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ABSTRACT: Repeat topographic surveys are increasingly becoming more affordable, and possible at higher spatial resolutions 
and over greater spatial extents. Digital elevation models (DEMs) built from such surveys can be used to produce DEM of Difference 
(DoD) maps and estimate the net change in storage terms for morphological sediment budgets. While these products are extremely 
useful for monitoring and geomorphic interpretation, data and model uncertainties render them prone to misinterpretation. Two 
new methods are presented, which allow for more robust and spatially variable estimation of DEM uncertainties and propagate 
these forward to evaluate the consequences for estimates of geomorphic change. The fi rst relies on a fuzzy inference system to 
estimate the spatial variability of elevation uncertainty in individual DEMs while the second approach modifi es this estimate on 
the basis of the spatial coherence of erosion and deposition units. Both techniques allow for probabilistic representation of uncer-
tainty on a cell-by-cell basis and thresholding of the sediment budget at a user-specifi ed confi dence interval. The application of 
these new techniques is illustrated with 5 years of high resolution survey data from a 1 km long braided reach of the River Feshie 
in the Highlands of Scotland. The reach was found to be consistently degradational, with between 570 and 1970 m3 of net erosion 
per annum, despite the fact that spatially, deposition covered more surface area than erosion. In the two wetter periods with 
extensive braid-plain inundation, the uncertainty analysis thresholded at a 95% confi dence interval resulted in a larger percentage 
(57% for 2004–2005 and 59% for 2006–2007) of volumetric change being excluded from the budget than the drier years (24% 
for 2003–2004 and 31% for 2005–2006). For these data, the new uncertainty analysis is generally more conservative volumetri-
cally than a standard spatially-uniform minimum level of detection analysis, but also produces more plausible and physically 
meaningful results. The tools are packaged in a wizard-driven Matlab software application available for download with this paper, 
and can be calibrated and extended for application to any topographic point cloud (x,y,z). Copyright © 2009 John Wiley & 
Sons, Ltd.

KEYWORDS: DEM of Difference (DoD); fl uvial geomorphology; morphological method; morphological sediment budgeting; River Feshie; 
fuzzy inference system

Introduction

With recent advances in ground-based, boat-based and 
remotely-sensed surveying technologies, the rapid acquisition 
of topographic data is now possible at spatial resolutions and 
extents previously unimaginable (Lane and Chandler, 2003; 
Heritage and Hetherington, 2007; Milan et al., 2007; Marcus 
and Fonstad, 2008; Notebaert et al., 2008). These advances 
make monitoring geomorphic changes and estimating sedi-
ment budgets through repeat topographic surveys and the 
application of the morphological method (Church and 
Ashmore, 1998) a tractable, affordable approach for monitor-
ing applications in both research and practice. In fl uvial geo-
morphology, the morphological approach has been used as 
an alternative to measuring sediment transport directly and 
has historically been applied primarily to repeat surveys of 
river plan form, cross-sections and/or longitudinal profi les 

(Brewer and Passmore, 2002; Lane, 1998). However, from the 
early 1990s (Lane et al., 1994), the morphological method has 
been expanded to include the use of repeat topographic 
surveys from which digital elevation models (DEMs) could be 
constructed and differenced to produce DEMs of Difference 
(DoDs). This paper focuses exclusively on the 2D application 
of the morphological method using DoDs.

Uncertainty in DoD application of the morphological 
method has already received considerable attention (Lane 
et al., 1994; Milne and Sear, 1997; Brasington et al., 2000; 
Lane, 1998; Lane et al., 2003). Driving this interest has been 
the basic question that, given the uncertainty inherent in indi-
vidual DEMs, is it possible to distinguish real geomorphic 
changes from noise? Repeat surveys using rtkGPS (Brasington 
et al., 2000), total stations (Milne and Sear, 1997), aerial pho-
togrammetry (Winterbottom and Gilvear, 1997; Westaway 
et al., 2001), multi-beam echo-sounding (Calder and Mayer, 
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2003), airborne LiDaR (Cavalli et al., 2008), and airborne 
narrow-beam terrestrial-aquatic green LiDaR (McKean et al., 
2008) have notional accuracies in surface elevations of any-
where from ±0·02 m to ±1 m (Fuller et al., 2003; Glenn et al., 
2006; Carter et al., 2007). For the fl uvial environment, which 
commonly exhibits topographic changes of a similar magni-
tude to this noise, how well these uncertainties are accounted 
for determines what (if anything) can meaningfully be inter-
preted from such surveys (Brasington et al., 2003; Lane et al., 
2003). Particularly when surveying submerged topography in 
rivers, elevation uncertainties can be even higher (Sear and 
Milne, 2000; Lane et al., 2003). With recent improvements in 
surveying technologies, acquisition times have been cut by 
orders of magnitude (Marcus and Fonstad, 2008). This allows 
the collection of more data, at higher time-and-space resolu-
tion and over greater spatial extents. For this additional data 
to be useful, an effective, robust technique for quantifying 
uncertainty is required.

Estimates of the net change in storage terms for morphologi-
cally inferred sediment budgets are fundamentally controlled 
by DEM quality, which itself is largely inherited by the quality 
of the survey data. DEM quality is an unknown function of 
survey point quality, sampling strategy, surface composition, 
topographic complexity and interpolation methods (Wise, 
1998; Wechsler, 2003; Wechsler and Kroll, 2006). Despite 
community awareness of such issues, most estimates of the 
infl uence of DEM uncertainty on DoDs are relatively simplis-
tic in that they assume uncertainties are either spatially uniform 
(Brasington et al., 2000) or that they vary spatially only on the 
basis of wet and dry areas (Lane et al., 2003). Consequently, 
quantifi ed uncertainties are sometimes unnecessarily conser-
vative in areas where very small magnitude changes might be 
occurring (e.g. relatively smooth fl oodplain surfaces) and 
overly liberal in areas experiencing high magnitude elevation 
changes (e.g. eroding banks).

The most commonly adopted procedure for managing DEM 
uncertainties involves specifying a minimum level of detection 
threshold (minLoD) to distinguish actual surface changes from 
the inherent noise (Fuller et al., 2003). Predicted elevation 
changes that occur beneath this detection limit are typically 
discarded, or their probability of being real adjusted using 
a simple declining weighting function (Lane et al., 2003, 
p. 252). Typically, elevation changes above this minLoD are 
treated as real. There is, however, some inconsistency as to 
whether the propagated error used to estimate the minLoD 
should also be applied to changes over a threshold (e.g. if a 

minLoD of 10 cm was defi ned and the change was 15 cm, 
should it be 15 cm or 15 cm +/− 10 cm?). Determination of 
the minLoD requires both a theory of change detection and a 
metric of DEM quality (Brasington et al., 2000; Lane et al., 
2003). Typically, this is addressed applying the classical 
statistical theory of errors (Taylor, 1997) taking a measure of 
DEM precision derived from check data as a surrogate for 
DEM quality (Milan et al., 2007).

The purpose of this paper is to present a new technique that 
allows more robust estimation of DEM quality and its infl u-
ence on sediment budgets derived from DEM differencing. 
Therein, the spatial variability of surface representation uncer-
tainty is considered using a set of tools that could be calibrated 
and applied to any set of topographic point data. Our approach 
builds on the conceptual frameworks for uncertainty analysis 
in the morphological method established by Brasington et al. 
(2000) and Lane et al. (2003). The novel contributions set out 
here are: (i) a new technique for estimating the magnitude of 
DEM uncertainty in a spatially variable way using fuzzy set 
theory; and (ii) a technique for discriminating DoD uncertainty 
on the basis of the spatial coherence of erosion and deposition 

units using Bayes Theorem. These tools are packaged together 
into a Matlab software application available for download as 
supporting information for this article.

The paper is organized as follows. First the River Feshie 
study site used in this paper is introduced with an explanation 
of the DoD data to be used. Then a brief review of the theo-
retical framework behind DEM differencing and uncertainty 
accounting is presented. Next the theory for the extension of 
these techniques and substantive methodological contribution 
is introduced. Finally, the application of the new method is 
illustrated. The paper closes with a discussion of the main 
fi ndings, limitations and what improvements can be made in 
the future.

River Feshie study site

To develop this new technique, a data set of high-resolution 
repeat topographic surveys from a system that was suffi ciently 
dynamic to exhibit a range of styles of geomorphic change 
over a reasonable duration study period (e.g. 3 or more years) 
was desirable. Thomas (2006, Chapter 7) identifi ed seven 
rivers where data were emerging from such intensive high 
resolution monitoring campaigns, but only fi ve with repeat 
survey data, including the Feshie. Although other data sets 
exist, few, if any, ground-based survey data sets in the world 
match the detail and temporal scope of that started by 
Brasington et al. (2000) from the River Feshie in the Cairngorm 
Mountains of Scotland (Wheaton, 2008).

The River Feshie drains a 231 km2 catchment with 1030 m 
of relief in the heart of the Scottish Highlands. The specifi c 
study site stretches over ~1 km of an unconfi ned 3-km-long 
braided reach within Glenfeshie (Figure 1), where the active 
braidplain varies between 50 and 250 m in width. The Glen 
itself is a glacial trough, which was deglaciated roughly 13 000 
BP (Gilvear et al., 2000) leaving behind a large fl uvio-glacial 
fi ll that is regularly reworked by the unregulated and fl ashy 
fl ow-regime of the Feshie (Ferguson and Werritty, 1983; 
Soulsby et al., 2006). In a British context, the Feshie is excep-
tionally dynamic and has accordingly been the subject of 
numerous geomorphological (Werrity and Ferguson, 1980; 
Ferguson and Werritty, 1983; Robertson-Rintoul, 1986; 
Brazier and Ballantyne, 1989; Ferguson and Ashworth, 1992; 
Brasington et al., 2000; Gilvear et al., 2000; Rumsby et al., 
2001; Brasington et al., 2003; Rumsby et al., 2008), hydrologi-
cal (Soulsby et al., 2001; Rodgers et al., 2004; Rodgers et al., 
2005; Soulsby et al., 2006), and geological (Young, 1976; 
Bremner, 1915) studies.

Feshie DoDs: 2003 to 2007

For the purposes of this paper, annual summer topographic 
survey data were analysed from 2003 to 2007. The 2003 
through 2006 surveys were derived entirely from rtkGPS 
surveys whereas the 2007 data set was augmented with total 
station data. Each survey comprised between 34 000 and 
51 000 points over an 11·5 to 14·5 ha survey area (Table I). A 
total of 248 266 ground-based survey points were acquired of 
which 2622 points in 2007 were collected using a Leica TCRP 
1205 robotic total station. The remaining data points were 
collected with Leica System 1200 and Trimble R8 differential 
GPS rovers running in realtime kinematic (RTK) mode com-
municating to a base station occupying a known control point 
on a local grid coordinate system that approximates the 
Ordnance Survey’s British National Grid. The average kernel 
point density (pt ρ) was on the order of 0·3 points m−2 (based 
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on a 5 × 5 rectangular moving window; see Table I). A 2–3 m 
grid-based sampling scheme was adopted across the entire 
reach, with feature-stratifi ed infi lling in areas of greater 
topographic complexity to capture bar-scale morphological 
features (Valle and Pasternack, 2005). In general, this results 
in high point density in areas of topographic complexity and 
low point density in topographically simple areas.

DEMs were constructed in ESRI’s ArcGIS using a simple 
workfl ow in which survey points were used to derive a tri-
angular irregular network (TIN) using Delaunay triangulation, 
which was then linearly resampled onto a grid of user-
specifi ed resolution. Survey points were fi rst fi ltered to 
remove any visually obvious anomalies and then further fi l-
tered to remove points with an instrument-calculated GPS, 
3D point qualities below +/− 5 cm (mean 3D point quality 
was 1·7 cm). A hard clip polygon was drawn around the 

Figure 1. Location map for River Feshie study site.

Table I. Survey point density statistics. The total number of points surveyed are reported in the second column, whereas those used for analyses 
(intersection of all survey areas) are reported in the third column. Statistics for point density (pt ρ) are based on a global calculation (columns 4 
and 5) and a 5 × 5 moving window average are reported in the columns 6 through 8

Survey

Points surveyed (n) Global pt ρ (pts m−2) Moving window pt ρ (pts m−2)

Total Analysis clip Total Analysis clip Mean Max σ

2003 51080 33811 0·51 0·29 0·40 4·56 0·32
2004 48145 32675 0·38 0·28 0·37 2·52 0·28
2005 35536 23258 0·26 0·20 0·26 2·92 0·21
2006 37861 23258 0·26 0·20 0·29 4·11 0·17
2007 34266 27592 0·24 0·24 0·24 2·64 0·17
Average 41378 28119 0·33 0·24 0·31 3·35 0·23

Table II. Gross DoD budget results (no uncertainty accounting)

DoD period

Volumetric Percentage coverage of reach

Erosion deposition Net change Erosion Deposition Total
m3 m3 m3 % % %

2007–2006 11162·0 8882·3 −2279·7 50·2% 49·5% 99·7%
2006–2005 4538·5 3167·1 −1371·3 54·1% 45·0% 99·0%
2005–2004 8307·9 7029·7 −1278·2 46·8% 52·5% 99·2%
2004–2003 4975·5 3072·2 −1903·3 56·4% 43·2% 99·5%

surveyed points and used in TIN construction to prevent 
spurious interpolation beyond the survey area. A 1 m resolu-
tion DEM was used throughout the analyses reported herein, 
which was deemed to be an appropriate compromise 
between computational effi ciency, information loss, and suf-
fi cient resolution to resolve bar-scale morphology. The result-
ing fi ve DEMs are shown at the top of Figure 2. Four DoDs 
were calculated from these DEMs by simply subtracting the 
elevations in each DEM on a cell-by-cell basis, from those 
in the DEM from the next year’s survey (bottom of Figure 2). 
Estimates of net volumetric change were then approximated 
using a simple integration scheme, multiplying the calculated 
elevation change (a depth measurement) by the surface area 
of each cell (i.e. 1 m2). These volumes were then summed 
into erosional and depositional categories to produce a net 
volumetric budget.
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Table II highlights the gross volumetric budgets derived 
from this analysis. Columns 5–7 of Table II show the percent-
ages of surface area of the reach experiencing erosion and 
deposition with no accounting of measurement precision or 
detection thresholds (other than that implied by the number 
of signifi cant fi gures shown). This analysis suggests that over 
99% of the reach experiences changes in all four periods. 
However, over the 5-year study period, the entire survey reach 
was never completely inundated and there are substantial 
zones of elevated, vegetating and/or vegetated bar surfaces, 
terraces and islands (see Appendix B of Wheaton, 2008). In 

areas where no agent for geomorphic change was experienced 
(i.e. high island and terrace surfaces not subject to inundation, 
fl ooding or signifi cant overland fl ow), evidence for change is 
clearly questionable. However, small elevation differences are 
not surprising and refl ect a combination of random surveying 
errors (e.g. GPS triangulation errors, pole tilt, etc.), systematic 
errors (e.g. resection errors, interpolation errors, incorrect 
survey rod height, etc.), the limits of the instrument precision, 
operator blunders, and sampling differences between surveys. 
The challenge in areas where geomorphic changes have taken 
place, is to untangle those differences from this background 

Figure 2. Detrended DEMs and DoD for 2003 to 2007. Note that the hillshades from the more recent year in the DoD are shown behind the 
DoD for context. This fi gure is available in colour online at www.interscience.wiley.com/journal/espl
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noise. It is interesting to note that the total volumetric change 
throughout the study period (Column 4 of Table II) suggests 
that the reach is consistently degradational with net erosion 
of between 1200 and 2300 m3 each year, comprising 8% and 
24% of the total volume of estimated change. By contrast, the 
areal percentage summaries for 2004 to 2005 suggest that in 
terms of surface area, more of the reach was aggradational 
than depositional.

Existing Approaches to Characterizing 
DEM Uncertainty

There are a number of existing approaches to quantifying the 
infl uence of surface representation uncertainty on sediment 
budgets derived from DEM differencing. Regardless of the 
approach used, the process of accounting for DoD uncertainty 
follows a consistent progression through three steps:

1. quantifying the surface representation uncertainty in the 
individual DEM surfaces that are being compared;

2. propagating the identifi ed uncertainties into the DoD;
3. assessing the signifi cance of the propagated uncertainty.

In the next three subsections, these steps are briefl y reviewed 
to highlight where methodological gaps exist (for a more 
detailed review, see Wheaton, 2008, Chapter 4).

Quantifying surface representation uncertainty

There are a variety of ways to quantify uncertainties in the 
vector topographic survey data (i.e. x,y,z point clouds) mani-
fest in DEMs. Here, this uncertainty will be denoted as δz. We 
know that the horizontal components of this positional error 
are of a similar magnitude to the vertical components, but they 
have negligible infl uence on vertical surface differences in low 
slope areas (i.e. most fl uvial environments). Treating the hori-
zontal components as negligible, δz is related to the actual 
elevation ZActual as follows:

 Z Z zActual DEM= ± δ  (1)

where ZActual is the true value of elevation, and ZDEM, the 
spatially-paired DEM elevation.

Approaches for approximating δz range from adopting a 
manufacturer reported instrument precision to attempts at 
composing complete error budgets (Lichti et al., 2005). In fact, 
manufacturer reported precision is only one of many compo-
nents of δz, which include measurement errors, sampling bias 
(density and sampling patterns) and interpolation methods. By 
contrast, complete error budgets require data collection and 
testing protocols that go beyond typical survey practice. Other 
techniques for estimating δz include repeat observation of 
control points (Brasington et al., 2000) (Table III), bootstrap-
ping experiments (Wheaton, 2008), repeat surveys of unchang-
ing surfaces (Wheaton, 2008), fuzzy terrain models (Lodwick 
and Santos, 2003) and more traditional geostatistical 
techniques like surface interpolation with Kriging surfaces 
(Chappell et al., 2003).

Although pin-pointing the precise magnitude of δz requires 
information beyond the topographic data itself, it is known 
that δz tends to exhibit patterns in its spatial variability that 
are coherent and predictable (Wheaton et al., 2004). Later in 
this paper we exploit this observation to develop a technique 
for estimating δz that requires only the raw topographic data.

Propagating uncertainty into DoD

Brasington et al. (2003) showed the individual errors in the 
DEMs can be propagated into the DoD as:

 δ δ δu z zDoD new old= ( ) + ( )2 2  (2)

where δuDoD is the propagated error in the DoD, and δznew and 
δzold are the individual errors in DEMnew and DEMold, respec-
tively. This method assumes that errors in each cell are random 
and independent. The combined error can be calculated as a 
single value for the entire DoD if spatially-explicit estimates 
of δznew and δzold do not exist. Alternatively, spatial variability 
in δz can be considered for both DEMs independently and 
δuDoD can be calculated on a region by region (Lane et al., 
2003; Westaway et al., 2003) or cell-by-cell basis (Wheaton, 
2008). While simple region fi lters such as submerged (wet) 
versus un-submerged (dry) areas, are straightforward to apply, 
objective techniques for a more detailed and cell-by-cell esti-
mate of δz have been lacking.

Assessing the signifi cance of DoD uncertainty

There are two primary ways in which the signifi cance of 
uncertainties in DoD predicted elevation changes are typically 
expressed. Both rely on thresholding the DoD and discarding 
or applying a lower weighting to elevation changes below 
some detection limit (i.e. minLoD). In the fi rst simple approach, 
the propagated uncertainties (i.e. δuDoD) are used to defi ne a 
threshold elevation change, or minLoD (with dimensions of 
length; e.g. +/− 10 cm). For example, a minLoD of 10 cm could 
correspond to two DEMs with equal δz of 7·07 cm using 
Equation (2). Both the volumetric and areal estimates of mor-
phological change are highly sensitive to the minLoD, as illus-
trated with DoD data from 2006 to 2007 on the River Feshie 
(Figure 3). The more uncertain the DEMs (and hence the 
higher the minLoD threshold), the more information is lost from 
the budget. Thus, the signifi cance of the uncertainty mani-
fested in δuDoD is the inability to reliably detect elevation 
changes below the minLoD threshold.

As an alternative, Brasington et al. (2003) and Lane et al. 
(2003) draw on Taylor (1997) to show how probabilistic 
thresholding can be carried out with a user-defi ned confi -
dence interval. If the estimate of δz is a reasonable approxima-
tion of the standard deviation of error (SDE), Equation (2) can 
be modifi ed to:

 U t SDE SDEcrit new old= +( )2 2  (3)

Table III. Variance in repeat GPS observation of control points over 
3 years (n = 382 observations). Standard deviations (σ) of each coor-
dinate component were calculated for each control point and then 
averaged over the number of control points to produce σµ. The fi fth 
column shows an average standard deviation for each coordinate 
component that was weighted by the number of observations from 
that year (row 5). The higher variance reported in 2005 was likely due 
to repeat control observations

2004 2005 2006 Combined

σµ Easting (m) 0·015 0·034 0·007 0·020

σµ Northing (m) 0·014 0·037 0·012 0·020

σµ Elevation (m) 0·007 0·018 0·004 0·010
No of Repeat 

observations
257 110 15 382

No of Control points 6 5 5 16
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where Ucrit is the critical threshold error, based on a critical 
student’s t-value at a chosen confi dence interval where

 t
z z

u
DEM DEM

DoD

new old=
−

δ
 (4)

In Equation (4), Z ZDEM DEMnew old
−  is simply the absolute value 

of the DoD. The probability of a DoD predicted elevation 
change occurring purely due to chance measurement error 
can then be calculated by relating the t-statistic to its cumula-
tive distribution function (CDF). Throughout this paper, the 
95% confi dence interval is used as a threshold. An example 
of probabilities derived using this technique from spatially 
uniform estimates of δz is shown in Figure 4. Following this 
method, an error-reduced DoD can then be obtained by dis-
carding all changes with probability values less than the 
chosen threshold. In practice it is just as easy to apply a 
confi dence-interval based threshold from spatially uniform 
versus spatially variable estimates of δz. However, objectively 
estimating a spatially variable δz is the major challenge.

Methodological Development

If spatially uniform minLoD analyses result in true geomorphic 
changes being discarded, knowledge of the spatial structure 
of elevation uncertainty becomes fundamentally important. 
Specifi cally, if regions of the DoD where δz is lower than 
currently presumed can be identifi ed, a less restrictive minLoD 
may be applied locally and more information recovered (par-
ticularly relevant where deposition on bar tops occurs as 
broad shallow gravel sheets). Similarly, in areas where δz is 

substantially higher than currently presumed (e.g. steep banks), 
a more restrictive minLoD may be applied to more accurately 
adjust volumetric estimates of change to refl ect this higher 
uncertainty. As Brasington et al. (2003) pointed out, the 
problem with a spatially uniform minLoD is that it infl uences 
different processes in different ways. A process like bank 
erosion has an elevation change distribution (ECD) that is 
entirely erosional but spans a large range of elevation change 
magnitudes (refl ecting primarily differences in bank heights). 
In contrast, a process like overbank deposition tends to exhibit 
a peaked ECD concentrated toward low-magnitude elevation 
changes that may well fall below a minLoD threshold. To 
address these issues, two methodological innovations are pre-
sented in the sections below – quantifying spatially variable 
uncertainties and accounting for spatial coherence of change.

Spatially variable uncertainty quantifi cation

Repeat surveys of unchanging surfaces performed on the 
Feshie by Wheaton (2008) revealed a strong and predictable 
spatial bias in elevation uncertainty. Essentially, areas that are 
steep, have low survey point density and high surface rough-
ness (e.g. cobbles and boulders), have very high elevation 
uncertainty; whereas areas that are fl at, have relatively high 
survey point density and are smooth have low elevation 
uncertainty. When elevation uncertainty is treated as spatially 
uniform, the minLoD is typically either defi ned based on an 
average value, which tends to discard more information than 
it should in areas where elevation uncertainty is low, and not 
enough information in areas where elevation uncertainty is 
high. When a more conservative approach is employed (i.e. 
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a higher minLoD), even more information about true geomor-
phological changes are discarded. These simple observations 
form the premise for developing methods that aim to quantify 
the spatial variability of elevation uncertainty. The crux of the 
problem is that the various components of elevation uncer-
tainty are collinear variables and do not exhibit a simple 
monotonic relationship to elevation uncertainty. Although 
an expert can identify the various factors that contribute to 
uncertainty, a deterministic model cannot be unambiguously 
constructed. For these reasons, a more heuristic approach 
was attempted here.

Whereas probabilistic models primarily describe random 
variability in parameters, fuzzy models primarily deal with 
vagueness in parameters (Chen et al., 1999). Although the 
assumptions on the nature of the statistics (e.g. independence 
of variables, errors being random) underlying probabilistic 
models of uncertainty can be stretched in order to apply them, 
such applications may lead to serious errors (Chen et al., 
1999). By contrast, fuzzy models require very few assumptions 
and can be applied when relatively little is known about the 
uncertainty, or what is known can only be articulated in less 
precise linguistic terms (Bandemer and Gottwald, 1995; Klir 
and Yuan, 1995). One of the subsets of fuzzy set theory is 
fuzzy logic, and one of the tools that grows out of fuzzy logic 
is the fuzzy inference system (Klir and Yuan, 1995).

Fuzzy logic is often described as a trade-off between signifi -
cance and precision (Jang and Gulley, 2007). This is important 
as the geomorphologist may not necessarily need to know the 
precise magnitude of elevation uncertainty in each compo-
nent of the error budget (e.g. errors due to slightly tilted survey 
pole) rather, the signifi cance of the total uncertainty on the 
geomorphic interpretation. Fuzzy inference systems are con-
venient frameworks for taking the information that is known 
(inputs) and producing an appropriate output (Jang and Gulley, 
2007). In the case of topographic surveys, something is always 
known about the survey sampling (e.g. point density) and the 
morphology (slope), and in some cases there may be addi-
tional information (e.g. roughness from facies maps, point 
quality from GPS). From empirical research (Wheaton, 2008), 
we have an approximate understanding of the range and 
general magnitude of elevation uncertainties associated with 
various types of land surveying. Here, a fuzzy inference system 
(FIS) was developed that accepts the inputs that are readily 
available and produces a δz output that is calibrated to the 
range of empirically determined values. Matlab’s Fuzzy Logic 
Toolbox, developed by Jang and Gulley (2009), was used to 
implement this FIS.

The fuzzy inference system consists of four components:

1. specifi cation of FIS type, fuzzy operation methods, rule 
implication method (and vs. or), aggregation method (min 
vs. max) and defuzzifi cation method (if applicable);

2. defi nition of fuzzy membership functions for the inputs;
3. defi nition of rules relating inputs to outputs;
4. defi nition of fuzzy membership function for the output;

The most common default specifi cations suggested by Jang 
and Gulley (2007) were used for FIS type Mamandi. The fuzzy 
operation methods refer to how inputs for rules are combined 
(using Boolean operators), whereas the rule implication 
method refers to how a output membership function is arrived 
at for each rule (minimum method used). The aggregation 
method refers to how the outputs from all applicable rules are 
combined into a single output membership function (maximum 
method used). Finally the defuzzifi cation method refers to 
how the fuzzy number output (a membership function), can 
be converted into a crisp, single-value number (centroid 

method used). The next sub-section addresses the second and 
third components and the following subsection addresses the 
fourth component.

Fuzzy inputs and output
Although fuzzy membership functions come in a wide array 
of forms, the most common are triangular and trapezoidal 
membership functions. Although FIS outputs tend not to show 
signifi cant sensitivity to membership function shape (Klir and 
Yuan, 1995). The process of defi ning membership functions 
can be thought of in two parts. First, the number of linguistic 
adjectives that could be used to describe each variable needs 
to be identifi ed. For the inputs used here (slope, point density 
and point quality), the simple adjectives ‘high’, ‘medium’ and 
‘low’ were deemed adequate. The second part consists of 
defi ning the membership function that describes the range of 
values covered by each adjective. The membership functions 
used here are shown in Figure 5. For the input variables, so 
long as the membership functions span the range of encoun-
tered values for that variable, the exact specifi cation of their 
membership function is not critical (Jang and Gulley, 2007; 
Klir and Yuan, 1995). What is more important is that the expert 
defi ning the rule system knows what values the adjectives 
correspond to and develops rules in accordance with those 
perceptions. For the output variable (δz in this case), the 
output membership functions must correspond to realistic 
output values. Outputs from the FIS were calibrated to values 
found in empirical experiments on the Feshie reported in 
Wheaton (2008). These experiments surveyed a subsection of 
the reach fi ve times within a day during a period when no 
geomorphic changes took place. The subsection spanned the 
full range of morphological unit types, roughness types, slopes 
and survey sampling styles exhibited in the larger study area. 
As such, variance between DEMs from these fi ve surveys 
provided an excellent spatially stratifi ed data set to calibrate 
the FIS system.

FIS rules
Rule defi nition for the FIS is a process of linguistically relating 
the inputs (using their different adjectives defi ned above) to a 
single adjective for the output. For example, if 3D point quality 
is high, slope is low, and point density is high, then elevation 
uncertainty is low. By contrast if 3D point quality is low, slope 
is high, and point density is low, then elevation uncertainty is 
extreme. The complete 3-input rule system used in this paper 
is shown in Table IV. A more generic 2-input rule FIS system 
applicable to any topographic survey based on just slope and 
point density is reported in Wheaton (2008, Table 4.7).

Application of FIS
A fuzzy inference diagram is the standard technique for illus-
trating how a specifi c fuzzy inference system operates. In 
Figure 6 an illustration of the 2-rule FIS is shown. Two exam-
ples are shown here to contrast the outputs from different point 
density and slope inputs. The fi rst step in applying the FIS 
involves the calculation of the output membership function 
for each applicable individual rule (implication method). Not 
all rules will apply. In the example of Figure 6A only one rule 
from fi ve candidate rules of the nine total rules applies (i.e. if 
slope is low and point density high then elevation uncertainty 
is low). Whereas in Figure 6B, two of six candidate rules of 
the nine total rules are applicable. Next, the total consequence 
of all the applicable rules is calculated (termed the aggregation 
method). This resulting total consequence membership func-
tion expresses the full range of uncertainty in the output pre-
dicted by the FIS. Finally, if desired, the total consequence 
membership function can be defuzzifi ed into a crisp output 
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(single value) of elevation uncertainty. To acquire a spatially 
variable estimate of δz, the above process is applied on a 
cell-by-cell basis to the entire raster DEM.

To illustrate how this method is conducted for a pairwise 
DoD calculation, an example from 2006–2005 is shown in 
Figure 7. Unlike Figure 4, where the probability map was 
calculated from spatially uniform estimates of δz for each 
DEM, in Figure 7 the δz are spatially variable and estimated 
on a cell-by-cell basis using the FIS. The distinction between 
the probability maps from a FIS versus a spatially uniform 
estimate can be diffi cult to identify visually as the probability 
values are largely similar overall but with important adjust-
ments of probability values that change their shading. The 
primary differences are around the fringes of coherent units 
and these are shown more obviously in thresholded elevation 
change distributions.

Spatially coherent erosion and deposition units

A complementary approach to using a FIS to estimate spatial 
variability in δz is based on the observation that erosion and 
deposition tends to occur in spatially coherent patterns. For 
example, Figure 2 shows coherent contiguous units of net 
erosion and net deposition that are generally elongated in a 
streamwise orientation. Many of the bank erosion units are 
crescent shaped units with sharp boundaries, whereas many 
of the depositional units are broader in width and diffuse at 
their boundaries. If these areas of contiguous and coherent 
changes could be identifi ed or classifi ed, then DoD predicted 
elevation changes within those units could be assigned a 
higher probability of being true, whereas changes in areas 
without structured patterns of cut and fi ll could be assigned 

Figure 5. Input and output fuzzy membership functions used in this paper. Inputs: (A) slope; (B) point density; and (C) point quality. 
Output: (D) elevation uncertainty δz.

Table IV. Three input fuzzy inference system for elevation uncer-
tainty (δ(z)). The three inputs are GPS-reported 3D point quality, 
percentage slope and point density

Rule

Inputs Output

3D P.Q. Slope Pt. ρ δ(z)
m % Pts m−2 m

1 High Low High Low
2 High Medium High Average
3 High High High High
4 High Low Medium Low
5 High Medium Medium Average
6 High High Medium High
7 High Low Low Average
8 High Medium Low High
9 High High Low Extreme
10 Medium Low High Low
11 Medium Medium High Average
12 Medium High High High
13 Medium Low Medium Average
14 Medium Medium Medium High
15 Medium High Medium Extreme
16 Medium Low Low Average
17 Medium Medium Low High
18 Medium High Low Extreme
19 Low Low High Average
20 Low Medium High High
21 Low High High Extreme
22 Low Low Medium Average
23 Low Medium Medium High
24 Low High Medium Extreme
25 Low Low Low High
26 Low Medium Low High
27 Low High Low Extreme
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to a lower probability. Operationalizing this approach requires: 
(i) a technique for adjusting the probability estimate account-
ing for this spatial information; and (ii) a method for segment-
ing structured patterns of change, from those taken to be 
random. These methods are described in the next two subsec-
tions. If the coherence of such units is ignored, a standard 

minLOD approach leads to a conservative spatial buffer where 
changes grade from the minLOD to zero. Such a buffer is visu-
ally evident around units of erosion and deposition and par-
ticularly where erosion and deposition units abut each other.

Defi ning coherent units
Coherent units are identifi ed using a simple algorithm, which 
runs a moving window (convolution fi lter) across the DoD and 
tallies the number of cells in the window that are erosional or 
depositional. These counts of erosional and depositional cells 
are used as indices of spatial contiguity. If a DoD cell is depo-
sitional (i.e. positive), and surrounded entirely or primarily by 
depositional cells (positive), it will have a high spatial contigu-

ity index for deposition and a low contiguity index for erosion. 
By contrast, if the same depositional DoD cell is surrounded 
primarily by erosional cells, it will have a low spatial contigu-
ity index for deposition. Separate indices for erosion and 
deposition are calculated for each cell in the entire grid to 
avoid the possibility that a particular cell may lie close to a 
sharp boundary between areas of erosion and deposition (e.g. 
has the same number of erosion and deposition cells in the 
window but they are themselves spatially coherent).

After the spatial contiguity indices are calculated for each 
cell, in any given cell only one of the two indices is used. For 
cells which the DoD predicts to be erosional, the spatial con-
tiguity index for erosion is used, and vice versa. The index 
estimates how likely the direction of elevation change is 
within this spatial neighbourhood (i.e. higher counts more 
likely, lower counts less likely). A simple linear transform 
function is used to relate the spatial contiguity index to a 
probability where p(A|Ej) and p(A|Dj) are the conditional prob-
abilities that cell j is erosional or depositional, respectively, x 
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is a unit vector (−1 if cell is erosional, +1 if cell is deposition), 
and xmax and xmin are upper and lower thresholds taken to 
defi ne the number of cells at which the probability becomes 
1 and 0 respectively:

 p A E

x x

x x
p A D

x x

x
j

i

n

j
i

n

( ) =
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−
( ) =
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 (6)

The logic for a transform function can be illustrated with a 
simple example. If a given cell is calculated to be erosional 
but its magnitude falls beneath the calculated minLoD for that 
cell, it would normally be discarded. However, if that low-
magnitude erosion cell is surrounded by all or primarily ero-
sional cells, then it is highly likely that the cell actually is 
erosional and the otherwise ‘undetectable’ change is real. 
However, if the cell is depositional, and all the cells around 
it are erosional, it is much less likely the cell is actually depo-
sitional. The index of contiguity is linearly transformed into 
the probability that each cell belongs either to a class of 
erosion or deposition, as follows (for a 5 × 5 window):

For the analyses reported here, a 5 × 5 cell window was 
used to defi ne the neighbourhood (refl ecting the extent of 
typical bar-scale features) so that the default value of xmax is 
25 (i.e. all cells same class). The lower threshold, xmin was then 
taken to be 15. Wheaton (2008) explored the sensitivity of the 
probability estimate to window size and settled on a default 
5 × 5 window size because it was a better discriminator of 
areas of low magnitude change likely to be real than 3 × 3, 
7 × 7 and 9 × 9 windows (Note this result is grid resolution 
dependent; a 1 m resolution raster was used in this paper).

Updating the probability
Two techniques have been presented for defi ning a probability 
that elevation changes are true on the basis of: (a) a spatially 
uniform estimate of δz (e.g. Figure 4) or a spatially variable 
estimate of δz using the FIS (e.g. Figure 7). These estimates 
could usefully be conjoined with the spatially reliability 
measure described above, to provide a mixed-method 
approach to uncertainty estimation. Conjoining these proba-
bilities can be effectively undertaken using Bayes Theorem in 
which the existing, prior probability is updated using addi-
tional information to calculate a conditional probability incor-
porating both measures. This analysis needs to be conducted 
for erosion and deposition classes separately, and the results 
can be combined to produce an overall probability map akin 
to Figures 4 and 6. Here, the application of Bayes Theorem is 
described only for the erosional case to illustrate the concepts 
(it is exactly the same for the depositional case).

The original a priori probability (p(Ej)) that the DoD predicted 
elevation change is signifi cant can be updated by calculating a 
conditional posterior probability (p(Ej|A)) that a vertical eleva-
tion difference is signifi cant, given the probability (p(A|Ej)) 
revealed from its spatial index analysis. In this case:

 p E A
p A E p E

p A
j

j j( ) =
( ) ⋅ ( )

( )
 (7)

where p(A) is the conditional probability that the cell is ero-
sional given its spatial context within an area of erosion. This 
is defi ned as:

 p A p A E p E p A E p Ej j i i( ) = ( ) ⋅ ( ) + ( ) ⋅ ( )  (8)

where the j subscript refers to a probability that a change is 
signifi cant and the i subscript refers to the probability that a 

change is insignifi cant Thus, the updated probability can be 
calculated knowing just two probabilities: the a priori proba-
bility (p(Ej)) and this conditional spatial index probability 
(p(A|Ej)). A simple illustration of this is shown in Figure 8 for 
the 2006–2005 DoD. When the spatial contiguity index is 
used with the Bayesian updating, the result is similar to low-
pass smoothing of the spatial probability distribution, which 
highlights coherent regions of change (Burrough and 
McDonnell, 1998).

Results

To illustrate the utility of these new methods, they are applied 
using data from the River Feshie. For comparison, the results 
of a standard DoD analysis with no uncertainty accounting is 
presented as a baseline for comparison.

Unthresholded DoDs

While the DoD maps of Figure 2 are useful for highlighting 
the spatial pattern and coherence of geomorphic changes, 
these data can also be quantifi ed in terms of their related 
elevation change distributions (ECDs) as shown in Figure 9. 
The areal distributions (left-hand side of Figure 9) are histo-
grams showing the total area experiencing a given magnitude 
of elevation change in each bin. Without careful inspection, 
the areal distributions can be somewhat misleading. For the 
four analysis periods, they all appear to be broadly similar 
normal distributions roughly centred around an elevation 
change of zero metres, loosely implying a balance between 
erosion and deposition (i.e. equilibrium).

By contrast to areal elevation change distributions (ECDs), 
the volumetric ECDs (right-hand side of Figure 9) are better 
discriminators of the different styles of change between analy-
sis periods. As the volumetric distribution refl ects the area 
multiplied by the magnitude of elevation change (i.e. the 
x-axis), the areal and volumetric distributions look quite 
similar near the middle but are dramatically amplifi ed the 
further away from zero one gets (i.e. towards higher magni-
tude changes). As such, the volumetric ECDs are better for 
resolving signatures of change. The two relatively inactive 
years (2003 to 2004: Figure 9H and 2005 to 2006: Figure 9D) 
have relatively similar shape and magnitude, single-peak dis-
tributions with a slight degradational bias. The two larger 
magnitude years (2004 to 2005: Figure 9F and 2006 to 2007: 
Figure 9B) reveal more complex distributions of change con-
taining at least three peaks. They each have a high peak in 
the middle centred roughly around zero. 2006 to 2007 is 
particularly revealing in that it has a very high and concen-
trated peak of low magnitude deposition with a much more 
spread-out ridge of erosion spanning a wide range of 
magnitudes.

These latter characteristics appear to be plausible geomor-
phic signatures, although the consistently highest magnitude 
peak centred around zero raises a fundamental question. 
While it is certainly possible that a high percentage of the areal 
distribution will be centred about zero, is there necessarily 
any reason that this phenomena should hold for the volumet-
ric distributions as well? If all the DoD elevation changes in 
the ECD are assumed to be from geomorphic change (no 
noise), for the high peak to remain centred around zero in the 
volumetric distributions would mean that a large relative pro-
portion of the reach would have to be undergoing changes of 
very low magnitude, because these are being multiplied by 
such small elevation changes. By contrast, for a peak to 
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Figure 9. Comparison of areal and volumetric DoD Distributions (2007–2003). Each row represents a different analysis period (A and B are 
2007–2006; C and D are 2006–2005; E and F are 2005–2004; G and H are 2004–2003). The left-hand column represents the gross unthresholded 
areal DoD distribution, whereas the right-hand column represents the unthresholded volumetric DoD distribution.

develop around a higher magnitude area, requires a relatively 
small surface area to change, because these are being multi-
plied by much larger elevation changes. While there are plau-
sible geomorphic explanations for such a high peak to persist 
so consistently, this feature is highly suspect in light of the 
earlier observations regarding the unrealistically high percent-
age of the reach undergoing changes. Thus, in summary, these 
DoDs derived from high-quality, high-resolution GPS surveys 
appear to be producing some reasonable spatial patterns of 
change (Figure 2), but there are concerns about the reliability 
of the magnitude and proportions of predicted changes from 
standard DoD analyses.

Application of new DoD uncertainty analysis

Figure 10 shows the summary map results of all DoDs thres-
holded at a 95% confi dence interval minLoD. The same results 
are presented in Figure 11 as elevation change distributions. 
Focusing fi rst on the FIS-only ECDs (Figure 11A), the distribu-
tion shapes are different from those simply thresholded using 
a standard analysis (e.g. Figure 3). Both distributions are 
bimodal with discrete erosional and depositional distributions. 
However, in the case of the FIS ECD, the distributions blend 
more smoothly into the low magnitude changes, instead of 
just having the central portion excluded. Applying the spa-
tially variable uncertainty analysis has the effect of recovering 
some information at a lower limit as implied in the member-
ship function of the ‘low’ δz class (Figure 5), but also selec-

tively recovers and discards information across the whole 
range of elevation change magnitudes. It is conceptually 
appealing that more conservative thresholds have been 
applied where δz is greater and less conservative thresholds 
applied where δz is less, and the distributions certainly refl ect 
an adjustment based on this principle.

The DoD maps for FIS application (top of Figure 10) mea-
sured in comparison with a standard minLoD threshold (e.g. 
Figure 3) show some noticeable improvements in terms of 
geomorphic plausibility. First, the number of pixelated areas 
on the fl oodplain has been reduced dramatically. The primary 
coherent units of erosion and deposition have dilated around 
their edges (refl ecting lower magnitude changes likely to be 
true). This has particularly helped improve contiguity between 
erosion and deposition units, but it could still be improved. 
Although using the FIS has recovered a small volume of lower 
magnitude changes, it has not recovered much in the way 
of meaningful low magnitude elevation changes across the 
fl oodplain. This is probably because these changes really are 
below the lowest minLoD limits.

By comparison, applying the spatial coherence index 
through Bayesian updating (bottom of Figure 10) appears to 
recover substantial areas of fl oodplain deposition. Some of the 
smaller areas appear to be smoothing the highly complex 
pixelated (assumed random) patterns in the original DoD, 
however, some of the larger units are in spatially coherent (e.g. 
splays) and may likely refl ect actual overbank deposition. The 
spatial extent of the individual erosion and deposition units 
also signifi cantly increases towards the actual extent revealed 
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Figure 10. Comparison of thresholded DoDs (at 95% Cofi dence Interval) based on applying FIS through pathway 3 (top) and applying Bayesian 
updating using the Spatial Contiguity Index through pathway 4 (bottom) for all annual DoDs from 2007–2003. The hillshade from the more recent 
year’s DEM underlies the DoD for context. This fi gure is available in colour online at www.interscience.wiley.com/journal/espl

by strong fi eld evidence (facies changes, inundation extents 
from trashlines, and aerial photos (Wheaton, 2008). Thus, 
from the DoD maps, the new method qualitatively indicates 
a substantial improvement.

The ECDs after updating with the spatial coherence index 
(right-hand side of Figure 11) still emulate the parent distribu-
tions from the FIS, as shown on the left-hand side of Figure 
11. However, the total volumes have substantially increased 
over their more simple counterparts, suggesting signifi cant 
information recovery. This is most pronounced for the two 
wetter years where greater fl oodplain inundation was experi-
enced. This is not surprising as this is precisely where a higher 
degree of low magnitude changes associated with shallow 
overbank fl ows are expected to be found. What is particularly 
promising about the information recovery is not the magnitude 
of recovery but that it has successfully bridged the gap between 
the discrete erosional and depositional halves of the distribu-
tion, such that even changes close to zero are now represented 
in the distribution.

To explore to what extent these conclusions hinge on the 
somewhat arbitrary selection of a reasonably conservative 95% 
confi dence interval, a sensitivity analysis was performed. A total 
of 44 analyses across the four analysis periods were performed 
(11 each), in 5% increments from 50% (liberal), up to 95% and 

then including 99% (conservative). The results are summarized 
in Figure 12. The original gross budget estimates are plotted in 
the background as straight lines to give an indication of informa-
tion loss. The high magnitude years (2007–2006: Figure 12A 
and 2005–2004: Figure 12C) show much greater sensitivity than 
the lower magnitude years, particularly above 90%. Once 
again, 2006–2005 (Figure 12B) shows some sensitivity at higher 
thresholds to the overall interpretation of net aggradation or 
degradation. Consistently, the more conservative the confi -
dence interval threshold, the lower volume of change taken to 
be real. Although the absolute values change, the qualitative 
interpretation remains consistent above 66%.

Table V summarizes the gross DoD volumes between analy-
ses with: (i) no accounting for uncertainty; (ii) a standard 
uncertainty analysis; and (iii) the new techniques presented 
above. The corresponding information loss from the original 
unthresholded DoD is also reported. Information loss was 
calculated simply as one minus the ratio of the volume of 
predicted volumetric change for that uncertainty analysis, 
divided by the original unthresholded volumetric change. 
Total information loss refers to the same ratio but is based on 
the sum of erosion and deposition volumes as opposed to net 
volumes. Across the information loss statistics for every analy-
sis type, there is only a maximum difference of 8% between 
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Figure 11. Comparison of application of FIS (left) verses FIS with the Spatial Coherence Filter (right) uncertainty algorithms on volumetric DoD 
elevation change distributions (2007–2003). The left-hand column represents the FIS applied and thresholded at a 95% confi dence interval; the 
right-hand column represents both a FIS and Bayesian updating using the Spatial Contiguity Index applied and thresholded at a 95% confi dence 
interval (see Figure 9).

Figure 12. An example of pathway 4 sedi-
ment budget sensitivity to different confi -
dence interval thresholds. Analysis Intervals: 
(A) 2007–2006, (B) 2006–2005, (C) 2005–
2004, (D) 2004–2003. The gross nonthresh-
olded values are plotted as a series of 
horizontal reference lines to indicate relative 
information loss. This fi gure is available in 
colour online at www.interscience.wiley.
com/journal/espl
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Table V. Volumetric DoD results and information loss for an unthresholded DoD and three 
contrasting levels of uncertainty analysis for all years. Mean values across all four periods are also 
reported. Percentage total loss from original is calculated from the total volume of change, not 
the net volume of change

DoD

DoD change Percentage loss from original

Erosion Deposition Net Erosion Deposition Total
m3 m3 m3 % % %

No uncertainty analysis (unthresholded)
2007–2006 11162·0 8882·3 −2279·7 NA NA NA
2006–2005 4538·5 3167·1 −1371·3 NA NA NA
2005–2004 8307·9 7029·7 −1278·2 NA NA NA
2004–2003 4975·5 3072·2 −1903·3 NA NA NA

µ 7246·0 5537·8 −1708·2 NA NA NA

Standard 10 cm minLoD
2007–2006 9840·0 7687·0 −2153·0 12% 13% 13%
2006–2005 2771·4 1834·8 −936·6 39% 42% 40%
2005–2004 7220·4 5620·7 −1599·7 13% 20% 16%
2004–2003 3258·8 1792·4 −1466·3 35% 42% 37%

µ 5772·6 4233·7 −1538·9 25% 29% 27%

FIS only (95% CI)
2007–2006 7376·7 5403·7 −1973·0 34% 39% 36%
2006–2005 898·4 845·1 −53·3 80% 73% 77%
2005–2004 4673·4 4003·8 −669·7 44% 43% 43%
2004–2003 1233·5 740·5 −493·1 75% 76% 75%

µ 3545·5 2748·3 −797·2 58% 58% 58%

Bayesian updating of FIS with spatial coherence (95% CI)
2007–2006 8581·0 6605·3 −1975·7 23% 26% 24%
2006–2005 1857·8 1288·5 −569·3 59% 59% 59%
2005–2004 5794·0 4810·8 −983·2 30% 32% 31%
2004–2003 2268·1 1156·1 −1111·9 54% 62% 57%

µ 4625·2 3465·2 −1160·0 42% 45% 43%

erosion, deposition and total information loss, and a mode of 
3%. As such, the discussion here will focus only on the total 
information loss statistic.

Total information loss across all the analyses ranged from 
as little as 13% to as much as 77% (mean = 40%). Caution 
should be exercised in interpreting gross information loss as 
an indication of how well various pathways are performing. 
These summary results give little insight into what fraction or 
type of information was ‘recovered’ or lost like the elevation 
change distributions do. However, it is diffi cult to describe 
overall trends across 24 different elevation change distribu-
tions, and for that these statistics can be helpful. Regardless of 
the uncertainty analysis used, the high magnitude years (2006 
to 2007 and 2004 to 2005) consistently produced the lowest 
information loss (typically roughly half of the other years).

The standard spatially uniform minLoD application generally 
produced the lowest information loss (mean = 27%), but at 
the expense of geomorphic plausibility and by means of an 
overly simplistic model of uncertainty. Using the FIS by con-
trast, generally produced the highest information loss (mean 
= 58%), but with the aid of a more sophisticated model δz. 
When the Bayesian-updated spatial coherence fi lter is used, 
much of the information lost from the FIS is recovered (mean 
= 43%, roughly 16% recovery on average).

Discussion

Sensitivity of methods

Although the sensitivity of some of the parameters used in the 
new methods (e.g. confi dence interval, moving window size) 

have been presented, many other parameters have not been 
included here (e.g. FIS membership function inputs, DEM grid 
resolution, ECD bin size, etc.). Appropriate values can be 
chosen for some of these based on individual circumstances, 
the nature of the data used (e.g. survey technology, selective/
unselective sampling), the type of questions being asked, rules 
of thumb/previous experience. For example, as a rule of 
thumb it seems that grain size (e.g. d90) could be taken as a 
rough proxy for the bin interval used in ECDs (default set to 
5 cm). Using too high a frequency interval results in rough 
distributions. Using too coarse an interval makes it diffi cult to 
resolve differences that would be the result of a single sheet 
or layer of grains being deposited (e.g. 2d90 verses 3d90). For 
many intermediate size gravel bed rivers, the default param-
eter values in the DoD Uncertainty Analysis Software (Matlab 
scripts) provided with this paper give the user a very reason-
able starting point. However, we have included in the soft-
ware an easy way to perform sensitivity analyses of all 
parameters as well as to compare six different types of DoD 
uncertainty analyses including the traditional techniques pre-
sented earlier and the new techniques presented here.

Interpolation errors

In this context, interpolation errors in DEMs manifest them-
selves primarily in two ways. One is as a result of the TINing 
process and the other is in the rasterization process. We now 
consider the questions: are these errors signifi cant and are they 
dealt with in the DoD uncertainty analyses proposed here?

Recall that TINs are the most common and reliable form of 
representing high-resolution topographic data, which has 
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been collected with a topographically stratifi ed sampling 
scheme to capture morphological grade-breaks (French and 
Clifford, 2000). The TIN itself is particularly prone to misrep-
resenting surface topography where low point density and 
greater topographic complexity combine. The use of an FIS 
that accounts for both point density and slope is an implicit 
attempt to account for such TIN interpolations. It is not explicit, 
in that it does not fundamentally address the root causes of 
interpolation errors (i.e. over generalization due to lack of 
points) and does not improve the TIN. All the process does is 
allow an estimation of the extent to which TIN interpolation 
errors might be contributing to surface representation 
uncertainty.

There are further interpolation errors introduced in the 
process of linearly resampling the TIN onto a raster (grid) 
DEM. These errors are minimized when a grid resolution is 
chosen that is similar or fi ner than the point density of the 
survey. As point density varies, there is always a trade-off 
between fi ner resolution rasters and the associated increased 
computational overhead. One way to identify appropriate grid 
resolutions, so as to minimize such interpolation errors, is to 
look at the sensitivity (through information loss) of DEM 
budgets to grid resolutions (Brasington et al., 2000). For the 
Feshie, a 1 m resolution DEM minimized information loss, 
while maintaining the detail of bar scale morphology and a 
computationally effi cient grid size to perform the numerous 
analyses reported here. Alternative TIN-based differencing 
schemes do exist and are used in commercial applications like 
Surfer and Autodesk’s Land Desktop and have been used in 
the literature (Lane et al., 1994; Lane, 1998; Merz et al., 2006). 
However, to apply the sort of uncertainty analysis used here, 
would be algorithmically much more complicated and it 
would be diffi cult to maintain fl exibility for extension in the 
future. As such, the simpler raster-based algorithms were 
adopted here and adequately high grid resolutions were used.

Application to other survey methods

All of the analyses presented in this paper are based on 
ground-based survey techniques like rtkGPS and total station 
surveying. Other popular techniques of monitoring topogra-
phy include aerial photogrammetry (Westaway et al., 2001; 
Gilvear et al., 2004), airborne-LiDaR (Charlton et al., 2003; 
Notebaert et al., 2008) and other optical remote sensing tech-
nologies (Marcus and Fonstad, 2008). In addition, terrestrial 
laser scanning (or ground-based LiDaR) is rapidly emerging as 
a viable monitoring tool (Brasington et al., 2007; Heritage and 
Hetherington, 2007; Milan et al., 2007; Heritage and Large, 
2009; Hodge et al., 2009a, 2009b), capable of capturing topo-
graphic data at resolutions on the order of 103 points m−3. All 
three of these techniques have challenges capturing accurate 
topography in subaqueous and/or vegetated environments 
compared with ground-based GPS and total station surveying. 
However, they can be applied at exceptionally high resolu-
tions over spatial extents similar to that with ground-based 
methods, or at quite reasonable resolutions over much greater 
spatial extents (Lane and Chandler, 2003). Increasingly, a mix 
of surveying technologies is used to build a complete data set 
for one survey (e.g. mixing GPS and LiDAR data). Also, in a 
monitoring context, different repeat surveys may have been 
collected using different techniques. As such, the uncertainty 
estimation methods here would be much more useful if they 
could be applied independently to any survey methods, and 
then propagated into the DoD.

Using a two-rule system, as long as the raw point-data were 
available from such surveys, the DoD uncertainty techniques 

developed here should be applicable. Some slight calibration 
of the membership functions might be needed, but at a 
minimum these could be calibrated to provide a reasonable 
(if not conservative) fi rst-order estimate of surface representa-
tion uncertainty. However, these estimates could be improved 
considerably by extending the rule system to factor in data 
specifi c to individual survey techniques. For example, most 
photogrammetry packages provide residuals for each point 
that could be incorporated, or information from aerial photo-
graphs like the presence of vegetation could usefully be incor-
porated into an FIS rule base. From LiDAR surveys, information 
about the lag between fi rst and second pulse, could be used 
not just as a proxy for vegetation height, but explicitly incor-
porated into the rule system as an uncertainty input. The 
specifi c application of the DoD Uncertainty analysis tech-
niques to other survey methods requires further research, but 
the basic principles should be more generally applicable to 
detecting any topographic changes captured in repeat topo-
graphic surveys. The FIS system alone may also be modifi ed 
be more generically applicable to estimating surface represen-
tation uncertainty for other forms of interpolated spatial data 
(not just topography).

Application to non-fl uvial environments

The focus here has been on the application of DoD uncer-
tainty techniques to improve morphological sediment budget-
ing in fl uvial environments. There are many other monitoring 
contexts where DEM-differencing is being used. In civil engi-
neering, comparison of as-built surveys against pre-project 
surveys has long been used to check cut and fi ll volumes 
against grading plans (Webb and Haupt, 2003). In glaciology, 
repeat topographic surveys are used to perform mass-balance 
calculations, and to investigate ice calving (Willis et al., 1998; 
Hubbard et al., 2000; Rippin et al., 2003; Keutterling and 
Thomas, 2006). In hillslope geomorphology, differencing of 
LiDAR and photogrammetry surveys can be used to look at 
geomorphic change from landslides (Eeckhaut et al., 2007; 
Glenn et al., 2006). Virtually any process that shapes the 
earth’s surface in a manner that produces a magnitude of 
change larger than minimum detection limits has the potential 
to be studied using DEM differencing.

As with applying the DoD uncertainty analysis techniques 
to different surveying technologies, the basic principles should 
still apply. Specifi c calibration and/or extension of the rule 
systems will be necessary, but is straightforward to implement. 
It is likely that because of the lower resolution of topographic 
data sources in hillslope geomorphology, glaciology and 
oceanography applications, more of the budget would be 
discarded as a result of relatively high minimum levels of 
detection. All the same, such an analysis is necessary to deter-
mine whether anything reliable can be said about change from 
repeat surveys in such environments. We speculate that this 
might suggest better quality and higher resolution data sets are 
necessary for many applications.

Geomorphic interpretation

In this paper we have focused on the simplistic, gross reach 
scale interpretations of morphological changes recorded by 
DoDs that are possible when reliability uncertainty associated 
with DEM quality are considered robustly. We have only 
scratched the surface here of a more fundamental structural 
uncertainty associated with the geomorphic interpretation of 



154 J.M. WHEATON ET AL. 

Copyright © 2009 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 35, 136–156 (2010)

DoD-derived sediment budgets. A wealth of quantitative bar-
scale detail about the kinematics of gravel bed rivers are 
locked up in the high resolution DoDs presented. The spatially 
variable nature of the DoD uncertainty presented can, 
however, help to resolve differences in data quality at fi ne 
scales, and can be taken further to unlock the wealth of 
spatially explicit imprints of geomorphic processes in DEMs 
(Wheaton et al., 2009). Future work should seek to exploit 
these details to undertake hypothesis testing about mecha-
nisms of change more rigorously.

Conclusion

This paper has introduced a new technique for quantifying 
reliability uncertainties from DoDs. The premise for the paper 
was that there are meaningful low magnitude geomorphic 
changes being discarded through standard minimum levels of 
detection analyses that could be better distinguished from 
noise through a more sophisticated model of DEM surface 
representation uncertainty. This premise was verifi ed through 
comparing DoD budgets where a standard spatially uniform 
analysis was performed, with the more sophisticated analysis, 
which did indeed recover small magnitude changes in areas 
where anecdotal fi eld evidence suggested the small changes 
were coherent and real. The original developments from this 
paper include the introduction of a spatially variable model 
of elevation uncertainty based on a fl exible and robust fuzzy 
inference system, and the application of a spatial contiguity 
index to account for the spatial coherence exhibited in fl uvial 
patterns of erosion and deposition. In addition, simple eleva-
tion change distributions were shown to exhibit distinctive 
signatures of geomorphic change and even in the absence of 
the more robust uncertainty analysis presented here are a 
useful and under-utilized tool for assessing DoDs. A series of 
Matlab scripts, and wizard-dialog user interface are included 
with this paper so readers can apply the methods 
themselves.

The new approach was applied to 5 years of high resolution 
repeat annual GPS surveys of a partially-braided portion of the 
River Feshie, in the Cairngorm Mountains of Scotland. The 
DoD uncertainty analysis tools are simple to apply to any 
topographic data set and the underlying rule systems are 
straightforward to calibrate to different fi eld settings. The anal-
ysis framework is designed to give a robust spatially-variable 
estimate of DEM uncertainty from any raw topographic point 
data. However, the framework is fl exible and easy to extend 
to include more rules and factors (e.g. roughness) known 
to infl uence surface representation uncertainty if they are 
available.
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