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of starting material with a dilution series, using technical repli-
cates of decreasing amounts of total RNA taken from the same 
pool of total RNA (Fig. 1 and Supplementary Fig. 1). Throughout 
our analysis we generated libraries using the protocol of Tang 
et al.4; we obtained very similar levels of technical noise when we 
compared it to results with another protocol3 (Supplementary 
Note 2 and Supplementary Fig. 2).

The dilution series allowed us to assess the accuracy of meas-
urements of relative concentration for each starting amount3 
(Fig. 1). For 5,000 pg of input material, the noise pattern was com-
parable to that of technical replicates from bulk RNA-seq experi-
ments, in which the spread can be accounted for by the Poisson 
distribution11. However, the number of genes affected by high 
levels of technical noise increased notably at lower amounts of 
starting material (for example, a transcript could have 100–1,000 
read counts in one technical replicate but 0 counts in another), 
as also noted previously3. Nevertheless, genes with a high read 
count showed very good agreement between replicates even 
for the 10-pg data point—meaning that low–read count genes 
show strong noise and high–read count genes show weak noise; 
what changes across differing amounts of starting material is the  
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Single-cell RNA-seq can yield valuable insights about the 
variability within a population of seemingly homogeneous 
cells. We developed a quantitative statistical method to 
distinguish true biological variability from the high levels 
of technical noise in single-cell experiments. Our approach 
quantifies the statistical significance of observed cell-to-cell 
variability in expression strength on a gene-by-gene basis.  
We validate our approach using two independent data sets  
from Arabidopsis thaliana and Mus musculus.

Progress in gene expression analysis using minute amounts of start-
ing material has made single-cell transcriptomics accessible1–5. 
So far, the main goal has been discovery-driven research on gene 
expression in rare cells, and analysis has focused on global proper-
ties of the data. However, another promising application is the study 
of transcriptional heterogeneity within supposedly homogeneous 
cell types, a phenomenon of physiological importance6–9, which can 
now be studied in a transcriptome-wide manner in single cells10. In 
such analyses, which should be distinguished from the more com-
mon two-group comparison setting (Supplementary Note 1), it is 
necessary to account for strong technical noise. Technical noise is 
unavoidable owing to the low amount of starting material, and it 
must be quantified in order to avoid mistaking it for genuine differ-
ences in biological expression levels. We present a statistical method 
that allows the user to assess, separately for each gene, whether the 
observed variation provides evidence of high biological variability, 
i.e., whether one can rule out that variation is merely a consequence 
of technical noise. Our approach is based on the observation that 
the strength of technical noise of a given gene depends mainly on 
the gene’s average read count3 and that this dependence can be 
inferred from a sufficiently rich set of spike-ins.

The low amount of RNA present in a single cell represents the 
main challenge in single-cell RNA-seq experiments. We demon-
strated the relationship between technical noise and the amount 
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Figure 1 | Dilution series of total A. thaliana RNA. (a–d) Experiments  
with 5,000 pg (a), 500 pg (b), 50 pg (c) and 10 pg (d) of total RNA.  
For a scatter plot of the full dilution series, see Supplementary Figure 1.
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read-count range in which noise strength transitions from weak 
to strong. Our approach uses technical spike-ins to quantify this 
dependence across the whole dynamic range of expression before 
exploiting this information for subsequent inferences on biologi-
cal cell-to-cell differences.

To illustrate our method, we used data from a single-cell RNA-
seq experiment performed on A. thaliana cells. Cells marked by the 
expression of GFP driven by the GL2 (ref. 12) or WOX5 promoters 
were collected from the roots of A. thaliana seedlings. The former 
marks non-hair cells in the root epidermis (‘GL2 cells’), and the 
latter marks cells from the quiescent center of the root (‘QC cells’). 
We used total RNA from HeLa cells as spike-ins because it covers 
the whole dynamic range at sufficient density and behaves similarly 
to plant RNA (Supplementary Fig. 3). Moreover, it is easily dis-
tinguishable at the sequence level. For comparison, we also added 
the set of 92 spike-ins developed by the External RNA Control  
Consortium (ERCC)13.

For the GL2 cells, on average 57.6% and 22.9% of reads mapped 
back to the A. thaliana and H. sapiens genomes, respectively, 
suggesting that a typical GL2 cell contains ~60 pg of total RNA 
(Online Methods and Supplementary Table 1). QC cells con-
tained on average only ~10 pg (Supplementary Table 1) and 
therefore represent a technically more challenging sample type. 
Nevertheless, we could map all 13 single-cell transcriptomes to 
the correct cell types in a previously published A. thaliana root 
atlas12, a result that provides confidence in the quality of our data 
(Supplementary Note 3 and Supplementary Fig. 4).

A comparison of two spiked GL2 cells illustrated the difference 
between the correlation of read counts from the HeLa cell genes 
(Fig. 2a), which are affected by technical noise only, and those 
from the plant genes (Fig. 2b and Supplementary Figs. 5 and 6), 
which are subject to both technical noise and biological variabil-
ity. We saw that for genes with a read count up to ~100, the tech-
nical noise was ‘maximal’: the same HeLa gene could have ~100 
read counts in one sample and no read counts at all in the other. 
It was therefore impossible for a plant gene of similar expression 
strength to show stronger variability even if it were subject to 
strong biological variability in addition to technical noise.

To quantify the relationship between technical noise and mean 
expression strength, we first normalized the counts to account 
for sequencing depth and cellular RNA content (Online Methods 
and Supplementary Note 4), though not for transcript length 
(Supplementary Note 5 and Supplementary Fig. 7). Then we calcu-
lated, for each plant gene and each spike-in, the squared coefficient 

of variation (CV2) of the normalized read counts across samples 
(Fig. 2c,d). To capture the dependence of the CV2 of the spike-ins on 
their average normalized count µ, we fit a curve to the observed data, 
using the parameterization CV2 = a1/µ + α0 (Online Methods).

We developed a statistical approach to test, for each gene, the 
null hypothesis that the biological coefficient of variation is less 
than a level chosen by the user. All genes will display some bio-
logical variability in expression from cell to cell, but a high level 
of variance (exceeding the specified threshold) will indicate genes 
important in explaining heterogeneity within the cell population 
under study (Online Methods and Supplementary Note 6). The 
Supplementary Software provides extensively commented code to 
illustrate how to perform the analysis in the statistical program-
ming language R.

Using our approach—and correcting for multiple testing14—we 
found, at a false discovery rate of 10%, 876 genes across the seven 
GL2 cells that showed statistically significant evidence against the 
null hypothesis that their biological coefficient of variation was 
less than our chosen minimum CV of 50% (i.e., CV2 < 0.25). We 
therefore considered these genes to be highly variable (Fig. 2d 
and Supplementary Table 2). As the QC cells are much smaller 
than the GL2 cells, with only about one-sixth of the starting 
amount of total RNA (Supplementary Table 1), the technical 
noise was noticeably stronger in the QC cells (Supplementary 
Figs. 6 and 8), which considerably reduced the statistical power 
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Figure 2 | Technical noise fit and inference of highly variable genes using 
total HeLa RNA as a spike-in in GL2 cells. (a) Scatter plot for normalized 
read counts for the HeLa total RNA spike-in. (b) Scatter plot for 
normalized read counts for the plant genes. (For five more GL2 cells, see 
Supplementary Fig. 5; for the QC cells, see Supplementary Fig. 6).  
(c) Technical noise fit: squared coefficients of variation are plotted against 
the means of normalized read counts for each HeLa gene using data from 
all seven GL2 cells. The solid red curve represents the fitted variance-mean 
dependence; the dashed lines indicate a 95% interval for the expected 
residual distribution (Online Methods). (d) Identification of highly variable 
genes across all seven GL2 cells. For the genes highlighted in magenta,  
the coefficient of biological variation significantly exceeds 50%  
according to our test (with the false discovery rate controlled at 10%).  
The dashed line marks the expected position of genes with 50% biological 
CV; however, owing to the statistical uncertainty of CV estimation, 
statistical significance is achieved only for CV2 values well above this line.

Figure 3 | Technical noise fit 
and inference of highly variable 
genes using ERCC spike-ins.  
Our statistical method was 
applied to a data set comprising 
91 mouse cells spiked with only 
the ERCC spike-in set. Blue dots 
correspond to ERCC data points, 
brown dots to mouse genes, and 
magenta dots to significantly 
highly variable mouse genes (at a 
10% false discovery rate). The solid red line represents the technical noise 
fit, and the dashed magenta line marks the expected position of genes 
with 50% biological CV.
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to infer highly variable genes across cells. As a result, only 64 
genes were identified as being highly variable in this cell type 
(Supplementary Fig. 8 and Supplementary Table 3).

Across the highly variable genes, we found clear enrich-
ments for Gene Ontology (GO) categories such as “Nucleosome 
Assembly” (P = 2.5 × 10−24), “Cell Proliferation” (P = 6.0 × 10−6), 
“Anaphase” (P = 5.4 × 10−7) and “Cell Wall” (P = 3.8 × 10−6), 
which are expected to vary across cells because they are indicative 
of distinct growth states for GL2 and QC cells (for a full list, see 
Supplementary Table 4). Additionally, individual GO catego-
ries tended to be upregulated in a coordinated fashion in indi-
vidual cells, a result suggesting that these GO categories reflect 
different cellular states and possible instances of co-regulation10 
(Supplementary Fig. 9). However, the analysis of a larger number 
of cells would be needed to further substantiate these claims.

As in any hypothesis test, our results did not imply that none of 
the remaining genes was highly variable. In fact, for all genes in the 
GL2 cells with normalized counts below ~100 (weakest significant 
gene in Fig. 2d), even the strongest biological variation could not 
be detected because technical noise was maximal (Supplementary 
Note 7). This is not a limitation of our statistical approach; rather, 
it is a direct consequence of the limited sensitivity of current  
single-cell RNA-seq protocols. (Supplementary Note 4).

The precision of our approach requires an accurate characteri-
zation of the dependence of technical noise strength on average 
read count. Although using total RNA as a spike-in is a pragmatic 
solution with certain advantages (Supplementary Note 8 and 
Supplementary Fig. 10), it has the disadvantage that approxi-
mately half of the reads per sample are allocated to modeling 
technical variability. An alternative approach would be to use a 
smaller spike-in set such as the 92 ERCC spike-ins13, which were 
also added to our A. thaliana single-cell samples. For our small-
scale experiments with only six or seven cells, the CV2 estimate 
provided by each individual spike-in had a large sampling vari-
ance, and the 92 ERCC spike-ins did not provide sufficient infor-
mation to obtain a stable fit (Supplementary Fig. 11). However, 
in an experiment with more cells, each individual spike-in pro-
vides a more precise estimate of the CV2 at the respective read- 
count value.

To illustrate this, we applied our method to identify highly vari-
able genes across a set of 91 single-cell transcriptomes, obtained 
from a single cell type of the murine immune system, wherein 
each cell had been spiked with the ERCC spike-in set only (Online 
Methods). These are data from a very recent experiment, and 
the biology is still being explored; here we used these data (an 
anonymized version of which is available in Supplementary 
Table 5) to demonstrate the efficacy of our approach using only 
ERCC spike-ins. The relationship between technical variability 
and expression strength showed a robust fit (Fig. 3). We identified 
highly variable genes across the 91 cells and found 1,198 at a 10% 
false discovery rate. This set of genes was strongly enriched for 
several GO categories including “Cytokine Activity” (P = 6.9 ×  
10−8), as expected. This suggested that the set of genes identified 
are likely to be physiologically relevant. We also note that the 
sequencing coverage of these data was lower than that used in 

the A. thaliana experiments, thereby illustrating that sequencing 
deeply is typically unnecessary for drawing biological conclu-
sions from single-cell transcriptomes (Supplementary Note 9 and 
Supplementary Fig. 12).

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. ArrayExpress: raw sequencing data are available 
at accession E-MTAB-1499.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Plant growth conditions. The pWOX5øGFP and pGL2øGPF 
seeds were sterilized using 4 h of standard bleach vapor steriliza-
tion15. After sterilization, seeds were stratified in the dark at 4 °C 
for 72 h, and plants were subsequently grown vertically for 4 d in 
constant-light conditions at 22 °C and 45% humidity. Standard 
root plates were used for growing plants (i.e., 1× Murashige and 
Skoog basal medium, 0.5% sucrose, 2.6 mM 2-(N-Morpholino) 
ethanesulfonic acid (pH 5.7) and 1% agarose).

Isolation of single plant cells. QC and GL2 cells were isolated as 
previously described16. In brief, root tips of fluorescent marker 
lines were cut off using a scalpel and transferred to solution B 
for protoplasting (0.6 M Mannitol, 10 mM KCl, 10 mM MgCl2, 
10 mM CaCl2, 1 mg/ml BSA, 0.39 mg/ml MES, pH 5.5, 1.5% 
Cellulase R10 (Yakult), 0.1% Pectolyase Y-23 (Yakult)). Root 
tips were protoplasted on a platform shaker for 30 min for the 
GL2 cells and 60 min for the QC cells. Release of QC cells was 
facilitated by gently streaking root tips on a 75-µm cell strainer 
every 15 min, whereas GL2 cells were released by gently pipet-
ting pieces of tissue up and down using a mouth pipette. GL2 
cells that are present along the whole root were picked from a 
small region of the root to minimize variability due to position. 
Single cells of interest were identified by GFP signal and washed 
three times using individual drops of washing solution A (0.6 M 
Mannitol, 10 mM KCl, 10 mM MgCl2, 10 mM CaCl2, 1 mg/ml 
BSA, 0.39 mg/ml MES, pH 5.5). After three washes, cells were 
transferred within a volume of <0.5 µl of solution A to PCR tubes 
containing the lysis buffer.

Preparation of cDNA libraries. Single-cell or technical-replicate 
cDNA libraries were prepared as described previously4,5 with the 
following modifications: PBS had to be replaced with solution A 
for plant cells because A. thaliana cells rapidly die in PBS (data 
not shown). We confirmed that solution A does not negatively 
affect the performance of the protocol (Supplementary Fig. 13). 
Furthermore, we included a third RNase inhibitor from Qiagen 
(cat# 129916), used 1 µl of the reverse-transcription master mix, 
and performed 24 cycles of the initial PCR. HeLa total RNA and 
ERCC spike-ins were diluted using RNase-free water. 1 µl of a 
1:1,000,000 dilution of the ERCC spike-ins and 50 pg of HeLa 
total RNA were included in the lysis buffer per reaction where 
applicable. Final cDNA libraries (200–2,000 ng depending on the 
amount of input material) were checked for known marker genes 
using qPCR (Supplementary Fig. 14), and after passing quality 
control, libraries were fragmented with the Covaris S2 system as 
reported previously4,5 using Covaris mircoTUBEs (cat# 520045) 
and a volume of 130 µl for shearing (libraries were diluted to 
that volume using RNase-free water). After fragmentation, the 
volume was reduced to 85 µl using a SpeedVac concentrator, 
and samples were subjected to standard Illumina library prepara-
tion using the NEBNext DNA Sample Prep Master Mix Set 1 kit 
according to the manufacturer’s instructions. Modified Illumina 
PE adapters including custom-made multiplexing barcodes 
(Supplementary Table 6) were ligated (amount of adapters was 
adjusted according to amount of input material), and Illumina PE 
primers (PE PCR Primer 1.0 and PE PCR Primer 2.0) were used 
for the PCR enrichment step (ten cycles) of the NEBNext proto-
col. The final purification step was performed using AMPure XP 

beads (Beckman Coulter) rather than columns, and clusters were 
generated by following the standard Illumina protocol. Samples 
were sequenced on an Illumina HiSeq 2000 machine. Single-end 
50-bp reads were used, and sequencing yielded approximately 
20–90 million reads per sample, dependent on the extent of  
multiplexing. All primers used for quality-control qPCRs are 
listed in Supplementary Table 7.

Preparation of cDNA libraries using the SMARTer Ultra Low 
RNA Kit (Clontech). This protocol was used only for comparison 
to the protocol developed by Tang and coworkers4,5. A. thaliana 
total RNA was diluted using RNase-free water, and 50 pg was used 
for each cDNA library preparation using the SMARTer Ultra Low 
RNA Kit for Illumina Sequencing from Clontech according to 
manufacturer’s instructions. 24 cycles of PCR were used for library 
amplification, and after passing quality control, finalized cDNA 
libraries (6–20 ng) were fragmented with the Covaris S2 system as 
reported previously4,5 using Covaris mircoTUBEs (cat# 520045) 
and a volume of 130 µl for shearing (libraries were diluted to that 
volume using RNase-free water). After fragmentation, the volume 
was reduced to 44 µl using a SpeedVac concentrator, and samples 
were subjected to standard Illumina library preparation using the 
NEBNext ChIP-Seq Sample Prep Master Mix Set 1 kit according 
to the manufacturer’s instructions. Illumina PE adapters includ-
ing custom-made multiplexing barcodes (Supplementary Table 6) 
were ligated (the amount of adapters was adjusted according to the 
amount of input material), and Illumina PE primers (PE PCR Primer 
1.0 and PE PCR Primer 2.0) were used for the PCR enrichment step 
(15 cycles) of the NEBNext protocol. The final purification step 
was performed using AMPure XP beads (Beckman Coulter) rather 
than columns, and clusters were generated by following the standard 
Illumina protocol. Samples were sequenced on an Illumina HiSeq 
2000 machine. Single-end 50-bp reads were used, and sequencing 
yielded approximately 35,000,000 reads per sample.

Alignment of reads. Reads were aligned to the A. thaliana genome 
(TAIR10) and to a set of known splice sites from the GTF file for 
TAIR10 provided by Ensembl Plants (release 15) (TAIR10, release 15)  
using GSNAP (version 2012-07-20) with default options17. For 
samples with the HeLa total RNA spike-in, reads were mapped 
simultaneously to the Homo sapiens (GRCh37) and A. thaliana 
genomes (TAIR10). For the H. sapiens genome, the set of known 
splice sites was taken from the GTF file for GRCh37 provided by 
Ensembl (release 69). We considered only reads uniquely mapped 
to the genomes. Owing to the large evolutionary distance between 
H. sapiens and A. thaliana, cross-mapping of reads is not an issue: 
less than 0.0015% of the reads could not clearly be assigned to one 
of the two species by the aligner and hence have been excluded 
from the analysis. From the mapped reads and the GTF files, we 
counted reads for each gene using htseq-count (http://www-huber.
embl.de/users/anders/HTSeq/). The read count table is available in  
Supplementary Table 8.

Mapping of cells to a spatiotemporal atlas of the root. QC and 
GL2 cells were mapped to a spatiotemporal atlas of the A. thaliana  
root that has been described elsewhere12. The atlas consists of 19 
GFP-marked cell populations representing 14 nonoverlapping cell 
types, as well as 13 sections along the longitudinal axis (which also 
represents a temporal axis) of the A. thaliana root. All Affymetrix 

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/


doi:10.1038/nmeth.2645 nature methods

CEL files generated on an ATH1 microarray, from the AREX 
LITE repository (http://www.arexdb.org/), were normalized  
by using the RMA method implemented in the “affy” package 
of Bioconductor18. We removed all probe sets containing genes 
that did not appear in Ensembl Plants (TAIR10, release 15) and 
merged intensity values of multiple probe sets mapping to the 
same gene by taking the maximum value. For mapping, we con-
structed a k–nearest neighbor classifier that assigns the class label 
of a query sample or cell based on its closest training sample in 
the spatiotemporal atlas. We set k to 1 because we have only two 
or three samples for each class in the training data, and we used 
Spearman’s rank correlation coefficient as a similarity measure 
between samples. To remove nonvariable genes among samples 
in the spatiotemporal atlas, we chose the top 3% genes according 
to the coefficient of variation of normalized intensities across  
samples and computed Spearman’s rank correlation coefficient 
using these genes. This cutoff was chosen because it maximized 
classification accuracy as adjudged by a leave-one-out cross- 
validation analysis performed using only the spatial atlas data.  
To visualize the mapping of QC and GL2 cells to the spatiotem-
poral atlas, we performed principal-component analysis on the 
normalized data matrix using the princomp function in Matlab, 
wherein each row represents one of the top 3% genes and each col-
umn represents one of the samples (53 samples for the spatial atlas 
and 25 samples for the temporal atlas together with 13 samples for 
the QC and GL2 cells). The relationship between columns (sam-
ples or cells) was visualized by loadings (or principal-component  
coefficients) of the first three principal components.

Estimating the amount of total RNA of single cells. The amount 
of total RNA obtained from single cells, which were spiked with the 
HeLa total RNA spike-in, was estimated through the proportion 
of reads mapped to the A. thaliana genome. For the three techni-
cal replicates of 50 pg A. thaliana total RNA with 50 pg total HeLa 
RNA (shown in Supplementary Fig. 3), this proportion had a mean 
value of 0.5808. Assuming a linear relationship between the amount 
of A. thaliana total RNA and the proportion of reads mapped to 
the A. thaliana genome, the amount of total mRNA of a single cell 
can be estimated by 50 pg × x/0.5808, where x is the proportion of 
reads of the sample mapped to the A. thaliana genome.

Normalization. This section and the next two describe analysis 
steps that have been carried out using the statistical programming 
environment R. The complete code used, with extensive com-
menting, is available in the Supplementary Software to facilitate 
reuse of our method.

To normalize the read counts, we used the method that we 
developed for DESeq19 (see also Supplementary Note 6). Briefly, 
for each gene, i, we calculate the geometric mean
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over the counts kij across all the samples j = 1,…, m and then use, 
for each sample, the median of the ratio of the sample’s counts to 
these means as a ‘size factor’: sj = mediani(kij/ki

M).
Notably, we calculate two sets of size factors: (i) by running the 

median over only the ‘technical genes’ (i.e., the spiked-in HeLa 

genes), we obtain the ‘technical size factors’ sj; and (ii) by running 
the median over only the ‘biological genes’ (i.e., the plant genes), 
we obtain the ‘biological size factors’ sj

B. Each set of size factors 
is used to normalize the expression measures for technical or bio-
logical genes by dividing the read counts by the appropriate size 
factor in order to obtain normalized read counts. As discussed 
in more detail in Supplementary Note 4, the two normaliza-
tions have different effects: whereas the technical normalization 
accounts for only sequencing depth, the biological normalization 
accounts also for differences in the amount of biological starting 
material obtained from each cell.

Optionally, one may divide the count values not only by size 
factors but also by transcript length (Supplementary Table 9). 
For the analysis presented here, we did not account for length in 
this way; see Supplementary Note 5 for a discussion.

Estimating and fitting technical noise. This and the next section 
briefly outline the method used for inference; for its justification, 
see Supplementary Note 6.

For each technical gene i, we estimate the sample mean and 
sample variance of its normalized counts, i.e., the respective  
quantities
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Figure 2c is a plot of the squared coefficients of variation  
(CV2), ˆ ˆ / ˆw Wi i i= m2 , against m̂i. We fit a generalized linear model 
(GLM) of the gamma family with identity link and parameteri-
zation w = ã1/µ + α0 to this plot using the GLM fitter provided 
in the R package statmod. We fit the model using only those 
value pairs ( ˆ , ˆmi iw ) that surpass a certain threshold m̂i > µth;  
this serves to exclude genes with very high CV2 and hence high 
uncertainty in the estimate for µ. The threshold is chosen such 
that only 5% of the genes with ŵi  > 0.3 have m̂i > µth. (For the 
mouse data, we allowed 20% rather than only 5% of the ERCC 
transcripts to surpass the threshold, as we have many fewer ERCC 
spike-ins than HeLa genes.) The coefficients α0 and ã1 obtained 
from the fit (solid red line in Fig. 2c) characterize the technical 
noise and are used in the following.

Testing for high variance. Again, we calculate the sample 
moments, now for biological gene i
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Slightly simplifying, the expected value of Ŵi
B should be the  

sum of the technical and the biological components of the variance.  
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Up to corrections (see below), the technical variance takes the 
value predicted by the technical noise fit, ã1 m̂i

B + α0(m̂i
B)2. For the 

total variance, we add to this αi
B(m̂i

B)2, where αi
B is the squared 

true coefficient of biological variation.
A more careful calculation, given in Supplementary Note 6, 

gives rise to a number of extra correction terms, yielding the result 
EŴi

B = Ω(αi
B,m̂i

B), with
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where αF = α0 + α + α0α, a1 = ã1 − Ξ and

Ξ = ∑1 1
m sj j

,
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m sj j
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Now, in order to test the null hypothesis that a gene’s biological  
CV2 does not significantly surpass a chosen minimal value 
αth, we proceed as follows. As Ŵi

B is a sampling variance cal-
culated from m observations, we assume its sampling distribu-
tion to approximately be that of a χ2 distribution with m − 1 
degrees of freedom, scaled to the expected mean. If the gene’s 
biological CV2 were exactly αth, this mean would be Ω(αth,m̂i

B).  
Hence, the right tail probability of this distribution provides P 
values pi for a one-sided test of the null hypothesis αi

B ≤ αth.
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where
F

mc −1
2

is the cumulative distribution function of the χ2 distribution with 
m − 1 degrees of freedom.

GO analysis of high variance genes. We used TopGO20 to find 
enriched Gene Ontology (GO) categories. In order to safeguard 
against confounding due to expression strength, we needed to 
exclude genes from the analysis universe for which inferential 
power to detect high variability was insufficient owing to high 
technical noise. Therefore, we included only genes with an average 
normalized read count of at least 200 for the GL2 cells and 600 

for the QC cells. We ran TopGO in its “elimination mode” with 
Fisher’s exact test and considered categories with an unadjusted 
P value below 10−5 as significant.

Cell capture and library preparation for mouse cells using the 
Fluidigm C1 system. 2,000 cells were loaded onto a 10- to 17-µm  
C1 Single-Cell Auto Prep IFC (Fluidigm), and cell capture was 
performed according to the manufacturer’s instructions. The cap-
ture efficiency was inspected using a microscope, and there were 
single cells in 93 positions and two cells in three positions. These 
three positions were noted, and the data from these cells were 
subsequently removed from analysis.

Upon capture, reverse transcription and cDNA preamplifica-
tion were performed in the 10- to 17-µm C1 Single-Cell Auto Prep 
IFC using the SMARTer PCR cDNA Synthesis kit (Clontech) and 
the Advantage 2 PCR kit (Clontech). 1 µl of the ERCC Spike-In 
Control Mix (Ambion) in a 1:400 dilution in C1 Loading Reagent 
was added to the lysis mix.

cDNA was harvested and diluted to a range of 0.1–0.3 ng/µl, 
and Nextera libraries were prepared using the Nextera DNA 
Sample Preparation Kit and the Nextera Index Kit (Illumina) by 
following the instructions in the Fluidigm manual “Using the C1 
Single-Cell Auto Prep System to Generate mRNA from Single 
Cells and Libraries for Sequencing.” Libraries were pooled, and 
paired-end 75-bp sequencing was performed on eight lanes of an 
Illumina HiSeq. All experiments involving mice were approved by 
the local ethical review committee, and a certificate of designa-
tion from the UK Home Office (the national authority for animal 
experimentation) was obtained.

Mapping of reads and normalization for the mouse data set 
(91 cells). Paired-end reads were mapped simultaneously to the 
M. musculus genome (Ensembl version 38.70) and the ERCC 
sequences using GSNAP (version 2013-02-05)17 with default 
parameters. Two cells were removed at this stage owing to very 
low numbers of reads mapping to these libraries, which left 
91 cells in total. From here we proceeded as described for the  
A. thaliana data.
15.	 Clough, S.J. & Bent, A.F. Plant J. 16, 735–743 (1998).
16.	 Birnbaum, K. et al. Nat. Methods 2, 615–619 (2005).
17.	 Wu, T.D. & Nacu, S. Bioinformatics 26, 873–881 (2010).
18.	 Irizarry, R.A. et al. Biostatistics 4, 249–264 (2003).
19.	 Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).
20.	 Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Bioinformatics 22, 1600–1607 

(2006).
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