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Abstract

Background: Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the

identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers

spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute

equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number

of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of

using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the

trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate

weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by

k-means cross-validation.

Results: Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a

specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase

was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore,

bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with

low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in

accuracy.

Conclusions: Genomic relationship matrices weighted by marker realized variance yielded more accurate and less

biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker

weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low

stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies

may include other sources of information, such as functional annotation and gene networks, to better exploit the

genetic architecture of traits and produce more stable predictions.

Background
Since the introduction of dense single nucleotide polymor-

phisms (SNP) chips, the statistical methodology used in

genomic selection has undergone significant improve-

ments. Prediction of genetic merit is most commonly

based on linear regression models, in which the genomic

breeding value (GEBV) for an individual is computed as

the sum of the marker effects multiplied by the specific in-

dividual allelic variants across the entire genome [1]. Since

the number of markers that are simultaneously fitted in

the model can be high, different strategies that deal with

small n and large p (where n is the number of genotyped

individuals and p is the number of predictors) have been

adopted. Each method leans more or less on a priori as-

sumptions about the genetic architecture of the trait and

the linkage disequilibrium (LD) between markers and the

quantitative trait loci (QTL) [2].

Alternatively, genomic-BLUP (GBLUP) can take advan-

tage of the genomic relationship matrix (G) constructed

from genotypic information [3-5], where additive genetic

relationships between pairs of individuals are derived from

the number of alleles shared at each locus of the genome.

GBLUP assumes a polygenic architecture of the trait
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analyzed and considers the contribution of all the markers

in the construction of the G matrix. This is opposed to

other methods such as those of the Bayesian alphabet fam-

ily, which often assume that the genetic variance is ex-

plained by a reduced number of markers, among which

some have a small or no effect [6-8]. Based on this as-

sumption, performance of GBLUP (and Bayesian Ridge-

Regression (RR)) is expected to be poorer than other

methods when the trait is not polygenic. This performance

decline occurs when for example the number of QTL is

smaller than the number of effective independent loci

across the genome. In a simulation study, Daetwyler et al.

[2] showed a clear advantage of Bayes-B over GBLUP for

traits for which the number of QTL was small in compari-

son to the significantly smaller number of independent

chromosomal segments, while this advantage was lost for

highly polygenic traits.

Since GBLUP measures the average relationship

among individuals across the genome, it is less sensitive

to the genetic architecture of any particular trait. Thus,

GBLUP predictions lean more on within-family linkage

and Mendelian sampling, while LD between markers

and QTL becomes of secondary importance. Habier

et al. [6,9] demonstrated how the decaying genetic rela-

tionship across generations affected RR prediction accur-

acy more than that obtained with Bayes-B because RR is

more sensitive to family linkage. This is mainly because

it forces all markers to contribute to genetic variation

and neglects the fact that only some markers may be in

LD with the QTL. Conversely, GBLUP presents some

advantages in the implementation of various models. All

extensions of BLUP, such as multiple-trait, random re-

gression, probit and logit models can be easily accom-

modated and made computationally efficient. Moreover,

the GBLUP method has been extended to the single-step

BLUP method, which allows the incorporation of both

pedigree-derived and genomic-derived relationships into

a single relationship matrix [10].

The assumption of polygenic architecture represents a

potential disadvantage of GBLUP since the model does

not explicitly allow regions near QTL to absorb more gen-

etic variation than other regions. Nevertheless, contribu-

tions from each marker to G can be manipulated in the

computational process, such that the assumption of equal

contribution can be relaxed. In the basic G matrix [11],

markers are weighted by their expected variance, i.e.

weights become solely a function of allele frequencies. Al-

ternatively, the relative emphasis of each marker can be

adjusted by the real contribution of the specific locus to

the total genetic variation of the trait, such that individuals

will be more related if they share the same copy of a locus

with a large effect, rather than other loci. Studies have

shown that more emphasis can be given to markers with

larger effects on the trait of interest, resulting in an

increase in predictive ability of the model [12,13] and re-

duction in bias [14,15]. For instance, marker information

can be obtained from prior genome-wide association stud-

ies for the trait of interest. It is clear that larger gains are

expected for traits with few QTL [12], since the underlying

G matrix assumptions are violated to a greater extent.

The use of a weighted G matrix has been tested [12-15]

mainly in simulated data, although examples exist for hu-

man [7] and livestock data [16] as well. However, effective-

ness and consequences of the weighting procedure have

not been investigated on a large series of economically

relevant traits with different genetic architectures [17].

The aim of this study was to test the predictive ability of

different BLUP equations using a weighted G matrix

across nine traits of varying genetic architecture and herit-

ability in US Holstein dairy cattle.

In the current study, three different weighting methods

were compared to the traditional genomic matrix and

pedigree-derived matrix. Performances were measured in

terms of accuracy and bias of prediction in a cross-

validation scheme.

Methods

Data and genotypes

Genomic and phenotypic data were obtained from the

Bovine Functional Genomics Laboratory and Animal

Improvement Programs Laboratory at the USDA-ARS

Beltsville Agricultural Research Center (Beltsville, MD).

De-regressed measures were derived from sires’ pre-

dicted transmitting ability values (PTA) from US na-

tional genetic evaluations for production, calving ease

and type traits and used as pseudo-observations for sub-

sequent analyses, given that these provide some advan-

tages compared to other sources [18].

The first group of traits analyzed included milk yield

(MY), fat percentage (FP), and protein percentage (PP);

the second group of traits included direct calving ease

(DC) and maternal calving ease (MC); the third group of

traits included body depth (BD), rump width (RW), stat-

ure (ST) and strength (SR). Heritabilities were obtained

from VanRaden et al. [17] and are reported in Table 1.

The traits were chosen to represent a large range of her-

itabilities and genetic architectures, ranging from high

heritability and low number of QTL (e.g. FP) to low her-

itability and QTL with large effects (e.g. DC) and low

heritability and high number of QTL (e.g. MC).

PTA were de-regressed prior to analysis following Garrick

et al. [18]. Sires were required to have a reliability of de-

regressed PTA (dePTA) higher than 0.2 for all traits to enter

subsequent analyses. Genotypes were from the 50 K Illu-

mina Beadchip. Standard editing criteria included the re-

moval of SNPs with a minor allele frequency less than 0.05

and a call rate less than 0.99. Markers that were unmapped

or mapped to the sex chromosomes were removed. Finally,
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individuals with a call rate less than 0.99 were discarded.

The remaining missing SNPs were imputed using Beagle

[19]. After editing, genotypes on 39 004 SNPs for 4865 US

Holstein bulls were available.

Marker selection methods

Weighting the G matrix requires an estimate of marker

effects [12,14,15]. In the present study, marker solutions

were obtained according to three different methods that

were chosen on the basis of their statistical properties,

treatment of the marker effect and correction for popu-

lation stratification. All methods considered an additive

polygenic effect in the model to account for population

structure.

The first approach used for weighting was based on

feature selection through single-marker regression. Only

significant SNPs (p < 0.05) were used to construct the

wG matrix, as already proposed by de los Campos et al.

[7]. The single-marker regression (SM) model was as

follows:

yij ¼ xib
m þ zisj þ

eij

wij
;

where yij is the pseudo-phenotype for ith individual sired

by the jth sire, bm are the mean and mth marker fixed effect,

sj is sire additive genetic effect, where s ~N(0, Aσ2s), with

A representing the additive relationship matrix derived

from the pedigree, eijk is the residual, and wijk is the weight

of the yijk dePTA, as proposed in Garrick et al. [18], xi is

the ith row of the X incidence matrix reporting a vector of

1 s and the number of copies of the minor allele (0, 1 or 2)

for the ith individual, and zi is the ith row of the Z is the

incidence matrix for the sire effect. The significance

(P-value) of the F-test for the marker effect was used to

select SNPs. Analyses were performed in R using the pack-

age ‘pedigreemm’ [20].

The other two methods involved fitting all markers

simultaneously as random effects, modeled in a Bayesian

framework [21]. These methods were chosen to obtain

values of the expected variance that is absorbed by each

marker to be used in weighting the genomic matrix, in-

stead of selecting only the SNPs with the strongest im-

pact. The general model was:

yi ¼ 1
0
μþ

Xm

j¼1
wijuj þ ziai þ

ei

wi
;

where μ is the mean of the population, uj is effect of the

jth marker, ai is the additive polygenic effect of the ith in-

dividual assuming the vector a ~N(0, Aσ2s), with A

representing the additive relationship matrix derived

from the pedigree, ei is the residual, wi is the weight of

the yi dePTA, wij is the genotype of sire i at marker j,

and zi is the ith row of the additive polygenic effect inci-

dence matrix Z.

Two approaches were used to estimate marker effects:

Bayesian Ridge-Regression (RR) and Bayesian LASSO

(BL). These were chosen because they differ in the prior

assumption on marker effects and their variances, as

well as the penalization criteria applied to the estimation

of these parameters [22,23]. RR was chosen because it

assumes a completely polygenic architecture. Likewise,

BL was chosen because it applies a non-fixed shrinkage

of marker effects, their intensity being inferred from the

data. This makes this method more sensitive to the gen-

etic architecture of the trait. All analyses were performed

in R using the package ‘BLR’ [24].

Prior specifications used here were defined following

de los Campos et al. [24]. For all models, priors for addi-

tive polygenic genetic effects a were multivariate normal

aeN 0;Aσ2a
� �

, where A is the pedigree-derived numer-

ator relationship matrix, and priors for residual (σ2e ) and

additive polygenic variance σ2
a

� �
followed an inverted

chi-squared distribution inv-χ2(ν, S), where ν represents

the degrees of freedom and S is the scale. In RR, the

prior for marker effects was ueN 0; Iσ2u
� �

, where σ2
u is

Table 1 Descriptive statistics1 for the PTA dataset used, for each medoid and for the whole dataset

Trait2 h2 Medoid 1
n = 1004

Medoid 2
n = 1069

Medoid 3
n = 1168

Medoid 4
n = 1104

All
n = 4865

MY 0.30 712.9(0.896) 584.4(0.897) 556.3(0.902) 544.3(0.887) 592.2(0.896)

FP 0.50 0.893(0.896) −1.837(0.897) 1.197(0.902) 0.606(0.887) −0.014(0.896)

PP 0.50 1.161(0.896) 0.733(0.897) 0.979(0.902) 1.109(0.887) 1.185(0.896)

DC 0.09 7.493(0.806) 8.046(0.794) 8.141(0.793) 7.933(0.782) 7.938(0.793)

MC 0.06 8.622(0.742) 8.823(0.731) 8.610(0.731) 8.708(0.716) 8.682(0.730)

BD 0.37 −0.129(0.883) −0.173(0.880) −0.029(0.881) 0.079(0.874) −0.057(0.879)

RW 0.26 −0.451(0.882) −0.020(0.881) −0.054(0.881) −0.006(0.877) −0.118(0.880)

ST 0.42 −0.101(0.887) −0.096(0.887) −0.205(0.890) 0.223(0.887) −0.062(0.888)

SR 0.31 −0.207(0.882) −0.066(0.880) −0.047(0.880) 0.001(0.876) −0.073(0.880)

1Descriptive statistics are the mean and standard deviation; 2traits were milk yield (MY), fat percentage (FP), protein percentage (PP), direct calving ease (DC),

maternal calving ease (MC), body depth (BD), rump width (RW), stature (ST), and strength (SR).
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the marker variance that follows an inverted chi-squared

distribution inv-χ2(ν, S). While ν was arbitrarily equal to

5 for all models, S was chosen according to the ex-

pectation of variance for the specific trait. Therefore,

given Vy, the variance for the pseudo-phenotypes, and

V y
1
2
h2

� �
as expectation of additive polygenic and total

genomic variance, additive polygenic effect variance

had a scale Sa ¼ V y
1
2
h2

� �
ν−2ð Þ and residual variance

had a scale Se = Vy(1 − h2)(ν − 2). Priors for the total

genomic variance require that the variability of SNP

allele frequency is known, which can be summarized

as MSw ¼ n−1
Pn

i¼1

Pm
j¼1 xij−�xj

� �2
, where n is the num-

ber of individuals, m is the number of markers, xij is

the number of copies of the minor allele, and xj is the

average for marker j. According to this, the scale for

genomic variance in RR was SRR ¼ V y
1
2
h2

� �
ν−2ð Þ

� �
=MSw.

In BL, marker effects were assumed to follow a double-

exponential distribution, with a parameter τ2 regulating the

amount of shrinkage. This value τ2 followed an exponential

distribution Exp(τ2|λ), where λ is a regularization parameter

for the shrinkage of marker effect estimates. In this study, λ

was considered random and assigned a gamma distribution

G(λ2|α1,α2), with given shape α1 and rate α2. While α1 was

set equal to 1.01, we derived α2 ¼ α1−1ð Þ h2

2 1−h2ð ÞMSw

� �
, so

that we obtain the expectation of the regularization param-

eter λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1−h2ð Þ
h2

MSw

r
, which was specific for each trait.

The population mean was sampled from a flat prior. Both

RR and BL chains were run for 120 000 iterations, with 20

000 iterations as burn-in and thinning every 10 iterations.

Convergence was assessed by visual inspection of trace

plots and running postgibbs analyses using the ‘coda’ R

package [25].

Genomic relationship matrices

For all genomic relationship matrices, we partially rear-

ranged the procedure reported in [11]. Marker incidence

matrix W (with entries reporting the number of copies

of the minor allele as 0, 1 or 2) was converted into M by

subtracting 1, such that entries were −1, 0 and 1. Then,

a vector t of length m was computed such that the entry

for the ith marker was ti = 2(pi-0.5), where pi is the minor

allele frequency. Matrix Z was obtained by subtracting t

from Z. For ease of computation, instead of building

G = ZZ’ directly, we constructed 39 004 single-locus

genomic relationship matrices. For each zi column of Z

we computed Gi = zizi’. The genomic relationship matri-

ces were computed as a weighted sum of the single-

marker genomic matrices for each of the methods, cor-

rected for mean identity by state (IBS) relatedness. This

method of constructing genomic matrices as a weighted

average of several single-marker genomic matrices has

already been proposed and used by Zhang et al. [12].

We defined different weights for the different matrices.

Given pi as the minor allele frequency and wi as weight

for the ith marker, the following relationship matrices

were built.

In GBASE the weight was calculated as:

wi ¼ 2pi 1−pið Þ;

The weighting applied to the base genomic matrix is a

modification of the second method described by VanRaden

[11], where markers contribute to genomic relatedness pro-

portional to the reciprocal of their expected variance. In

this study, the weight assigned to each marker is the ex-

pected variance.

When information on marker contribution was pro-

vided from different sources (SM, RR, BL), it was pos-

sible to weight the contribution to the genomic matrix

by the marker-specific realized variance. In the SM, the

weight on marker i in the weighted G matrix (GSM) was:

wi ¼ 2pi 1−pið ÞSi;

where Si is an indicator with value ‘1’ assigned to

markers for which P-value < 0.05, and ‘0’ otherwise.

Finally, from the two Bayesian approaches RR and BL,

matrices GBL for GRR were constructed with weights:

wi ¼ 2pi 1−pið Þ û 2i ;

where u ̂i is the allele substitution effect for the ith

marker.

Genomic BLUP

For all traits, predictions were calculated using GBLUP,

using different genomic matrices (GBASE, GSM, GRR,

GBL) in turn. In addition, a prediction from a pedigree-

derived relationship matrix (APED) was obtained in order

to facilitate comparisons. MME were:

101 10Z
Z01 Z

0
Zþ G−1λ

	 

μ ̂

u ̂

	 

¼ 10y

Z0y

	 

;

where 1 is a vector of length n containing values of ‘1’,

Z is a n by n incidence matrix for the additive genetic ef-

fect of the individual, G is the n by n relationship matrix

to be tested, y is a vector of size n containing the

weighted dePTA (the product of the dePTA and its

weight, as described previously), μ ̂ is the solution for the

population mean, û is the solution for the additive gen-

etic effect, λ ¼ 1−h2ð Þ
h2

, and h2 is the assumed heritability.

Equations were solved by direct inversion and the vector
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of predicted values was obtained as y ̂̂ ¼ 1
0
μ ̂ þZ

0
u ̂ . In

order to assess the impact of the shrinkage parameter on

the predictive ability of the different relationship matri-

ces, several values of λ were tested for heritabilities ran-

ging from 0.1 to 0.9, in 0.1 step increases. This

parameter did not affect the predictive ability of the dif-

ferent models. However, for each model we considered

the predictive ability of the value of λ that gave the best

fit: given y as the phenotype and ŷ as the vector of pre-

dicted values for the n masked observations in cross-

validation, we used the value of λ that gave the solutions

that minimized the difference d ¼
Pn

i¼1yi−ŷi.

K-means cross-validation

To test the predictive ability of the models, a 4-fold k-

means cross-validation was performed [26]. Dissimilar-

ities between individuals were derived from A, and were

used as sources of information to separate individuals

across medoids, i.e. clusters of individuals that were

formed to maximize intra-group and minimize inter-

group additive genetic relationships. Relative distances

were computed as:

dij ¼ 1−
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aii � ajjp ;

where dij is a measure of pedigree distance between indi-

viduals i and j, aij is the additive genetic relationship be-

tween the two individuals, aii and ajj are the diagonal

elements of the relationship matrix for individuals i and

j, respectively. Each medoid was used as a validation set

using the remaining three as the training set. Predictions

(ŷ) from each model were regressed on the weighted

dePTA (y) to obtain measures of accuracy and bias. The

former was assessed as the correlation between y and ŷ,

while bias was measured as the regression coefficient

from the linear model y ¼ aþ b y ̂ þe . Because true

breeding values were not available, correlation coeffi-

cients were weighted by the average PTA reliability of

the medoid [9,27], as reported in Table 1. Accuracy and

bias were averaged across the four folds used in cross-

validation in order to have a single measure per model.

Relative gain in accuracy was computed for each model

as the difference between the accuracy of that model

(GSM, GRR, or GBL) and GBASE, divided by the accuracy

of GBASE.

Accounting for population stratification

One of the major concerns of all weighting procedures

stems from the difficulty to separate population stratifi-

cation from actual QTL signals [28]. In genomic predic-

tions, an additive polygenic effect is often considered in

the model for the purpose of correcting for population

stratification [29]. In this work, we considered an addi-

tive polygenic effect in the estimation of marker effects

but it may not completely correct for stratification. If

population stratification and family linkage are not ap-

propriately accounted for, they may lead to biased esti-

mation of marker effects, which in turn may lead to

overestimation of prediction accuracy.

We used two different empirical ways to assess the im-

pact of spurious associations.

First, results from genome-wide regression analysis

were cross-referenced for consistency with associations

reported in the literature. This was done in order to ver-

ify the validity of the associations obtained by the differ-

ent methods. The full list of QTL for each of the traits

analyzed was extracted from the Animal Genome QTL

database [30] and mapped to chromosomes 1 to 29. One

Mb sliding windows were then created, and were

assigned a value of ‘1’ if they contained at least one QTL

(for the specific trait), and ‘0’ otherwise. From marker ef-

fects calculated in the present study, the variance

accxounted for by the sliding windows was computed as:

V n ¼
Xb

i¼a
2pi 1−pið Þ û 2i ;

where Vn is the variance for the nth window, including

markers from the start position a to the stop position b,

pi is the MAF for the ith marker and u ̂i is the average al-

lele substitution effect for the ith marker. In this case,

the marker effects were derived using RR since this

method allows fitting all markers simultaneously in the

model (i.e. taking LD into account), with the same pen-

alization across the genome (i.e. no marker-specific

shrinkage). The values of u ̂i used here were averages of

the marker effects obtained across the four training rep-

licates in the cross-validation. For each trait, windows

were ranked for descending values of cumulative

absorbed variance and the top t windows (with values of

t = 0.010%, 0.025%, 0.050%, 0.100%, 0.250%, 0.500%,

1.00%, 2.5%, 5%, 10%, 25% and 50%), were in turn de-

clared significant and assigned a value of ‘1’, while the

other non-significant windows were assigned a value of

‘0’. Once the different sets of significant markers were

defined, the sensitivity to marker effect inflation was

measured using false positives rate (FPR) computed as

the proportion of windows that were declared significant

but that did not contain a reported QTL over the total

number of windows declared significant. This analysis is

sensitive to the number of QTL reported in the data-

base, therefore FPR was reported only for production

traits, for which a large number of reported QTL are

available. It should be noted that these three traits (MY,

FP, and PP) are not completely representative of the gen-

etic architecture of all traits under selection in dairy
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cattle but offer a framework for the interpretation of the

overall results.

Furthermore, we attempted to verify the possibility

that family structure was still present in the weighted

genomic matrices. In the pedigree-derived matrix A,

relationships among individuals are the expected iden-

tical by descent (IBD) probabilities under the Fisher

model and depend essentially on the completeness of

the pedigree [4]. Conversely, the genomic relationship

matrix G relates individuals based on the number of

alleles they share at each locus, regardless of ancestry

(i.e. IBS). The weighted genomic relationship matrix

wG is in turn expected to relate individuals based on

the shared number of copies of a given allele at a QTL

(or at the loci in linkage with the QTL, if this is

unknown).

The amount of inflation in prediction accuracy due

to population stratification and still present in the

weighted relationship matrix can be assessed empiric-

ally as the relative distance between the three matrices

A, GBASE, and wG. We speculate that if an association

with a QTL was not found due to lack of statistical

power, wG will be close to GBASE and both wG and

GBASE will be roughly equidistant from A. A similar

situation will arise by lack of association due the poly-

genic architecture of the trait. Conversely, if wG is still

tracing population or family structure, its distance

from GBASE will increase, while the distance from A

should decrease, under the assumption that wG re-

traces expected relationships. Finally, if the weighting

procedure correctly pinpoints significant regions of

the genome, wG should depart from GBASE, as well as

from A. It should be noted that, within this frame-

work, the lack of statistical power and the genetic

architecture are not a concern since, in these cases,

wG should essentially be equal to GBASE and the two

procedures should produce the same results.

A measure of relative distance between matrices was

obtained that assigned individuals to different groups. A

specific wG was built for each trait using the formulas

reported above. In this case, and unlike in the cross-

validation analysis, marker effects used were from RR es-

timates averaged over the four replicates. For each trait,

the k-means clustering was repeated over the three

matrices and individuals were assigned to the four differ-

ent groups based on the genetic distance used to obtain

the medoids. For each matrix, individual pair-wise com-

parisons were assigned the value ‘1’ to bins that ap-

peared in the same medoid (regardless of the medoid

label) and ‘0’ otherwise. The proportion of bins of wG

that fell in the same medoid in comparison with either

GBASE or A over the total number of pairs was then

measured. This yielded an empirical relative distance be-

tween the three matrices for each trait.

Results
Obtaining marker weights and accounting for population

stratification

PTA used in the analyses and their reliabilities are sum-

marized in Table 1 for each medoid and for the total

dataset. PTA are expressed on the scale used for US na-

tional genetic evaluations [17]. In general, production

traits had the highest reliabilities (0.896 for the whole

dataset), followed by type traits (from 0.879 to 0.888),

while calving ease traits had the lowest reliabilities (from

0.730 to 0.793). The number of medoids to perform k-

means clustering was set to four based on a preliminary

analysis (results not shown). The number of bulls was

equal to 1004, 1069, 1168 and 1104 for medoids M1 to

M4, respectively, as reported in Table 1. The four

medoids, as separated by k-means, represented groups

that varied both in PTA and reliabilities. The highest

range in reliability across the medoids was found for

MC, although the difference was still negligible (0.742

for M1 and 0.716 for M4).

Figure 1 reports the sensitivity of the FPR to the in-

crease in windows declared as significant for MY, FP and

PP. In this study, regions that were found to have a

strong impact on the genetic variance of the traits were

consistent with those reported in the literature: for MY,

the top 0.1% windows had at least one annotated QTL

(all windows declared significant contained an annotated

QTL) and only 25% of the top 1% windows contained

false positives; for FP and PP, top 0.5% of windows had a

QTL annotated, and slightly more than 25% of the top

5% windows did not have any annotated QTL. Thus, re-

sults from association analyses did not appear to be

spurious. This indicates that markers that were most

heavily weighted within the wG matrix were actually

close to QTL for the traits of interest, while markers that

were less heavily weighted still contributed to genomic

relatedness, but with very low emphasis.

Mean, standard deviation and correlation with GBASE

for all genomic matrices computed are reported in Table

S1 [See Additional file 1: Table S1]. The comparison of

wG obtained with RR to that obtained with A and

GBASE is in Figure 2. All traits are represented in the

plot by a circle (except for MC, which was omitted since

it overlapped with MY). The relative position of wG on

the x-axis measures its similarity to A (i.e. how many

pairs of individuals that belong to the same medoid in A

also belong to the same medoid in wG, over the total

number of pairs), while the respective position on the y-

axis indicates its similarity to GBASE. Similarity between

GBASE and A was equal to 0.82 (value not plotted). This

means that 82% of the pairs of individuals that were in

the same medoid in A were also in the same medoid in

GBASE. We did not observe any trait for which wG

appeared to be equivalent to GBASE or very similar to A.
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For BD and RW, similarities of wG to A and GBASE

were equal to 0.82 and 0.88, respectively. For these

two traits, we can infer that the weighting procedure

had a moderate impact, and that the weighing proced-

ure was not affected by population stratification. MY,

DC, MC, ST, and SR similarities of wG to GBASE were

around 0.90 and those to A were around 0.85. The

weighting procedure resulted in relatedness among in-

dividuals that weakly resembled the pedigree popula-

tion stratification for these traits. For FP, the presence

of a QTL of strong impact decreased the similarity of

wG to GBASE (0.63), but did not affect its similarity to

A, which remained at 0.82. For PP, wG resulted in a

similarity to A that was very different (0.63) but it was

still only moderately similar to GBASE (0.92).

There was no evidence that the weighting procedure

reintroduced population stratification in the weighted

genomic matrices. For all traits, wG was different from

GBASE, although this dissimilarity was stronger for FP,

which is the trait that presented the strongest deviation

from the Fisherian assumptions.

In all cases, regardless of heritability and putative

architecture of the traits, the weighted genomic matrices

appeared to incorporate some signal other than popula-

tion structure. We believe that this signal represents true

QTL effects, which could be represented as a third di-

mension in Figure 2. The lack of knowledge about the

true causative mutation(s) that determine the genetic

variation of the trait did not allow us to draw this third

dimension in our graphical representation. Nonetheless,

Figure 1 Increase in false positive discoveries with increasing number of windows declared as significant in the GWAS. The x-axis shows

the number of windows declared significant in the association study, while the y-axis shows the corresponding False Positive Rate (FPR), i.e. the

proportion of reported windows that did not contain an annotated QTL.

Figure 2 Similarity between the weighted genomic matrix (wG) and the regular genomic (G) and pedigree-derived (A) relationship

matrices. Similarity is measured as the probability that two individuals that share the same medoid in a matrix and share the same medoid in

the other. The relative position on the x-axis measures the similarity to A and the y-axis the similarity to G.
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the heatmap of GBASE and GRR for FP is displayed in

Figure 3, with GRR in the lower triangle, and GBASE in

the upper triangle (individuals were ordered by pedigree,

i.e. were grouped if they shared the same medoid, as

computed from the A matrix, as well as the same parents).

Figure 3 shows a clear clustering of individuals occurring

in GBASE, which clearly represents the four medoids. In

GRR, the same clustering appears rearranged.

The proportion of the variance absorbed by the top

10% of markers for each trait, as estimated with RR, is in

Figure 4. As expected, FP presented a single region on

chromosome 14 that absorbed a large part of the total

marker variance. All other traits presented QTL of lesser

magnitude. For MY and PP, the top 10% of markers

absorbed approximately 60% of the genomic variance,

and less than 0.1% of the markers absorbed about 25%

of total genetic variance for PP and 15% for MY. The

other traits (DC, MC, BD, RW, ST, SR) presented the

same trend and were reported as a single line. For those

traits, the top 0.1% of markers absorbed ~5% of genomic

variance, and the top 10% about 50% of genomic vari-

ance. In summary, different genetic architectures can be

seen across the traits. FP is affected by a QTL with large

effect and PP and MY have few relatively large-effect

QTL. The genetic architecture of other traits was rela-

tively polygenic. Manhattan plots for the variance of 10-

marker moving windows, as obtained with RR, are in

Figures S1, S2, S3, S4, S5, S6, S7, S8, S9 and S10 [See

Additional file 2]. Values are expressed as the proportion

of genomic variance, computed as the sum of total

marker variance regardless of the variance absorbed from

pedigree-derived additive genetic variance. Windows with

the greatest impact were located on chromosome 14 for

FP and MY, as also reported by Grisart et al. [31], and

large-impact windows were located on chromosome 18

for calving ease and type traits, in agreement with Cole

et al. [32].

Model predictive performance

For ease of comparison of results, traits were clustered

by heritability as high ‘H-h2’ (FP, PP, ST), medium ‘M-h2’

(BD, SR, RW, MY), and low ‘L-h2’ (DC, MC). This was

done assuming that trait heritability was inversely pro-

portional to the number of QTL. Although strong, this

assumption facilitates the reporting and discussion of re-

sults, while verifying the assumption of better perform-

ance of wG models over GBASE models. It is expected

that improvement in performance is directly propor-

tional to heritability and inversely proportional to the

number of QTL. Accuracy of prediction of the different

methods is in Figure 5. The marginal increase in accur-

acy with wG matrices relative to GBASE is in Figure 6,

while bias (the regression coefficient between predicted

and observed) is presented in Figure 7. Tables containing

the values reported in Figures S5, S6 and S7 are in

Tables S2, S3 and S4 [See Additional file 3].

Prediction accuracy from APED was obtained for com-

parison purposes (Figure 5). It was high for MY, ST,

RW, BD and SR (between 0.404 and 0.501), intermediate

for PP and FP (0.351 and 0.334), and low for DC and

MC (0.189 and 0.110). Models GBASE and GSM per-

formed similarly across all traits, with a sizable advan-

tage of GSM only for FP. For FP, accuracies were 0.548

and 0.580 for GBASE and GSM, respectively, while ac-

curacies were 0.547 and 0.565 for PP. For other traits,

Figure 3 Heatmap of the regular genomic matrix (upper triangle) and fat percentage weighted genomic matrix (lower triangle).

Warmer color indicates a positive relationship and colder color indicates a negative relationship.
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no difference in accuracy was found between GBASE

and GSM.

Models GRR and GBL also performed similarly, and

consistently better than other genomic models only for

FP and PP. Accuracies were around 0.67 for FP, 0.62 for

PP, 0.65 for BD, 0.60 for ST, 0.55 for SR, 0.59 for RW,

0.56 for MY, 0.22 for DC and 0.13 for MC. It is worth

noting that poor predictive performance for DC and MC

might be due to the relatively lower PTA reliabilities for

these traits: de-regression of low-accuracy PTA may lead

to over-inflation of the dePTA and therefore inflation of

the residual variance in the association analysis. This re-

duced the relative gain achieved with genomic BLUP

compared to pedigree-based BLUP for DC and MC. In

addition, achieved prediction accuracy was weighted by

the average PTA reliability in order to account for the

lack of knowledge on true breeding values. This affected

the results in terms of overall predictive ability for some

traits: since PTA reliabilities were lower for DC and MC

(see Table 1), the accuracy of prediction was reduced for

all models.

The absolute gain in accuracy (Figure 6) that can be

achieved from weighted genomic matrices appeared to

depend highly on both heritability of the trait and the

“putative” number of QTL, since GRR and GBL had

higher accuracies than GBASE only for H-h2. For FP and

PP, there were few QTL that absorbed up to 25% of the

total genomic variance. Other traits presented a large

Figure 4 Proportion of variance absorbed by top windows for milk yield (MY), fat percentage (FP), protein percentage (PP) and other

traits represented as a single group (‘other’).

Figure 5 Accuracy of prediction for traits analyzed with the different relationship matrices implemented in BLUP. MY =milk yield,

FP = fat percentage, PP = protein percentage, DC = direct calving ease, MC =maternal calving ease, BD = body depth, RW = rump width),

ST = stature, and SR = strength; APED = pedigree-derived, GBASE = base marker-derived genomic matrix, GSM = single-marker regression weighted

genomic matrix, GRR = Ridge Regression weighted genomic matrix, GBL = Bayesian LASSO weighted genomic matrix.
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number of putative QTL with smaller effects. This re-

sulted in relatively similar performances of wG and GBASE,

as shown in Figure 2.

The relative gain in accuracy from GBASE still ap-

peared to depend on heritability. Relative gains in accur-

acy from GSM ranged from −0.007 to 0.058 for MY and

FP, respectively. In all cases, the gain obtained by GSM

was negligible, and feature selection based on F-test

significance had little power to capture the genetic archi-

tecture of the traits. Moreover, gains from GRR and GBL

ranged from 0.237 for FP to −0.008 for MY, both ob-

tained with GBL. GRR and GBL achieved a relative gain

in accuracy of 25% compared to GBASE for FP, and of

15% for PP. For the other traits, the absolute increase

with any of the weighted G matrices was small but pre-

diction was consistently better than what could be ob-

tained with GBASE.

While the absolute gain in predictive ability was propor-

tional to heritability and the number of QTL, the relative

gain that was achieved with weighting procedures was

Figure 6 Gain in accuracy of prediction over the regular genomic matrix for single-marker regression weighted genomic matrix (GSM),

Ridge Regression weighted genomic matrix (GRR), Bayesian LASSO weighted genomic matrix (GBL). Traits were analyzed with the different

relationship matrices implemented in BLUP and included milk yield (MY), fat percentage (FP), protein percentage (PP), direct calving ease (DC),

maternal calving ease (MC), body depth (BD), rump width (RW), stature (ST), and strength (SR).

Figure 7 Bias of prediction for traits analyzed with the different genomic relationship matrices implemented in BLUP. MY =milk yield,

FP = fat percentage, PP = protein percentage, DC = direct calving ease, MC = maternal calving ease, BD = body depth, RW = rump width),

ST = stature, and SR = strength; APED = pedigree-derived, GBASE = base marker-derived genomic matrix, GSM = single-marker regression

weighted genomic matrix, GRR = Ridge Regression weighted genomic matrix, GBL = Bayesian LASSO weighted genomic matrix.
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sizable in the case of low heritability, even with a QTL of

moderate effect. This is of particular interest since traits

with low heritability are limited in terms of the accuracy

that could be obtained with any of the methods.

We found that bias of prediction was largely consistent

with accuracy of prediction (Figure 7). GBASE tended to

inflate the variance of genetic merit of individuals, while

reweighted GRR and GBL resulted in predictions that

were the least biased, with GSM showing intermediate

performance. Differences between GBASE and wG were

stronger for H-h2: for FP, bias ranged from 1.738 for

GBASE to 1.046 for GBL; similarly, bias for PP ranged

from 1.479 to 1.134 for GBASE and GBL, respectively.

Almost no difference in bias was reported for RW, since

all methods seemed to give similar results (between

1.110 for GBASE and 1.030 for GBL). Only GBASE seemed

to give relatively greater bias in predictions for MY

(1.130 vs 0.981 for GBL) and SR (1.195 vs 1.126 for GSM)

than wG. For BD, bias decreased from 1.305 for GBASE

to 1.040 for GRR, and for ST, bias also decreased from

1.308 for GBASE to 1.194 for GBL. Surprisingly, the re-

versed situation was observed for MC, for which GRR

and GBL resulted in a deflated variance of predictions

(0.690 and 0.624, respectively), while GBASE and GSM

were less biased predictors (0.807 and 0.803). Predic-

tion appeared to be similar across models for DC,

although with less bias (between 0.958 and 0.893 for

GBASE and GBL).

Discussion

In this study, weighted GBLUP resulted in more accur-

ate estimates of genomic values with lower bias in cross-

validation for traits with high heritability and presence

of QTL of even moderate effect. The largest decrease in

bias from using weighted GBLUP was obtained for FP

and PP, which presented the largest QTL, suggesting a

greater departure of the genetic architecture from the

Fisherian model.

The assumption that underlies GBASE is that all

markers contribute equally to genetic variation for the

trait [8]. Based on real data, this has been verified to

hold for traits under polygenic control. This study

confirms that this assumption does not hold if the

number of QTL is small (or smaller than the number

of independent chromosome segments), especially

with the presence of QTL with large effects [2]. For

such traits, it is appropriate to give more weight to

markers that are in stronger association with the QTL

when constructing the genomic matrix, such that bet-

ter predictions can be made. Our results are in agree-

ment with those of Zhang et al. [12], who performed

several simulations and found that weighted G matri-

ces can yield gains in accuracy when the heritability of

the trait is higher and the number of QTL is smaller.

Subsequently, Wang et al. [14] demonstrated that

weighted GBLUP can reduce bias and increase accur-

acy of prediction, outperforming regular GBLUP in

simulated data. In another study, Zhang et al. [13]

found that if G was informed with weights derived

from several sources, Bayes-B seemed to outperform

RR, however their results were still based on simulated

data. With real data, de los Campos et al. [7] found

that weighting marker contributions in the construc-

tion of G improved prediction for height in humans,

which is a trait with high heritability and a large num-

ber of QTL [33]. Nonetheless, Legarra et al. [16] tested

the predictive ability of LASSO-weighted GBLUP vs.

regular GBLUP (as well as other methods) on French

Holstein cattle and showed that weighted GBLUP can

strongly improve predictive ability for traits such as

FP, while the improvement was moderate for PP and

null for MY, which is in complete agreement with the

findings of our study. Investigating the predictive abil-

ity of GBLUP across Nordic Holstein and Nordic Red

dairy cattle populations, Zhou et al. [34] compared

different weighted genomic matrices to the regular

one. However, no improvement was found when G

was weighted with markers effects for any of the traits

analyzed, which disagrees with our results.

Except for L-h2, any GBLUP outperformed APED: the

genomic relationship matrix resulted in higher accur-

acies than the pedigree-derived relationship matrix, in

particular for traits with high heritability and a small

number of QTL. This is in agreement with findings from

Nejati-Javaremi et al. [3] and Hayes et al. [8], who com-

pared genomic and pedigree-derived relationship matrices.

The reason for the improved accuracy is that genomic in-

formation can capture variation in Mendelian sampling

that occurs between individuals due to chromosomal re-

combination [5], because the number of independent

chromosome segments is finite.

In this study, we tested different methods for deriving

weights for wG. The least precise method for informing

G appeared to include only markers with a P-value

smaller than 0.05. The P-value was obtained from an F-

test in a linear model in which the marker was consid-

ered as a fixed effect. Population stratification was cor-

rected by comparing groups of paternal half-sibs (sire

random additive genetic effect). In fact, this method,

which was intentionally chosen as a ‘naive’ one, gave

accuracies that were barely better than GBASE and pre-

dictions were still biased. Thus, we can infer that this

method would not be appropriate with our data. Other

methods involved multiple regression on markers, with

(BL) or without penalization (RR), that both considered

the animal additive genetic effect to correct for stratifica-

tion. These methods are known to be suitable for differ-

ent genetic architectures since BL is sensitive to the
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genetic architecture of the trait, while RR is not. In fact,

in this study, when GBLUP included information on

marker realized variance from RR and BL, these

methods were identical in terms of performance, both

for accuracy and bias reduction. However, when marker

effects were used to inform G, as computed with these

methods, bias decreased and accuracy increased propor-

tional to how much each trait differed from the assump-

tion of complete polygenic architecture. We confirmed

that predictions were not inflated by population stratifi-

cation or founder effects. This was verified with two em-

pirical approaches, and both lead to the conclusion that

wG accounted for real QTL effects.

Conclusions

Our study aimed at testing different sources of informa-

tion in order to weight marker contributions into the

genomic relationship matrix and relax the assumption of

equal contributions from all markers to additive genetic

variability among individuals. The methods used to es-

timate marker weights were single-marker regression

(markers are included if the F-test is significant),

Bayesian Ridge Regression and Bayesian LASSO. Re-

sults showed that the informed genomic matrices can

yield higher accuracy and lower bias than the regular

genomic matrix and the pedigree-derived relationship

matrix. Prediction performance generally increased

when the number of QTL for a given trait was small,

which was the case for fat percentage and protein per-

centage. The weighted G matrices that yielded the

overall best accuracies were those informed with real-

ized marker effects from Ridge Regression and Bayes-

ian LASSO, while discriminating markers based on

their P-value led to average or null improvement of

predictive performance. The increase in predictive

performance compared to the traditional GBLUP for

other traits was moderate, but for traits with low her-

itability and low pedigree-based prediction accuracy,

informing the genomic matrix with realized marker

variances appeared to be advantageous. Regular gen-

omic matrices lean on the assumption that each

marker contributes equally to the additive genetic re-

lationship. We demonstrated that this assumption can

be violated, with increases in predictive ability of

GBLUP for traits for which contributions to genetic

variability are not evenly distributed across genomic

regions. It is worth noting that predictions were not

inflated by population stratification or founder effects.

Our results could be useful to increase the prediction

accuracy of selection candidates in dairy cattle breeding

schemes that use genomic information and BLUP meth-

odology. They could also serve as background in the

search for different sources of information to weight

marker contributions in the genomic matrix, and markers

could be weighted relying on functional information about

the annotated genes that lie in their proximity.
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