Accounting System: A fine-grained CPU resource protection mechanism for

Embedded System
Midori Sugaya Shuichi Oikawa
Department of Computer Science Graduate School of Systems
Waseda University Information Engineering

3-4-1 Okubo Shinjuku Tokyo, Japan
dolydcl.info.waseda.ac.jp

University of Tsukuba

1-1-1 Tennoudai Tsukuba Ibaragi, Japan

shui@cs.tsukuba.ac.jp

Tatsuo Nakajima
Department of Computer Science
Waseda University
3-4-1 Okubo Shinjuku Tokyo, Japan
tatsuo@dcl.info.waseda.ac.jp

Abstract

In ubiquitous computing environments, our daily lives
will be made convenient by embedded intelligent devices.
Those devices, such as car navigation systems, personal
digital assistances, and cellular phones, provide various
kinds of the complex services. Those devices are networked
with each other and provide complicated services, through
the Internet. While they provide useful services, there is
an increasing possibility of security attacks, which include
the unexpected execution of un-secure codes. Current infor-
mation appliances have not yet fully embodied a resource
protection mechanism that prevents misbehaved applica-
tions from consuming the whole CPU capacity of system
resources.

In this paper, we propose Accounting System, and de-
scribe its design and implementation. The system is a re-
source monitoring and restriction system that has the pur-
pose of improving the system’s reliability and security. We
developed the system on Linux. Our system is a very generic
to offer various services, such as security improvement,
overload control, and class-based accounting, that require
CPU resource control.

1. Introduction

Information appliances [11] are important elements to
realize the ubiquitous computing vision[6]. Nowadays,
most consumer electronics appliances have computing ca-

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing

0-7695-2561-X/06 $20.00 © 2006 IEEE

pability in order to retrieve data from sensors, to process
the data, and to control devices. The recent emergence of in-
formation appliances requires more advanced features, such
as networking and GUI. Those features dramatically com-
plicate the appliances, software systems and increase their
code sizes. Networked systems need to be prepared for se-
curity attacks through the Internet. Since we expect users
to be system administrators of applications, their software
systems must be more robust than personal computers.

Software bugs can also cause the monopolization of CPU
resources. Real-time operating systems may be vulnera-
ble to bugs of real-time programs that easily consume the
whole CPU resources. For example, a problem can hap-
pen when multimedia applications process continuous me-
dia streams. Those multimedia applications have strict tim-
ing constrains, and are given the real-time priority in gen-
eral. Therefore, once they process the streams, they can
easily monopolize the whole CPU resources. In such a situ-
ation, the GUI process that is usually executed on the time-
sharing scheduler cannot consume necessary CPU capacity,
so that a user cannot control the multimedia applications
through the GUI buttons. Another example is an overload
condition. If an overload condition occurs, the response
time of the system becomes worse. General embedded op-
erating systems have not yet provided a resource protection
mechanism that aims to protect the CPU resources from the
CPU monopolization and overload situations. Therefore,
it is necessary to offer a generic mechanism to restrict the
use of CPU resources to develop reliable information appli-
ances.

YF]',F.

COMPUTER
SOCIETY

In this paper, we propose Accounting System, a general-
purpose resource monitoring and restriction system that
prevents the excessive use of the CPU capacity of a pro-
cess or a group of processes.The following two points are
our design principles.

e Simple design to be applied to various services. Ac-
counting System focuses on providing a simple and
generic model and interface. Therefore, the sys-
tem should be able to be easily applied to various
kinds of services, such as security enhancement, over-
load monitoring, class-based accounting, and proces-
sor reservation[3].

e Accurate resource management by using a fine-grain
resolution timer. Future information appliances require
to support a fine-grained rate based execution that can
be realized by the accurate resource management, for
offering better response time and more stable execu-
tion.

Information appliances have become very complex. Most
of them nowadays contain web browsers, Java Virtual Ma-
chines, and many other applications. Implementing these
applications in a robust way needs a more powerful operat-
ing system. Linux is an open-source operating system, and
supports various CPU architectures. Those features are very
suitable for information appliances. Therefore, many indus-
tries consider adopting Linux for their products. There are
many products that have already adopted Linux. Sony Co-
Coon Channel Server, Philips iPronto Remote Control, and
NTT Docomo mobile phones, are the examples.

While the use of Linux is increasing, several problems
are recognized. For example, Linux does not restrict the
resource consumption for their processes. Thus, when ma-
licious application programs are downloaded and executed,
the programs may consume a large amount of the CPU ca-
pacity easily. To solve this problem, we propose Account-
ing System and implement it in the Linux kernel. The re-
maining of the paper is structured as follows. Section 2 de-
scribes the design and model of Accounting System. Sec-
tion 3 presents the architecture and implementation of Ac-
counting System. Section 4 shows the services that can be
implemented by Accounting System. Section 5 shows the
evaluations of Accounting System. Section 6 describes re-
lated work. Finally, section 7 concludes the paper.

2. Accounting System Design
2.1. Design Issues

We designed Accounting System to take into the account
the following three issues.
Simplicity: The system should be simple and generic to

be used in a variety of OS services such as security en-
hancement, class-based accounting, overload monitoring,
and processor reservation.

Accuracy : The system should monitor the CPU capacity
of each process very accurately for making the execution of
application more stable. A fine-grained timer is used to re-
alize the accurate monitoring.

Portability : The system should be implemented in a variety
of operating systems. The system confines the interface to
a few hooks in the host kernel.

2.2. Model of Accounting System

In this section, we describe the basic concept and model
of Accounting System.

2.2.1 Accounting System and Accounting Object

Accounting System is a system to offer the functions that
monitor and restrict the execution time of a process or a
group of processes according to user policies. We have de-
veloped it as a part of the kernel services. Accounting Sys-
tem provides an abstraction to manipulate the CPU capacity
of each process. We named the abstraction an accounting
object. It is a basic abstraction in Accounting System. An
accounting object represents a capacity of the CPU resource
on a single processor. The CPU time of each process bound
to an accounting object is accumulated in it. Through an
accounting object, a user can control the CPU resources.
When a user process binds itself to an accounting object
through the system call, the process is given the restricted
execution time specified by its accounting object.

As shown in Figure 1, application A is bound to an ac-
counting object that has 20% restriction of the CPU capac-
ity. On the other hand, application B and C are bound to the
other accounting object that has the 40% restriction. The
application, bound to the specific accounting object, is not
permitted to use more than the CPU capacity specified in
the accounting object.

User Mode Application
c
7
Application Application
A B
/ 74
20% 40%
Accounting Accounting
Object Object

Accounting System
Kernel Mode

Figure 1. Accounting Object and Process

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

AO

process

~

Figure 2. Time Management by Accounting
Object

2.2.2 Time Management Model

To realize the restriction, an accounting object has two pa-
rameters C' and T, where T represents a period that is a
constant period to control the object, and C' is the maxi-
mum time to be able to execute processes within 7". The
process bound to the accounting object cannot consume the
CPU time more than C' within 7. When processes consume
the entire CPU time within each period T, the process is
blocked until the next period comes. This model has the
following advantages.

e The C and T parameters are defined for respective ac-
counting objects. This allows developers who design
embedded systems to adapt the various kinds of appli-
cations that have different requirements. If the period
time is unified through all accounting objects, all ap-
plications should be subject to restrict the same timing
constraint.

e This model is independent of scheduling policies.
Even if operating systems have several scheduling
policies, they can adopt our system to control and mon-
itor the CPU resources of the processes. Therefore, our
system can be applied for the various types of the ap-
plications that run on the different scheduling policies
supported by operating systems.

The two parameters, maximum computation time C', and
period time T, are set to each accounting object. Figure 2
illustrates an example of the binding a real-time process to
the accounting object. Let us consider the case where a user
creates a new accounting object whose 7" and C' are 100ms
and 50ms respectively. If a process bound to the accounting
object is started at the time 0, it monitors the execution time
of the process to the extent time of C'. If the execution time
C of the process reaches to its maximum of 50ms, the pro-
cess is blocked until the next period comes. At the end of T,
which equals to the start time of the next period, Account-
ing System wakes up the process. Such actions are repeated
until a process completes its execution. By this way, Ac-
counting System monitors and controls the execution time
of the processes by using accounting objects.

Process || Process Process | User Mode

Accounting API Library Interface
—
J L Kernel Mode
Accounting System Call Interface
AO Man agement Function

Timer Manag ement Function
Replenishment Timer | Enforcement Timer
overload
EN:EX:-ENES
F callba:khod(sq F q F E—

=z =z =z
schedule orl exi
| hedul || fork | t |

Accounting
System

L ProcessManagementSystem |
Linux Kernel

Figure 3. Accounting System Architecture

3. Implementation
3.1. System Architecture

Figure 3 depicts the overall architecture of Accounting
System. The services are available by enabling the con-
figuration of the Accounting System support at the kernel
compiling time.

We consider that the architecture is simple in two points.
The first, developpers who design embedded systems can
easily understand the abstraction as accounting object. By
using it, they can easily decide the CPU utilization of the
process and the group of processes by setting the two pa-
rameters, period and execution time. The second, Account-
ing System architecture is separated from the host kernel.
Only four hooks are inserted in the host kernel. Therefore,
any scheduling policies implemented in the host kernel can
be used with Accounting System.

Accounting System is composed of the mechanisms of
Accounting Object Management Function and Timer Man-
agement Function to restrict the CPU utilization of pro-
cesses according to the restrictions of respective account-
ing objects. Those mechanisms are decoupled from the
scheduling policies of the host kernel.

3.2. Process Management and Callback
Hooks

In the system, callback hooks are introduced into the pro-
cess management system in the host kernel for the purpose
of catching events about processes. Those hooks catch the
relevant events, and deliver those events to Accounting Sys-
tem. Accounting System assumes that the four callback
hooks as described the following are inserted in the host
kernel.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

o schedule_hook : It catches scheduling events on con-
text switching among processes. The hook delivers the
scheduling events to Accounting System that changes
the state of an accounting object.

e fork_hook : It catches events when a new process is
created. These events are required to start the account-
ing for the newly created processes. If a parent pro-
cess has already been bound to an accounting object,
its child processes inherited the same accounting re-
striction.

e exit_hook : It catches events on process termination.
The events notify the timing to unbind the termination
of a process from its accounting object.

o kernel_callback_hook : It catches events when a sys-
tem call returns from the kernel mode to the user mode.
At that time, the system checks the state of the ac-
counting object for the blocking of the process to exe-
cute the system call.

3.3. Timer Management Function

The management of timers has an important role of the
system. In this system, there are two types of timers, a
replenishment timer and an enforcement timer. A replen-
ishment timer is a periodic timer for each accounting ob-
ject that is constantly expired. An enforcement timer keeps
to watch on the elapsed time of the currently executing
process. They are implemented by using kernel software
timers. In the following paragraph, we describe the details
of them.

e Replenishment timer : It manages the periodic time of
an accounting object. Each accounting object has its
own replenishment timer. When an accounting object
is created, the timer is also created. In the replenish-
ment timer, first the expiration time is set by adding the
periodic time to the current time. If the elapsed time
reaches the expiration time, the registered timer han-
dler is executed to set the next expiration time. These
replenishments are recursively done by the replenish-
ment timer until it is destroyed.

o Enforcement timer : It watches the elapsed time of the
currently executing process. The timer accumulates
the execution time of the process or processes, until it
reaches to the maximum execution time of the account-
ing object. At that time, the registered timer handler is
invoked to change the state of the accounting object.
By using schedule_hook, the enforce timer catches the
events about context switching among processes, and
stops and starts its timer to monitor the CPU capacity
of the process or processes.

3.4. Accounting Object Management Func-
tion

To manage accounting objects, the system provides the
accounting object management function. It introduces the
following accounting object’s basic operations. To receive
the accounting object services, an application firstly invokes
the create operation to allocate the accounting object in
the kernel memory. Each created accounting object has a
unique object ID. To bind a process to the specified account-
ing object with the object ID, the application invokes the
bind operation. When the application no longer requires the
accounting services, it invokes the destroy operation to ter-
minate the accounting object service and to deal locate the
object memory from the kernel memory. The set operation
changes the parameters of an accounting object. The get
operation obtains the parameter in an accounting object.

3.5. Object State Transition

There are three states to represent an accounting object’s
status. null status represents the status that an accounting
object is created, but no process is bound to the account-
ing object. running status represents the accounting object
is running, and the status also represents that available time
are left within the period time. depleted status represents the
status that no more available time is left within the period
time. The depleted status also represents that the accumu-
lated execution time of a process is reached to the maximum
execution time specified in the accounting object. The state
of an accounting object is changed by various events. When
a process binds to a specific accounting object, the state of
an accounting object becomes running. The enforcement
timer accumulates the execution time of the bound process
to the accounting object by using schedule_hook. If the sum
of the execution time of the bound processes equals to the
maximum execution time of the accounting object, the ob-
ject changes its state to depleted. The change is notified
to Accounting System through kernel _callback_hook. Ac-
counting System executes the action to control the CPU ca-
pacity of the bound processes. The action is classified into
block and signal.

If the action is block, Accounting System puts the bound
processes in the wait queue. The replenish timer checks the
wait queue when the periodic timer expires. If they find the
processes in the wait queue, running is set to the state of
the accounting object, and the processes are woken up. On
the other hand, if the action specified as signal, a signal is
delivered to a process specified in the accounting object as
a warning that the execution time of the accounting object
exceeds the restricted capacity.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

3.6. High Resolution Timer

For Accounting System, the high-precision clock and
time stamp counter are essential to maintain the fidelity of
its accuracy. To provide less than 10ms resolution for mon-
itoring, there are some approaches. The most straightfor-
ward way is to make the clock interrupt frequency higher
than 100Hz in order to issue more interrupts. This allows
the kernel to provide a precise timing and to increase the
system responsiveness. However, shorter intervals require
CPU to spend a longer time in the kernel mode. Therefore,
user programs run slower because of the system overhead
to handle interrupts.

Our system solves the problem by using the high resolu-
tion timer[5]. The high-resolution timer is implemented by
using the one shot mode of the ISA clock timer chip in the
standard PC. Therefore, the extra timer interrupt overhead
will never happen. The high-resolution timer allows us to
specify microsecond granularity parameters in accounting
objects.

4. Some Services Using Accounting System

In this section, we describe four services that utilize
Accounting System, such as a secure resource protection,
class-based accounting, overload monitoring, and processor
reservation.

4.1. Avoiding to monopolize CPU resources
by malicious applications

4.1.1 Secure Resource Protection

Accounting System protects the CPU resource from down-
loaded programs that behave maliciously. We assume that
there is a manager process that starts processes to execute
downloaded programs. The manager process is bound to an
accounting object, of which C' and T" are 50ms and 100ms,
respectively. When the manager process receives a request
to execute a downloaded application, it creates a new pro-
cess. The process is automatically bound to the account-
ing object to which the manager process is bound. There-
fore, the newly created process cannot consume more than
50% of CPU capacity, and it cannot monopolize the CPU
resource.

4.1.2 Binding Multiple processes

Accounting System provides the bind operation that binds
a process to the accounting object. We also provide some
useful interfaces to bind multiple processes to an accounting
object. For example, if a malicious program consecutively
invokes the fork system call, the whole system resources

may be consumed. In another case, it should be easy for
multimedia applications, which process the video and au-
dio data by multiple processes, to bind their processes to a
specific accounting object at once.

We implement the following two methods. The first is to
inherit an accounting object when creating a child process.
The other is to bind an accounting object using group ID.
The former function is realized by using a hook within the
fork system call. If a parent process is bound to an account-
ing object, the child process who is forked from the parent
inherits the same accounting object. Thus, the same restric-
tion as its parent is applied. The latter method uses UNIX
group process ID. The system binds the group of processes
to a specific accounting object. It is safer than binding all
processes to the same accounting object respectively. For
example, when several commands connected by pipes are
started, they can be easily bound to the same accounting
object by using group ID.

4.1.3 Access Control

Each accounting object has an owner attribute for control-
ling the access to a specific accounting object. The owner
attribute of the accounting object is assigned by a process
that creates it. For the consideration of the security, our
system allows them to be manipulated only by their owners
except the privileged user. In resources reservation systems
such as Linux/RK[10], there is no support of access con-
trol. Therefore, these previous system cannot be used for
protecting the CPU resource from malicious programs.

4.1.4 Kernel Interface

This section shows the kernel interface offered by Account-
ing System. An application program needs to treat the ac-
counting object as the object_attributes structure that con-
tains basic parameters, such as C' and T'. We described the
details of them.

e account_create(&object_id, &object_attr) : It creates a
new accounting object. Only a privileged or owner ap-
plication program sets the parameters, such as C, T, in
the object_attr members.

o account_destroy(&object_id) It destroys the account-
ing object specified by object_id. This deletes the asso-
ciated timers, and frees the memory of the accounting
object.

e account_bind_pid(object_id, pid_t) : It binds the spec-
ified accounting object through object_id to a process
whose process ID is pid. An accounting object can be
bound to multiple processes. If the process is termi-
nated, the process is automatically unbound from the
accounting object.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

e account_bind_pgid(object_id, pgid_t) : It binds all pro-
cesses that have the same pgid to the specified account-
ing object. If there is a process, which is bound to the
other accounting object, this system call fails.

o account_unbind_pid(object_id, pid_t) : It unbinds a
process from the accounting object. This is used for
both of single process and a group of processes.

e account_get(object_id, &object_attr): It retrieves the
parameters of the specified accounting object.

e account_set(object_id, &object_attr) :It changes the pa-
rameters of the specified accounting object.

4.2. Class-based Accounting

In this section, we propose a class-based accounting as
the one of the services that uses Accounting System. A
class is defined here as a group of processes that belong to
a specific scheduling class, such as the real-time scheduling
class. The class-based accounting is realized by binding the
processes belonging to the same scheduling class.

4.2.1 A Problem of Process Starvation

When a user forgets to bind a real-time process to an ac-
counting object, the real-time process may monopolize the
entire CPU resource. Even if most real-time processes are
restricted, the only one real-time process can consume the
rest of all the CPU resources; thus, all other time-sharing
processes are starved. To avoid such a situation, the sys-
tem designer should estimate the total maximum utilization
of the accounting objects, which bind to the all real-time
processes. We called the approach class-based accounting.

4.2.2 Class-based Accounting

The class-based accounting is realized by binding processes
in the specific scheduling class to an accounting object. A
class contains all processes that are scheduled by the same
scheduling policy.

S

60 % 40 %
Time Sharing Real Time
Scheduler Scheduler

Accounting System

Figure 4. Class-based Accounting

The system allocates the CPU resources proportionally
to each scheduling class. The total proportions of the
classes are set to 100%. For example, a user can allocate
40% of the CPU capacity for the real-time scheduling class,
and the remaining 60% of the CPU capacity for the time-
sharing scheduling class as shown in Figure 4. The system
assumes to have two classes that are necessary to allocate
the CPU capacity. Each scheduling class is assigned the
absolute rate of the CPU capacity. The processes bound
to each class cannot excessively use the maximum utiliza-
tion of the CPU resources that are set in each scheduling
class. Since the real-time process cannot use more than the
assigned capacity, the time-sharing process can use the re-
maining capacity without process starvation.

4.2.3 Implementation

The current class-based accounting allocates the CPU ca-
pacity for the real-time and time-sharing scheduling class.
The accounting object for each scheduling class is created at
the boot time. When it is created, all processes that belong
to the same scheduling class are bound to the same account-
ing object. In order to set the parameter easily, class-based
accounting adopts weight as its interface parameters. The
weight is the parameter that represents a proportion and can
easily be specified like (2,3). If weight (2,3) given, the real-
time class and the time-sharing class are allocated 40% and
60% capacity of the CPU resource respectively. In class-
based accounting, the accounting object of each scheduling
class should use the same period time. Also, a user needs
to set the resolution time that is a period for the account-
ing objects. For example, if the resolution is 100ms and the
class proportion is 40%, the class is received 40ms within
the 100ms period.

4.2.4 Kernel Interface

We design the kernel interface for class-based accounting
as following.

o weight set(wt_ts, wt_rt, res) : The routine sets the
weight and resolution to the accounting object for re-
spective scheduling classes. When the class account-
ing object is started, it monitors the execution time of
the bound processes.

4.3. Overload Monitoring

4.3.1 Conceiving the overload situation

For general-purpose operating systems, controlling over-
load situations is very important to offer services in a stable
way. In such critical situations, the computational requests
from the process will exceed the time that is available in the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

system. As for time-sharing processes, the average response
time is increasing. We propose the monitoring function that
keeps to watch the total utilization of the CPU. If the over-
load condition happens, the overload monitoring issues a
signal to notify to the registered administrator process. If
there is a notification for the administrator process, some
recovery procedures can be taken to stabilize the system.

4.3.2 Design and Implementation

The overload monitoring can also be realized by Account-
ing System. In this system, an accounting object bound to
the idle process is used to monitor the total utilization of the
system resources. The idle process is executed when there
is no runnable process. If the system becomes busy, the idle
process consumes a very little CPU capacity. Through mon-
itoring the CPU usage of the idle processes, the system can
detect the overload situation. Our system allows an appli-
cation to receive a signal when the CPU usage of the idle
process becomes lower than the specified CPU.

The service is available when a system designer creates
an overload accounting object, and sets the parameters to
it. There is the only one overload accounting object in a
system. Therefore, it has a special object_id whose number
is 1. The number is reserved and never used by the other
accounting objects. A system designer should explicitly set
the C' and T parameter to the overload accounting object.
Suppose the designer sets C' and 7" to 75ms and 100ms re-
spectively. The overload monitoring monitors the CPU uti-
lization not to exceed 75%. If the designer would like to
check the overload condition every minute, C' and 7" should
be set to 45sec and 60sec respectively. If the total usage of
CPU utilization exceeds 75%, an overload notification sig-
nal is delivered to a specific process. A system designer also
should set a process as a receiver of the signal. The signal
number can be freely decided by a user. In consideration of
the security, only a privileged user can create and destroy
the overload accounting object. The overload monitoring
offers the kernel interface as following.

e overload_create (&object_attr, pid) : The function
binds an idle process to the specific accounting object.
At the same time, the user should set an administrator
process ID that accepts a signal from the system, and
set a signal number that is used to deliver the signal to
the administrator process when the overload condition
occurs.

e overload_destroy(void) : It destroys the overload ac-
counting object.

4.4. Resource Reservation

On application running on our system can request the
reservation of a certain amount of CPU resources. The OS-

enforced resource reservation can be introduced similar to
CPU capacity reserves [3][10], which provide the frame-
work for managing the processor capacity. Accounting Sys-
tem can implement the framework easily by adding a mech-
anism for the admission control as a user-level service.

5. Evaluation

We have evaluated Accounting System by running sev-
eral benchmarks. The evaluation uses a standard PC that
has Celeron 300MHz CPU and 512MB of RAM, and the re-
sults were measured using the built-in high-resolution time
stamp counter.

5.1. Costs of Basic Operations

The evaluation shows the cost of the basic operations in
Accounting System. Table 1 shows the average cost for in-
voking each kernel function.

Table 1. Costs of Basic Operations

API Costs(usec)
create 39.3
bind 21.1
unbind 6.2
destroy 10.8
set 10.4
get 24

350

——AO0 (20/100) ms with High Resolution Timer
—+—AO (25/100) ms with High Resolution Timer
—+—AO0 (25/100)ms without HRT, round up

Consumed CPU ratio (%)

150
0 10 20 30 40 50 60

Time (sec)

Figure 5. With/Without High Resolution Timer
Support

The result shows the creation time is longer than the
other system function’s cost. The creation cost includes the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

operation of allocating a memory region and creating dy-
namic timers. The bind function also includes the searching
cost through all process in the system.

5.2. Accuracy of Accounting System

This section evaluates the accuracy of Accounting Sys-
tem. To evaluate the effectiveness of high-resolution timer
support, we use the benchmark program that executes the
infinite-loop. We create two accounting objects that set
20ms and 25ms of CPU time every 100ms, and bind the
program to each accounting object. Figure 5 shows the re-
sult of the consumed CPU ratio with/without the support of
a high-resolution timer. In this figure, the bottom two lines
are the results of the high-resolution timer support. It shows
that each 20% and 25% resource restriction is correctly lim-
ited.

In the contrast, without the high-resolution timer sup-
port,the program bound to the accounting object whose ex-
ecution time is 25ms executes 30ms within 100ms. These
are apparently due to the fact that Linux updates its inter-
nal timer-clock at the 10ms intervals. Even if a user sets a
parameter whose resolution is less than 10ms, it is impos-
sible to ensure the resolution. The results shows that the
effectiveness of the accurate resource accounting.

5.3. Effectiveness of CPU Protection

This section evaluates the effectiveness of the CPU re-
source protection in Accounting System. First, we show the
effect of the security attacks, then, show the result of the
class-based accounting.

5.3.1 Attacks to create multiple processes

Figure 6 shows the consumed CPU ratio of multiple pro-
cesses bound to an accounting object. To evaluate the ef-
fectiveness for protecting from attacks to create multiple
processes, we run an evil program that invokes fork() con-
secutively and produces a lot of child processes that exe-
cute their infinite-loops. The response time becomes very
bad by this malicious program because these processes con-
sume the whole CPU resource. In the evaluation, if the first
process is bound to the 30% restricted accounting object,
the forked processes cannot use more than 30% of the CPU
capacity, even if the numbers of processes are increasing.
The result shows the effectiveness of Accounting System as
shown in Figure 6.

The loss of the accuracy appears as the numbers of cre-
ated process is increased. In the current implementation,
a process that executes a system call is blocked after the
system call is returned, when the execution time of the ac-
counting object is expired. If there are multiple processes

100

90

80

60

50

40

Consumed CPU Ratio (%)

30

20

Number of processes

Figure 6. The Numbers of Process and Ac-
counting Object Ratio

that are bound to the same accounting object, and they ex-
ecute system calls, the system calls can be executed before
blocking themselves. This is a reason to exceed the spec-
ified execution time when the number of process bound to
the same accounting object is increased.

5.3.2 Class-based Accounting

Figure 7 and Figure 8 show the results of the evaluation
of class-based accounting. To evaluate the effectiveness of
the class-based accounting, the benchmark runs a real-time
process to execute an infinite loop with/without the class-
based accounting. Figure 7 shows the result when the class-
based accounting is not used. The result shows that all CPU
resources are consumed by the real-time process.

Then, we evaluate the class-based accounting in which
each class is set the weight(4,1) where 80% and 20% CPU
capacity are allocated for real-time processes and time-
sharing processes respectively.

The Xserver (X Window System display server) process
runs on the time-sharing scheduler. On Xserver, some game
programs are running. Figure 8 shows the result that the
real-time processes can not exceed 80% CPU resources,
where the Xserver process can use 20% CPU resource at
a maximum.

6. Related Work

UNIX offers the system call setrlimt to control the maxi-
mum resource consumption. They can set the resource limit
to a process. However, the resolution is more than one sec-
ond. The resolution is too coarse for information appliances
that need to process data within a short time.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

_:_Realtime proces (infinite-loop)

=
3

@
8

_:_Real-time process (infinite-loop)

_;_Time-sharing process (Xserver)

Consumed CPU Ratio (%)
8 8

»
8

3

o

Figure 7. Without Class-Based Accounting

Linux/RK[10] proposes the resource reservation that re-
serves resources, such as CPU, disk and network capacity
for executing real-time applications. The resource reserva-
tion prevents a system from being overloaded by controlling
the admission of new processes. Also, it monitors that a pro-
cess does not consume more CPU capacity than the speci-
fied CPU usage. However, they did not have any supports of
using this system for increasing security. Accounting Sys-
tem takes the advantage of the reservation system to sepa-
rate resources with each process, and develops to provide
mo re general functions to restrict the process execution.

The proportional fair scheduler[1][2] allocates CPU ca-
pacity to each process fairly. The allocation of the CPU ca-
pacity is controlled in a rigorous way. Therefore, each pro-
cess can consume the same amount of CPU resource. Each
process can assign weight to allocate the different amount
of CPU resource. However, the approach is difficult to
group processes to allocate CPU capacity. To solve this
problem, the hierarchical proportional fair share scheduling
[71(8] is proposed. In the approach the higher level multiple
schedulers run on the lower level proportional fair sched-
uler. Each higher-level scheduler consumes the proportional
ratio of CPU capacity. The proportional fair scheduler is
very promising, however it offers the lack of accuracy and it
offers different semantics from the original Linux schedul-
ing semantics. Some Linux applications assume the Linux’s
original scheduling semantics.

A resource container [4] is a model for fine-grained re-
source management mechanism. The resources, such as
CPU and sockets are contained in respective resource con-
tainers. However, the resource container dose not offer the
accurate resource accounting. Therefore, it is difficult to
achieve the fairness in the short time interval.

Consumed CPU Ratio (%)
@
8

o
b 3 1T e ke
10 w\ ‘\u“\f\wu‘\ Y ”““\m“”‘\\““‘“w“\\”\ma “

| u v [] 2 \‘Huwwu‘hw,‘i Lr |l

o7 T e T T T w7 W Mo T e '126

Time (sec)

Figure 8. With Class-Based Accounting

7. Conclusion

In this paper, we have proposed Accounting System. The
system provides the simple and generic accounting model
that can be applied various services that are used to increase
the system security and reliability. It also supports a fine-
grained resource accounting with the high-resolution timer.
This makes the system more stable because the application
can obtain the necessary rate precisely even in the microsec-
ond resolution. The performance evaluation results have
showed that the system effectively protects the malicious
use of CPU resources.

References

[1] A.K. Parekh and R.G.Gallager. A Generalized Pro-
cessor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Single-Node Case.
IEEE/ACM Trans. Networking, Vol. 1, No. 3, pp. 344-
357, June 1993.

[2] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queuing Algorthm. Journal of In-
ternet working Research and Experience, pp.3-26, Oc-
tober 1990.

[3] Clifford W. Mercer, Stefan Savage, and Hideyuki
Tokuda. Processor capacity reserves: Operating sys-
tem support for multimedia applications. In Proceed-
ings of the IEEE International Conference on Mul-
timedia Computing and Systems, pages 90-99, May
1994,

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management
in server systems. In Proceedings of the 3rd USENIX

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing

0-7695-2561-X/06 $20.00 © 2006 IEEE

Il'l‘l"

COMPUTER

SOCIETY

Symposium on Operating Systems Design and Imple-
mentation, Feb. 1999.

[5] http://high-res-timers.sourceforge.net/

[6] Mark Weiser, The Computer for the 21st Century, Sci-
entific American, Vol 265, No.3, 1991.

[7] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. In Pro-
ceedings of the Second Symposium on Operating Sys-
tems Design and Implementation (OSDI). USENIX,
October 1996.

[8] P. Goyal, H. M. Vin, and H. Chen. Start-time fair
queuing: A scheduling algorithm for integrated ser-
vices packet switching network. IEEE/ACM Transac-
tions on Networking, Vol 5 No.5, pp690-704, October.
1997.

[9] Sally Floyd, Jacobson, V., Link-sharing and Re-
source Management Models for Packet Networks.
IEEE/ACM Transactions on Networking, Vol. 3 No.
4, pp. 365-386, August 1995.

[10] Shuichi Oikawa and Ragunathan Rajkumar, Portable
RK: A portable resource kernel for guaranteed and en-
forced timing behavior. In Proceeding of IEEE RTAS,
1999.

[11] W. P. Sharpe, S. P. Stenton, Information Appliances,
The Human-Computer Interaction Handbook : Funda-
mentals, Evolving Technologies and Emerging Appli-
cations - Human Factors and Ergonomics, Chapter37,
Lawrence Erlbaum Assoc Inc Published 2002.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

YF]',F.

COMPUTER

SOCIETY

