n−1∑

k=0

(
Γk +∆tkD(∇2Γ)k

)
∆Ak

=
n−1∑

k=0

(
mk

∆Ak
+∆tkD(∇2Γ)k

)
∆Ak

=

n−1∑

k=0

mk +∆tkD

( n−2∑

k=1

(2πrk∆s)
rk+ 1

2
Dk+ 1

2
− rk− 1

2
Dk− 1

2

rk∆s

+ 4π(∆s/2)r1/2
Γ1 − Γ0

∆s2
− 4π(∆s/2)rn−3/2

Γn−1 − Γn−2

∆s2

)
(By Eq. (3.24) and (3.25))

=MOld + 2π∆tkD

(
rn− 3

2
Dn− 3

2
− r 1

2
D 1

2
+
r1/2

∆s
(Γ1 − Γ0)−

rn−3/2

∆s
(Γn−1 − Γn−2)

)

(Telescoping the sum)

=MOld .

3.8 Surfactant Exchange Terms

Numerically, we have two exchange terms that look very different: a term (Js)
t
k that is added to the

markers, to track changes on the surfactant concentration on the surface; and a term (Jb)
t
i,j that is
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added to the cells crossed by the interface, to track changes in the surfactant concentration in the
bulk. The exchange term for the bulk can be computed by averaging over one grid cell. The delta
function converts the area integral into an integral along the front:

(Jb)i,j =
1

h2

∫∫

cell

δsJ(Γ,Λ|s)dA =
1

h2

∫ s2

s1

J(Γ,Λ|s)ds

where h is the mesh-width and s1, s2 are the locations (measured by arc-length from the crest) where
the front enters and leaves the cell. The exchange term for the surface can be accurately computed
by evaluating a local integral about each marker:

(Js)k =
1

∆sk

∫ sk+1/2

sk−1/2

J(Γ,Λ|s)ds

where ∆sk = sk+1/2 − sk−1/2. Both surface integrals are computed numerically using trapezoidal
integration. J(Γ,Λ|s) is given by Eq. (2.10), and depends only on arc-length. The surface concen-
tration, Γ(s), is obtained by linear interpolation from the markers, and the bulk concentration, Λ|s,
is obtained using bilinear interpolation from adjacent cells.

3.8.1 Desorption Test

We test our method of computing the surfactant exchange by computing an exact solution for
a simple test case. Our simple test case involves a drop at rest in a stationary fluid that only
undergoes desorption. In particular, we set kad = 0 in Eq. (2.10), to get

J(Γ,Λ|s) = −kdeΓ (3.26)

We assume that initially the surfactant is uniformly distributed on the drop surface, with Γ(s, t =
0) = 1. Then the surfactant mass on the surface and in the bulk at time t are given respectively by

MΓ(t) = 4πR2
0e

−kdet and MΛ(t) = 4πR2
0(1− e−kdet) . (3.27)

We allowed surfactant to desorb from the surface until t = 3, computed the total surfactant mass
on the surface and in the bulk, and compared them against the values obtained from Eq. (3.27).
The results, shown in table 3.4, demonstrate first order accuracy.

Resolution
Percent Error of
MΓ MΛ

(32/4)2 3.6× 10−4 0.0116
(64/4)2 1.2× 10−4 0.0040
(128/4)2 4.3× 10−5 0.0014
(256/4)2 1.5× 10−5 5.0× 10−4

Table 3.4: Error in surfactant mass versus resolution for desorption from the surface of a stationary
drop. The error is measured as (Mc −Mth)/Mth, where Mc is the surfactant mass obtained from
the simulation, and Mth comes from Eq. (3.27), at t = 3. A desorption rate of kde = 1 was used.

3.8.2 Surfactant Mass Conservation

We also tested the conservation of total surfactant mass for the full sorption routine, with kde = 0.02
and kad = 0.2. In this case, we made our test more rigorous by introducing motion to the drop.
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In particular, we started the simulation with a spheroidal drop with aspect ratio Rz/Rr = 1.5 and
allowed the system to relax over three units of time. We started the simulation with no surfactant in
the bulk and measured our error against the total initial surfactant mass. We found that the error is
small, and decays significantly with resolution - though the decay appears uneven (table 3.5). The
percent change in bulk, surface, and total surfactant mass for a resolution of (128/4)2 has also been
plotted (figure 3.7).

Resolution ∆M(t)/M(t = 0)
(32/4)2 1.6× 10−3

(64/4)2 1.3× 10−3

(128/4)2 7.24× 10−4

(256/4)2 4.48× 10−4

Table 3.5: Percent change in surfactant mass for an oscillating drop undergoing sorption (kde = 0.02
and kad = 0.2), at t = 3.
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Figure 3.7: Percent change in surfactant mass for an oscillating drop undergoing sorption (kde = 0.02
and kad = 0.2).

3.9 Oscillations of an Irrotational Drop

As a dynamic validation of our method, we studied the oscillations of a perturbed spherical drop,
whose oscillation frequency has been analyzed for certain specific cases [40]. For a liquid drop
surrounded by a gas of negligible density and viscosity, the oscillation frequency of the nth mode of
frequency is found to be

ω2
n =

γ

ρR3
0

(n+ 2)n(n− 1) (3.28)

where γ is the surface tension, R0 is the drop radius, and ρ is the liquid density. We computed
the oscillation frequency for the primary mode of oscillation (n = 2) of a perturbed liquid drop
with an initial aspect ratio of 1.05 and a dimensionless viscosity of µd = 0.02, surrounded by gas.
At a resolution of (512/5.0)2, the accuracy obtained was excellent, differing from the theoretical
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Liquid/Liquid System
Resolution ∆M ∆E
(32/5.0)2 2.24% 0.43%
(64/5.0)2 0.28% 0.27%
(128/5.0)2 0.24% 0.072%
(256/5.0)2 0.073% 0.039%
(512/5.0)2 0.038% 0.015%

Liquid/Gas System
Resolution ∆M ∆E
(32/5.0)2 3.86% 4.36%
(64/5.0)2 1.68% 3.50%
(128/5.0)2 1.40% 2.45%
(256/5.0)2 0.62% 1.50%
(512/5.0)2 0.044% 0.18%

Table 3.6: Percent variations in interior fluid mass, M , and energy budget, E, for a pair of nearly
spherical merging drops, coated in surfactant, after 3.0 time units. For the liquid/liquid system,
the density and viscosity of the drops and the ambient fluid are identical, while for the liquid/gas
system the merging drops have a density and viscosity that are 10 times greater than that of the
surrounding fluid. In all cases the viscosity of the drops was set to µd = 0.02, we used a coefficient
of β = 0.1 for the surfactant relation (2.14), and no gravity. The domain used had radial width
Lr = 5.0 and height Lz = 5.0; the configuration of merging drops was placed in the interior.

solution by no more than 0.33%. Unfortunately, because the perturbations of the drop were small
in comparison to the drop size, the drop oscillations could not be resolved for resolutions below
(512/5.0)2.

3.10 Additional Conservation Properties

3.10.1 A Pair of Merging Drops

A direct validation of our method as a whole may be obtained by verifying conservation of drop
mass, M , and the energy, E, of the system. Energy can be tracked using an energy budget [39]
for a multiphase flow system involving two immiscible fluids, and accounting for possible variations
in density and viscosity. Thus, we estimate the accuracy of our code by computing the relative
variation of a quantity X(t), as

∆X =
maxt(X(t))−mint(X(t))

X(0)

To make this validation applicable to the partial coalescence problem, we tested the code by running
it for t = 3.0 units of nondimensional time - most of the trials we ran studying partial coalescence
ran for 2 to 3 units of time. We modeled three setups: a perturbed drop, with initial aspect ratio
2.0, allowed to relax under the influence of surface tension; a “peanut configuration” consisting of
two nearly spherical drops which have begun merging and are allowed to relax over time; and a
spherical drop allowed to fall to the ground (no-slip and no penetration boundary), and bounce.

Table 3.6 shows the variations of fluid mass, surfactant mass, and energy budget against resolution
for the peanut configuration. The results for the stretched and falling drop were similar. In all cases,
fluid mass, surfactant mass, and energy budget converge with increasing resolution, achieving very
good accuracy with a resolution of (512/5.0)2. The errors are larger for the liquid/gas system - a
fact which we attribute to computational difficulties arising from the sheer drop in pressure, density,
and viscosity across the interface. In particular, the viscous stress tensor is discontinuous across
the interface, due to the discontinuity in the viscosity. Thus, when we take the divergence of the
stress tensor to obtain the viscous term in the Navier-Stokes, we introduce errors near the interface.
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Similarly, the inverse density multiplies the forcing terms in the Navier-Stokes - and thus, the density
discontinuity introduces numerical errors near the interface.

Also in the case of the liquid/gas system, conservation properties are relatively poor for res-
olutions up to and including (256/5.0)2; but dramatically improve upon increasing resolution to
(512/5.0)2, typically by a factor of about 10. For all problems involving a liquid/gas system, we use
a resolution of (512/5.0)2. For the most part, both cases exhibit first order convergence for fluid
mass, surfactant mass, and energy. A notable exception occurs when moving from a resolution of
(64/5)2 to (128/5)2, in which case improvements in mass conservation were marginal. We believe
this is due to the complexity of the code. As resolution improves, more components attain a minimal
level of accuracy to achieve first order convergence. By the time we reach a resolution of (256/5)2

all convergence is first order, and are always within 2% of exact conservation for all the regimes
considered at a resolution of (512/5.0)2.

3.10.2 A Rising Drop

We also ran simulations of a drop rising through a sharp density stratification, to determine con-
servation properties for problems similar to our application to rising drops. The cylindrical domain
used had a radius of 4 drop radii and a height of 8 drop radii. The drop was allowed to rise from
a height 1.5 to 6.5 drop radii. The drop density used was 1, while the density of the lower ambient
was 1.1, and the density of the upper ambient was 1.05. The pycnocline (linear density gradient)
was centered at z = 4 drop radii, with a width of 0.1 drop radii. In addition, the drop was coated
with insoluble surfactant. We used an equilibrium surface tension of γ0 = 5, a viscosity of µ = 1,
and an elasticity coefficient of β = 0.2. The results, shown in table 3.7, show first order convergence
in both mass and energy conservation.

Resolution ∆M ∆E
(16/4.0)2 1.2% 10.8%
(32/4.0)2 0.61% 7.53%
(64/4.0)2 0.20% 3.62%
(128/4.0)2 0.10% 1.61%

Table 3.7: Percent variations in interior fluid mass, M and energy budget, E, for a drop rising
through a linear density stratification, in which the density decreased sharply from 1.1 times the
drop density to 1.05 times the drop density. We set γ0 = 5, µ = 1, and β = 0.2.
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Chapter 4

Coalescing Drops and Bubbles

4.1 The Problem of Partial Coalescence

The coalescence of droplets has been widely studied, due to applications to foams and emulsions [41],
as well as raindrop formation in clouds [42] and other aerosols, including mists [43], and pollutants
in the earth’s atmosphere [44]. It is known to play a role in the formation of vortex rings [45], which
have been studied for more than a century [46], and to impact mixing in microfluidic devices [47].
Despite the considerable interest the subject has generated, most previous work has been limited
to idealized circumstances. In particular, few studies have accounted for the effects of surfactants.
Using our method, which we described in Chapter 3, we provide a more realistic description of partial
coalescence, in contrast to the idealized, surfactant free, one given in previous studies. Applications
such as ink jet printing, micro-fluidic devices, and natural set-ups such as raindrops and ocean mist,
where partial coalescence takes place can be better predicted if an understanding of the effects of
surfactants is attained.

The outcome of a collision between two fluid bodies depends significantly on the impact velocity.
At high impact velocity, splashing, bouncing, coalescence, temporary coalescence, and fragmentation
may occur [48–50]. At low velocities, a drop may rest on a reservoir without coalescing for up to a
few seconds. This phenomena was first reported by Reynolds in 1881 [51], and has subsequently been
investigated in some detail [52–54]. We focus here on drops and bubbles coalescing with a reservoir
at a low impact velocity. Even when the contact velocity is negligible, merging drops may exhibit
a curious and counterintuitive behavior, known as partial coalescence [54], in which a drop merging
with another fluid body pinches off to form a smaller daughter drop before the merging process is
complete. In the presence of gravity, the daughter drops bounce on the interface, before undergoing
coalescence themselves. In 2000, a sequence of up to five self-similar partial coalescence events [55]
was observed. The size [56] and jump height [57] of the daughter drop between coalescence events
have been carefully studied. The residence time of a drop on a reservoir has been examined [58], as
well as the duration of the merging process [55]. In all those experimental studies, fluid interfaces
were carefully kept surfactant-free.

The mechanism for partial coalescence was explained in 2006 by Blanchette and Bigioni [59]. The
nature of coalescence, partial or total, is a consequence of a competition between surface tension at
the top of the drop, which drives total merging, and at the base of the drop, which favors pinch
off. In the absence of inertial forces, the surface tension at the crest of the drop dominates, and
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coalescence is total. However, in inertial regimes, vigorous capillary waves generated by the rapid
motion involved in the initial merging travel up to the crest of the drop, stretching it vertically, and
delaying total coalescence. This allows pinch off to occur at the base. This effect is seen in figure
4.1, which shows the partial coalescence of a drop without surfactant, in an inertial regime. Because
viscosity dampens capillary waves, partial coalescence will not occur in sufficiently viscous regimes.
Having determined the importance of viscosity, investigators have further examined the parameter
regime of partial coalescence, looking at gravity effects and the relative densities and viscosities of
the drop, reservoir, and ambient fluid [60,61].

Figure 4.1: Pressure plots showing a time sequence of partial coalescence of a drop with a reservoir,
in the absence of surfactant. The coloring shows the fluid pressure and the interface is shown in
white. The interior and exterior fluids have identical viscosity and density; the Ohnesorge number
used is Oh = 0.027, and gravity is absent. The resolution used was (512/5.0)2.

Here, we investigate the effects of the presence of surfactants on partial coalescence. In general,
surfactant concentrations do not remain constant, leading to local surface tension variations. The
effects on coalescence of surface tension variations due to compositional differences between the drop
and the reservoir have also been studied [35, 62]. It was found that partial coalescence is favored
when the drop has a higher surface tension than the reservoir, and that pinch off will not occur at
all if the drop surface tension is sufficiently high relative to that of the reservoir. However, to the
best of our knowledge, the effects of surfactants on partial coalescence have yet to be considered.

4.2 Setup

We consider two similar, but physically distinct setups. The first consists of a liquid drop surrounded
by air, merging with a reservoir of the same liquid. The second consists of a soap bubble merging
with a horizontal soap film, suspended in air. In both cases, surfactants may be present on all
interfaces. We will use the term “drop” to refer to both the drop and bubble, and we will refer
to both the reservoir and suspended film as a “reservoir”. However, when only the soap film is
intended, we will use the terms “bubble” and “film”. We will use the phrases “liquid drop” and
“liquid reservoir” when we wish to clarify that we are excluding the soap film.

We consider that the drop and reservoir are initially at rest. Unless otherwise specified, we begin
our simulations with a horizontal reservoir and a spherical drop, with surfactant concentration
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uniform on the drop and reservoir, and neglect gravity. This set up will be referred to as the
base case. We begin our simulations shortly after merging, so that the drop and the reservoir are
connected by a thin neck. In our model, we distinguish an exterior fluid with density and viscosity
ρE , µE , from an interior fluid, having density and dynamic viscosity ρI , µI - common to both the
drop and the reservoir (see figure 3.1). In the case of the soap film, the interior and exterior fluids
are both air, so at room temperature and atmospheric pressure, µI = µE ≈ 1.81 × 10−5Pa s and
ρI = ρE ≈ 1.25kg/m3. For the liquid drop, the density and viscosity of the interior fluid may vary,
but in general, ρI ≫ ρE and µI ≫ µE . To account for the presence of two interfaces in a soap film,
we introduce a variable Nf , representing the number of interfaces per front. In the case of the soap
film, Nf = 2, while in the case of the liquid drop, Nf = 1.

For an interface of air with soapy water, the surface tension will range from γ0 ≈ 7.2× 10−2N/m
in the surfactant-free case, to γ0 ≈ 3.0× 10−2N/m near the maximum packing concentration, which
has a typical value of Γ∞ ≈ 2 × 10−10mol/cm2 [11]. For soap films under the influence of gravity,
we also add a film thickness, h(s), to track the weight of the film. The film density, ρf , is assumed
constant. If the film consists of soapy water, a typical density is ρf ≈ 103kg/m3, while the thickness
has a typical value of h0 ≈ 10−6m. We do not model the bursting of the film, and thus assume that
the film remains unbroken.

4.3 Dimensionless Governing Equations

We use the drop radius, R0, as a lengthscale. Because there is no natural velocity scale for the
problem, we use a timescale, t0, to be determined later:

∇new = R0∇old κnew = R0κold tnew = told/t0 and unew = uold/(R0/t0) .

We scale the fluid density and viscosity by that of the interior fluid, so that µnew = µold/µI and
ρnew = ρold/ρI . For this problem, density and viscosity depend only on the indicator function, φ,
which is set to 1 on the interior fluid, and 0 on the exterior fluid. As such, Equations (2.5) and (2.6)
simplify to the following:

ρ = φ+ (1− φ)ρE/ρI = φ+ (1− φ)D (4.1)

µ = φ+ (1− φ)µE/µI = φ+ (1− φ)M (4.2)

where D = ρE/ρI and M = µE/µI are the respective density and viscosity ratios of the exterior to
interior fluids. We scale the thickness and surface tension by representative physical values, h0 and
γ0, so that hnew = hold/h0 and γnew = γold/Nfγ0. We have scaled the number, Nf , of interfaces
per front out of the surface tension to simplify the analysis later. Applying these scales to equation
(2.2), and dividing out the dimensional term ρIρR0/t

2
0, we obtain the following dimensionless form

of the momentum equation:

∂u

∂t
+ u · ∇u = − P0t

2
0

R2
0ρI

∇P
ρ

+
t0µI

R2
0ρI

1

ρ
∇ ·
(
µ(∇u+∇uT )

)
− gt20φ(ρI − ρE)

R0ρρI
k

+ δs

(
γ0t

2
0

ρIR3
0

Nf

ρ
(γκn+∇sγ)−

t20h0g(ρf − ρE)

R2
0ρIρ

hk

) (4.3)

where P0 is a pressure scale, to be determined later. Thoroddsen and Takehara [55] have shown that
inertia and surface tension are the dominant forces in partial coalescence, so we choose a capillary
timescale to balance them:

t0 =

√
ρIR3

0

Nfγ0
. (4.4)
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Substitute this timescale into Eq. (4.3) to obtain

∂u

∂t
+ u · ∇u = −P0R0

Nfγ0

∇P
ρ

+
µI√

R0ρINfγ0

1

ρ
∇ ·
(
µ(∇u+∇uT )

)
− R2

0gφ(ρI − ρE)

Nfγ0ρ
k

+
δs
ρ

(
γκn+∇sγ − R0h0g(ρf − ρE)

Nfγ0
hk

)
.

(4.5)

Now, scale the pressure term using the surface pressure, P0 = Nfγ0/R0, and introduce three dimen-
sionless groupings:

Oh =
µI√

R0ρINfγ0
Ohnesorge Number (4.6)

Bo =
R2

0g(ρI − ρE)

Nfγ0
Fluid Bond Number (4.7)

Bof =
h0R0g(ρf − ρE)

Nfγ0
Film Bond Number. (4.8)

With the velocity scaled by R0/t0, the Ohnesorge number can be seen as an inverse Reynolds number,
and measures viscous forces against the dominant forces of inertia and surface tension. The Bond
number, Bo, represents the buoyancy force of the interior fluid with respect to the exterior fluid. In
the case of a soap film, it will be zero, since the interior and exterior fluid will both be air; while
in the case of a liquid drop surrounded by gas, we will have Bo > 0, since the liquid drop will be
heavier than the surrounding gas. The film Bond number, Bof , is nonstandard, because it involves
two different lengthscales: the bubble radius R0, and the thickness h0. Although the lengthscale,
h0, is small, the density ρf is large in comparison to that of the surrounding gas, and we expect
the two to counteract. This Bond number will be nonzero only for soap films, since liquid drops are
assumed to have zero thickness.

With these scales, the Navier-Stokes equations take the form

∇ · u = 0 (4.9)

∂u

∂t
+ u · ∇u = −∇P

ρ
+

Oh

ρ
∇ ·
(
µ(∇u+∇uT )

)
− Bo

ρ
c(r, z)k+

1

ρ
δsFs (4.10)

where the surface force, Fs, is given by

Fs = γκn+∇sγ − Bofhk (4.11)

The three terms on the righthand side of Eq. (4.11) are depicted in figure 3.1(b). Recall that γκn
accounts for the stress jump across the interface [13], ∇sγ accounts for tangential stresses due to
surface tension gradients [35], and the term −Bofhk accounts for film buoyancy [36].

The relationship between surface tension and surfactant concentration is given in dimensionless
form by Eq. (2.14):

γ = 1 + β(1− Γ) .

Equation (2.9), for tracking surfactant concentration on the surface, can be expressed in dimension-
less form using a Péclet number for the surface:

∂Γ

∂t
+∇s · (Γu) =

1

PeΓ
∇2

sΓ where PeΓ =
R2

0

kΓT
. (4.12)

The film thickness, h, also satisfies an advection-diffusion equation on the surface [36]:

∂h

∂t
+∇s · (hu) =

1

Peh
∇2

sh where Peh =
R2

0

khT
. (4.13)

30



Sensitivity to Neck Width
wN β Ohc Deviation
0.05 0 0.036425± 0.000015 ≤ 0.25%
0.1 0 0.03647± 0.00003 NA
0.2 0 0.03647± 0.00003 ≤ 0.16%
0.2 1 0.02628± 0.00003 ≤ 0.96%
0.1 1 0.02609± 0.00003 NA
0.05 1 0.02616± 0.00003 ≤ 0.50%

Table 4.1: Critical Ohnesorge number against neck width, wN , with and without surfactants (β =
0, 0.1). The deviations are percent variations measured against the corresponding critical Ohnesorge
numbers with wN = 0.1. In all cases, D = M = 1.

Given our timescale, t0, the Péclet numbers tend to be quite large [63]. We retain the diffusion
terms for numerical stability, but keep surface diffusion negligible: Pe−1

h ,Pe−1
Γ ≪ Oh.

We neglect sorption effects for this study, since the timescales of coalescence are small relative
to those of sorption. Given the density of air (1.2kg/m3) and surface tension for soap films (3 ×
10−2N/m), the capillary timescale is bounded above by t0 ≤ 0.004s for soap bubbles with radii no
larger than 2cm. Adsorption and desorption timescales tend to be at least 1s and 102s, respectively
[11].

Finally, we use no-slip and no penetration at the walls, but keep the walls sufficiently far away
from the coalescing drop or bubble that they do not influence the coalescence process (see §4.4).

4.4 Application of the Method

Experimental [61] and numerical [59] studies have established that the Ohnesorge number of the
interior fluid is a critical parameter for partial coalescence. For fixed density and viscosity ratios, D,
and M, of the two fluids, there exists a critical Ohnesorge number, Ohc, above which coalescence is
total, and below which coalescence is partial. This is because the Ohnesorge number measures the
relative importance of viscosity in the coalescence process, and thus the dampening of the capillary
waves that allow pinch off to take place. We therefore identify the critical Ohnesorge number in
various configurations, and compute the percent variation, defined as

δOhc =
Ohc −Ohc

Ohc

where Ohc is the critical Ohnesorge number associated to some chosen base case.

We initiate our simulations with the drop connected to the reservoir by a narrow neck of width
wN . All of our results were obtained using a width of wN = 0.1. We tested the robustness of this
choice against initial widths of wN = 0.05, 0.2, and found that the critical Ohnesorge number, Ohc,
varied by less than 1%, even in the presence of surfactant (see table 4.1).

Our data was obtained within a cylindrical computational domain, with radius Lr = 5, height
Lz = 5, where the drop was centered on the axis, at a height of zc = 2.5. Physical situations of
interest may have various boundaries, but most are likely too far away from the coalescence to have
an impact. We tested our method for robustness against varying domain sizes: bringing the drop
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closer to the floor, closer to the ceiling, and adjusting the radius Lr of the domain. In all cases,
the critical Ohnesorge varied by less than 2%. In particular, increasing the vertical and horizontal
domain size resulted in variations of Ohc that were less than 1%, with and without surfactant, and
we are therefore confident that we are accurately modeling an infinite domain.

β Lr Lz zc δOhc
0 5 10 5 −0.56%
0.1 5 10 5 −0.69%
0 10 5 3 −0.04%
0.1 10 5 3 −0.02%

Figure 4.2: Variations in critical Ohnesorge number due to pushing the walls further away. The base
case, here, is Lx = Ly = 5, with zc = 2.5. The resolution is 512 gridlines for every 5 units. Thus,
the 5 × 5 domain has a total resolution of 5122; the 5 × 10 domain has a resolution of 512 × 1024;
and the 10× 5 domain has a total resolution of 1024× 512. Viscosity and density are uniform, and
gravity is absent. zc is the location of the center of the bubble.

We compared the results of our linear elasticity relation to the nonlinear Langmuir equation,
given in dimensionless form by Eq. (2.12). Critical Ohnesorge numbers obtained with the linear
relation differed from those obtained using the Langmuir equation by no more than 1.25%, so long
as surfactant variations satisfied

Γ̃− Γ0

Γ∞ − Γ0
≤ 0.25 (4.14)

where Γ̃ is the dimensional surface tension and Γ∞ represents a maximum packing concentration of
surfactants on the surface.

β αΓ δOhc
0.1175 25% 1.25%
0.1469 50% −15.22%
0.2615 25% −0.79%
0.3271 50% −12.54%

Figure 4.3: Percent error in linear model against Langmuir equation (base case) in computed critical
Ohnesorge number. The resolution is 5122; viscosity and density are uniform, and gravity is absent.

In cases where surfactant is absent, critical Ohnesorge numbers of Ohc = 0.026 ± 0.001 for the
liquid drop (D = M = 0.1), and Ohc = 0.031 ± 0.001 for D = M = 1 have been presented [59].
We replicated these results with a resolution of (256/5.0)2, but found that the critical Ohnesorge
number was more sensitive to resolution than previously thought. By increasing the resolution to
(512/5)2, we obtained critical Ohnesorge numbers of Ohc = 0.032 ± 0.001 for the liquid drop and
Ohc = 0.036 ± 0.001 for the case D = M = 1. We obtained critical Ohnesorge numbers with a
resolution of (1024/5.0)2 which differed from the (512/5.0)2 case by less than 1% in the presence of
surfactant (β = 0.08). Without surfactant, the critical Ohnesorge number varied by less than 0.1%.

Lastly, we examined the effects of the drop’s initial velocity, Ui, characterized by the Weber
number, We = ρIU

2
i R0/Nfγ0, on the coalescence outcome. We initialized the velocity of the fluid

inside the drop to −Uik (−Wek in non-dimensional form). For relatively small values of We, which
are our focus here, no qualitative changes where observed. For a coalescing liquid drop (D = M =
0.1), we found that the critical Ohnesorge number was smaller than the base case, but only by less
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Soap Bubble: D = M = 1

Oh
zmch(Oh, β)

β = 0 β = 0.1 β = 0.2
0.01 0.452 0.354 0.370
0.02 0.333 0.270 0.273
0.03 0.251 0.208 0.207

Liquid Drop: D = M = 0.1

Oh
zmch(Oh, β)

β = 0 β = 0.1 β = 0.2
0.01 0.326 0.269 0.265
0.02 0.210 0.177 0.166
0.03 0.135 0.114 0.101

Table 4.2: Maximum crest displacement zmch(Oh, β), for different β and Oh. Gravity is absent and
the initial distribution of surfactant is uniform.

than 4% when the Weber number was 0.1, and by less than 2% when the Weber number was 0.05.
This corresponds to a drop with Bo = 0.05 falling a distance of one drop radius. For a soap film
(D = M = 1), the critical Ohnesorge number was greater than the base case by less than 2%, even
for a Weber number of 1.0. As such, the remainder of our results should be applicable for small
Weber number.

4.5 Results

4.5.1 Surfactant Effects

To isolate the effects of surfactants, measured by the elasticity coefficient, β, we first ignore gravity
and assume a uniform initial distribution of surfactant for both the drop and the reservoir. In
the absence of gravity, the soap film and the liquid drop are identical, except for the density and
viscosity ratios. Figure 4.4 shows a color plot of the pressure for a coalescing system in the presence
of surfactant. At first, the qualitative behavior is similar to that of the surfactant-free case - in
particular, the capillary waves are still present, and the drop still deforms vertically. However,
pinch-off fails to occur, despite the fact that all parameters are the same as in figure 4.1, except for
the presence of surfactant (here β = 0.1). The thickness of the white curve in Fig. 4.4 indicates
the surfactant concentration. Early on, surfactant accumulates at the base of the drop, due to area
reduction in the initial merging. The surfactant at the crest of the drop first thins out as the crest is
stretched upward by capillary waves, but increases later, as the drop contracts toward the reservoir.

The results of figure 4.4 indicate that surfactants inhibit partial coalescence. In general, one
would expect this to be the case, as surfactants lower surface tension, which increases the Ohnesorge
number. More significantly, by causing surface forces to be unevenly distributed, surfactants alter the
regime of partial coalescence. Locally increased levels of surfactant result from area reduction. For
instance, the increased surfactant concentration at the base of the drop and decreased concentration
at the crest, seen in figure 4.4, lowers surface tension at the base of the drop, and increases it at the
crest, thereby reducing the forces driving pinch-off, relative to those driving total merging. Thus, we
expect the presence of surfactant to inhibit partial coalescence even for a fixed Ohnesorge number.
However, if the Marangoni forces generated are sufficiently large, the physical picture may be altered
yet again. In particular, Marangoni forces tend to even out the surfactant distribution, which may
negate the effects described above. Large Marangoni forces might also counter the stretching of the
drop due to capillary waves, and thus restrict the vertical stretching that causes partial coalescence,
leading to a potentially different balance of forces.

The influence of Marangoni forces on the vertical deformation of the drop can be measured by
the maximal crest displacement of the coalescing drop or bubble. Table 4.2 shows the maximum
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vertical displacement of the crest against β for selected Ohnesorge numbers. Notice that although
there is a decrease in maximum crest displacement with β early on, the influence of β is much weaker
than that of the Ohnesorge number, and in the case of the liquid drop, it is actually non-monotonic.
As such, the effects of the Marangoni forces in inhibiting drop stretching do not have a significant
influence on the coalescence dynamics for the range 0 ≤ β ≤ 0.2 of elasticity coefficient.

Figure 4.4: Pressure plots showing a time sequence of partial coalescence of a surfactant covered drop
or bubble on a reservoir. The surfactant concentration is shown as a thickness effect. The elasticity
coefficient is β = 0.1, indicating the presence of surfactant. The initial surfactant concentration is
everywhere uniform. All other parameters are the same as in figure 4.1: gravity is absent, Oh =
0.027, and D = M = 1.

Figure 4.5 shows critical Ohnesorge numbers, Ohc, against β for two cases: equal density and
viscosity for interior and exterior fluids (D = M = 1); and a liquid drop surrounded by a gas,
coalescing with a reservoir of identical liquid (D = M = 0.1). Notice that although the density
and viscosity ratios between the fluids affect the level of the critical Ohnesorge number profile, the
qualitative behavior of the critical Ohnesorge number is the same for both cases. This is in agreement
with previous authors [60,61], who found that density and viscosity differences between the two fluids
could be accounted for by employing a modified Ohnesorge number, based on a weighted average of
the densities and viscosities.

The elasticity coefficient, β, is seen to have a non-monotonic influence on the critical Ohnesorge
number. Initially, there is a sharp decrease in Ohc, but eventually the trend comes to a stop
and reverses itself, resulting in a slow increase of the critical Ohnesorge number. Observations of
surfactant concentration time sequences (see figures 4.6 and 4.7) support our hypothesis that the
initial decrease in the critical Ohnesorge number results from the uneven distribution of surfactant
along the drop profile. In particular, increased surfactant concentrations at the base of the drop,
coupled with decreased surfactant concentrations at the crest, result in greater surface tension at
the crest than at the base, which inhibits partial coalescence. This result is in agreement with [22],
who found that increased fractional surfactant concentration on the neck of a slowly pinching drop
inhibits pinch off by weakening the surface forces driving the necking.

We now seek an explanation for the non-monotonic relation between Ohc and β. Figure 4.6 shows
the time evolution of a coalescing drop with β = 0, next to plots of the surfactant concentration
against arc length, measured from the crest. These plots represent the dynamics when Marangoni
forces are negligible or absent altogether. As such, the figure shows the behavior of inverse interfacial
area, which can be viewed as a concentration of passive, inert molecules on the surface. At the point
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Figure 4.5: Critical Ohnesorge number as a function of the elasticity coefficient β for two cases:
uniform density and viscosity, D = M = 1, representing a soap bubble; and uneven density and
viscosity D = M = 0.1, approximating a liquid drop surrounded by a gas. In both cases, gravity is
absent and the initial distribution of surfactant is uniform.

of initial merging (near s = π), a significant loss of area occurs, resulting in an accumulation
of surface molecules in a small area, corresponding to a ring around the base of the merging drop.
When the top of the drop contracts, this accumulated surfactant lies near the point of pinch-off. This
increased concentration of surfactant lowers the surface forces at the base of the drop driving pinch-
off. The eventual decrease in surfactant concentration around the point of pinch-off is a consequence
of local area creation, as pinch-off is already underway. Continued contraction of area on the surface
of the drop competes against the stretching effects of the capillary waves, resulting in an uneven
surfactant distribution along the profile of the drop. Most significantly, the surfactant concentration
at the crest of the drop decreases dramatically as the drop stretches under the influence of capillary
waves. Eventually, this trend reverses itself, and an even greater increase of the local surfactant
concentration is observed as the drop contracts during the final stage of partial coalescence.

From figure 4.7, we see that for larger values of the elasticity coefficient β = 0.1, 0.2, Marangoni
forces reduce the magnitude of variations in surfactant concentrations. Most significantly, surfactant
is transported by large Marangoni forces away from the accumulation created by the initial merging.
This results in a significant increase in surfactant concentration at the crest of the drop during the
merging process, as surfactant at the base of the drop is driven toward the crest by strong tangential
flows.
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Figure 4.6: Evolution of a drop or bubble covered with inert surface molecules (β = 0). Left:
Pressure color plot of coalescence; the surfactant concentration is shown as a thickness effect. Right:
Surfactant concentration against arc length from the crest. The black dots show the location of
eventual pinch-off. Here, Oh = 0.02, gravity is absent, and the initial surfactant distribution is
uniform.
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Figure 4.7: Surfactant distribution against arc length, measured from the crest, for Oh = 0.02, and
three different values of β, at t = 0.5 (left) and t = 1.5 (right). The dots show the location of
eventual pinch-off. Gravity is absent and the initial surfactant distribution is uniform.

A predicted relation between the critical Ohnesorge number and the surface tension profile can
be obtained from a scaling argument. The coalescence dynamics depend on a competition between
two surface pressures, at the base and top of the drop, respectively. The surface pressure at the base
of the drop is proportional to the local surface tension, γb, multiplied by the total curvature, which
scales as 1/R0. The surface pressure at the top is proportional to the product of a representative
surface tension, γt and the total curvature at the crest, which scales as 2/R0. The pressure at the
crest is also opposed by the effect of capillary waves, which rise to the top of the drop. Since the
damping rate of the capillary waves is proportional to the Ohnesorge number [59], we can represent
the wave pressure as γ0f(Oh)/R0, where f is a dimensionless function of the Ohnesorge number
that measures the wave amplitude, and γ0/R0 is the pressure scale of the waves. Thus, coalescence
should be partial when

γb(β, t)

R0
>

2γt(β, t)

R0
− γ0
R0

f(Oh) (4.15)

This gives us an equation for the critical Ohnesorge number:

f(Ohc) =
2γt(β, t)− γb(β, t)

γ0
(4.16)

Because the critical Ohnesorge number varies by ≤ 30%, the wave pressure f can be approximated
by a linear function. The constant term can be determined by setting β = 0, to find f(Oh0) = 1,
where Oh0 is the critical Ohnesorge number when β = 0. We thus arrive at a predicted critical
Ohnesorge number, Ohpred(β, t), given by

Ohpred(β, t) = Oh0 − aRγ(β, t) where Rγ(β, t) =
2γt(β, t)− γb(β, t)− γ0

γ0
. (4.17)

Here, a > 0 is a scaling factor that we know to be positive because the wave amplitude, measured
by f(Oh), decreases with increasing Ohnesorge number. While we do not have a way to precisely
predict a, we do obtain a qualitative prediction: the shape of Ohpred, when plotted against β, should
resemble that of our computed critical Ohnesorge number profile (see figure 4.5).

To test this prediction, we look for a robust way to measure Rγ(β). The local surface tensions
γb = γ(sb, t, β) and γt = γ(st, t, β) depend on the locations where they are evaluated, sb, st, and
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change with time, t. A natural choice for the local surface tension at the crest of the drop is at
st = 0, and a natural choice for the surface tension at the base of the drop is at the location of
eventual pinch-off, in cases where partial coalescence occurs. Given that pinch-off occurs at different
locations for different values of β, we choose sb to be the average of the pinch-off locations for all
values of β studied. We have verified that the results obtained depend only weakly on the exact
choice of sb.

The parameter Rγ(β; t) is not equally determinant in the coalescence outcome for all values
of time. For very early times, we do not expect Rγ to be as important, because the dominant
process is the initial merging of the drop and the reservoir, and the rapid outward horizontal motion
associated to it. After too much time has elapsed, we expect that coalescence outcome is already
determined. Thus, there should be a window of time during which the wave pressure plays a more
critical role in determining coalescence dynamics. In figure 4.6, the two frames where t = 1.50 show
a drop which has completed the initial merging process, but is committed to neither partial nor total
coalescence - it is around this time when we expect Rγ to play a key role in determining the nature
of coalescence. This roughly corresponds to the point in time tp when the crest of the drop reaches
its peak. Sampling values of Oh and β, we found that 1.42 ≤ tp ≤ 1.48 whenever 0 ≤ β ≤ 0.2 and
0.01 ≤ Oh ≤ 0.03).

Figure 4.8 shows the computed critical Ohnesorge number next to a predicted critical Ohnesorge
number, computed using t = 1.45. We choose a multiplicative constant of a ≈ 0.072 to match
Ohc with Ohpred. Although the predictions do not match the computed values exactly, they form
a similar shape, exhibiting a non-monotonic dependence on β. We have validated the robustness of
this behavior against variations of sb, the chosen location of the base, on the order of ±0.1. We have
also validated the robustness against time by averaging over the interval 1.3 ≤ t ≤ 1.6. Within this
range, similar agreement was found.
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Figure 4.8: Computed critical Ohnesorge number profile against predicted (see Eq. (4.17)). Rγ is
computed using st = 0, sb approximately the point of pinch-off, t = 1.45, and Oh = 0.02. The
multiplicative coefficient is a ≈ 0.072.

The remaining difference between prediction and observation may be due to a variety of factors.
The surface pressures at times outside of the interval considered may have a cumulative effect. The
influence of β on the wave pressure, though relatively small, is non-zero (see table 4.2). Other factors,

38



including the Ohnesorge number used to calculate Rγ , also affect the results. However, despite all
the simplifications made in our scaling argument, the agreement between predicted and computed
Ohc is still fairly good, indicating that our argument captures the dominant physical mechanism for
the non-monotonicity of the critical Ohnesorge number.

As the non-monotonic behavior of the critical Ohnesorge number profile is due to Marangoni
effects counteracting the influence of the surfactant, we expect the profile to level off for very large
values of β. Additional computations with β = 0.5 have revealed critical Ohnesorge numbers of
97.3% of the surfactant-free value for bubbles, and 78.4% for liquid drops. Unfortunately, our
numerical method becomes unstable for very large values of β, so it is not clear if this trend will
eventually level off.

Thus, we conclude that the non-monotonic behavior is a consequence of a competition between
variations in surface area, which results in surfactant distributions unfavorable to partial coalescence,
and the Marangoni forces, which smooth out this behavior, and nullify the surfactant effects.

4.5.2 Effects of Variations in Initial Surfactant Distribution

In most physical systems, the initial concentration of surfactant on the drop will not equal that on
the reservoir. In particular, if the surfactant concentration in the reservoir is higher than on the
drop, then the surface tension at the base of the merging drop will be lowered, relative to that at the
crest. Thus, greater surfactant concentrations on the reservoir should correspond to lower values of
Rγ , which should inhibit partial coalescence, and vice versa.

We denote two equilibrium surface tensions: one for the reservoir, γres; and one for the drop,
γdrop. The uneven initial distribution of surfactant can be described by the normalized difference
between the two initial surface tensions.

G =
γres − γdrop

γdrop
(4.18)

Assuming the surfactant distributions on both the drop and the reservoir are at equilibrium, we use
Γdrop as our scaling factor, except in cases where Γdrop = 0, which we treat separately. The nondi-
mensional surfactant concentration on the drop is then Γ(t = 0) = 1; while the initial concentration
of surfactant on the reservoir, Γres, is described by the following relation, obtained from Eq. (2.14).

G =
γres − γdrop

γdrop
= β(1− Γres) (4.19)

Assuming the initial surfactant concentration is nonnegative and initial surface tension is positive,
we obtain bounds for physically meaningful values of G: −1 < G ≤ β. Since G measures the relative
surface tension difference between the reservoir and the drop, larger values of G will correspond to
higher surface tension at the base of the drop relative to surface tension at the crest. We define the
Ohnesorge number using the surface tension on the drop as a reference Oh = µI/

√
R0ρINfγdrop.

Figure 4.9 shows plots of critical Ohnesorge numbers against β and G. The critical Ohnesorge
number increases monotonically with G, as expected. When G > 0, the critical Ohnesorge number
as a function of β retains its non-monotonic profile. As G decreases below zero, the critical Ohnesorge
number decreases significantly for small β, and for fixed negative values of G, Ohc depends linearly
on β.

In their 2009 paper, Blanchette, Messio, and Bush [35] studied the effects of surface tension
gradients due to differences in chemical composition between the drop and the reservoir. Because
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the source of the variable surface tension derived from the chemical properties of the bulk fluid,
it was insensitive to local changes in surface area. Thus, the accumulation of surfactant at the
base of the drop, which causes the non-monotonic critical Ohnesorge number profile, is absent in
their setup. They observed that the critical Ohnesorge number increases monotonically with G, as
do we. However, for G < 0, they observed a sheer drop off in the critical Ohnesorge number, so
that pinch off doesn’t occur at all, when G ≤ −0.05. This differs from our observations for surface
tension gradients due to surfactants, in which the critical Ohnesorge number gradually decreases as
G decreases, but does not approach zero in the parameter range studied (see figure 4.9).
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Figure 4.9: Left: critical Ohnesorge number as a function of G for differing values of β. Right: Critical
Ohnesorge number as a function of the elasticity coefficient for various values of the normalized
surface tension difference, G. We use D = M = 1, and gravity is absent in both cases.

The case of the surfactant-free drop is of interest because it is likely to occur when a drop is formed
from a bulk fluid which is surfactant-free. Because the drop is surfactant-free, the accumulation of
surfactant at the base of the drop will be more limited, due to the fact that surfactant only enters
the system from the reservoir, while pinch-off occurs well above the point of initial merging (usually
between 0.3πR0 ad 0.5πR0). To study the case of the surfactant-free drop, we set Γ0 = Γres,
while retaining γdrop as our surface tension scale. Then Eq. (2.14), combined with the assumption

Γdrop = 0, yields that G = − β
1+β . In contrast, G = β, for the surfactant-free reservoir.

Figure 4.10 shows critical Ohnesorge numbers against β, for a surfactant-free drop and a surfactant-
free reservoir. The critical Ohnesorge number profile for equal surfactant concentrations on the drop
and the reservoir is shown for reference. Due to our definition of the Ohnesorge number, all three
cases are identical when β = 0, being scaled by the surface tension of a clean, surfactant-free fluid.
For β > 0, the critical Ohnesorge numbers for the surfactant-free reservoir and the case G = 0 are
scaled by the surface tension of a contaminated fluid. In the case of the surfactant-free reservoir,
this change in scale results in an increase in the surface tension on the reservoir relative to that on
the drop, a distribution which favors partial coalescence. As a consequence, the critical Ohnesorge
number profile in this case is shifted upward from the base case G = 0.

In the case of the surfactant-free drop, when β is small, the critical Ohnesorge number decreases
only slowly with β, because the effects of the surfactant accumulation at the base of the drop
have little impact on the merging process. As a consequence, the critical Ohnesorge numbers are
higher in this case than when G = 0, where the surfactant accumulation results in a more rapid
decrease in critical Ohnesorge number. For 0.14 ≤ β ≤ 0.15 the critical Ohnesorge number profile
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Figure 4.10: The critical Ohnesorge number as a function of the elasticity coefficient, β, for three
cases: a surfactant-free drop, (G = − β

1+β ) in red open circles; a surfactant-free reservoir (G = β), in

blue “+” signs; and equal surfactant for both the drop and the reservoir (G = 0), in black triangles.
We scale the Ohnesorge number by the surface tension on the drop, γdrop, in all cases, and we set
D = M = 1. Gravity is absent.

undergoes a sheer drop, and even a slight inversion, in agreement with [35]. Because the surfactant
is concentrated nearly exclusively below the point of pinch off, area reduction effects are minimized,
and the configuration closely resembles that of a drop merging with a reservoir of different surface
tension arising from differences in chemical composition, rather than surfactant contamination. We
observed that for small Ohnesorge numbers and larger values of β, the vertical deformation of the
merging drop was quite large, allowing plenty of time for pinch off to occur at the base of the drop.
Nevertheless, pinch off failed to occur, as the surface tension at the base of the drop relative to the
crest was too weak. We expect that the critical Ohnesorge number goes to zero, and that pinch off
does not occur at all when β > 0.15. However, with large values of β and small Ohnesorge numbers,
motion of the surfactant along the surface becomes prohibitively difficult to resolve numerically.

4.5.3 Gravity Effects

In the presence of gravity, soap films and liquid drops must be treated separately. Liquid drops
are influenced by buoyancy forces arising from the difference in density between the liquid and the
surrounding gas, which is measured by the Bond number, Bo, defined in Eq. (4.7). Soap films are
influenced by the buoyancy of the film itself, which is much heavier than the surrounding gas. This
effect is measured by a nonstandard Bond number, Bof , given in Eq. (4.8).

The influence of gravity takes two forms. First, gravitational forces alter the initial conditions of
the coalescence process by deforming the drop and the reservoir, and redistributing the surfactant.
Second, gravity influences the system directly, during the coalescence process. We begin by exam-
ining the direct effects of gravity, modifying the base case with nonzero Bond numbers Bo,Bof . In
this case, we expect gravity to weakly inhibit pinch off, because the pull of gravity adds to the forces
driving total coalescence.
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We have computed several critical Ohnesorge numbers for the case of the liquid drop and found
that the fluid Bond number, Bo, weakly inhibits partial coalescence (see figure 4.11). Specifically,
gravity effects decrease the critical Ohnesorge number by a very small amount. This decrease is
never more than 2% of the base value, Ohc(β = 0,Bo = 0). This is in agreement with [60], who
found that gravity weakly inhibits partial coalescence in the absence of surfactant. In the case of a
liquid drop, gravity has little effect in the presence of surfactant, as well. This, too, is unsurprising,
since gravity does not directly impact the distribution of surfactant on the liquid surface. Indeed,
by examining the time evolution of the surfactant distribution against arc length from the crest, we
have observed it to be nearly identical with and without gravity, for the duration of the coalescence
process.
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Figure 4.11: Critical Ohnesorge numbers, as functions of β in the presence of gravity for liquid
drops D = M = 0.1 (top), and soap films D = M = 1 (bottom), with different Bond numbers. The
merging process begins with a spherical drop on a horizontal reservoir, with surfactant distributed
uniformly and equal for both the drop and the reservoir (G = 0).

Figure 4.11 also shows that gravity has a much larger effect for soap films, one that increases
with the elasticity coefficient. In particular, the film Bond number, Bof , has a very small effect when
β is small, but reduces the critical Ohnesorge number significantly for larger values of β, beginning
at about β = 0.1. The most significant physical difference between the case of the soap bubble and
the liquid drop is that gravity acts on the film itself, and thus on the surfactant. As such, we expect
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gravity to pull the surfactant downward during the coalescence process, draining surfactant from
the bubble and modifying the surface tension locally.

Figure 4.12 shows plots of the surfactant concentration (left) and surface tension (right) on a
merging film against the arc length measured from the crest. Each plot contains two curves, one
without gravity (Bof = 0), and one with gravity (Bof = 0.05). In all cases, surfactant drainage due
to gravity is evident. The surfactant level is lower on the top and side of the drop, and increased
away from the drop, on the reservoir, indicating an accumulation due to gravity. From the plots on
the right, we can see that the resulting decrease in surface tension is significantly more pronounced
for larger values of β. Notice, in particular, that the difference in surface tension at the crest (s = 0)
is noticeably larger than the difference near the point of eventual pinch off, for larger values of β.
This drainage explains the decrease in critical Ohnesorge number in the presence of gravity.
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Figure 4.12: Surfactant concentration, Γ(s), (left) and surface tension, γ(s), (right) against arc
length from the crest for a merging soap film, with and without gravity, at t = 0.98. In all cases,
Oh = 0.01, and the merging process begins with a spherical bubble on a horizontal film, with
surfactant distributed uniformly on both the bubble and the film (G = 0).

When a drop sits on a reservoir in the presence of gravity, both the drop and the reservoir deform
before the merging process begins. Furthermore, this initial deformation redistributes surfactant.
To model these effects, we performed initial computations in which a spherical drop or bubble was
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Soap Bubble: D = M = 1
Parameter β = 0.04 β = 0.12 β = 0.2
Rz/Rr 0.9136 0.9031 0.9034
δz 0.2190 0.2376 0.2395
Γtop 0.4615 0.6662 0.7679
Γbot 0.6928 0.8639 0.9258

Liquid Drop: D = M = 0.1
Parameter β = 0.04 β = 0.12 β = 0.2
Rz/Rr 0.9383 0.9402 0.9408
δz 0.1394 0.1354 0.1339
Γtop 1.0372 1.0038 0.9984
Γbot 0.5763 0.8380 0.9056

Table 4.3: Parameters measuring maximum deformations due to gravity (see figure 4.13). The
systems described are (left) a soap bubble and suspended horizontal film, with Bof = 0.05; and
(right) a liquid drop and reservoir, with Bo = 0.05.

placed at rest a distance of 0.1 drop radii above a horizontal reservoir, and allowed to deform under
the influence of gravity.

We selected a few parameters to measure the state of the system when merging begins, after
the system has deformed under the influence of gravity (see figure 4.13). The shape deformation of
the drop can be measured by the aspect ratio Rz(t)/Rr(t); where Rz(t) and Rr(t) are the vertical
and horizontal radii of the drop. The depression of the reservoir can be measured by the downward
displacement, δz(t), of the front along the axis during the deformation process. We measure the
surfactant redistribution by recording Γtop(t), the surfactant concentration at the top of the drop at
time t, and Γbot(t), the average of the surfactant concentration at the base of the drop and at the
center of the reservoir.
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max deformation
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Figure 4.13: A bubble on a film (left) and a drop on a reservoir (right) deformed under the influence
of gravity. The surfactant redistribution by gravity is shown as a thickness effect. For the film,
Bof = 0.05; and for the liquid drop, Bo = 0.05. In both cases β = 0.04. Measurements of
deformation are also shown.

After performing the initial computations until the deformation was maximal, we reset the ve-
locity to zero, connected the deformed drop and reservoir with a narrow neck, of width wN = 0.1,
and allowed merging to proceed. Figure 4.13 shows the deformed configurations and deformation
parameters for both cases. Their maximal values are given in table 4.3.

Figure 4.15 shows critical Ohnesorge numbers for the soap film and liquid drop against β for
six cases. Note that the scale for figure 4.15 is smaller than the scale for figure 4.5, to focus on
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the differences between the various cases. Case 1 is the base case, with initial surfactant uniformly
distributed, and no interface deformations or gravity - this data is also found in figure 4.5. Case 2 is
the undeformed case with gravity. Some of the data associated to case 2 is also found in figure 4.11.

To isolate the deformation effects, we have modified the setup of the base case using data for
each effect taken from the initial computation under gravity, and allowing coalescence to proceed
without gravity. The deformation effects are shown in table 4.3 and figure 4.13, and include reservoir
depression, measured by δz, drop deformation, measured by Rz/Rr, and surfactant redistribution,
measured by δΓ. These effects are included in cases (3,4,5), respectively.

In case 3, we used a deformed reservoir, which we joined with a spherical drop and covered with
uniformly distributed surfactant. In figure 4.15, we see that the effects of reservoir deformation are
negligible for the soap bubble, but significantly inhibit partial coalescence for liquid drops. In this
case the liquid drop and the soap bubble differ in only two respects: the ratios D,M of density and
viscosity, which are unity for the film, and 0.1 for the liquid; and the degree of initial deformation,
which is significantly greater for the soap bubble. Additional tests have revealed that the impact of
the deformation parameter δz on the critical Ohnesorge number is non-monotonic, indicating that
for very large deformations, as with the soap film, the effects on partial coalescence are nullified.

The data in case 4 was obtained by using markers from a deformed drop, as described in table
4.3, line 1, which we connected with an undeformed reservoir and coated with uniformly distributed
surfactant. Figure 4.15 reveals that drop deformation favors partial coalescence for both the liquid
drop and the soap bubble. This is to be expected, since the deformation of the bubble or drop adds
to the surface energy of the system, which will propel the drop upward, delaying total coalescence.
The observed effect is significantly smaller for liquid drops, which is consistent with the deformation
of the drop being smaller than that of the bubble.

Critical Ohnesorge numbers resulting from surfactant redistribution (case 5), obtained by sup-
plying markers on an undeformed drop and reservoir with redistributed surfactant concentrations,
are also shown in figure 4.15. This redistribution tends to favor partial coalescence for the liquid
drop and inhibits it for the soap film. This effect can be explained by examining the redistributed
surfactant profile, shown in figure 4.14. For both the soap film and the liquid drop, air vacates the
channel between the drop and the reservoir, resulting in a decreased surfactant concentration near
the base of the merging drop. This explains the increased critical Ohnesorge number associated to
the liquid drop. For the soap film, however, this effect is counteracted by the drainage of surfactant
from the top of the bubble, toward the base, also visible in figure 4.14. This results in lowered
surface tension at the base of the drop during the merging process, and hence a decreased critical
Ohnesorge number. These effects, however, are relatively weak, and vanish in the presence of larger
Marangoni forces (β = 0.12, 0.2).

Lastly, all effects are taken into account (case 6), for a physically realistic picture. Figure
4.15 shows that for the soap film, the direct influence of gravity during the coalescence process is
dominant, because it inhibits partial coalescence by draining surfactant from the coalescing film.
For the liquid drop, partial coalescence is inhibited by the reservoir deformation. In both cases,
the drop/bubble deformation favors partial coalescence significantly, by propelling the drop upward
during the coalescence process. However, these effects are not additive, and the effect of the drop
and bubble deformation doesn’t seem to play a significant role in the presence of the other factors.
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Figure 4.14: Surfactant profile redistributed by gravity at the time of maximum deformation for a
soap film (left) and a liquid drop (right) The vertical line shows the point where merging begins -
so that the portion of the plot to the left of the vertical line describes the drop, and the portion of
the plot to the right describes the reservoir.

4.5.4 Daughter Drops and Coalescence Cascade

When a merging drop pinches off and ejects a daughter drop, the new drop will have a smaller
radius, as well as a different surfactant concentration. After initial pinch off, the daughter drop will
bounce on the reservoir and eventually coalesce. This leads to a coalescence cascade, observed by
Charles and Mason in 1960 [54] and Thoroddsen and Takehara in 2000 [55].

Figure 4.16 shows the dependence of the radius of the daughter drop on the Ohnesorge number
and the elasticity coefficient. The radius of the daughter drop decreases monotonically with the
Ohnesorge number, while its dependence on the elasticity coefficient has a non-monotonic profile
similar to that of the critical Ohnesorge number. The new surfactant concentration, surface tension,
and radius of the daughter drop will result in a changed Ohnesorge number, elasticity coefficient,
and normalized surfactant difference G between the reservoir and the drop. We subscript quantities
associated to the daughter drop with a D: RD, γD,ΓD,OhD, βD,GD. The new Ohnesorge number
is given by

OhD =
µI√

ρIγDNfRD

. (4.20)

In general, the radius of the daughter drop is bounded as 0.35R0 ≤ RD ≤ 0.6R0. If we assume
constant surface tension, then the Ohnesorge number will increase with every iteration. From the
lefthand plot in figure 4.16, it is clear that this increased Ohnesorge number will further decrease
the radius of the daughter drop in the next partial coalescence event.

The surfactant concentration on the daughter drop can be computed based on the surfactant
profile at the moment of pinch off. Previous studies [58] have shown that the time it takes for
the new merging process to begin is long enough that the surfactant distribution on the drop and
reservoir will have reached equilibrium. Because we assume the reservoir to be much larger than the
coalescing drop, its surfactant concentration and surface tension will have returned to their original
values by the time merging with the daughter drop begins. Having determined that initial surfactant
redistribution due to gravity has a negligible effect on partial coalescence, we can assume that the
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Figure 4.15: Critical Ohnesorge numbers for a soap film, D = M = 1 (left); and a liquid drop,
D = M = 0.1 (right), against selected values of β, for six cases. The first case is the base case,
involving no deformation or gravity effects, and duplicates data from figure 4.5. The second case
includes only gravity, without deformation, duplicating some data from figure 4.11. In case 3, only
the reservoir is deformed (δz 6= 0). In case 4, only the drop is deformed (Rz/Rr 6= 1). In case 5,
only the surfactant is redistributed (δΓ 6= 0). The last case includes all effects. In cases 2 and 6 the
Bond number is 0.05 - gravity is absent in the other cases. Note that the scale here is smaller than
the scale in figure 4.5.

surfactant concentration and surface tension on the daughter drop will be uniformly distributed
when merging begins. Furthermore, the new surfactant concentration and surface tension satisfy
the relation

γD/γ0 = 1− β (ΓD/Γ0 − 1) (4.21)

obtained by applying Eq. (2.14) to the system at the moment of pinch off. Applying Eq. (4.21) to
the definitions of the parameters β and G, obtain the following relations:

βD + 1 =
β + 1

γD
, GD + 1 =

G + 1

γD
(4.22)

Figure 4.17 shows RD, γD, βD, and GD as functions of G when Oh = 0.01, for selected values
of β. The values of βD and GD were computed using Equations (4.22). In all cases, RD displays a
positive linear dependence on G, while γD displays an inverse dependence, which appears to level
off at γD ≈ γ0. In nearly all cases, γD ≤ γ0, indicating that the daughter drop tends to have
a higher surfactant concentration than the parent drop, so equations (4.22) imply that GD and
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Figure 4.16: Radius of the daughter daughter drop as a function (left) of the Ohnesorge number Oh
for three values of the elasticity coefficient, β; and (right) as a function of β for three Ohnesorge
numbers. In both plots D = M = 1, gravity is absent, and the initial surfactant distribution is
uniform.

βD will generally increase in a cascade of partial coalescence events. This can be explained as a
consequence of the loss of area which occurs on the drop during the coalescence process. In cases
where the surfactant concentration on the reservoir is much greater than that on the daughter drop,
the surfactant concentration on the daughter drop will remain essentially unchanged.

If G > 0 initially, the amount of surfactant on the drop will change little during a cascade of
partial coalescence events - increasing only slightly. As a consequence, the elasticity coefficient and
the surfactant concentration will increase only slowly throughout the cascade. However, if G is much
less than 0 initially, βD will be very large - on the order of 1, and GD will be a large positive.
This corresponds to a situation in which the reservoir has large concentrations of surfactant, and
the ejected drop has much larger concentrations. In this case, our assumption of low surfactant
concentration variations may no longer hold.

By applying Equations (4.20) and (4.22), interpolating on existing data, and using some linear
extrapolation for very small Ohnesorge numbers, it is possible to track the properties of the daughter
drop or bubble for a coalescence cascade. Table 4.4 shows a hypothetical cascade of 10 coalescence
events, beginning with a soap bubble with radius 2cm, G = 0, and β = 0.04. The final bubble of
radius 22µm does not undergo partial coalescence, because the Ohnesorge number is supercritical.
The radius of the daughter bubble decreases by a factor of roughly 1/2 each time; while the Ohnesorge
number increases by a factor of roughly

√
2. With each event, the daughter bubble becomes more

contaminated, resulting in a slow increase in βD, GD, and ΓD, while γD decreases. This cascade is
significantly longer than the one observed by Thoroddsen et al. [55], which involved 5 events. This
due to two reasons: the initial radius of the soap bubble is much larger than the maximum radius of
a liquid drop; and the critical Ohnesorge number is larger. Having said that, we expect that such a
cascade would likely be difficult to obtain experimentally because the film may burst, and because
the basic assumption of our model that h0 ≪ R0 breaks down for soap bubbles with radii on the
order of 10µm to 100µm [64].
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Figure 4.17: Top left: Radius of the daughter drop as a function of G. Top right: Average surface
tension on the daughter drop. Bottom Left: Elasticity coefficient of the daughter drop. Bottom
Right: Surfactant concentration on the daughter drop. Three cases are shown: β = 0.2, β = 0.12,
β = 0.04. In all cases, Oh = 0.01, D = M = 1, and gravity is absent.

4.6 Conclusion

We have studied surfactant effects in the partial coalescence of drops and bubbles. Our study indi-
cates that the presence of surfactant can lower the critical Ohnesorge number for partial coalescence
by more than 30%, but that this effect reverses itself when surfactant concentration or potency is
large. Furthermore, by studying different initial conditions, different density and viscosity ratios,
as well as gravity effects and daughter drops, we have obtained a more complete description of the
partial coalescence regime.

Because surfactant is present in most natural settings where partial coalescence occurs, our find-
ings can be applied to better understand partial coalescence in nature. Furthermore, they can be
applied to experimental work on partial coalescence where surfactants are present as impurities and
are difficult to remove. Our results demonstrate, in agreement with previous experimental observa-
tions, that partial coalescence is limited to a more narrow regime in the presence of surfactants. Even
more significantly, a clean drop merging with a surfactant-laden interface will always coalesce com-
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Soap Bubble Coalescence Cascade: D = M = 1
N RD OhD βD GD ΓD/Γ0 γD/γ0
0 2cm 7.3× 10−4 0.040 0 1 1
1 1cm 1.0× 10−3 0.044 0.0033 1.0828 0.9967
2 5.2mm 1.5× 10−3 0.047 0.0070 1.1748 0.9930
3 2.6mm 2.0× 10−3 0.052 0.0112 1.2768 0.9889
4 1.3mm 2.9× 10−3 0.057 0.0158 1.3896 0.9844
5 0.69mm 4.0× 10−3 0.062 0.0210 1.5134 0.9795
6 0.35mm 5.6× 10−3 0.068 0.0266 1.6479 0.9741
7 0.18mm 7.9× 10−3 0.074 0.0327 1.7920 0.9683
8 91µm 0.011 0.081 0.0392 1.9436 0.9623
9 45µm 0.016 0.088 0.0460 2.0994 0.9560
10 22µm 0.023 0.093 0.0507 2.2056 0.9518

Table 4.4: A theoretical cascade of coalescence events for a soap film, based on the data in figure
4.17. The index N represents the number of partial coalescence events which have already occurred.
Gravity is neglected, as Bof ≤ 0.06 in all cases.

pletely if the surfactant effects on the reservoir are sufficiently strong. In addition, because drops
undergoing partial coalescence with contaminated reservoirs produce daughter drops which have
generally higher surfactant concentrations, our findings suggest a possible means of incrementally
increasing surfactant concentration on small drops.

We have simulated, for the first time, the partial coalescence of soap bubbles - an effect which is
readily observed experimentally, and which offers advantages over drops for laboratory study, due
to the relatively large length and time scales involved. In fact, partial coalescence of soap bubbles
may be easily realized in science demonstrations and students may reproduce it themselves. Our
results indicate that partial coalesce of soap bubbles is a robust phenomena provided the surfactant
concentration of the bubble and of the film is similar.
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Chapter 5

Rising Drops

5.1 Introduction to Rising Drops

In the past century, a considerable amount of work has been done studying the motion of drops,
bubbles and solid spheres rising or settling in stratified and uniform ambients (see below). Solid
objects are usually assumed to be settling under the influence of buoyancy, while bubbles are gen-
erally assumed to be rising. Drops are sometimes modeled as rising, and sometimes as settling. We
assume the drops are lighter than the surrounding fluid, and thus focus on rising drops. However,
the two cases, rising and settling, are symmetric, and any observations of rising drops apply in a
symmetric fashion to settling drops.

In the inertia free case, the speed of buoyancy driven solid spheres [2], and clean drops and
bubbles [3,4] is known theoretically. In addition to inertia, complicating factors include temperature
stratification, density stratification, chemical gradients in the ambient that can cause surface tension
changes, and the presence of surfactants.

In 1947, Frumkin and Levich [65] (see also [66,67]) provided the theoretical framework for under-
standing surfactant effects on drop speed. When a surfactant-laden drop rises in a uniform ambient,
the surfactant is convected toward the rear of the drop, where it accumulates. As a consequence,
surface tension decreases as one travels from the top of the drop to the bottom. The resulting
Marangoni stresses oppose the motion of the drop, thus decreasing the speed of the rising drop.
Their work was subsequently confirmed by experimentalists, who observed velocity retardation for
contaminated drops and bubbles [68–70]. In particular, Horton, et al [70] observed field lines in ris-
ing drops using tracers, and found that the flow detached from the drop surface toward the bottom
of the drop, indicating stagnation there. Once a drop becomes sufficiently contaminated, the entire
surface becomes stagnant, and the drop behaves like a solid particle. In this regime, called uniform
retardation, the speed of the moving drop will remain constant when the contamination is increased.

Later, more detailed experimental studies have examined the steady-state speed of moving drops
against the degree of surfactant contamination [71], drop shape [72], and desorption rate [73]. In
some cases, the speed of rising gas bubbles was observed to be independent of the bulk surfactant
concentration over a broad range of contamination [74].
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Numerous studies have calculated the steady-state velocity of a buoyancy driven drop or bubble
in the presence of surfactants. Broadly speaking, these studies have focused on two regimes. In the
first regime, surface convection is much faster than sorption and bulk diffusion, so that the surfactant
may be treated as insoluble. In the second case, sorption and bulk diffusion are of the same order as
convection. In the insoluble limit, when surface diffusion is negligible, there exists a region on the
trailing end of the drop, called a stagnant cap, over which the surface is rendered immobile [75–77].
In this limit, for the case of Stokes’ flow, an exact, closed form solution has been obtained for the
linear [9] and nonlinear [78] surfactant relation.

A number of asymptotic and numerical studies have tracked the velocity of buoyancy driven
drops and bubbles in the limit of low Reynolds number. Several authors [79–81] have accounted for
sorption from the bulk using boundary layer analysis valid for low bulk diffusion. Holbrook and Levan
published a two part study of the steady-state velocity of a buoyancy driven drop in a surfactant
bath, treating the stagnant cap limit and the limit of uniform retardation asymptotically [7] and
treating the intermediate regime numerically [8]. This was generalized to the full Frumkin surfactant
relation by Chen and Stebe [12]. Wang, et al [82] studied the effects of the bulk Péclet number on
surfactant distribution for a variety of bulk concentrations. More recent studies have examined the
effects of a finite Reynolds number with [83–85] and without [86,87] deformation, and described the
wake that forms behind the drop.

Nearly all studies of surfactant effects on moving drops and bubbles have focused on steady-state
motion in a uniform ambient, although a few [88, 89] have examined transient motion in a uniform
ambient. Studies of motion in a stratified ambient have generally involved either clean drops and
bubbles or solid, spherical balls. Extensive work [90–95] has been done studying the passage of
drops and solid spheres passing through a layer between two immiscible fluids. In 1999, the first
study [96] of drops passing through a density stratification observed increased drag due to fluid
entrainment. In sufficiently sharp stratifications, falling drops were observed to reverse direction,
temporarily levitating before passing into the lower layer [97]. In the Stokes limit, the velocity of
a drop passing through a sharp stratification has been described theoretically [98, 99]. For weakly
stratified media, such as are found in nature, entrainment effects on the drag have been carefully
quantified for solid spheres [100] and drops [101]. In this setup, drop deformation, oscillation, and
the flow field have also been examined [101]. The transient motion of solid spheres settling in a
linear stratification has also been studied [102]. Another substantial body of research concerns the
plumes generated by bodies passing through a stratification (see for example, [103–105]). Research
has also been done concerning the oscillations of neutrally buoyant bodies [106,107].

Recent studies have begun to examine interactions between pairs [108] and swarms [109, 110] of
particles settling in stratifications. Other recent studies [111,112] have examined porous bodies set-
tling in stratification, due to their value in modeling marine snow. One recent study [113] accounted
for Marangoni effects due to differences in chemical composition between two layers of miscible fluid.
However, to the best of our knowledge, no studies have examined surfactant effects on drops rising
in stratified media.

In the 2010 Deepwater Horizon oil spill, millions of gallons of crude oil leaked from the ocean
floor and rose to the surface. In an effort to break down the oil, dispersants, including surfactants,
were sprayed on the affected areas. A good understanding of the dynamics of oil drops rising in the
ocean should account for surfactant effects and density changes (pycnoclines) in the ocean.

Here, we present a numerical study of surfactant effects on the speed and entrainment of rising
drops, as applicable to oil drops in the ocean. We examine a regime in which inertia is non-negligible,
but the drop remains approximately spherical. The surfactant is insoluble in some cases and soluble
in others. We generally keep diffusion as small as possible. In §5.2 we present the setup of our
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simulations and equations governing the system. Thereafter, we present our results for three setups:
a surfactant-laden drop rising in an unstratified ambient (§5.3), a surfactant-laden drop rising in a
linear density stratification (§5.4), and a clean drop entering a layer of dissolved surfactant (§5.5).

5.2 Setup and Governing Equations

The system we consider is axially symmetric. A surfactant-laden drop is rising under the influence
of buoyancy in a cylindrical container. We apply no-slip and no-penetration at the boundaries, but
keep the walls far away enough not to influence the dynamics of the rising drop. The surface of the
drop moves with the fluid,

dxs

dt
= u

∣∣∣
s

. (5.1)

We write the equations of fluid motion in dimensionless form, using the drop radius, R0, as a
length-scale. For a velocity scale, we choose the Hadamard-Rabzynski speed [3,4] of a clean drop or
bubble rising in creeping flow, assuming for simplicity that the drop and the ambient have the same
viscosity, µ:

UHR =
4g(ρa − ρd)R

2
0

15µ
. (5.2)

Here, ρd is the density of the drop and ρa is the density of the ambient fluid.

Both the drop and the ambient obey the incompressible Navier-Stokes, given below in dimen-
sionless form:

∇ · u = 0 (5.3)

ρ
∂u

∂t
+ ρu · ∇u = −∇P +Re−1∇2u+

15

4Re
∆ρk+We−1δs(γκn+∇sγ) . (5.4)

The delta function in Eq. (5.4) is nonzero only on the interface. Two dimensionless groupings appear
in Eq. (5.4), measuring viscosity and surface tension against the inertia of the falling drop:

Re =
ρdR0UHR

µ
Reynolds number (5.5)

We =
ρdR0U

2
HR

γ0
Weber number . (5.6)

In this context, the Weber number allows for shape deformation of the drop, and is kept small (see
table 5.1) so that the drop remains approximately spherical. In our simulations, the drop aspect
ratio varied by less than 2% of the drop radius. The gravity term depends on a normalized density
difference:

∆ρ =
ρa − ρdρ

ρa − ρd
=

D − ρ

D − 1
where D =

ρa
ρd

(5.7)

and ρ is the fluid density.

We consider three distinct physical setups (see figure 5.1). In the first, a drop coated with
insoluble surfactant rises in a uniform ambient. In the second, a drop coated with insoluble surfactant
enters a density stratification that varies linearly as a function of vertical displacement, z. Finally,
we consider a clean drop rising into a fluid layer containing dissolved surfactant. In the first and
third setups, the density of the ambient fluid is fixed at ρa. In the second setup, the density obeys
an advection-diffusion equation which we write in dimensionless form using a Péclet number:

∂ρ

∂t
+ u · ∇ρ = Pe−1∇2ρ where Pe =

UHRR0

kρ
. (5.8)
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In the above Péclet number, kρ is a density diffusion coefficient.

Figure 5.1: The three setups we consider: a surfactant-laden drop rising in a stratified ambient
(left), a surfactant-laden drop rising in a linear stratification (center), and a clean drop rising into a
layer of dissolved surfactant (right).

As in chapter 4, the advection-diffusion equations that govern the surface (Γ) and bulk (Λ)
surfactant concentrations can be nondimensionalized using Péclet numbers, except that here, we
account for sorption:

∂Γ

∂t
+∇s · (Γu) = ∇s ·

( 1

PeΓ
∇sΓ

)
+ J(Γ,Λ|s) where PeΓ =

UHRR0

kΓ
(5.9)

and
∂Λ

∂t
+ u · ∇Λ = ∇ ·

( 1

PeΛ
∇Λ
)
− δsJ(Γ,Λ|s) where PeΛ =

UHRR0

kΛ
. (5.10)

Recall that kΓ and kΛ are surface and bulk diffusion coefficients, respectively, and Λ|s is the bulk
concentration evaluated on the drop surface. In Eq. (5.10), the bulk surfactant concentration is
scaled by its equilibrium value, Λ0, far away from the drop. The surfactant exchange term can be
written in dimensionless form as follows:

J(Γ,Λ|s) = Bi (Λ|s (1 + Ad−AdΓ)− Γ) . (5.11)

In equation (5.11), two dimensionless groupings appear. The Biot Number is given by

Bi =
R0kde
UHR

(5.12)

and the adsorption number is given by

Ad =
kadΛ0

kdeΓ∞

. (5.13)

The Biot number measures the desorption rate against the process speed, defined by UHR/R0, and
the Adsorption number measures the rate of adsorptive to desorptive processes. Because Ad is
proportional to the equilibrium bulk concentration, it can be thought of as a dimensionless bulk
concentration.
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In deriving equation (5.11) from equation (2.10), we applied the Langmuir isotherm, which relates
the maximum packing concentration to the equilibrium surface concentration

Γ0

Γ∞

=
Ad

1 + Ad
. (5.14)

We also use the linear elasticity relation (2.14):

γ = 1 + β(1− Γ) .

So far, we have introduced several dimensionless numbers, and we will be encountering more
once we examine specific setups. For convenience, they are summarized in table 5.1, along with
their definitions and ranges used for each setup we consider.

Parameter Definition
Range

§5.3 §5.4 §5.5
Re UHRR0ρd/µ 1, 10 1, 20 1, 20
We U2

HRR0ρd/γ 0.05-0.2 0.05-0.2 0.05-0.2
β −∂γ/∂Γ 0-0.2 0.01-0.2 0.01-0.2
Mg γβ/µUHR 0-2 0, 2 2
D ρa/ρd 1.1 1.1 1.1
Pe UHRR0/kρ 104

PeΛ UHRR0/kρ 104

PeΓ UHRR0/kΓ 10, 100 100 100
S −(R0/ρd)∂ρ̃/∂z̃ 0 5× 10−4-5× 10−3 0
Ad kadΛ0/kdeΓ∞ 0 0 0.1, 1
Bi R0kde/UHR 0 0 0.05-10

Table 5.1: Definition and range of parameters in our simulations.

5.3 A Drop Rising in an Unstratified Ambient

We begin by studying a drop covered with an insoluble surfactant moving a uniform medium. We
have conducted simulations for Reynolds numbers of Re = 1, 10 and surface Péclet numbers of
PeΓ = 10, 100 and compared our results to an existing theoretical solution.

In the absence of sorption, and when PeΓ ≫ 1, equation (5.9) implies Γus = 0 for a steadily
rising drop [75]. Thus, only two regions are possible on the drop surface: a clean surface with a
free-slip condition (Γ = 0), and a stagnant surface with a no-slip condition (us = 0). Physically,
surfactant is convected to the back of the drop where it forms a stagnant cap. The transition from
a clean drop to the spherical cap takes place at some fixed angle, θc, traditionally measured from
the bottom axis (see figure 5.2).

A simple scaling argument shows that the surfactant effects can be measured by the Marangoni
number: Mg = γ0β/µUHR. On the surface of the drop, viscous stresses drive the surfactant toward
the base of the drop, and are opposed by viscous stresses which seek to bring the surfactant into
equilibrium. Balancing the two yields

Marangoni stress

viscous stress
∼ ∆γ/R0

µUHR/R0
∼ γ0β

µUHR
= Mg .
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Figure 5.2: A surfactant-laden drop rising in a uniform ambient, with negligible surface diffusion.
The surfactant appears in white as a cap on the bottom of the drop, which transitions to a clean
surface at a cap angle, θc.

The Marangoni number appears in the dimensionless representation of the tangential stress condition
at the interface:

n · [∇u+∇uT ] · t = −Mg
∂Γ

∂s
. (5.15)

Here, the brackets represent a jump across the interface. When Mg ≪ 1, we expect Marangoni
effects to be negligible, so that the drop behaves like a clean drop. When Mg ≫ 1, we expect
Marangoni effects to dominate viscous effects, forcing the surface velocity of the fluid to zero, so
that the drop behaves like a solid sphere. All together, we expect that the system will transition
from that of a clean drop to that of a solid sphere as the Marangoni number increases.

Sadhal and Johnson [9] obtained exact solutions for the flow field, the surfactant distribution,
and the drag coefficient as functions of the cap angle. Using conservation of surfactant mass, we’ve
derived1 a relationship between the cap angle and the Marangoni number:

Mg =
2θc − 4θc cos θc − sin 2θc + 4 sin θc

4πCD(θc)
(5.16)

where

CD(θc) = 1 +
µa

2π(2µa + 3µd)

(
2θc + sin θc − sin 2θc −

1

3
sin 3θc

)
(5.17)

is a drag coefficient that depends on the respective dynamic viscosities µa and µd of the ambient
and drop. Equation (5.16) can be inverted numerically to obtain the surfactant distribution and
steady-state speed as functions of the Marangoni number.

Figure 5.3 shows the computed and theoretical surfactant distributions of a steadily rising drop
plotted against the angle measured from the bottom of the drop. As expected, surface diffusion
(inverse Péclet number) smooths out the surfactant distribution. Otherwise, the agreement between
the theoretical and computational surfactant profiles is excellent.

Figure 5.4 shows theoretical and computational steady-state speeds of a drop rising in an un-
stratified ambient, measured as departures from the surfactant free case (Mg = 0). They are plotted

1See Appendix A.2
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Figure 5.3: Surfactant distribution against angle from the bottom of the drop, for different Péclet
numbers and Marangoni numbers. In the theoretical case (solid black) the Reynolds number is given
by Re = 0, while in the computational cases (dashed blue and dotted red), Re = 1. The cap angle,
θc, is shown as a vertical black dotted line.

against the Marangoni number, Mg, for varying Reynolds and Péclet numbers. We see that surfac-
tant effects are inhibited at larger Reynolds numbers. This can be explained by considering the drag
on the drop. Surfactant on the drop surface increases drag by partially immobilizing the surface,
thus creating a no-slip boundary condition there for the ambient fluid. Increased viscosity favors
increased drag by causing a larger volume of exterior fluid to be affected by the drop motion. If
the Reynolds number were to become very large, a boundary layer of decreasing width would form
around the region region of stagnation, the width of which would measure the amount of fluid being
affected by the no-slip condition there. Thus, for smaller Reynolds numbers, such as we consider,
it is to be expected that the effect of the stagnant cap on the drop speed decreases with Reynolds
number. McLaughlin [84] presents evidence that this trend reverses for larger Reynolds numbers
(Re > 100), due to the formation of large wakes. We plotted streamlines for our simulations, and
no wake was observed for Re ≤ 10 and Mg ≤ 2.

On the other hand, surface diffusion, measured by Pe−1
Γ , counters the effect of the Marangoni

number, so that the transition from a clean drop to a stagnant surface is much slower. This is to
be expected, since surface diffusion smoothes out the surfactant distribution, as seen in figure 5.3.
For a smoother distribution, the surface tension gradient, ∂γ/∂θ, will be decreased, resulting in
an equivalent decrease in tangential stress. Since it is the tangential stress that relates the surface
tension to the rising speed, it is to be expected that a lower Péclet number will result in increased
speeds. In the absence of surface diffusion, the tangential stress increases with the Marangoni
number, so that the effect of surface diffusion is to counteract the effects of the Marangoni number.

5.4 Entrainment Effects in a Linear Density Stratification

The terminal speed of a rising drop is proportional to the density difference between the drop and
the ambient - hence the speed of a drop rising in a density stratification can be expected to decrease
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Figure 5.4: Steady-state speed of surfactant-laden drops against Marangoni number, Mg, in a uni-
form ambient, for differing Reynolds numbers (left) and surface Péclet numbers (right). For the
computed results on the left, PeΓ = 100; for the computed results on the right, Re = 1. In the
theoretical case (solid black) the Reynolds number is given by Re = 0 and the Péclet number on the
surface is given by PeΓ = ∞.

with the gradient of the density, given in dimensionless form as

S = −∂ρ
∂z

= −R0

ρd

∂ρ̃

∂z̃

where the tildes represent dimensional variables. This effect is amplified by the process of entrain-
ment, in which the drop carries heavier fluid with it as it rises into the lighter layer, further decreasing
the drop speed [96]. If the transition is sufficiently sharp, the direction of motion may even reverse,
and the drop may “bounce” on the layer [97].

The setup we consider involves a drop rising to terminal velocity in a uniform ambient with
dimensionless density ρ = D, before entering a linear density stratification, beginning at z = z0, and
described by

ρ(z) = D − S(z − z0) (5.18)

when t = 0 and z ≥ z0. Here the drop never reaches its neutral buoyancy level. We consider several
cases, including different Reynolds numbers (Re = 1, 20), Marangoni numbers (Mg = 0, 2), and
density gradients (5× 10−4 ≤ S ≤ 5× 10−3). All Péclet numbers were kept as large as numerically
feasible (PeΓ = 100 and Pe = 104).

Velocity profiles of the rising drops are shown in figure 5.5. The velocity profiles were smoothed
using a gaussian function, to eliminate small scale noise. In all cases, sharper stratifications favor
decelerations of the rising drop, so that when S = 5 × 10−3, the drop rapidly decelerates. For a
smaller Reynolds number, the drop undergoes a quicker and more dramatic shift in speed. In all
cases, the drop transitions to a state of steady deceleration.

To better quantify the transitional period, we computed the derivative dU/dz of the drop speed,
shown in figure 5.6. In all cases, dU/dz is near 0 when the drop enters the stratification, and
undergoes decaying oscillations after, relaxing toward a fixed negative value. The magnitude of
these oscillations increases with S and decreases with the Reynolds number. To better understand
how long it takes the drop to transition to a steady deceleration, we examined the inflection points
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Figure 5.5: The speed U of a drop rising in a linear density stratification, plotted against the
vertical position coordinate, z, for different stratifications, and Reynolds numbers of Re = 1 (left)
and Re = 20 (right). In all cases, Mg = 2. The linear stratification begins at z = 10 and continues
throughout.

given by the first local minimum of dU/dz after entering the stratification and measured the vertical
displacement, ∆z, at which they occur. We found that ∆z depends only weakly on the density
gradient, S, and the Marangoni number, Mg. However, it depends strongly on the Reynolds number:
for Re = 1, ∆z ≈ 4.8 ± 0.6 and for Re = 20, ∆z ≈ 8 ± 0.5. This can be explained by the fact that
when Re is larger, the increased inertia delays the transition.

The effects of entrainment can be quantified by comparing our results to an entrainment free
case. By running simulations with the ambient density kept constant in time but varying with
height, we were able to obtain velocity profiles of rising drops in the absence of entrainment. Figure
5.7 shows velocity profiles with and without entrainment. In the absence of entrainment, the drop
quickly assumes a steady deceleration on entering the stratification, which it maintains throughout.
With entrainment, the drop undergoes a transitional decrease in velocity before reaching a steady
deceleration that is nearly identical to the entrainment-free case. This results in a net velocity lag

∆U = Uwithout entrainment − Uwith entrainment

that is approximately constant once the transient phase is complete. In each case, we computed ∆U
by averaging the velocity over an interval [z1, z2], with and without entrainment, during the phase
where both drops are undergoing steady deceleration, and taking the difference.

In figure 5.8, the velocity lag, ∆U , is plotted against the density gradient, S. The relation is
approximately linear for small S. The slopes, b, of the lines ∆U = bS in figure 5.8 are presented
in table 5.2. This relation fails for larger S, and the dependence of ∆U on S becomes sub-linear.
The drop and the fluid it entrains act together as a rising body with a mean density. Hence, it is
expected that the velocity lag is proportional to the density gradient, until the stratification becomes
sufficiently sharp, in which case the drop begins to entrain less fluid. We also find that the velocity
lag is greater for larger Marangoni number and smaller Reynolds number. In both cases, this is to
be expected because the drop entrains more fluid.
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Figure 5.6: The derivative, dU/dz, of the speed of a drop rising in a linear density stratification
against position. A side-by-side comparison of velocity derivatives for different Reynolds numbers
and Marangoni numbers is shown (left), along with a side-by-side plot of velocity derivatives for
different density stratifications (right). The stratification begins at z = 10 and continues throughout.

This data allows us to calculate the buoyancy of entrained fluid. After transitional effects have
died out, the velocity of the drop at a given height z is determined by a force balance between drag
and buoyancy:

µR0ŨF (Re,Mg) = gVdρd(ρ(z)− 1) + gVeρd(ρ(z)− ρe(z)) (5.19)

where Ũ = UUHR is the drop speed, F is a dimensionless function of the Reynolds and Marangoni
numbers, Vd and Ve are the respective volumes of the drop and the entrained fluid, ρ(z) = D − 1−
S(z−z0) by Eq. (5.18), and ρe is the dimensionless density of the entrained fluid. The lefthand side
of Eq. (5.19) accounts for the drag force, while the righthand side accounts for the buoyancy - the
first term accounting for the drop buoyancy and the second term accounting for the buoyancy of the
entrained fluid. We expect that for sufficiently small S, Ve depends on the Reynolds and Marangoni
numbers, but not on the vertical displacement or the density gradient.

When the stratification is fixed as a function of height, the second term on the righthand side of
Eq. (5.19) vanishes. Solve, to obtain

Uf (z) =
gVdρd

µR0FUHR
ρ(z) =

gVdρd
µR0FUHR

(D − 1− S(z − z0)) . (5.20)

Thus, the slopes of the velocity profiles, Uf (z) = U0 − aSz (see the dotted lines in figure 5.7), when
density is fixed as a function of height, are given by aS, where a = gVdρd/µR0FUHR depends only
on the Reynolds and Marangoni numbers.

To proceed further, we assume a functional form for ρe(z). In steady deceleration, we postulate
that the density of the entrained fluid equals that of the stratified ambient a fixed distance, ∆z, below
the drop center of mass: ρe(z) = ρ(z−∆z). Applying Eq. (5.18), we find that ρ(z)−ρe(z) = −S∆z.
Thus, buoyancy of the entrained fluid is given relative to the drop weight by

Entrained Buoyancy

Drop Weight
=
gVeρd(ρ(z)− ρe(z))

gVdρd
= −S∆z Ve

Vd
. (5.21)

The negative sign indicates that the buoyancy of the entrained fluid drags the drop downward.
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Figure 5.7: The speed U of a drop rising in a linear density stratification, plotted against the vertical
position coordinate, z, with entrainment (solid line), and without entrainment (dashed line). Each
figure shows two Marangoni numbers: Mg = 0, 2. In both cases, S = 10−3.

To compute the factor ∆zVe/Vd, we form the velocity lag. This can be done by solving Eq.
(5.19) for the velocity, U(z), of the rising drop, and subtracting the from velocity, Uf (z), given in
Eq. (5.20). Obtain

∆U = Uf (z)− U(z) = − gVe
µUHRR0F

(ρ(z)− ρe(z)) =
SgVeρd∆z

µUHRR0F
= a

(
∆z

Ve
Vd

)
S

Since ∆U = bS, where the values of b are given in table 5.2, we conclude that ∆zVe/Vd = b/a. The
factor ∆zVe/Vd is also given in table 5.2.

Re Mg b ∆zVe/Vd
1 0 748 11.23± 0.07
1 2 1130 21.8± 1.9
20 0 140 3.55± 0.03
20 2 318 9.78± 0.25

Table 5.2: The factor ∆zVe/Vd, in the entrained buoyancy (see (5.21)). As seen in figure 5.8, the
linear relation ∆U = bS holds for S sufficiently small, and breaks down thereafter. The slopes, b, of
the lines in figure 5.8 are also given.

5.5 A Clean Drop Entering a Surfactant Layer

The next setup we consider involves a clean drop rising into a bath of soluble surfactant. We begin
our simulation when the drop is at rest and allow it to accelerate to a steady rising speed before
entering a layer of soluble surfactant dissolved in the ambient. The layer begins at a height of z = 10
in the cylindrical domain, and sharply transitions between a clean bulk (Λ = 0) and a saturated
bulk (Λ = 1), over the course of 0.1 drop radii. The transition is linear, and takes place over the
range 9.95 ≤ z ≤ 10.05. The intended application is the case of an oil drop rising to the surface of
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Figure 5.8: The lag, ∆U , in the speed of a rising drop caused by entrainment effects, against the
dimensionless density gradient of the fluid.

the ocean, encountering a layer of surfactants that have been sprayed on the water (as in the 2010
BP oil spill). Diffusion is kept small: PeΛ = 104, PeΓ = 100. For simplicity, we fix the Marangoni
number at Mg = 2.

Figure 5.9 shows smoothed plots of the speed of the rising drop after it enters the surfactant bath.
In all cases, the drop accelerates after entering the bath and subsequently decelerates to a steady
ascent, with a lower velocity than before. This can be explained by the surface tension gradient
on the drop, shown in figure 5.10. The top of the drop enters the bath first, adsorbing surfactant.
The surfactant thus lowers the surface tension at the top of the drop relative to that of the bottom,
resulting in a surface tension gradient that “sucks” the drop into the layer. Afterward, convection
carries the surfactant toward the bottom of the drop, producing a gradient in the opposite direction
that inhibits the rising of the drop - thus resulting in a decreased steady-state speed.
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Figure 5.9: The speed U of a drop entering a layer of soluble surfactant, whose concentration sharply
transitions from Λ = 0 to Λ = 1 over the interval 9.95 ≤ z ≤ 10.05. The speed of the rising drop is
plotted against the vertical position coordinate, z, for different Adsorption numbers, with Reynolds
numbers of Re = 1 left) and Re = 20 (center). Side by side plots of multiple Biot numbers are also
shown (right).
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A larger Biot number accelerates the initial adsorption process and produces a sharper surface
tension gradient, which results in more suction. The terminal speed also increases with an increased
Biot number, because the sorption process tends to even out the surfactant concentration - higher
concentrations of surfactant desorb faster, while lower concentrations adsorb faster. This results in
weaker surface tension gradients opposing the the drop motion.

In all cases, we predict that the vertical component of the surface tension gradient is the primary
factor determining changes in the velocity profile of the drop. This hypothesis can be tested by
forming a predicted velocity profile, based on the surface tension gradient:

Upred = U
∣∣
z=10

+ a∇γ · k (5.22)

where a > 0 is a calibration parameter and ∇γ · k is the average vertical component of the surface
tension gradient on the drop, given by

∇γ · k =
1

π

∫ π

0

dγ

ds
sinϕds ≈ 1

n

n−2∑

k=1

γk+1 − γk+1

sk+1 − sk+1
sinϕk .

The rightmost expression shows our method of computing ∇γ · k from the numerical data. n is the
number of markers, indexed by k, and ϕk is the vertical angle of the kth marker measured from
the drop center. The above summation does not include the endpoints because when k = 0, n − 1,
ϕ = 0, π, so sinϕ = 0. Figure 5.11 shows predicted verses computed velocities for given Adsorption
and Biot numbers. Our prediction is highly accurate for a Reynolds number of Re = 1, and less
accurate when Re = 20. The most noticeable difference takes the form of a lag, or a delay in velocity
changes, which can be explained by inertial effects. In addition, the predicted velocity is shifted
vertically from the actual velocity. We suspect that the vertical shift is due to the fact that the drop
hasn’t quite reached terminal velocity by the time it enters the stratification. The results are similar
for different Biot and Adsorption numbers.
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Figure 5.10: Surfactant profiles on the drop at a Reynolds number of Re = 20, an adsorption number
of Ad = 1, at various heights when Bi = 1 (left), and for various Biot numbers when the drop is at
height z = 20 (right).

The terminal velocity, U∞, normalized by the steady-state velocity of a clean drop, is shown in
figure 5.12 as a function of the Biot number. The results are given for a Reynolds number of Re = 1
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Figure 5.11: Computed velocity verses a prediction based on surface tension gradients (see Eq.
(5.22)), for Reynolds numbers of Re = 1 (left) and Re = 20 (right). In both plots Ad = Bi = 1.

and are similar for a Reynolds number of Re = 20. Although we ran simulations for Biot numbers
as low as 0.02, figure 5.12 only includes the Biot numbers for which terminal velocity was reached
within our computational domain. As Bi −→ ∞, we expect we expect U∞ to approach the speed
of a clean drop, and as Bi −→ 0, we expect U∞ to approach the speed of a drop contaminated by
insoluble surfactant (see figure 5.4). When normalized by Uclean, this is approximately 0.8. This
gives rise to a paradox, because when Bi = 0, the drop will always be clean, because it never absorbs
surfactant. This paradox is resolved by recognizing that the time it takes to transition to steady-
state goes to ∞ as the Biot number approaches 0. These results are similar to previous results for
creeping flow [12].

The transient effects include two key elements: the suction experienced by the drop on entering
the surfactant layer, and the time it takes to transition to steady state. The suction effects can
be measured by the maximum velocity obtained. Figure 5.13 shows this maximum velocity plotted
against the Biot number, shown on a logarithmic scale. The velocity in figure 5.13 is normalized by
the steady-state speed of a clean drop. The results are given for a Reynolds number of Re = 20,
and are similar for a Reynolds number of Re = 1. As Bi −→ 0, we expect Umax to approach 1, the
terminal speed of a clean drop. As Bi −→ ∞, we expect the terminal speed to approach a maximal
finite value, determined by a balance of convection and diffusion.

The duration of the transition to equilibrium can be measured by the displacement, ztrans, at
which the drop has approximately reached its equilibrium speed. In figure 5.14 these transitional
displacements are plotted against the Biot number. ztrans was chosen to be the displacement at
which the drop comes within 1% if its equilibrium velocity. Note that ztrans is defined relative to
the surfactant layer, so that ztrans = 0 when z = 10. The results are given for a Reynolds number of
Re = 20, and are similar for a Reynolds number of Re = 1. We expect that ztrans −→ ∞ as Bi −→ 0.
On the other hand, as Bi −→ ∞, ztrans approaches a positive minimum in which the transition to
equilibrium is determined entirely by convection. We note that the results were somewhat resolution
sensitive - increasing the resolution resulted in a 2% shift in the terminal velocities, but the overall
trends should remain the same.

Altogether, we have found that a drop rising at steady state into a layer of soluble surfactant
undergoes changes in velocity based on the surfactant gradient on the surface. As the drop first
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Figure 5.12: Steady-state velocity verses Biot number, for different adsorption numbers. The velocity
is normalized by the steady-state velocity of a clean drop for the same Reynolds number. As Bi → ∞,
we expect the normalized velocity to go to 1 (the velocity of a clean drop). As Bi → 0, we expect the
normalized velocity to go to about 0.8 (the velocity of a drop contaminated by insoluble surfactant).

enters the layer, surfactant adsorbs onto the top of the drop, resulting in a surface tension gradient
that is increasing toward the base of the drop, and which sucks the drop into the layer. Once the
surfactant is convected toward the bottom of the drop, the surface tension gradient reverses itself,
resulting in a drag that slows the speed of the rising drop.

We have described the effects of the Biot number on this process. In particular, a larger Biot
number results in sharper gradients during the suction phase, and milder gradients later on, so that
the velocity of the rising drop is increased in both cases. In addition, we have described the length
of the transition to steady-state by measuring the displacement at which the drop speed has an
inflection point - a larger Biot number leading to a faster transition.

5.6 Conclusion

In summary, we have combined, for the first time, two related fields of study: surfactant effects on
drop speed, and rising through a stratification. For drops rising in an unstratified medium, coated
in insoluble surfactant, we have obtained results that are consistent with, and expand upon existing
work [9]. In particular, we have explored the effects of surface diffusion, and a relatively small but
nonzero Reynolds number on drop speed - bridging the gap between the theory for creeping flow [9]
and existing work for intermediate Reynolds number [84,86]. Surfactant effects were slightly weaker
in the presence of inertia, due to the fact that less fluid is entrained as a consequence of the no-slip
condition on the stagnant cap. The surface Péclet number was found to counter surfactant effects,
measured by the Marangoni number, by spreading the surfactant across the interface.

When the drop entered a linear density gradient, we observed a transition to steady deceleration
that depended mainly on the Reynolds number - the higher the Reynolds number, the longer the
transition. After this transitional period, the drop reached a steady deceleration, which was similar
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Figure 5.14: Displacement at which the drop
comes within 1% of its terminal speed verses verses
Biot number, for Re = 20 and for different ad-
sorption numbers. The results for Re = 1 were
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radii from the vertical position coordinate, z. We
expect ztrans to go to infinity as Bi → 0. As Bi
becomes large, ztrans reaches a positive minimum.

with and without entrainment, except that for the existence of a roughly uniform velocity lag. This
lag was observed to increase linearly with the density gradient, and also depended on the Reynolds
and Marangoni numbers. This work could be extended by more carefully quantifying the effect of
the Reynolds and Marangoni numbers on the entrained buoyancy (table 5.2).

Finally, we observed for the first time what happens to a clean drop upon entering a surfactant
layer. On first entering the layer, the drop underwent an acceleration as it was sucked into the
layer, because of the upward surface tension gradient created by the uneven surfactant adsorption.
Afterward, it underwent a transition toward steady-state. We found that our results for steady-state
velocity are in good agreement with existing results for creeping flow [12]. In all of this, we quantified
the effects of the Biot number, which accelerates sorption the process, resulting in greater sorption
on entering the layer, and an increased rising speed at steady-state. Due to the large number of
parameters at play, we mostly ignored the effects of the Marangoni number and the adsorption
number for this portion of the study, holding both of these dimensionless parameters constant.
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Chapter 6

Extension to Electric Fields

The coalescence and breakup of charged drops in the presence of an electric field plays a key role
in cloud formation. In addition, electric fields are frequently used for de-emulsification, particularly
of water in crude oil [114], and for droplet manipulation in microfluidic devices, including droplet
fusion and breakup [115,116], droplet transportation [117], and electroporesis in cells [118]. Electric
fields also have applications to dewetting, as drops under the influence of an applied field have been
known to leap from a solid surface.

G.I. Taylor [119] demonstrated that drops elongate and eventually break apart in the presence of
an electric field. Since then, a number of studies have observed surprising behavior in droplets under
the influence of an electric field, including partial coalescence [120–124] and non-coalescence, even
after contact [125]. In applications to de-emulsification, these behaviors are generally undesirable -
especially electrically induced partial coalescence.

In this chapter, we present adaptations of our method to track electric charges and compute an
electric field on our computational domain.

6.1 Governing Equations

6.1.1 Dimensional Equations

The applications we intend involve lengthscales on the order of a millimeter or less, in which magnetic
fields can be neglected [126]. In this case, electric fields can be incorporated into the incompressible
Navier-Stokes using the Maxwell stress tensor, given by [126]:

T
e = εEE− 1

2
εE ·Eδ (6.1)

where E is the electric field, δ is the identity tensor, and ε is the dielectric constant. Then the
equations of fluid motion are

∇ · u = 0 (6.2)

ρ
∂u

∂t
+ ρu · ∇u = −∇P +∇ · (T+ T

e)− g(ρ− ρa)k+ δs(γκn+∇sγ) . (6.3)
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As in Eq. (2.2), the viscous stress tensor, T, is given by

T = µ(∇u+∇uT ) . (6.4)

It is instructive to examine the pressure jump across the interface. Integrating the normal
component of Eq. (6.3) across the interface in a normal direction, over an interval ∆n (here, n is the
local coordinate normal to the interface), and taking the limit as ∆n −→ 0, we arrive at the form

‖P‖ = γκ+ 2 ‖µ‖ ∂un
∂n

∣∣∣∣
s

+
1

2

∥∥ε(E2
n − E2

s )
∥∥ . (6.5)

The lefthand side of equation (6.5) comes from the pressure gradient in the Navier-Stokes. On the
righthand side, the first term comes from the surface force, and represents a Laplace pressure. The
second term on the right comes from the viscous stress tensor, in the case when the viscosity is
discontinuous across the interface. The third term comes from the Maxwell stress tensor in the case
when the electric field is discontinuous across the interface. For a stable spherical drop, the pressure
jump across the interface will balance the stresses on the righthand side. In the presence of a surface
charge, q, the tangential portion of the Maxwell tensor also has a discontinuity across the interface.
Altogether,

‖Te · n‖ =
1

2

∥∥ε(E2
n − E2

s )
∥∥n+ qEs . (6.6)

In the absence of Magnetic forces, Maxwell’s equations reduce to the following:

∇ · (εE) = ρe , (6.7)

∇×E = 0 . (6.8)

Here, ρe is the volumetric charge density. The jump in the electric field across the interface can be
written in terms of the charge per unit area, q:

‖εE‖ · n = q . (6.9)

Because E is irrotational, it can be written as the gradient of an electric potential, ϕ: E = ∇ϕ.
Incorporating the surface charge into Eq. (6.7) using a delta function, we obtain the following
relation, valid on the entire domain:

∇ · (ε∇ϕ) = ρe + δsq . (6.10)

Recall that δs is a delta function that is nonzero only on the interface.

In general, accounting for the electric charge requires tracking species of ions dissolved in the
fluid and adsorbed onto the interface. A single ionic compound involves three species of ions:
positive, negative, and neutral. For example, sodium-chloride (table salt), consists of positive sodium
(Na+) ions, negative chloride Cl− ions, and neutral NaCl molecules. For the moment, we use the
Taylor-Melcher approximation [126], tracking net charge using an advection-diffusion equation with
electrical forcing:

∂ρe

∂t
+ u · ∇ρe = ∇ · (−σE+ ke∇ρe) . (6.11)

68



The Taylor-Melcher model relies on the assumption of electro-neutrality, according to which the
total number of charges is large in comparison to the net charge at any given location. Of course,
this assumption breaks down on sufficiently small lengthscales. The range of problems to which this
model is applicable is controversial, especially for multiphase flow [120, 126, 127]. In Eq. (6.11), σ
is the electrical conductance of the material and ke is a diffusion coefficient. Integrating Eq. (6.11)
across the interface and adding a surface diffusion term, we obtain

∂q

∂t
+ u · ∇sq + u · n(n · ∇q) = ‖−σE+ ke∇ρe‖ · n+∇s · (kq∇sq) (6.12)

where kq is a diffusion coefficient on the surface. The surface diffusion term in Eq. (6.12) is usually
neglected because the surface diffusion is assumed to be small, but we include it here for numerical
stability.

For most applications, we will set the voltage to zero on the boundary. We account for an applied
electric field separately, by adding the applied field, E0k, to the electric field in the Maxwell tensor
(6.1) and the charge tracking equations (6.11) and (6.12), but not the charge equation (6.10). We
assume the charge is zero on the walls, and symmetric at the axis.

6.1.2 Dimensionless Equations

We nondimensionalize our governing equations using a very simple and very general scheme. Let
L be a length-scale and U be a velocity scale (this is equivalent to using a timescale t0 = L/U).
Redefine our parameters:

unew = uold/U, tnew = Utold/L, ∇new = L∇old, (δs)new = L(δs)old, κnew = Lκold .

We also choose generic scales ρ0, γ0, µ0, E0 for the density, surface tension, viscosity, and electric
field:

ρnew = ρold/ρ0, (ρa)new = (ρa)old/ρ0, γnew = γold/γ0, µnew = µold/µ0, Enew = Eold/E0 .

Naturally, we choose ε0, the permittivity of free space, to scale our dielectric coefficient, so that
εnew = εold/ε0. For simplicity, we scale our momentum equation by dividing out the inertia: ρ0U

2/L.
Scale the pressure by the inertial pressure: P0 = ρ0U

2. Then the equations of fluid motion become

∇ · u = 0 (6.13)

∂u

∂t
+ ρu · ∇u = −∇P +∇ ·

(
Re−1

T+NeiT
e
)
− Ri(ρ− ρa)k+We−1δs(γκn+∇γ) . (6.14)

Here, we have the familiar Reynolds number and Weber number, as well as the Richardson number

Ri =
gL

U2
(6.15)

and the electro-inertial number

Nei =
ρ0U

2

ε0E2
0

. (6.16)

We scale the surface charge as qnew = qold/ε0E0 so that equation (6.9) is unchanged:

‖εE‖ · n = q . (6.17)
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If we put ϕnew = ϕold/LE0 and ρenew = ρeold/ρ
e
0, where ρe0 = ε0E0/L then equation (6.10) is

unchanged:
∇ · (ε∇ϕ) = ρe + δsq . (6.18)

We nondimensionalize the conductivity by putting σnew = σold/eω0ρ
e
0, where ω0 is a standard

drift velocity. When tracking individual ion species, it is necessary to account for the drift velocity
of each ion species. However, in the Ohmic regime that we consider here, we instead use an effective
drift velocity for the charge. Then our charge tracking equations become

Ree

(
∂ρe

∂t
+ u · ∇ρe

)
= ∇ ·

(
−σE+ Io−1∇ρe

)
(6.19)

Ree

(
∂q

∂t
+ u · ∇sq + u · n(n · ∇q)

)
=
∥∥−σE+ Io−1∇ρe

∥∥ · n+∇s · (Io−1
s ∇sq) . (6.20)

Three dimensionless numbers appear in equations (6.19) and (6.20):

Io =
eω0E0L

ke
(Ionic Drift Number) (6.21)

Ios =
eω0E0L

2

kq
(Ionic Drift Number on the surface) (6.22)

Ree =
U

eω0E0
(Electric Reynolds Number) . (6.23)

6.2 Numerical Method

In the application of our method, we envision the following setup: two fluids are separated by
an interface; one is a conductor, the other is not. The conducting fluid most likely to occur in
the applications we consider is water - particularly with dissolved ionic substances, such as salts.
Other conducting fluids include liquid metals, astrophysical systems, and plasma. Non-conducting
fluids include air and oil. Quantities associated to the conducting fluid are subscripted with c,
while quantities associated to the non-conducting fluid are subscripted with x. We assume the
conductivity of the non-conducting fluid is zero, and denote the conductivity of the conducting fluid
by σ. A charge, with density ρe, resides within the bulk of the conductor, and a charge, with density
q, resides on the interface. We assume that the normal, n, to the interface points away from the
conducting fluid.

6.2.1 Charge Equation

Recall that the pressure, P , is computed at cell centers, as an array whose elements are denoted
Pi,j , and the surfactant concentration is computed at the markers. In particular, the surfactant
concentration at the kth marker is written Γk. Similarly, we store the bulk charge distribution, ρe,
at cell centers (denoted with ρei,j) and the surface charge distribution, q, at markers on the interface
(denoted with qk). We can combine the two types of charge into a single charge distribution on the
MAC grid by averaging q over the grid cell. This process makes use of machinery we have already
developed for numerical integration:

ρtoti,j = ρei,j +
1

∆A

∫∫

cell

δsqdA = ρei,j +
1

∆A

∫ s2

s1

qds
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where s1, s2 are the arc-lengths where the front intersects the cell. Thus, having computed the right-
hand side of the Poisson equation (6.18), we can solve the equation using the same iterative method
we used to invert the pressure equation, and obtain the electric potential, ϕ. Taking the gradient
of ϕ, we obtain the components, Er and Ez, of the electric field. Because ϕ is not differentiable at
the interface, we use one-sided derivatives to compute the components of the electric field near the
interface.

6.2.2 Electric Forcing Terms

Notice that equations (6.13) and (6.14) are simply the Navier-Stokes (2.1)-(2.2) with added electrical
forcing, and equations (6.11) and (6.12) are the same as our standard equations (2.8)-(2.9) for
tracking scalar fields in the bulk and on the surface, respectively - except with added terms based
on the electrical force. Having computed the electric field, E, all of these equations can be solved
simply by adding forcing terms to our existing method. We therefore focus here on describing our
numerical treatment of the electric field.

In an axisymmetric setup, the electric field can be written as E = Erer + Ezez. Significantly,
the azimuthal coordinate is zero: Eθ = 0. Then the Maxwell stress tensor can be written as follows:

T
e = ε




E2
r 0 ErEz

0 0 0
EzEr 0 E2

z


− 1

2
ε(E2

r + E2
z )δ =

1

2
ε




E2
r − E2

z 0 2ErEz

0 −E2
r − E2

z 0
2EzEr 0 E2

z − E2
r


 .

Now, the components, Er and Ez, of the electric field are stored on the vertical and horizontal walls
of the cells, respectively, along with the components of the velocity field (see figure 3.2). However,
the diagonal components of the stress tensor are stored at cell centers, along with the pressure.
As such, after computing the squares, E2

r , E
2
z of the electric field components, we take the average

across each cell center. The off-diagonal components of the stress tensor reside on the lower lefthand
corners of the cells, so we average the components Er, Ez before multiplying them. After computing
T
e from E, we may simply add it to T before taking the tensor divergence.

The electrical term in the bulk charge tracking equation can be efficiently computed by replacing
it with a charge term. In particular, if we have a constant conductivity, σ, on the conductor, and
zero conductivity on the non-conducting fluid, we have

∇ · (σE) =
σ

εc
∇ · (εcE) =

σ

εc
ρe

on the interior fluid. Since ρe = 0 on the exterior fluid, this relation is actually valid everywhere.
Altogether, we convert equation (6.19) to the form:

Ree

(
∂ρe

∂t
+ u · ∇ρe

)
= − σ

εc
ρe + Io−1∇2ρe (6.24)

On the other hand, we keep equation (6.20) for surface charge unchanged. We rewrite using the
assumption of zero charge and conductivity on the nonconducting fluid:

Ree

(
∂q

∂t
+ u · ∇sq + u · n(n · ∇q)

)
=

(
−σ∂ϕ

∂n
+ Io−1 ∂ρe

∂n

) ∣∣∣∣
c

+∇s · (Io−1
s ∇sq) . (6.25)

Here, the subscript c implies evaluation on the conducting side of the interface. Computing the
derivatives, ∂ϕ/∂n and ∂ρe/∂n, requires care, since neither quantity is differentiable at the interface
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- and ρe is actually discontinuous. Let us focus on the derivative of ρe, as ϕ is handled similarly.
Expand the derivative using the chain rule:

∂ρe

∂n
=
∂ρe

∂r

dn

ds
+
∂ρe

∂z

dn

ds
= −∂ρ

e

∂r

dz

ds
+
∂ρe

∂z

dr

ds
.

The leftmost expression above comes from the geometric relation between the tangent t = (r′(s), z′(s))
and and normal n = (−z′(s), r′(s)) vectors at the interface. Since our method already computes
dr/ds and dz/ds, all that remains is to compute the derivatives ∂ϕ/∂r and ∂ϕ/∂z. For this, we use
one-sided linear extrapolation, similar to what we did for the components of the electric field.

6.3 Validation

We validate our method by testing it against a simple case that admits an exact solution. Consider a
charged drop of radius R0 in an isotropic fluid (no gravity), insulated from external electic forces by a
spherical insulator of radus R1 concentric with the drop. Because of symmetry and incompressibility,
the fluid remains at rest, even though the charge will not. Assuming magnetic effects can be
neglected, the electric field can be written as the gradient of a potential, ϕ, which satisfies a Poisson
equation, derived from Maxwell’s charge equation:

∇2ϕ = ∇ ·E =
ρe

ε
(6.26)

We assume the charge outside the drop is negligible, ion mobility is negligible, and conductivity
is uniform and constant. Then the charge in the drop interior moves according to the equation

∂ρe

∂t
= −σ∇ ·E = σ∇2ϕ = − σ

εd
ρe (6.27)

where εd is the permittivity of the drop. For simplicity, we assume a uniform initial condition on
the charge: ρe(R, t = 0) = ρe0. Then Eq. (6.27) is easily solved, obtaining

ρe(R, t) = ρe0e
−σt/εd (6.28)

Now we compute the surface charge, q(t), as a function of time given no initial charge q(0) = q0.
The governing equation for the surface charge is obtained from conservation of total charge, Q:

4

3
πρe0R

3
0 + 4πR2

0q0 = Q = 4πR2
0q(t) +

4

3
πρe0R

3
0e

−σt/εd (6.29)

The expression on the left represents the total charge at time t = 0, while the expression on the
right represents the total charge at time t ≥ 0. The two integral expressions represent the total bulk
charge in the interior of the drop. Solve for the surface charge to get

q(t) = q0 +
1

3
ρe0R0(1− e−σt/εd) (6.30)

By symmetry, the voltage is a function only of time and the distance, R, to the center of the
drop: ϕ = ϕ(R, t). Thus, the Poisson equation (6.26) becomes:

1

R2

∂

∂R

(
R2 ∂ϕ

∂R

)
=
ρe

ε
=

1

ε
ρe0e

−σt/ε . (6.31)
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Integrate Eq. (6.31) with ρe = ρe0, ε = εd inside the drop and ρe = 0, ε = εx outside the drop. Get

ϕ(R, t) =

{
1
6ερ

e
0e

−σt/εR2 − f1(t)/R+ f2(t) for R < R0

−g1(t)/R+ g2(t) for R0 < R < R1

where f1(t), f2(t), g1(t), g2(t) are constants (in R) of integration. Assuming the solution is bounded
at the origin, we can set f1(t) = 0. Imposing ϕ = 0 at R1, get g1(t) = R1g2(t). Next, we impose the
jump condition on the electric field

q(t) = ‖εE‖ · n = εx
∂ϕ

∂R

∣∣∣∣
R+

0

− εd
∂ϕ

∂R

∣∣∣∣
R−

0

to obtain g2(t) = q0R
2
0/εxR1 + ρe0R

3
0/3εxR1. Lastly, we impose continuity at the interface, to find

f1(t). (
1

6εd
ρe0e

−σt/εR2
0 + f2(t)

)
=
R2

0

εx

(
q0 +

1

3
R0ρ

e
0

)(
1

R1
− 1

R0

)

Altogether,

ϕ(R, t) =
1

6εd
ρe0(R

2 −R2
0)e

−σt/εd +
R2

0

εx

(
q0 +

1

3
R0ρ

e
0

)(
1

R1
− 1

R0

)
for R < R0

ϕ(R, t) =
R2

0

εx

(
q0 +

1

3
R0ρ

e
0

)(
1

R1
− 1

R

)
for R0 < R < R1

(6.32)

A major drawback of this test is that our method works on a cylindrical, rather than spherical
domain. As such, errors in the voltage will accumulate toward the boundary R1. However, if we
make our cylindrical domain large, these errors should be small. In particular, they will scale as
R0/R1.

We ran simulations of charge decay on a domain with radius R1 = 16 and height 32. Figure 6.1
shows our computed voltage, visible as a potential pit. Figure 6.2 shows computed verses theoretical
values of the bulk charge on the drop over time - the agreement is quite good.

Figure 6.1: The computed voltage on a charged spherical drop, containing a uniform surface charge
of q = 0.62 and a uniform bulk charge of ρe = 1.23.
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Figure 6.2: Compute vs theoretical charge decay on a drop from an initial value of ρe = 1.23. The
conductance is σ = 10 and the dielectric coefficient is εd = 1. The theoretical value is given by Eq.
(6.28).

Thus far, we have developed a method for computing electric charge in multiphase flow, residing
both in the fluid bulk, and on the fluid interface. We have proposed a simple test problem to validate
our method by comparing our results to an exact solution, and we have begun validating our code
by computing the decay of bulk charge, relaxing on a stationary spherical drop. In the future, we
intend to further validate our method by computing charge buildup on the surface, for a stationary
drop, and measuring the potential and electric field against an exact solution. Finally, we intend to
validate our dynamic code by modeling the deformation of a charged drop under the influence of an
applied electric field.
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Chapter 7

Conclusion

We have developed, implemented, and validated a numerical method to track surfactants on fluid
interfaces and in the bulk, and sorption between the two phases. Our method uses finite differences,
computes volume of fluid, and tracks the moving front using markers that are advected with the
fluid in a Lagrangian fashion. Even without adaptive meshing, our method obtains good accuracy
at the interface, and conserves surfactant exactly in the insoluble case. With sorption, surfactant
conservation remains very good. We have also adapted our method to track electric charge in the
fluid bulk and on the interface, and account for exchanges between the two.

We have applied our method to account for surfactant effects in two existing physical problems:
partial coalescence of drops and bubbles, and rising in a stratified medium. Our study of coalescing
drops revealed a non-monotonic dependence on surfactant effects, which we explained using a scaling
argument comparing surface pressures at the top and base of the drop. We also studied gravity
effects and various initial conditions, including gravity deformation, surfactant redistributon due to
gravity, and uneven initial surfactant concentrations on the drop and the reservoir. In the case of
a clean drop, we found that partial coalescence cannot take place at all when surfactant effects on
the reservoir are sufficiently strong. Lastly, we considered the radius of the daughter drop resulting
from partial coalescence, and even presented a theoretical coalescence cascade.

Our results for soap films have already been confirmed experimentally, in a study that was
possible because of our work [128]. In particular, they observed partial coalescence of soap bubbles,
including a cascade of three coalescence events, in a setup matching ours, and measured the radii
of the daughter bubbles - the range they found matched ours. They also observed things that our
setup didn’t allow for - such as the trapping of the bubble in the film, and a partial coalescence event
that involves aborted trapping. As a consequence, their work opens new questions, concerning when
trapping occurs, and when trapping results in partial coalescence. Another question we did not
consider, but which came up in their experiments, was the thickening of the film in the coalescence
process, which inhibits coalescence cascades, because thicker films favored trapping [128].

In our study of rising drops, we considered three physical setups, likely to be encountered by oil
drops rising in the ocean. Firstly, we studied surfactant-laden drops rising in a uniform ambient.
Our results agreed with, and extended, existing results [9]. In our second setup, we considered
surfactant laden drops rising in a uniform ambient, and quantified the buoyancy of the entrained
fluid. In our third setup, we examined clean drops entering a surfactant layer. Due to Marangoni
effects, the drops were sucked into the layer, and then slowed down, after entering, transitioning to
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a steady-state settling speed. We were able to describe the resulting variations in drop speed based
on the surfactant profile on the surface of the drop.

As with all numerical methods, our method has some fundamental limitations, which cannot be
overcome without shifting to a completely different approach. Our approach works well for a middle
range of Reynolds numbers, roughly 1 ≤ Re ≤ 200. Below Re = 1, stability considerations force
the timestep toward zero, due to the fact that we use explicit timestepping. Above Re = 200, the
spatial resolution requirements become prohibitive. Another fundamental limit concerns topological
changes, which our method does not handle automatically. By artificially redefining the marker
fronts, we can cause drops to merge or pinch off with one another or with other fluid bodies - but
potentially incur significant errors when doing so. For problems involving major topological changes
to the interface, level set methods may be preferable.

However, some of the limitations currently present in the method are not fundamental, in that
they can be overcome by extension of the method. For instance, although our method does not handle
complex geometries as a matter of course, like finite element methods, it can be adapted to track
moving solid objects using a penalty method [129], which would open a wide range of applications to
fluid-structure interactions. Given that other methods for accounting for fluid-structure interactions
exist [130], the main advantage of adapting our method to track solid structures would be our
capacity to track them simultaneously with fluid interfaces. This would open up applications in
which a solid structure interacts with multiphase flow, such as when a solid particle passes through
an interface between two immiscible fluids.

In the future, our method could be coupled with adaptive meshing, to obtain excellent accuracy
at the front. With adaptive meshing, our method could be applied to problems where additional
accuracy at the front is needed. In addition, simple topological changes, such as the merging and
pinch off of a drop with a liquid reservoir could be modeled accurately with adaptive meshing.
The implementation of a method for adaptive meshing would not be easy, as it would involve
communication between multiple grids, and would involve a considerable time commitment on the
part of a researcher. Fortunately, the code that we have used to implement our method is highly
modular, which will make adaptive meshing considerably easier.

The adaptive meshing could be applied in stages - each stage unlocking new applications. The
first stage would start with only two grids, a coarse grid covering a large domain and a fine grid, fixed
in space, covering a smaller subset of that domain. This stage could be used to study coalescence
more carefully. In particular, for our coalescence paper, we had to begin our simulations after
merging had begun and stop them just before pinch-off. A non-adaptive layer of meshes would allow
for a more accurate accounting of the pinching and initial merging process. The next stage would be
to implement multiple levels of meshing, still fixed in space. Due to our usage of a linear multigrid
for inverting the Poisson equation, we would need grid resolution to double each time. Lastly, the
grid could be made adaptive, to move with the front, and detect when increased resolution is needed,
based on sharp changes in the pressure and flow field.

All of our work has been done on an axially symmetric domain. However, our method can
be easily adapted to 2D (planar) problems, by going through the existing code and modifying a
number of differential operators, numerical integration schemes, etc. The only real difficulty would
be making sure to keep track of every place where the method needs to be modified. A 2D version
of our method would be useful for a number of applications, such as gravity currents, or vertical
lengthwise cross sections of flowing streams, in which the third dimension can be approximated as
uniform.
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Our method can also be adapted to fully 3D simulations. Once the method is adapted to planar
domains, extending the Eulerian Navier-Stokes solver to a fully 3D domain would be straightforward.
However, extending the Lagrangian front tracker would be more difficult. A simple approach would
involve an array of markers, between which we interpolate using bicubic splines. However, the
topological limitations on the moving front would much more restrictive in 3D. In particular, tracking
a single drop in three dimensions would require sewing it together at a seam, and would likely be
unfeasible for our front tracking method. However, even with those topological limitations, a 2D
marker front would open up new applications. For instance, a 3D version of our method could be
used to study 2D turbulence by accounting for the motion of a 2D soap film in 3D space.

Another difficulty associated with a fully 3D version of our method would be the run time of
the simulations. Even with the 2D axially symmetric simulations we have applied, we’ve had to
run our code for nearly a month, in some cases, just to complete a single simulation. Thus, for a
3D application, it would most likely be worthwhile to parallelize the method to achieve manageable
run times. Parallelization, in turn, would benefit our method in two dimensions as well, making it
possible to run multiple successive simulations in a much shorter time. However, making the method
parallel would be no easy task, and would require a heavy time investment from future investigators.
Fortunately, much of the work involved in adaptive meshing would be applicable to parallelization
- in particular, having multiple grids, which must communicate.

One limitation of our study of rising drops and partial coalescence is that we used a linear
surfactant relation, which is not applicable in some situations. One possible future application
of our method would be to generalize our study using the nonlinear relation, including, perhaps,
molecular interactions, as represented in the Frumkin equation. A direct implementation of the
Frumkin relation would be straightforward, but would introduce two additional parameters to our
system [12]. Because we have already explored the influence of a number of parameters, including
the Reynolds number, the Marangoni number, the surface Péclet number, and the Biot number,
future investigators could build on our work by focusing on other parameters, such as the adsorption
number, the bulk Péclet number, and those parameters introduced by a nonlinear surfactant relation.

Another avenue of research to which our method could be applied is the dynamics of soap films.
By tracking the thickness of a soap film, one could predict when it will burst. Since our method
already tracks film thickness, applying it to this problem would require no additional modifications
to the implementation. However, because the bursting of soap films depends not merely on thickness,
but on microscale processes at play on the film, itself, our method would only be able to partially
account for the bursting process. As such, any study of film bursting would need to couple our
method with other methods - perhaps experiment, or Molecular dynamics simulations, or both.
While our method could provide information about film thickness as a function of behavior the
macroscopic system, other methods could determine the likelihood of the film bursting, for a given
film thickness, and other macroscopic properties of the system.

Our method could also be used to study the trapping of soap bubbles on soap films - a phe-
nomenon that results when one interface merges, and the other does not, so that a bubble is formed
on a suspended film [128]. In this case, we would need to track the individual interfaces of the
soap film separately. Our setup would involve three interfaces: the interior interface of the bubble,
the lower interface of the soap film, and the exterior interface of the bubble and top interface of
the suspended film (which we will have begun to merge by the start of the simulation). We are
confident that our method can do this, because we have already modeled two adjacent interfaces
in our coalescence study - when we modeled deformation effects, caused by a drop settling on a
reservoir. Accounting for three interfaces in a small space would require additional modification of
the method, but it would be straightforward to implement.
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Adapting the method to track electric charge opens a number of avenues for new research. One
possible application involves the coalescence of charged droplets, such as occurs in thunder clouds.
Charged drops are also known to undergo partial coalescence, under the influence of an applied
electric field [121], and our method could be used to investigate the effects of the electric field on
the process of partial coalescence. As with our previous study of partial coalescence, it would be
necessary to focus on the motion after merging has begun, and before pinch-off has occurred - but
this should allow for a complete understanding of the coalescence process.

The deformation of nanoscale droplets by electric fields provides an interesting regime where MD
simulations [131] can perhaps overlap with continuum models. It would be fascinating to determine
at what point each approach ceases to be valid, and for what regime either approach is applicable.

Alternately, our method may be employed to study electrowetting, including the ability of charged
drops to jump from a solid substrate. Our method is already being employed by researchers at MIT
so study electric field effects on the contact angle, without actually modeling the electric field. At
present, they are artificially adjusting the contact angle, and tracking the subsequent motion of the
drop. This research could be extended by tracking the electric field directly, with our augmented
method.
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Appendix A

Appendices

A.1 Computation of the Viscous Term

Putting the form (3.1) for the deviatoric stress tensor into the radial divergence equations (3.2) and
(3.3), we arrive at

∇ · T · er =
2µ

r

∂

∂r

(
r
∂u

∂r

)
+ µ

∂
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(
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(A.1)
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. (A.2)

We can simplify using the assumption of zero divergence Differentiate the continuity equation to get
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Expanding the derivatives in Equations (A.1) and (A.2), and substituting Equations (A.3) and (A.4),
we arrive at

∇ · T · er =
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(A.5)

∇ · T · ez =
µ
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∂r2
+ µ

∂2v

∂z2
(A.6)

which is equivalent to equation (3.4).

A.2 Surfactant Mass Conservation in the Cap Angle Prob-
lem

We derive relation (5.16) using the solution of Sadhal and Johnson [9] to the spherical cap problem in
creeping flow. Having obtained the flow field around and inside the rising drop, Sadhal and Johnson
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computed the speed of the rising drop as:

USJ =
UHR

CD(θc)
(A.7)

where UHR is the familiar Hadamard-Rybczynski speed of a clean drop, given in Eq. (1.2), and
CD(θ) is a drag coefficient, given in Eq. (5.17). They also obtained a closed form expression for the
tangential stress at the interface:

∂γ̃

∂θ
= µaUSJh(θ, θc) (A.8)

where γ̃ is the dimensional surface tension on the stagnant cap, µa is the viscosity of the ambient
fluid, and

h(θ, θc) =
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π
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(A.9)

Using the linear surfactant relation (2.14), we find that the surfactant concentration on the stagnant
cap satisfies

∂

∂θ

(
Γ

Γ0

)
= − 1

Mg

h(θ, θc)

CD(θc)
(A.10)

Assuming θc < π, we can use the condition Γ(θ = θc) = 0. Then the above expression integrates to

Γ(θ)

Γ0
= − 1

Mg

H(θ, θc)

CD(θc)
where H(θ, θc) =

∫ θ

θc

H(ψ, θc)dψ (A.11)

The function h can be integrated analytically over the interface by making the substitutions

ηc = 1 + cos θc and η = 1 + cosψ so dη = − sinψdψ

and applying the trig identity

tan
(ψ
2

)
=

sinψ

1 + cosψ

to get

tan
(ψ
2

)
dψ = −dη

η
.

Obtain

H(θ, θc) = − 2

π

∫ 1+cos θ

1+cos θc

(
3

2
arcsin

(
η − ηc
η

)1/2

+
3

2

√
ηc(η − ηc)

η
+

η
3/2
c

η
√
η − ηc

)
dη

= − 2

π

((3
2
η − ηc

)
arcsin

(
η − ηc
η

)1/2

+
3

2

√
ηc(η − ηc)

)∣∣∣∣
1+cos θ

1+cos θc

.

When θ = θc, the rightmost expression is zero, so we obtain the closed form expression for H:

H(θ, θc) =

∫ θ

θc

h(ψ, θc)dψ = − 2

π

((3
2
η − ηc

)
arcsin

(
η − ηc
η

)1/2

+
3

2

√
ηc(η − ηc)

)
. (A.12)

This gives us a closed form expression for the surfactant concentration profile on the cap angle.
The total surfactant mass, MΓ(θc), on the drop can be obtained from an area integral over the
stagnant cap.

MΓ(θc) = − 2πR2
0Γ0

MgCD(θc)

∫ θc

0

H(θ, θc) sin θdθ = 4πR2
0Γ0 . (A.13)
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The rightmost expression is the surfactant mass when the surface concentration is uniformly dis-
tributed. The expression (A.12) we found for H can be analytically integrated:

∫ θc

0

H(θ, θc) sin θdθ =
2

π

∫ ηc

2

((3
2
η − ηc

)
arcsin

(
η − ηc
η

)1/2

+
3

2

√
ηc(η − ηc)

)
dη

=
2

π

(
3

2

(
1

2
η2 arcsin

(
η − ηc
η

)1/2

− 1

6
(η + 2ηc)

√
ηc(η − ηc)

)

− ηc

(
η arcsin

(
η − ηc
η

)1/2

−
√
ηc(η − ηc)

)
+

3

2

(
2

3
η1/2c (η − ηc)

3/2

))∣∣∣∣
ηc

2

= − 2

π

(
3

2

(
θc −

1

6
(4 + 2 cos θc) sin θc

)
− (1 + cos θc) (θc − sin θc) + (1− cos θc) sin θc

)

= − 2

π
(2θc + 4 sin θc − sin 2θc − 4θc cos θc)

Substituting this into Eq. (A.13) and simplifying, obtain Eq. (5.16):

Mg =
2θc − 4θc cos θc − sin 2θc + 4 sin θc

4πCD(θc)
. (A.14)
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