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ABSTRACT

We develop here a simple physical model for the manner in which a magnetic dynamo
might operate in an accretion disc and so provide an effective (magnetic) viscosity. In
contrast to other dynamo models, the mechanism we discuss does not depend on the
existence of some hydrodynamical small-scale turbulent flow hypothesized to be
already present in a non-magnetic disc. Rather, the model we present depends on
three well-established physical processes: the Parker instability, the Balbus-Hawley
instability and magnetic field reconnection. The model gives rise to finite but non-
stationary magnetic field configurations. For the set of parameters chosen here we
find a time-averaged effective viscosity with Shakura-Sunyaev a-parameter around
ags=0.4.
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1 INTRODUCTION However, Shakura & Sunyaev (1973) also pointed out that

One of the main failings of accretion disc theory has been the
uncertainty as to the nature and magnitude of the viscosity
(Pringle 1981). In early papers (von Weizsécker 1948) it was
argued that hydrodynamic turbulence might provide the
appropriate transport mechanism. Our ignorance was neatly
encapsulated by Shakura & Sunyaev (1973) into a single
parameter which we denote here as ass. They pointed out
that in measuring the viscous force per unit area in the shear-
ing disc, which is o¥RdAQ/dR, where Q(R) is the angular
velocity in the disc and o the density, one could write the
kinematic viscosity, v, in the form

v=1aCl/Q, (1.1)

where agg is a dimensionless measure of the strength of the
viscosity and C; is the sound speed in the disc. For trans-
sonic hydrodynamic turbulence with eddy sizes of order the
disc thickness they showed that ags= 1, and further argued
that since supersonic turbulence dissipates rapidly this
should prove an upper limit. However, it has yet to be shown
that accretion disc flow is hydrodynamically unstable and
thus there is as yet no evidence that such turbulence exists.
Even the suggestion that convection in cool accretion discs
might prove to be a self-sustaining viscosity mechanism has
proved untenable (Ryu & Goodman 1992).
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magnetic stress could prove a viable transport mechanism
and that an accretion disc is fertile ground for the mainten-
ance of a magnetic dynamo. Equating the viscous force
(above) to the magnetic stress, BgB,/4m, where By and B,
are the radial and azimuthal magnetic field components
respectively, they found that formula (1.1) still applied but
now with

Ass =(BRB¢/4ﬂPCs2)- (1.2)

Since then there have been a number of papers written about
dynamo generation of magnetic fields in disc configurations
(Eardley & Lightman 1975; Galeev, Rosner & Vaiana 1979;
Parker 1979, ch. 22; Soward 1978; Pudritz 1981a,b; Meyer
& Meyer-Hofmeister 1983; Stepinski & Levy 1988, 1990;
Vishniac, Jin & Diamond 1990; Campbell 1992). All these
authors concur that the azimuthal field is generated from the
radial by means of disc shear. The problem arises in deter-
mining what closes the cycle and generates radial field from
the azimuthal. With the exception of Eardley & Lightman
(1975) who postulated closure in an essentially two-dimen-
sional dynamo by means of magnetic reconnection within the
disc, the rest of the authors appeal to hydrodynamic flows
(usually turbulence or convection) already present in the disc
and of unknown origin in order to serve as a mechanism for
the usual ‘a’-part of the standard ‘aw’-dynamo. For this
reason this approach does not produce a satisfactory expla-
nation of magnetic viscosity in accretion discs.

We investigate here whether there are plausible physical
processes which can give rise to a dynamo mechanism within
an accretion disc which is independent of any hypothesized
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internal disc flows which are present in the absence of mag-
netic fields. In other words, we attempt to construct a self-
consistent, but purely magnetic, dynamo process.

In Section 2, we set out our proposed dynamo equations.
The physical processes we shall invoke (apart from the usual
shearing of radial field) are three processes for which the
physical principles are relatively clear, but for which there is no
detailed understanding of how they operate on the small
scale and of how this relates to the more global scale of inter-
est here. These three processes are: reconnection, the Parker
instability (Parker 1979) and the Balbus-Hawley instability
(Balbus & Hawley 1991). Our aim in Section 2, therefore, is
to write down physically plausible relationships for the inter-
actions between the various components of magnetic field in
the light of the underlying mechanism behind the processes
concerned. Where possible we have made use of results to be
found in the literature as a guide to time-scales and length-
scales involved.

In Section 3, we show that the derived equations lead to
oscillation around an unstable equilibrium configuration and
derive the mean values of the field components, as well as a
value for ag, in that case. We wish to stress from the start,
however, that given the nature of the approximations we
have made and the analysis we employ, the numerical values
we derive from the various quantities should not be taken at
face value.

In Section 4, we present discussion and conclusions.

2 THE DYNAMO EQUATIONS

We shall work in terms of the quantities By, B, and B, which
we regard as the relevant local averages of the radial, azi-
muthal and vertical fields within the disc. Thus we do not
attempt to describe the detailed magnetohydrodynamics
which make up the full dynamo process, but, rather, content
ourselves with attempting to write down equations or rela-
tionships which describe how such averaged quantities inter-
act with one another given the various physical processes
taking place in the disc.

In particular we do not solve explicitly for the space
dependences of the fields, although it will be necessary to
give consideration to what the form of such space depend-
ences might be in certain specific instances. Nor do we take
account of any net flow within the disc, but, rather, assume
that the time-scales associated with the dynamo process are
short compared to flow time-scales. Thus the quantities Bpg,
By and B; are local quantities. We shall also ignore for the
time being any thermal consequences of the presence of a
dynamo. For this reason we treat the disc locally as an iso-
thermal, thin accretion disc with scaleheight, H, determined
by balance between gravity and thermal pressure. Thus, to
the approximation we are working, we neglect the contribu-
tion of magnetic pressure to vertical disc support. As will be
seen below, this is an adequate assumption for the equilib-
rium dynamo.

2.1 The By-equation

We assume that B, is generated from By within the disc by
shear (the usual w-dynamo process). This process could also
be regarded as part of the Balbus—Hawley instability which
generates By and simultaneously B, from the vertical field
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Bj (see below). In an accretion disc the angular velocity pro-
file Q(R) is fixed (since viscous and pressure forces within
the disc are small). Thus we may write for a Keplerian disc:

(2.1.1)

We shall assume that the dominant mechanism which
leads to loss of azimuthal field from the disc is the Parker
instability. We shall find, in general, that in an equilibrium
dynamo situation the dominant horizontal field in the disc is
the azimuthal one. Parker (1979, p. 330) treats the instability
in an isothermal, constant gravity, g, (and so constant scale-
height A ) atmosphere. Since the field is predominantly azi-
muthal, and since the growth rates and also the wavenumber
in the field direction are insensitive to the structure of the
unstable mode perpendicular to the field (in the R-direction),
we assume here that shear has little effect on the instability,
but return to this point below. Thus if 7 is the growth time-
scale for the Parker instability we may write

7 —Y (2.1.2)
ds loss Tp
and hence the full By-equation becomes
dB, 3 B
=—QBg— 213
a 277" 5 (2.13)

We apply Parker’s calculations to an accretion disc, and
take g=Q2H, where H is the disc semithickness given by
H=Cq2/Q and where C, is the (constant) sound speed.
Then we find that

p=nH/Vp,;, (2.1.4)

where V,ZwE Bj/4mp, p is a representative density in the
disc, and 7 is a constant in the range 2-2.4. We note that
Horiuchi et al. (1988) perform similar calculations to Parker,
but for an isothermal accretion disc with a z-dependent
gravity. They find similar results with 7 in the range 2-5.

The wavelength of the instability in (for us) the azimuthal
direction is found by Parker to be

A‘P¢=§H, (2.1.5)

where & is in the range 7.3-9.8. We note that we have impli-
citly assumed that 1,5 < R, ie., that H/R<K£7' ~0.1.

2.2 The Bg-equation

We assume that the major loss of radial magnetic flux is
caused, as for the azimuthal flux, by the Parker instability.
Indeed, for the regime under discussion with B < B, we
may regard By, as merely converting B, into the geometry of
a tightly wound spiral. Thus the appropriate time-scale is 7,
(equation 2.1.4), and we may write

4Bq) _ _Bs (22.)
dr s T -

We note, however, that since the radial field is subject to
shear, the effect of the Parker instability on a general radial
field is still subject to debate. There are claims in the litera-
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ture that the effect of shear is to enhance (Coroniti 1981) and
to diminish (Shibata, Tajima & Matsumoto 1990; Vishniac &
Diamond 1992) the instability. The most thorough linear
stability analysis has been carried out by Shu (1974) who
comes to the general conclusion that for the modes of inter-
est to us the effect of shear is small.

In a pair of recent papers (Balbus & Hawley 1991; Hawley
& Balbus 1991) attention has been drawn to an instability
present in any cylindrical shear flow with a vertical compon-
ent of the magnetic field and for which dQ/dR<0. This
instability has been in the literature for some time - indeed, it
is to be found in Chandrasekhar’s monograph (Chandra-
sekhar 1961) - but its significance has been overlooked. The
effect of the instability is to tap the energy present in the
shear flow and to use this to generate radial (and so, via the
shear, azimuthal) field from the initial vertical component.
We shall refer to this instability as the Balbus-Hawley
instability. The relevant properties to the problem in hand,
namely a Keplerian, locally isothermal disc, are as follows
(Balbus & Hawley 1991).

The fastest growing mode has a growth rate y,,,Q, and
vertical wavelength Agy ..., Where v, = 0.74 and

At = 200 Vaz/Q, (222)

where V3,=B%/4np. This mode is the relevant one when
Agtimae S 2H, that is when V,,/ C, 52 /.

There is also a critical wavelength, Agy i = 27V, z/Q ‘/§,
such that for wavelengths A S Ay, there are no unstable
modes. Thus within the disc, if Ay, 2 2H (ie., if V,z/C,2
J6/n), the Balbus-Hawley instability is suppressed. We
now need to consider what happens in the range L2/ns
Vaz/C <\6/x. In this range the mode with the most rapid
growth rate has A = 2H, and from an approximate analytical
fit to fig. 1(c) of Balbus & Hawley (1991) we find the growth
rate is given by y;Q where, over the range of interest,

(l_nVAz)z 12

c\2

223
T (223)

VBH = Vmax

We may now write the full Bg-equation in the following form:

( vy b

Ymaxg BZ - BR/TP

C, =n’
dB; 2 v, 6
—= QB,—B —<—="<— 224
dr <yBH 2z~ Brlw T C = ( )
{6 Vi
-B —<—==,
{ /e TG

We further note that the scale of the instability in the z-
direction, Agy, is given by

) Vaz 12
Ao _ oo (22.5)
M vy Va2 -

\/ECS C, n’

2.3 The B -equation

Generation of B, comes about because the fundamental (and
fastest growing) mode for the Parker instability in a thin disc
has the effect of directly converting horizontal to vertical
field (Horiuchi et al. 1988). Thus we may write

as,

ar e = B,/ o+ Bg/ 1,

(2.31)
cf. equations (2.1.2) and (2.2.1). However, since we are work-
ing in the regime By < By, we shall neglect the second term
on the right-hand side in what follows.

The equations so far have set up an efficient mechanism
for taking an initial B, and generating further B, from it at
the expense of the shear energy in the Keplerian disc. We
now need to consider what limits the growth of B,. In fact it
is necessary to do more than just limit B, growth (which is
done anyway by the Balbus-Hawley mechanism - Section
2.2), since all we have so far is a mechanism for converting
shear energy to magnetic energy. The fields so formed will
not be able to operate as a ‘magnetic viscosity’, and so will
not be able to drive an accretion disc, unless some mecha-
nism is identified which leads to flux loss from or in the disc,
either by dissipation (conversion to thermal energy within the
disc) or by bodily removal.

At this point we need to make explicit something which
has been partially implicit in some of the above discussion,
and that is that we are considering mainly field strengths and
configurations which are relevant to the equilibrium magnetic
dynamo (Section 3). Thus it needs to be borne in mind that
the equations we derive here may need rethinking for mag-
netic configurations far from equilibrium - for example when
the disc is subject to a strong externally imposed vertical
field. We return to this point below. For the present, we are
able to note that the structure of the vertical field produced
by the fundamental mode of the Parker instability is one of
alternating sign across the disc. Furthermore we note that
horizontal motions are driven within the disc by both the
Parker and the Balbus-Hawley instabilities with velocities
~ Vaz. Thus the B, field lines are rattled around and pushed
into each other with motions which give rise to net local
excursions of order ~ V,,/Q.

We shall assume, therefore, that the predominant flux loss
mechanism is reconnection. Patches of B, of opposite sign
come together and reconnect, leading to some dissipation of
energy within the disc, but probably mainly loss of flux into
the regions above and below the disc. If the mean distance
between two neighbouring patches of opposite sign is 4,.., we
shall assume that B, reconnects and is removed from the
disc at a rate

Trec = A’rec/r VAZ (232)

Here I'"!' ~In(#,), where %, is the magnetic Reynold’s
number and T is expected to be in the range 0.1 to 0.01
(Parker 1979, p. 395). Given these assumptions, the B,-
equation can now be written in the form

48, By B,

2.3.
d: Tp Trec ( 33)

The main problem now is to determine 7, or, equiva-
lently, 4,... In order to estimate the relevant mean distance
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between neighbouring patches of B, with opposite sign, it is
convenient to consider the azimuthal and radial directions
separately, and so to obtain 4,4 and 4, g, Tespectively. We
then have that 4. =min(,¢.4, A,ecr)-

2.3.1 Azimuthal reconnection

The fundamental scale for reconnection imposed by the
Parker instability in the g-direction is 3455, where 4y, is given
by equation (2.1.5). We must also note, however, that the
azimuthal field is generated by the shearing of By which is
produced from B;. For a uniform B,, this process produces
an azimuthal field with a structure such that B, alternates
sign in the z-direction on a length-scale 3 Agy, Where Agy is
defined in equation (2.2.5). We conclude therefore that

1

j'rec¢$ ~E

g X % (Aon/2H). (234)

2.3.2 Radial reconnection

The value of 4. depends on the coherence of the Parker
instability in the radial direction. Were it not for shear, the
Parker instability would exist on all radial scales. We wish to
discover what is the longest relevant scale (in the presence of
shear) as this will give us the reconnection time-scale for the
bulk of B,. We denote this coherence length of the instability
in the radial direction by AR and define AR by requiring that
in one Parker growth time, 7p, the annuli at R and R +AR
have sheared relative to one another by a distance of order
Arecq- We find that

2,V
AR=—"—n""22} (2.3.5)
32 G

and conclude that ARS 4, ,. Thus we expect reconnection
in the radial direction to dominate, and we conclude that one
estimate of 4, g, which we denote as A2, z, becomes

Ai . r=AR.

recR

(2.3.6)

This gives rise (via 2.3.4) to a corresponding estimate of 7,,,,
which we denote as 72,_.

We must also note, however, that the shearing process
itself tends to reduce length-scales in the radial direction and
so to enhance the reconnection. Consider a patch of B, of
initial (=0) size AR in the radial direction and 4., in the
azimuthal direction. At times 7= Q" !, the radial length-scale
of such a patch is decreased to a value of /5, where

o 2 -1
IR '—5 lrec¢(Q t) .

(2.3.7)

Thus /; decreases with time until the radial length-scale is

sufficiently small that reconnection takes over. In this way we

have a second estimate of the radial reconnection time-scale,

0% &, Which we define as being the time by which the time-

~scale for decrease of I is equal to the reconnection time-
scale across the distance /g, that is

Ie/lx~ [e/T Vay. (2.3.8)
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This gives

1/2
™= (hﬂ;) (2.3.9)

3rQ V,,

We conclude that the relevant value of 7, in equation
(2.3.3)is given by

trec=min(tzr‘ecR’ t?ecR), (2310)
and we find that

1B Va[ G Va2
Treck 2343 771—.1/2 C \Vaz C, =n’
b (2.3.11)
TrecR ﬂ_ 61/2 ﬁ? V—AZ<Q

2[3— 771'*1/2 Cs Cs T )

3 SOLUTION OF THE EQUATIONS AND
THE MAGNETIC VISCOSITY

In this section we consider the solutions of the disc dynamo
equations we derived in the previous section, paying parti-
cular attention to the equilibrium solutions and their stability.

3.1 The trivial (B =0) solution

It is evident, and physically necessary, that B= 0 is a solution
of the dynamo equations. Here we investigate the stability of
that solution. For small B, that is for B?/4mo < C?2, we note
that 72 <75 .. In this approximation the equations
become

E=k1BZ, (3.1.1)
dB
—=k,B 312
a  keBr (3.1.2)
and
dB
th= — k;B,/B,, (3.1.3)

where k,, k, and k; are constants. Note that for self-con-
sistency we need to consider solutions for small B for which
Bz < B,4. We note that within the context of the model, these
equations display an algebraically growing solution of the
form

B=(c, ck,t, 0), (3.1.4)

where c is a constant. We conclude that the equilibrium solu-
tion at B=0 is unstable, and has a growth time-scale of order
ky'~3Q~"

3.2 The equilibrium dynamo

We now look for a non-trivial equilibrium solution to the
dynamo equations, that is, a solution with dB,/dt =dBg/dt =
dB/dt=0. Because the growth terms for B, and By involve
the most rapid time-scale in the disc, Q !, whereas the loss
terms involve somewhat larger time-scales, e.g., 7p, we find

that an equilibrium occurs only when the growth of By via

© Royal Astronomical Society * Provided by the NASA Astrdphysics Data System

220z 1snbny 9| uo 1senb Aq +6966/109/7/6GZ/2101ME/SBIUW/WO0D dNO"ojWapede//:sdiy wolj papeojumoq


http://adsabs.harvard.edu/abs/1992MNRAS.259..604T

FT902WNRAS, 2597 “604T

608 C. A. Toutand J. E. Pringle

the Balbus-Hawley instability is inhibited by the presence of
a strong B,. Thus (equation 2.2.4) we may take V,,=¢C,,
where we expect y2/n< ¢ < J6 /7. In this regime we also note
from equation (2.2.5) that Agy=2H.

Then from the g-equation (2.1.3) we find

%QBR=B¢1P",

(3.2.1)
where 1, is given by equation (2.1.4). From the z-equation
(2.3.3) we have
B,t;'=B,1,,, (3.2.2)
where 7, is to be determined (equation 2.3.10).

If we assume that 72, ; < 7% 5 then, using (2.3.2), (2.3.5)
and (2.3.6), we obtain from (3.2.2):

V3,/C3=6{2Tn*EE, (3.2.3)
and from (3.2.1):
Varl C.=(N2/37)(Vas/C.), (3.2.4)

where we define V3z= B%/4np.

To_solve the Bg-equation (2.2.3 and 2.2.4) we write
§=Jg(1—e)/n, and require ¢ < 1. Then we find to first
orderin &:

24 1) 222
== |1-— max r
€ 31:2( )Y §

3
- o[ D) [ mae |7 (8
2910 4(0.1) (0.74) (8) ’

and conclude that for the appropriate parameters the ap-
proximation is valid. To this order we find from (3.2.3) that

(3.2.5)

Vag C=0.8 (b%) " (g)m (g) ) ”3, (3.2.6)
and from (3.2.4) that

%"s’* =01 (6%)2/3 (%’) " (g) - (3.2.7)
For completeness we add

%"SZ =08. (3.2.8)

Thus in this regime we estimate using equation (1.2) that

oumoos ) 38

For the values obtained here we find from (2.3.11) that

@-— § 1/6 7 -1/3 L -1/6
t:"ecR 0.9 (8) 3 0.1 ?

and thus 72, S 70, 1, justifying the assumption made above.

(3.2.9)

(3.2.10)

3.3 Stability of the equilibrium dynamo

We investigate stability for the case in which 72, is
the relevant reconnection time-scale for B,. A similar
analysis holds when 7%, is relevant. Writing vy = V;/C,,
v4=V,/C; and v,=V,/C,, and defining a dimensionless
time r=Qt/17\/§, the equations, close to the equilibrium
solution found in Section 3.2, take the form

(1 n_vz)z L
2

dog

;=7’max77\/§vz l—m — Urly, (3.3.1)
d 3
Sh =y, (33.2)
dr 2
and

2 2

r

d_vz=v2_v_.zﬂ_2.n_' (33.3)

dr ¢v¢ I3

We now let the equilibrium solution of these equa-
tions, defined by equations (3.2.6), (3.2.7) and (3.2.8), be
(v, v, v¥), and define wy, =vy /v, etc. The equations can
then be written approximately for w, = 1 in the form

dw

E:}:/IR [(1- Wz)‘/z wz— 8(1)/2WRW¢], (3.3.4)

dw,_ 2

ar Aglw,— wil, (3.3.5)

and

dw

ga = Wi Wil w. (3.3.6)

Here,

l = 2‘/5 1 ymax”‘liv? (3 3 7)
e e ”

Ay=vy, (3.3.8)

Az=(vy) /0%, (3.3.9)

and

€o/(V5AR). (3.3.10)

We note that &, << 1, and that, to first order in &, the equili-
brium solution is

4 2
w= 1__80,1__80,1_'80 .

3 3 (3.3.11)

Perturbing about this solution in the form
wr=[1-(4/3) &](1+ dg)

etc., we find that d, 04 and d,, satisfy the linear equations

ddx_ (3.3.12)
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e 6,20, (33.13)
T
and
d_62=lz(36¢_26z). (3.3.14)
dr

We look for solutions of these equations of the form
0 xexp(ot) and find that o satisfies the cubic equation
o(o+24,)(o+ 2/1¢)+% Axhghsfel2=0. (3.3.15)

Since 4, and A are of order unity and A/ej/>~ 103> 1,
we see that one root is given approximately by o, =
—[(3/2) AgA4Az/€§/*]'/?, and note that | g, > A, A,. We then
note that we may write the sum of the other roots as
0,+0;=2(A4+4;)—0,>0. Thus, in general, at least one
root is an exponentially growing one. For the particular
values derived in Section 3.2 we find the roots to be
0,=—164, 0,,=6.6113.2i, and conclude that the equili-
brium is overstable.

3.4 Solution of the full dynamo equations

We have shown above that the two equilibrium solutions are
unstable. So we undertake a numerical integration of the
equations in order to determine the general form of the solu-
tions to be expected. We now write

TredR = (Tocr) '+ (Thcr) ™! (3.4.1)

in order to obtain a smooth approximation to equation
(2.3.10). Using the same notation as in Section 3.3 the full
dynamo equations become

l'RwZ—ﬂ.,,wa,, 0<Wz<1/\/§,

2 [1/2
/ - 1
dWR— lR I:l_(l WZJ—3_) } WZ_A.¢WRW¢ —< WZ< 1,
3

d (1-37

— AgWrwy 1<wy,,

(34.2)

%ﬂ,,(wr W), (3.4.3)
and

lz(Wﬁ"Wz/Ww/g)_,“sz 05W2<_3,
dd_“:z= . (3.4.4)

lz(wé" Wé/qu)—ﬂlzwazﬂ —=Wwg.

3

Here we have
uz=n(12L/nE)'?, (3.4.5)
py=n(24 3T /&)'7,
and
Ar= A3 -1)/23]"2. (3.4.7)

We first tested the solutions near w=0. This required
some care as the equations are stiff in this regime and we
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were forced to use a backward differentiation scheme
(po2eBF from Numerical Algorithms Limited, Oxford, NAG).
We tried initial conditions with |w| as small as 10~* and
confirmed that the fields always grow from that value.

For general numerical integration we used a Runge-Kutta
Merson method (Do2BHF from NAG). In order to be specific
we took the relevant parameters to be as in Section 3.2, that
is '=0.1, y,,,=0.74, £=8 and n=3. Whatever the initial
conditions we found that the magnetic fields stay finite, and
eventually oscillate about the unstable equilibrium position
found in Section 3.2. In no cases did the fields grow indefi-
nitely.

In Fig. 1 we show the computed time variations of field
strength for the case where we took as initial condition
wg=ws =w;=0.01. The fields converge to an oscillating
state with a period of T=1.69, or P=2.4(5/3)Q .1t is clear
that the cycle is controlled predominantly by the value of w,.
When w, <1, the Balbus-Hawley instability leads to a rapid
growth in wg, and slower growth in w,. This then leads to
growth in w;. When w; then exceeds unity, wg and w, decay,
followed by w,. Thus the instability in the cycle appears
driven by the time delay in the feed-back loop. We note that,
although for Fig. 1 it is evident that at peak wy exceeds w;
and w;, by a factor of 4 or so, it is also true (see Sections 3.2
and 3.3) that B remains smaller than B; at all times. How-
ever, both v, and v,, exceed C, at parts of the cycle,
although not by a great amount. This implies that strictly the
contribution of time-dependent magnetic pressure to the disc
structure needs to be taken into account. In Fig. 2 we show
the corresponding time-dependent behaviour of the viscosity
parameter ag. We find a time-averaged value to be
(ags)=0.4, and that the parameter varies in the range 0.1 to
0.7.

We have also followed the time behaviour of the equations
with 7, g = 7% g and with 7, g = 7% . The time dependence
of the magnetic fields is not strongly altered in either of these
cases, and we show the time dependence of ags for these
cases in Fig. 2 also.

(UL LI L L L B L NI LB

o

Figure 1. Time dependence of components of the magnetic field
through the dynamo cycle. The magnetic field components are
normalized to their equilibrium values (Section 3.2) and the dimen-
sionless time, 7, is defined in Section 3.3. The solid line corresponds
to the z-component, the dashed line to the g-component and the
dotted line to the R-component. The case shown had spatial values
of wy= Wy =w; =0.01, parameters I'=0.1, £=8 and =3, and
T, as defined in equation (3.4.1).
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Figure 2. The solid line shows the time-dependent behaviour of the
viscosity parameter agg defined in equation (1.2) corresponding to
the magnetic field behaviour shown in Fig. 1. The other curves show
the same except that for the dotted line we took 7,..x= 7% g, and
for the dashed line we took 7, , = 7%, x (Section 2.3).

4 DISCUSSION

We have proposed a simplified model of a self-sustaining
magnetic dynamo which operates in an accretion disc. We
have shown that the dynamo is unstable to the presence of a
small seed field which it amplifies on the shear time-scale
(Section 3.1). The dynamo is also unstable about the only
other equilibrium point (Sections 3.2 and 3.3). Because of the
cut-off of the Balbus-Hawley instability at large B, it is
evident (equation 2.2.4) that the magnetic field cannot grow
indefinitely. In two dimensions (that is, if only two compon-
ents of the magnetic field were involved) these conditions
would imply the existence of at least one limit cycle. In this
case no such theorem can be simply invoked and so we have
integrated the equations numerically for a variety of initial
conditions (Section 3.4). We find that the magnetic field (and
therefore the value of the viscosity) is never steady but
hovers round about the equilibrium values found in Section
3.2.

The dynamo is driven ultimately by shear in the disc and
in return provides a self-consistent mechanism for disc vis-
cosity. The approximate strength of the viscosity we obtain
(for example the equilibrium value of ag — equation 3.2.9)
agrees to within an order of magnitude with what is known
about viscosity strength from observations. We stress again,
however, that the precise value we obtain should not be
taken too seriously. Of greater relevance are the physical
reasons behind the value we obtain. The value of B, (equation
3.2.8) comes about because the growth of the dynamo cycle
is limited by the cut-off in the Balbus-Hawley instability for
large B, which renders the shear less able to deform the
vertical field in the horizontal directions. Although By and
B, both escape from the disc on the same time-scale 7,~ 4
Q~! (equations 2.1.4 and 3.2.6), By is converted into By on
the shear time-scale ~0.7Q~!. Thus it is not surprising that
in the steady-state solution we find By~ 6B. The vertical
disc field has a loop structure with typical loop size of order
AR s H and is able to reconnect, and so release itself from
the disc, on a time-scale of 7., ~10Q2~! 2 7,. Thus in equili-
brium we expect B,< B,. Given these considerations, the
model gives rise to a quasi-steady-state dynamo with corre-

sponding viscosity given by

e [ )
aSS Cs Trec Q Tp, ( 4 1 )

6
2
T

(7/QTrec).

For plausible parameters this gives agg less than, but not
greatly less than, unity.

‘We now consider the energy flow within the dynamo cycle,
paying particular attention to where and how the accretion
disc energy is deposited and dissipated. In the model pre-
sented here, the generation of radial and azimuthal field
occurs through a combination of Balbus-Hawley instability
and shear, and does so in an efficient manner. Thus at this
stage, shear energy has been converted directly into pri-
marily azimuthal field. The azimuthal field is then Parker-
unstable to what is essentially an interchange instability.
In the equilibrium dynamo we are in the regime S=
8moC2/(B%+B3)~3, and thus the development of the
Parker instability is likely to be fairly gentle with heating of
disc material through adiabatic compression as it settles into
the disc plane through loss of magnetic support, but no
shockheating (Matsumoto et al. 1988). Thus the amount of
heating occurring in the disc per unit area due to the loss of
azimuthal flux is

BZ
Ql;;lrker~2H 8—35 Tl:l' (42)

The rate at which energy is removed from shear (per unit
area) is roughly

O~ VZ(RQ ">

~6H (B—“Bl) Q. (4.3)
4n

Since, as we remarked above, Bg ~ (Q7,) ™' By, we see that
QParker is comparable to, but a fraction of, Q.. A compar-
able amount of energy to Qp,.., is converted to vertical mag-
netic energy. Since the vertical field strength in the disc
decays because of reconnection, and since reconnection
occurs fastest in regions of low density (high Alfvén speed),
we expect most of it to occur predominantly at the upper and
lower boundaries of the disc. We conclude that in this model
about a half of the energy released from the disc is either dis-
sipated in a small fraction of the disc gas, or lost from the
disc entirely in some sort of magnetic wind (cf. Kato &
Horiuchi 1986). In either case this model predicts an active
chromosphere and/or corona for an accretion disc. We also
note that any spectrum calculated for an accretion disc will
of necessity have to take into account that a sizeable fraction
of the energy released is deposited at low optical depth (cf.
Shaviv & Wehrse 1991).

The most detailed estimation of accretion disc viscosities
has taken place in the comparison of theory with observa-
tions of dwarf nova outbursts (see, for example, Bath &
Pringle 1985; Osaki 1990; and references therein). Mantle &
Bath (1983) showed that the relationships between decline
rate from outburst and orbital period could be explained if
the decline rate measured the viscous time-scale and if agg
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was a universal constant of order unity. Since then, however,
the limit cycle model of dwarf nova outbursts has become
widely accepted and this modifies, but does not substantially
change, the Mantle & Bath result. A detailed comparison
between theory and observations for the outbursts of two
dwarf novae for which ultraviolet spectrophotometry was
available through outburst (VW Hyi and CN Ori) was carried
out by Pringle, Verbunt & Wade (1987). Although they had
problems in fitting some of the details of the light curve, the
general outburst properties - e.g., length and size of outburst,
length of outburst cycle - could be fitted in the following
manner. The VW Hyi outbursts could be fitted as Smak type
A events (Smak 1984) in which the outburst starts at the
outer disc edge. In agreement with previous work (Meyer &
Meyer-Hofmeister 1984; Smak 1984) these were found to
require that ag decrease by about a factor of 10 (here from
0.3 to 0.03) in going from outburst to quiescence. The
CN Ori outbursts could be fitted as type B events (Smak
1984) in which the outburst starts at the inner disc edge.
These outbursts could be fitted with ag=0.15 both in out-
burst and in quiescence. We conclude from the above that
the main contradiction between measures of ags and the
value predicted by the dynamo model presented here is that
the model predicts a universal value of agg, independent of
other disc properties, whereas to fit'some dwarf nova out-
bursts using the standard model some variation of agg with,
for example, H/R is required (cf. Meyer & Meyer-Hofmeis-
ter 1983, 1984).

We note, however, that on decline from outburst, the
dwarf nova accretion disc undergoes a thermal jump as a
cooling front passes through the disc, running from outside
to inside. The time-scale at each point in the disc on which
the jump occurs can be as short as the thermal time-scale
ty,~ a~! Q! (Pringle 1981) which is less than the time-scale
on which the dynamo can be set up. We therefore speculate
that in some cases, when the thermal jump occurs particu-
larly rapidly, the magnetic field configuration in the newly
cooled disc can end up far from the steady-state dynamo
configuration. In particular, if the disc cools rapidly and on a
shorter time-scale than the decay of magnetic field, then the
disc emerges in a state in which v,,> C,, so that the
dynamo cycle ceases, and in which 8 < 1. There are now two
possibilities. The more conservative one is that B, and By
now escape from the disc leaving a strong B in place. Decay
of B, now takes place but at a much slower rate than before
because (a) the disc is now denser so that V,, is decreased
and (b) the absence of both Parker and Balbus-Hawley
instabilities severely reduces the random motions within the
disc. The more radical alternative is that a low-g disc can set
up an equilibrium of its own which either maintains itself at
low B or at least takes some time to decay from it (cf. Pustil-
nik & Shvartsman 1974; Shibata, Tajima & Matsumoto
1990; see also Pringle 1989). For example, one can envisage
a situation in which all the disc material is in the form of
separated, highly magnetized blobs, which therefore collide
with each other in an essentially elastic and so dissipationless
manner. Such a configuration would give the appearance of a
very low-a disc. In this picture the equilibrium dynamo is set
up again (so permitting a further outburst) only when suffi-
cient high- material has been accreted into the disc.

It is evident, therefore, that the behaviour of such a
dynamo far from equilibrium is worth investigating more
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thoroughly than we have space for here. There are two other
areas where the dynamo equations as given above may need
modification. The first is for accretion discs in which radi-
ation pressure plays a dominant role. The behaviour of the
Parker and of the Balbus-Hawley instabilities in such discs
has yet to be fully investigated, although various authors have
commented upon this regime (Coroniti 1981; Sakimoto &
Coroniti 1981; Meyer & Meyer-Hofmeister 1982). To first
order, however, it seems to us that radiation pressure
changes the above picture very little, except that oC? must
now be taken to represent the total (and not just gas) pres-
sure. The second is for accretion discs which are not fully
ionized, such as might be found in the regions of the
discs around pre-main-sequence stars. Here the situation is
rather complicated, as one must take into account that the
magnetic field is tied strongly only to the ionized component,
and that the neutral component acts as a drag on the motion
of the ionized component, and thus on the field itself (cf.
Konigl 1989).

Finally, we note that in a full magnetic dynamo model for
an accretion disc, it will be necessary to take into account the
spatial behaviour of the magnetic fields, and in particular
whether such a dynamo is stationary or propagating in the
radial, or azimuthal, direction. What we have presented here
is, of necessity, a very simple first step, but we hope that it is
at least a step in the right direction.
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