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PETER A. CAWOOD1*, ALFRED KRÖNER2, WILLIAM J. COLLINS3, TIMOTHY

M. KUSKY4, WALTER D. MOONEY5 & BRIAN F. WINDLEY6

1
School of Earth and Environment, University of Western Australia, 35 Stirling

Highway, Crawley, WA 6009, Australia

2Institut für Geowissenschaften, Universität Mainz, 55099 Mainz, Germany

3
School of Earth Sciences, James Cook University, Townsville, Qld 4811, Australia

4
Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, MO 63103, USA

5US Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA

6Department of Geology, University of Leicester, Leicester LE1 7RH, UK

*Corresponding author (e-mail: Peter.Cawood@uwa.edu.au)

Abstract: Accretionary orogens form at intraoceanic and continental margin convergent plate
boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc com-
ponents. Accretionary orogens can be grouped into retreating and advancing types, based on
their kinematic framework and resulting geological character. Retreating orogens (e.g. modern
western Pacific) are undergoing long-term extension in response to the site of subduction of the
lower plate retreating with respect to the overriding plate and are characterized by back-arc
basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding
plate is advancing towards the downgoing plate, resulting in the development of foreland fold
and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during con-
tinuing plate convergence and requires transient coupling across the plate boundary with strain
concentrated in zones of mechanical and thermal weakening such as the magmatic arc and
back-arc region. Potential driving mechanisms for coupling include accretion of buoyant litho-
sphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding
the downgoing plate. Accretionary orogens have been active throughout Earth history, extending
back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the
initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for
major growth of the continental lithosphere through the addition of juvenile magmatic products
but are also major sites of consumption and reworking of continental crust through time,
through sediment subduction and subduction erosion. It is probable that the rates of crustal
growth and destruction are roughly equal, implying that net growth since the Archaean is
effectively zero.

Classic models of orogens involve aWilson cycle of
ocean opening and closing with orogenesis related
to continent–continent collision. These imply that
mountain building occurs at the end of a cycle of
ocean opening and closing, and marks the termin-
ation of subduction, and that the mountain belt
should occupy an internal location within an
assembled continent (supercontinent). The modern
Alpine–Himalayan chain exemplifies the features
of this model, lying between the Eurasian and col-
liding African and Indian plates (Fig. 1). The
Palaeozoic Appalachian–Caledonian orogen
(Wilson 1966; Dewey 1969), the Mesoproterozoic
Grenville orogen (Gower et al. 1990; Hoffman
1991; Gower 1996), and the Palaeoproterozoic
Trans-Hudson (Ansdell 2005), Ketilidian (Garde

et al. 2002), Capricorn (Cawood & Tyler 2004)
and Limpopo (Kröner et al. 1999) orogens are
inferred ancient examples. Such models, however,
do not explain the geological history of a significant
number of orogenic belts throughout the world.
Such belts lie at plate margins in which deformation,
metamorphism and crustal growth took place in an
environment of continuing subduction and accre-
tion. These belts are termed accretionary orogens
but have also been referred to as non-collisional or
exterior orogens, Cordilleran-, Pacific-, Andean-,
Miyashiro- and Altaid-type orogens, or zones of
type-B subduction (Matsuda & Uyeda 1971;
Crook 1974; Bally 1981; Murphy & Nance 1991;
Windley 1992; Şengör 1993; Şengör & Natal’in
1996; Maruyama 1997; Ernst 2005). Accretionary
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orogens appear to have been active throughout
much of Earth history and constitute major sites of
continental growth (Cawood et al. 2006). The
accretionary orogens of the western and northern
Pacific extending from Indonesia via the Philippines
and Japan to Alaska, and the North and South
American Cordillera are archetypical modern
examples, with ancient examples represented by
the Phanerozoic Terra Australis and Central Asian
orogens, the Proterozoic orogens of the Avalon–
Cadomian belt of the North Atlantic borderlands,
Birimian of West Africa, Svecofennian of Finland
and Sweden, Cadomian of western Europe,
Mazatzal–Yavapai in southwestern USA, and the
Arabian–Nubian Shield, and Archaean greenstone
terranes (Windley 1992; Kusky & Polat 1999;
Karlstrom et al. 2001; Johnson & Woldehaimanot
2003; Cawood 2005; Kröner et al. 2008; Murphy
& Nance 1991).

Accretionary orogens form at sites of subduction
of oceanic lithosphere. They include accretionary
wedges, containingmaterial accreted fromthedown-
going plate and eroded from the upper plate, island
arcs, back-arcs, dismembered ophiolites, oceanic
plateaux, old continental blocks, post-accretion
granitic rocks and metamorphic products up to the
granulite facies, exhumed high- or ultrahigh-
pressure metamorphic rocks, and clastic sedimen-
tary basins. Accretionary orogens contain significant
mineral deposits (Groves & Bierlein 2007), and
thus provide the mineralization potential of many
countries such as Australia, Canada, Chile, Ghana,
Zimbabwe, Saudi Arabia, China, Kazakhstan,
Mongolia and Indonesia. All accretionary orogens
are ultimately involved in a collisional phase when

oceans close and plate subduction ceases, and this
may lead to significant structural modification of
the accreted material and to partial or complete
obliteration as a result of thrusting and extensive
crustal shortening (e.g. Central Asian Orogenic
Belt; India–Asia collision).

Our understanding of the processes for the
initiation and development of accretionary orogens
is moderately well established in modern orogens
such as the Andes, Japan, Indonesia and Alaska, the
broad structure and evolution of which are con-
strained by plate kinematics, seismic profiles,
tomography, field mapping, palaeontology, and
isotope geochemistry and geochronology (e.g.
Oncken et al. 2006a; Fuis et al. 2008). However,
theprocesses responsible for cratonizationand incor-
poration of accretionary orogens into continental
nuclei and themechanisms of formation ofmost pre-
Mesozoic accretionary orogens are less well under-
stood. In a uniformitarian sense many of the features
and processes of formation of modern accretionary
orogens have been rarely applied to pre-Mesozoic
orogens, and hence to elucidating Earth evolution.

Our aim is to outline the broad features of accre-
tionary orogens and discuss their implications for
understanding models of crustal growth. We believe
that future research into accretionary orogens will
increase our understanding of tectonic processes
and crustal evolution just as work on geosynclines,
plate tectonics and mountain belts, terranes, and
supercontinents provided a stimulus to orogenic
and geological research in past decades (Kay 1951;
Aubouin 1965; Wilson 1966; Dewey 1969; Coney
et al. 1980; Dalziel 1991; Hoffman 1991; Moores
1991).

Fig. 1. Global elevation showing the collisional Alpine–Himalayan orogen (which occupies an internal location
between the Eurasian and colliding African and Indian plates) and the accretionary North and South American
Cordilleran orogens (which lie at plate margins involving continuing subduction). Image modified from NOAA,
National Geophysical Data Center.
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Classification of orogens in space

and time

Orogens are major linear zones of the Earth’s crust
that contain variably deformed rocks that accumu-
lated over a long period, dominantly in a marine
environment, and that show distinctive distribution
of sedimentary facies, deformational styles and
metamorphic patterns often aligned approximately
parallel to the belt. They are preserved as mountain
belts through crustal thickening, magmatism and
metamorphism during one or more tectonothermal
events (orogenies), which are generally of short dur-
ation with respect to the overall age range of the
orogen, and which ultimately stabilize and cratonize
the orogen.

Codifying orogens is fraught with difficulty as
eachhasuniquecharacteristics.However,webelieve
they can be grouped within a spectrum of three end-
member types: collisional, accretionary and intra-
cratonic (Figs 2 and 3). Collisional orogens form
through collision of continental lithospheric frag-
ments, accretionary orogens form at sites of conti-
nuing oceanic plate subduction, and intracratonic
orogens lie within a continent, away from an active
plate margin.

Plate-tectonic models of orogenic cycles have
been dominated by work on collisional orogens
involving a Wilson cycle (Dewey & Spall 1975)
of opening and closing of an ocean basin with defor-
mation and metamorphism related to subduction
followed by collision of continental blocks to gener-
ate mountain belts (Wilson 1966; Dewey 1969;

Brown 2009). This in part reflects the historical
focus, and resultant development of geological
ideas, on the classic orogens of Europe and eastern
North American, which all formed in a collisional
setting; the Appalachian–Caledonian, Hercynian
and Alpine–Himalayan systems (see Miyashiro
et al. 1982). However, it has also long been recog-
nized that the Palaeozoic to Recent history of the
Circum-Pacific region, where orogeny is in pro-
gress, does not readily fit such a model and that
alternative mechanisms for this type of orogenesis
are required (Matsuda & Uyeda 1971; Coney
1973; Crook 1974; Packham & Leitch 1974).

Accretionary and collisional orogens (excluding
aulacogens) form at sites of subduction of oceanic
lithosphere and are end-members of a spectrum
of orogen types (Figs 2 and 3). An early stage is
represented by island arc accretion in, for
example, Japan (Isozaki 1996; Maruyama 1997)
and Alaska (Sisson et al. 2003). Such offshore
arcs may accrete to one another and to an active con-
tinental margin, where they are incorporated into an
Andean-type batholith and orogen; for example, the
Coastal batholith of Peru, which engulfed the Casma
volcanic arc (Petford & Atherton 1995), and the
Peninsular batholith of Southern California, and
elsewhere along the Cordillera of North and South
America (Lee et al. 2007). Such arc-generated
orogens as old as Neoarchaean have been
recognized (Windley & Smith 1976; Windley &
Garde 2009).

Final continental collision and termination of
subduction within collisional orogens is generally
preceded by an accretionary phase of subduction-
related activity linked to ocean closure. Examples
include a series of magmatic arcs developed within
and along the margins of the Iapetus ocean of the
Appalachian–Caledonian orogen (Cawood & Suhr
1992; van Staal et al. 1998) and the accreted
Kohistan island arc in the western Himalaya
orogen that was intruded by the Andean-style
Kangdese batholith before final collision between
India and Asia and closure of the Tethys ocean
(Bignold & Treloar 2003); also, in the Palaeoproter-
ozoic the Trans-Hudson orogen similarly formed
during ocean closure and arc accretion events
prior to collision of cratons (Lucas et al. 1999;
St-Onge et al. 2009). The Indonesian island arc is
currently in transition from a simple system invol-
ving underthrusting of oceanic lithosphere in the
west to collision with Australian continental litho-
sphere in the east (Hamilton 1979; Snyder et al.
1996b). Conversely, accretionary orogens may
contain accreted continental fragments such as in
the Central Asian Orogenic Belt (Badarch et al.
2002; Kröner et al. 2007) and the Abas, Afif and
Al-Mahfid terranes in the Arabian–Nubian Shield
(Windley et al. 1996; Johnson & Woldehaimanot

Fig. 2. Classification of orogen types into three
interrelated end-members: collisional, accretionary and
intracratonic. Accretionary orogens include those
formed at continental margins and in intraoceanic
settings, and collisional orogens include those formed
from failed rifts (aulacogens) and through continent–
continent collision. Accretionary and continent–
continent collisional orogens lie at plate margins and
form through the subduction of oceanic lithosphere, with
the former forming at sites of continuing subduction and
the latter at the termination of subduction.
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2003; Stern et al. 2004). The long-lived accretionary
Central Asian Orogenic Belt completed its history
with a Himalayan-style collisional orogen in north-
ern China (Xiao et al. 2003, 2004; Windley et al.
2007). Nevertheless, accretionary orogens stand
out as an integral, well-defined group of orogens
that are further characterized by significant crustal
growth (Samson & Patchett 1991; Şengör &
Natal’in 1996; Jahn et al. 2000b; Wu et al. 2000;
Jahn 2004).

Continental extension that fails to lead to ocean
opening and subsequently undergoes compression
can occur at failed arms of ocean basins (aulaco-
gens) and at intracontinental settings isolated from
plate margins (Figs 2 and 3). The former represents
a specific subset of collisional-type orogens that
lack any evidence for the production and subsequent
subduction of oceanic lithosphere, and the resultant
converging continental fragments are the same as
those that underwent initial extension (Hoffman

Fig. 3. Schematic cross-sections through (a) collisional, (b) accretionary and (c) intracratonic orogens.
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1973; Hoffman et al. 1974; Burke 1977; Şengör
et al. 1978; Şengör 1995). The location of aulaco-
gens adjacent to sites of successful ocean opening
means that they are linked to subsequent sites of col-
lisional or accretionary orogens; for example, the
Oklahoma aulacogen, SE Laurentia, lies marginal
to the Appalachian–Ouachita orogen. The degree of
deformation and metamorphism during compres-
sional reactivation of aulacogens is generally mini-
mal (Hoffman et al. 1974). Aulacogens or rifts may
also form at a high angle to the orogenic trend
during collision (Şengör 1976; Şengör et al. 1978).

Sites of intracontinental subsidence are sites of
thermal and/or rheological weakening that can be
reactivated during compression, often in response
to far-field stresses (see Sandiford et al. 2001).
Examples include the late Mesoproterozoic to early
Neoproterozoic successions in the North Atlantic
(Cawood et al. 2004, 2007), and the Neoproterozoic
Centralian Supergroup of Central Australia, which
was deformed during the late Neoproterozoic Peter-
man and Palaeozoic Alice Springs orogenies
(Collins & Teyssier 1989;Walter et al. 1995; Sandi-
ford & Hand 1998; Hand & Sandiford 1999;
Cawood & Korsch 2008). These examples are
associated with the transformation of Rodinia into
Gondwana, and the deformation and metamorphism
of the sedimentary successions overlaps with events
at the plate margin edges of these supercontinents
(e.g. Cawood et al. 2004).

Some sites of intracratonic orogenesis are ulti-
mately related to continental margin subduction.
For example, intracratonic orogenic activity up to
1300 km inboard of the inferred plate margin
occurred in the mid-Palaeozoic and Permo-Triassic
in the Terra Australis orogen in eastern Australian
and South African segments, respectively (Trouw
& De Wit 1999; Collins 2002a), in China in the
Mesozoic (Kusky et al. 2007b; Li & Li 2007) and
along South America in the Tertiary (e.g. Kay &
Mpodozis 2002). This activity parallels the plate
margin and is related to strain localization in rheolo-
gically weak back-arc lithosphere (see Hyndman
et al. 2005), possibly associated with flat-slab sub-
duction and, hence, is part of the accretionary orogen
deformation cycle. Other sites of intracratonic
deformation occur inboard of zones of continent–
continent collision (Fig. 1, Tianshan) and relate to
stress transmission through weak quartz-dominated
continental rheologies (see Dewey et al. 1986).

Characteristics of accretionary orogens

Accretionary orogens comprise a range of mafic to
silicic igneous rocks and their sedimentary deriva-
tives that develop on oceanic (e.g. West Pacific) or
continental (e.g. Andes and Japan) lithospheric
substrates during continuing plate convergence.

Magmatic arc activity is characteristically calc-
alkaline in composition but ranges from low-K
tholeiite to shoshonitic, depending in part on the
nature of the interaction of the magma with the arc
substrate (e.g. Tatsumi & Eggins 1995). Magmatic
activity occurs when the subducting, dehydrating
slab of oceanic lithosphere interacts with mantle in
the wedge of the overriding plate, and generally
initiates at a depth of around 100 km or more
above the downgoing slab (Tatsumi 2005). Impor-
tantly, and in contrast to magmatic activity at mid-
ocean ridges or within-plate settings, arc magmas
contain up to a few per cent water and other volatile
phases and, as a consequence, are highly explosive
(e.g. Krakatoa). Thus the extrusive products of arc
volcanism are often reworked as pyroclastic and
volcaniclastic deposits into intra-arc and arc flank-
ing basins of the adjoining forearc and back-arc.
Water also influenced the crystallization of the plu-
tonic sections of arcs producing amphibole-bearing
gabbros and ultramafic rocks, as demonstrated
experimentally byMüntener et al. (2001) and geolo-
gically by Claeson & Meurer (2004) in the Protero-
zoic Trans-Scandinavian arc belt of Sweden.

Accretionary orogens are variably deformed
and metamorphosed by tectonothermal events,
commonly in dual, parallel, high-T and high-P
regimes up to granulite and eclogite facies
(Miyashiro 1973a; Ernst 2005; Brown 2006,
2009). Deformational features include structures
formed in extensional and compressive environ-
ments during steady-state convergence (arc or
back-arc v. accretionary prism) that are overprinted
by short regional compressive orogenic events
(Kusky & Bradley 1999; Collins 2002a).

Still-evolving accretionary orogens, such as
those around the Pacific, have long, narrow aspect
ratios, but completed orogens may be as broad as
long (e.g. Central Asian Orogenic Belt, Arabian–
Nubian Shield, and Superior and Yilgarn pro-
vinces). However, at least with the Superior and
Yilgarn provinces, this appears to reflect the sub-
sequent tectonic events such that the original
linear extent of these bodies is unknown.

Lithotectonic elements of convergent plate
margin systems include an accretionary prism incor-
porating accreted and tectonically dismembered
ocean plate strata, forearc basin and its substrate,
magmatic arc and back-arc basin. Some may also
incorporate accreted arcs and oceanic plateaux and
slices of convergent margin assemblages that
have moved along the margin through strike-slip
activity.

Crustal structure in accretionary orogens

Geophysical studies of accretionary orogens,
including seismic reflection, refraction, seismic

ACCRETIONARY OROGENS IN SPACE AND TIME 5

 at USGS Libraries on April 11, 2013http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


tomography and teleseismic data, have provided
fundamental insights into structures of these
orogens and their formation. Because of pronounced
lateral variations across oceanic trenches and sub-
duction zones, studies that combine multiple
seismic and non-seismic data have been the most
successful at determining the deep structure (e.g.
Wannamaker et al. 1989).

Tonanki and Nankai subduction

zones (Japan)

Japanese subduction zones are among the best-
studied circum-Pacific accretionary complexes,
with a lithospheric structure that is considered

typical of many convergent plate margins. Two
crustal models derived from seismic refraction–
wide-angle reflection and gravity data collected
across the Nankai Trough show the geometry of the
subducting oceanic crust as it descends beneath the
Japan volcanic arc (Fig. 4; Sagiya & Thatcher 1999;
Kodaira et al. 2000; Nakanishi et al. 2002; Wells
et al. 2003). These models define the geometry of
the thick sedimentary basins that are located
between the Nankai Trough and continental Japan.
The subducting lower plate is divisible into three
crustal layers separated from the upper mantle by
a marked velocity jump. The wedge-shaped upper
plate consists of a low-seismic velocity sedimentary
package and the higher velocity igneous crust of the

Fig. 4. Seismic velocity (km s21) structure of (a) the Tonanki subduction zone, site of the 1944 earthquake, and (b) the
Nankai subduction zone, site of the 1946 earthquake. The relationship between the crustal structure and the locked zone
is shown (Hyndman et al. 1995;Wang et al. 1995; Sagiya & Thatcher 1999; Kodaira et al. 2000; Nakanishi et al. 2002).
The crustal structure is typical of many subduction zone complexes and includes a prominent low-seismic velocity
sedimentary wedge and the higher-velocity igneous crust of the island arc (after Wells et al. 2003).

P. A. CAWOOD ET AL.6

 at USGS Libraries on April 11, 2013http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


island arc, which is internally divisible into upper
and lower crust on the basis of differences in
seismic velocity.

Western margin of North America

Western North America is composed of a series of
accreted oceanic domains (Coney et al. 1980;
Samson et al. 1989; Fuis & Mooney 1990; Fuis
1998; Fuis et al. 2008). A detailed seismic transect
from the active plate boundary at the Aleutian
Trench in the Gulf of Alaska to the orogenic fore-
land fold-and-thrust belt on the margin of the
Arctic Ocean shows a history of continental
growth through magmatism, accretion and under-
plating (Fuis & Plafker 1991; Fuis et al. 2008;
Fig. 5a). The edge of the Pacific plate (labelled
‘A’ in Fig. 5a and b) has velocities of 6.9 km s21

and is covered by a thin upper layer of the lower
oceanic crust of the Yakutat terrane with velocities
of 6.1–6.4 km s21. This difference results in a
structurally induced crustal doubling and contrasts
with the situation inboard where the subducting
oceanic crust has a normal 5–10 km thickness
(Fig. 5b). Previously accreted oceanic lithosphere
(B1, B2; Fig. 5b) is Mesozoic to early Cenozoic in
age and contains magnetic, intermediate-velocity
rocks of the Peninsular terrane, as well as inter-
preted regions of the Kula plate, which have vel-
ocities of 5.6–7.7 km s21 at depth. The Cenozoic
accretionary prism (C; Fig. 5a and b) is the Prince
William terrane and the Mesozoic accretionary
prism (D0; Fig. 5b) is a tectonic wedge, and includes
the Chugach terrane and Border Ranges ultramafic–
mafic assemblage (BRUMA; Kusky et al. 2007a).
The backstop to the Mesozoic prism (E; Fig. 5b) is
composed of the Peninsular and Wrangellia ter-
ranes. Near the Arctic margin the Brooks Range
reveals crustal thickening attributed to the develop-
ment of a foreland fold-and-thrust belt that overlies
a tectonic wedge of North Slope lithosphere (Fuis
et al. 1997). Crustal underplating in southern
Alaska and crustal thrusting in northern Alaska
overlapped in the Palaeogene and can be related to
an orogenic float model in which a décollement
extended northward from the subduction zone in
the south to the Brooks Range in the north (Oldow
et al. 1990; Fuis et al. 2008).

Southern Vancouver Island in British Columbia
(Fig. 6a) contains material accreted from the sub-
ducting Juan de Fuca plate (A) (Clowes et al.

1987, 1995, 1997; Hyndman et al. 1990; Fuis &
Clowes 1993). The Crescent–Siletz terrane, which
is similar to the Yakutat terrane in Alaska, as well
as unidentified tectonically underplated rocks and
possible fragments were accreted in the Cenozoic
era (B2, B3; Fig. 6a), together with a possible
remnant of an oceanic plateau from the

Palaeocene–Eocene. A thick wedge of Cenozoic
accretionary prism lies near the toe of the overriding
plate (C; Fig. 6a), whereas the Pacific Rim terrane is
the Mesozoic accretionary prism (D; Fig. 6a). The
Wrangellia terrane, the West Coast Plutonic
Complex, and Nanaimo sediments in Georgia
Strait form the backstop to the Mesozoic prism (E;
Fig. 6a). An undivided lower crust is not defined,
and other Cenozoic rocks include sedimentary
strata on the continental shelf and Pacific Ocean
basin (G; Fig. 6a). In contrast, the seismic transects
in northern British Columbia and the Yukon show
that the accreted Mesozoic and younger terranes are
thin-skinned and constrained to the upper crust, and
are underlain by a wedge of Proterozoic sedimen-
tary rocks derived from cratonic Laurentia (Snyder
et al. 2002, 2009). The deeper portions of the
accreted blocks must have detached or underthrust
the wedge during accretion. MacKenzie et al.
(2005) reported evidence for ultrahigh-pressure
garnet peridotite in the Canadian Cordillera that
indicated that the thickness of the Proterozoic
lithosphere was .100 km (and possibly up to
150 km).

A transect from Santa Cruz to Modesto in the
San Francisco Bay region (Fig. 6b) is representative
of accreted regions in northern and central Califor-
nia (Fuis & Mooney 1990; Page & Brocher 1993).
There is no actively subducting oceanic crust, but
oceanic lithosphere that accreted in the Cenozoic
(B3; Fig. 6b) is preserved. The accreted material is
interpreted as a 5–18 km layer at the base of the
crust that can be traced seaward to the Pacific
oceanic crust, containing intermediate- to high-
velocity rocks. Other transects from California
contain lithosphere accreted in the Mesozoic, which
includes ophiolite complexes from the Great Valley,
characterized as magnetic, dense, intermediate- to
high-velocity rocks. The Cenozoic accretionary
prism (Fig. 6b) is present as unidentified Cenozoic
sedimentary rocks interfaulted with the Franciscan
assemblage. The Mesozoic accretionary orogen
(D0, E and G; Fig. 6b) comprises the Franciscan ter-
ranes, Coast Range ophiolite, the Great Valley
sequence and Sierran foothills.

Songpan–Ganzi terrane (China)

The triangular-shaped Songpan–Ganzi terrane in
the central Tibetan plateau lies between the
Qinling–Qilian orogen to the north and the Qiang-
tang terrane to the south (Fig. 7). The crust consists
of a vast tract of highly deformed and locally
metamorphosed Triassic deep marine sedimentary
rocks interpreted as the fill of a diachronously
closing remnant ocean basin (Nie et al. 1994;
Ingersoll et al. 1995; Zhou & Graham 1996). This
terrane formed during Jurassic deformation and
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Fig. 5. (Continued ).
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Fig. 5. Deep structure of the accretionary margin of southern Alaska, North American Cordillera (Fuis 1998). (a) The
Pacific plate subducts at a shallow angle beneath metasedimentary rocks of the Prince William terrane (C) and
underplated oceanic crust (Yakutat terrane lower crust). This active subduction zone maintains a low angle beneath the
250 km wide accretionary terrane. (b) The transition from the Prince William terrane (C) to the Chugach terrane (D) is
marked by a pronounced transition from metasedimentary rocks to thick imbricated sheets of igneous oceanic crust.
North of the Chugach terrane, the crust thickens to at least 50 km beneath the arc-related Peninsular terrane. This
composite accretionary margin is highly diverse in terms of the crustal lithology. Section (b) is offset 150 km across
strike from section (a).
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Fig. 6. (Continued ).
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greenschist-facies metamorphism (Ratschbacher
et al. 1996; Xiao et al. 1998) and was elevated
above sea level at c. 20 Ma (e.g. Tapponnier et al.
2001). The terrane is inferred to be underlain by
continental crust of the South China Block (Luo
1991). Recent seismic measurements show that
the felsic upper crust (flysch? Vp ¼ 5.95 km s21)
is at least 10–20 km thick, and seismic velocities
remain low (Vp ¼ 6.25 km s21) to 40 km depth
(Fig. 7;Wang et al. 2009). This implies that accreted
material may attain a thickness of 40 km. Further-
more, the total crustal thickness is c. 70 km beneath
the northern Songpan–Ganzi terrane (Fig. 7). The
origin of the 20–30 km thick lower crust beneath
this terrane is enigmatic, but the lack of surficial
volcanic rocks indicates that an igneous origin is

unlikely. A more plausible model would involve
underthrusting of crystalline continental crust from
the north and east. We note that the thickness of
the lower crust is three to five times greater than
the 7 km thickness of typical oceanic crust.
Crustal thickness decreases towards the eastern
border of the Tibetan plateau and reaches c. 48 km
beneath the Sichuan basin (SP22, Fig. 7). Despite
more than 14 km of crustal thinning, the topography
remains constant across the Songpan–Ganzi terrane
at an elevation of c. 4 km and then abruptly drops
by 3.4 km from the elevated Longmen Shan into
the low-lying Sichuan basin (elevation 0.6 km).
Thinning of the crust along this portion of the
profile is therefore mainly caused by thinning of
the upper crust (Vp ¼ 5.95 km s21).

Fig. 6. Cross-sections of North American Cordillera (Fuis 1998). (a) Accreted margin across Vancouver Island, British
Columbia, showing some features similar to southern Alaska (Fig. 5b), particularly with respect to the diversity of
crustal lithologies, including accreted sedimentary (C) and volcanic rocks (B3 and D) and tectonically imbricated
sheets of igneous oceanic crust (B2). The total volume of igneous rocks at this margin exceeds that of sedimentary rocks.
The crust thickens to about 50 km some 200 km east of the deformation front. (b) Central California, southern
San Francisco Bay region: Santa Cruz to Sierra Nevada foothills. This accretionary margin has undergone hundreds of
kilometres of lateral displacement along several faults, most prominently the San Andreas Fault. Some elements in
common with the margins of southern Alaska (Fig. 5) and British Columbia (a) are the presence of (1) accreted
sedimentary rocks (San Simeon and Franciscan terranes), (2) an arc terrane (Salina) and (3) underplated oceanic crust
(B3). Deep geophysical data across these and other accretionary systems provide strong evidence for pronounced
lithological diversity within the crust. Legend as for Figure 5.

Fig. 7. Three-dimensional perspective view of the crustal structure beneath the Songpan–Ganzi accretionary orogen
within a recent deep seismic transect from the southern Tarim basin to the Sichuan basin (Wang et al. in press).
Colouring within the different layers indicates composition as derived from Poisson’s ratio and P-wave velocity. Major
faults and thrusts transected by the profile are qualitatively extrapolated at depth. The accreted upper and middle
crust reaches a maximum thickness of 40 km beneath the Songpan–Ganzi terrane. The lower crust is 20–30 km thick
and may consist of underthrust crystalline crust of continental affinity.
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Seismic data from Precambrian

accretionary orogens

Seismic traverses across the Palaeoproterozoic
accretionary orogens of the Svecofennian domain
of NW Europe and the Hottah terrane of NW
Canada have delineated mantle reflections dipping
at about 308 from the Moho to about 100 km
depths that are interpreted as fossil subduction
zones (BABEL Working Group 1993b; Cook et al.
1999). Seismic reflection, refraction and geoelectric
data imply the Svecofennian to be a collage of
microcontinental blocks with intervening basins
(Korja et al. 1993; Korja & Heikkinen 2005; Lahti-
nen et al. 2005, 2009). The reflection seismic data
(BABEL, FIRE) revealed well-preserved pre-,
syn- to post-collisional structures (e.g. a fossilized
arc margin with an attached accretionary prism;
BABEL Working Group, 1993a, b), whereas geo-
chemical and petrogenetic studies suggest that the
juxtaposed pieces were of Palaeoproterozoic origin.
Comparative seismic reflection studies integrated
with geological data for the Palaeoproterozoic
Svecofennian, Scottish and Trans-Hudson orogens
demonstrated in each case that 1.9–1.8 Ga litho-
sphere was wedged into crustal flakes that overrode
Archaean margins (Snyder et al. 1996a). The
Svecofennian accretionary orogen could serve as
an analogue of the future accretionary-turned-
collisional orogen that will be preserved when the
Indonesian archipelago, with its variable size and
age, is squeezed between Eurasia and Australia.

Crustal sections (Figs 4–7) cover a spectrum
from active convergent plate margins to cratonized
equivalents preserved in an accretionary orogen
and reveal a range of processes in the development
of continental crust. Actively subducting margins
(Figs 4, 5 and 6a) reveal a coherent downgoing
plate and an overlying forearc sedimentary wedge
developed on an igneous arc basement, which at
accreting margins form a backstop to offscraped
sedimentary slivers. Stabilizing of the arc system
occurs through underplating and accretion of
oceanic material (Fig. 5, Yakutat terrane) and the
progressive oceanward progression of the plate
margin through accretion of trench sediments and
of older arc systems (Figs 5 and 6). Termination
of subduction as a result of changing plate kin-
ematics (Fig. 6b) or continental collision and exten-
sive crustal thickening (Fig. 7) results in final
cratonization of the arc system.

Accretionary orogen types

Accretionary orogens can be grouped into two end-
member types (Fig. 3), namely retreating and advan-
cing (see Royden 1993b), based on their contrasting

geological character, and modern examples from
the eastern and western Pacific reflect a gross long-
term kinematic framework with respect to an asthe-
nospheric reference frame (Uyeda & Kanamori
1979; Dewey 1980; Lallemand et al. 2008). Retreat-
ing orogens are undergoing long-term extension in
response to lower plate retreat (trench rollback), with
respect to the overriding plate (Royden 1993a),
resulting in upper plate extension, including back-
arc basin opening as exemplified by the Tertiary
history of the western Pacific (Taylor & Karner
1983; Leitch 1984; Schellart et al. 2006). Advan-
cing orogens develop in an environment in which
the overriding plate is advancing towards the down-
going plate at a rate equal to, or greater than, the rate
of lower plate slab retreat, and this results in overall
upper plate compression (Lallemand et al. 2005,
2008). For the eastern Pacific this corresponds to
westward motion of the North and South American
plates (Russo & Silver 1996a; Silver et al. 1998;
Oncken et al. 2006a). This resulted in accretion
(and strike-slip motion) of previously rifted arc
and microcontinental ribbons, and the development
of extensive retro-arc fold-and-thrust belts (e.g.
Johnston 2001). Husson et al. (2008) argued that
trench advance in South America is driven by high
Andean topography and that this westward push is
strong enough to shear the entire Pacific upper
mantle with a surface velocity of 30 mm a21.

Advancing and retreating settings of accretion-
ary orogens are simplified 2D representations of
what is likely to be a more complex response to an
overall environment of oblique convergence.
Oblique accretion has played an important role in
the assembly of the Cordillera in western North
America (Johnston 2001; Colpron & Nelson 2006,
2009; Colpron et al. 2007), and probably also in
many other orogens.

Retreating orogens

Retreating plate margins develop where the rate of
rollback of the downgoing plate exceeds the rate
of advance of the overriding plate, resulting in
crustal extension in the latter. Rollback is driven by
the negative buoyancy of the downgoing slab with
respect to the underlying mantle, which in turn
induces a backward sinking of the slab and retreat
of the slab hinge, causing the overriding plate to
extend (Elsasser 1971; Schellart & Lister 2004).

Upper plate extension leads to the development
of intra-arc and arc-flanking basins culminating in
rifting of the arc and development of back-arc
basins (Dickinson 1995; Marsaglia 1995; Smith &
Landis1995).Many retreatingorogenshavemultiple
back-arc basins that generally, but not always, young
outboard, towards the retreating plate margin. The
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preservation and incorporation of such basin fills
within a retreating accretionary orogen is dependent
on features or processes active during continuing
subduction (e.g. thickness of sediment cover on
the downgoing plate, rate of rollback) and the char-
acter of tectonothermal events that deform and
stabilize the orogen in the rock record.

The process of rollback of the downgoing plate
and the consequent development of back-arc basins
is well developed in the SWPacific. Between 82 and
52 Ma east- and NE-directed rollback of the Pacific
plate by some 750 km was accommodated by
opening of the New Caledonia, South Loyalty,
Coral Sea and Pocklington back-arc basins (Schel-
lart et al. 2006). Change in the relative motion of
Pacific–Australia at 50 Ma resulted in subduction
of the South Loyalty and Pocklington basins. This
subduction was followed by two additional phases
of rollback of the Pacific slab of some 650 and
400 km during opening of the South Fiji and
Norfolk basins between 25 and 15 Ma and the Lau
Basin from 5 to 0 Ma, respectively (Schellart et al.
2006). Slab rollback and back-arc basin extension
is also argued to have played a fundamental role
in the development and subsequent cratonization
of the arc systems in the Terra Australis orogen in
eastern Australia (Collins 2002a; Foster et al.
2009). The eastern third of Australia is composed
of arc systems that developed along, and were
accreted to, the rifted margin of East Gondwana fol-
lowing the initiation of subduction in the late Neo-
proterozoic (Cawood 2005). Subduction is inferred
to have commenced at or near the continent–
ocean boundary of East Gondwana. The width of
eastern Australia and New Zealand prior to
opening of the Tasman Sea was some 2000 km.
Since that time, this region has undergone overall
orogenic foreshortening of the order of 50%, but
local foreshortening may have been considerably
higher; for example, the western Lachlan segment
of the Terra Australis orogen has a current width
of 330 km and restored original width of between
800 and 1200 km (Gray & Foster 2006; Foster &
Gray 2007). Thus, overall rollback of the proto-
Pacific plate since the start of subduction towards
the end of the Neoproterozoic until now is of the
order of 6000 km, comprising some 4000 km
during the Palaeozoic and Mesozoic that is pre-
served in the geological record of Australia and
New Zealand and another 1800 km in the Cenozoic
as documented by Schellart et al. (2006) in the SW
Pacific. Rollback has not been continuous through-
out this time frame and was undoubtedly inter-
spersed with periods when rollback was either
stationary or, with respect to the overriding plate,
was advancing and driving periods of orogenesis
(Collins 2002a). Extension was accommodated by
both back-arc opening (Coney et al. 1990; Coney

1992; Fergusson & Coney 1992) and offscraping
and accretion of material from the downgoing
plate (Cawood 1982; Fergusson 1985).

Advancing orogens

Advancing orogens are characterized by widespread
crustal shortening and uplift (Fig. 8), including the
development of retroarc fold-and-thrust belts. The
modern South American Cordillera is an example
where deformation patterns can be placed into a
plate-tectonic framework. Oncken et al. (2006b)
provided a quantitative analysis of the spatial and
temporal distribution of deformation in the Central
Andes, and concluded that the amount and rate of
shortening of the upper plate as well as lateral varia-
bility at the leading edge of the plate is primarily
controlled by the difference between the upper
plate velocity and the oceanic plate slab rollback
velocity (see Russo & Silver 1996a; Silver et al.
1998; Schellart 2008). This allows the upper plate
to override the downgoing plate, resulting in coup-
ling and deformation across the plate boundary,
including subduction erosion (Scholl & von Huene

Fig. 8. Accretionary orogen types (after Cawood &
Buchan 2007). For the retreating type the velocity of slab
retreat (Vr) for the underriding plate (Vu) is greater than
that of the overriding plate (Vo), whereas for the
advancing orogen the velocity of the overriding plate
is greater.
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2009). Furthermore, Oncken et al. showed that the
influence of differential trench–upper plate velocity
is modulated by factors such as a phase of high
trench sediment accumulation that reduced coupling
across the plate boundary between about 45 and
33 Ma and a stage of reduced slab dip between 33
and 20 Ma that accelerated shortening. The magni-
tudes of post-Eocene crustal shortening across the
Andes reach a maximum value of some 250–
275 km in the central Andes and decrease to the
north and south (Oncken et al. 2006b). The analysis
of Schellart et al. (2007; see also Schellart 2008)
suggests that this lateral variation in shortening
may be related to along-strike variations in the
rate of trench rollback, relative to the westward
motion of the overriding South American plate.
Schellart et al. (2007) used a global analysis of sub-
duction zone width to show that trench migration
rate is inversely related to slab width and depends
on proximity to a lateral slab edge. Thus, for the
7000 km long South American trench, slab retreat
is greatest at the northern and southern ends of the
trench and least in the Central Andes in the vicinity
of the Bolivian orocline.

The Central Andes has remained essentially
stationary for the last 25 Ma and is the site of great-
est crustal thickening. However, based on palaeo-
magnetic data, formation of the Bolivian orocline
occurred in the last 10 Ma (Rousse et al. 2003),
and not over the 25–50 Ma timeframe required by
the model of Schellart et al. (2007). Russo &
Silver (1996b) proposed that lateral variations in
rollback are probably accommodated by trench-
parallel flow in the mantle of the subducting slab.
Seismic anisotropy beneath theNazca Plate suggests
trench-parallel mantle flow in the north and south
but negligible flow in the central region, below the
Bolivianorocline.Alternatively, Iaffaldano&Bunge
(2008) argued that topographic load of mountain
belts leads to increased frictional forces between
the downgoing and overriding plates and that,
specifically, uplift of the Andes over the last
10 Ma was linked to the slowdown in convergence
between the Nazca and South American plates
over this timeframe (see Iaffaldano et al. 2006).

Foreland fold-and-thrust belts, located inboard
of the magmatic arc (Jordan 1995), are well devel-
oped in advancing orogens as a result of hori-
zontal shortening, crustal thickening and resultant
loading. They are well developed along the conti-
nental interior of the North and South American
cordilleras.

Tectonic switching

Accretionary plate margins and orogenic systems
can switch between phases of advance and retreat.

Collins (2002a) proposed that episodes of orogen-
esis in the Lachlan segment of the Terra Australis
orogen was driven by periodic advance of the down-
going plate through flat-slab subduction of an ocean
plateau, which was otherwise undergoing long-term
retreat with respect to the overriding plate. Lister
et al. (2001) suggested that an accretionary orogen
can undergo multiple cycles of tectonic mode
switching (see also Beltrando et al. 2007). They
proposed that accretion of a continental ribbon at a
convergent plate margin results in shortening and
burial of the overriding plate followed by a stepping
out of the subduction zone beyond the accreted
terrane and a new phase of rollback of the down-
going plate causing extension and exhumation in
the overriding plate. This concept was extended by
Lister & Forster (2006) into two types of tectonic
mode switches: pull–push cycle, in which a retreat-
ing margin changes to an advancing margin, and
the opposing push–pull cycle, in which the margin
changes from advancing to retreating.

Sedimentary successions and

accretionary orogens

Accretionary prisms

Structures formed during steady-state subduction
are focused at the interface between the overriding
and downgoing plates and are associated with the
offscraping and underplating of material from the
downgoing plate to form a subduction complex–
accretionary prism (Fig. 9). Material accreted to
the overriding plate can be subsequently removed
and carried into the mantle through subduction
erosion along the subduction channel (Scholl et al.
1980; Scholl & von Huene 2007). The subduction
channel is the boundary zone between the upper
and lower plates (Shreve & Cloos 1986; Beaumont
et al. 1999). Variations in the strength and width
of the subduction channel, which in part reflect the
strength and thickness of material on the downgoing
plate, can affect the behaviour of the overriding
plate (De Franco et al. 2008). The interplay of
advancing v. retreating accretionary plate margin
with either the offscraping of material from the
downgoing plate and its incorporation into an accre-
tionary prism or the subduction (or erosion) of this
material leads to the recognition of four types of
plate margins (De Franco et al. 2008): accretionary
prism with back-arc compression (e.g. Alaska,
Sumatra, Nankai margin of Japan); erosive margin
with back-arc extension (e.g. Central America,
Marianas, Tonga); accretionary prism with back-arc
extension (e.g. Lesser Antilles, Aegean, Makran);
erosive margin with back-arc compression (e.g.
Peru, Honshu margin of Japan, Kurile).
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Accretion of material results in the retreat of the
trench axis seaward, away from the margin, and the
active widening of the margin with time through
progressive accretion from the downgoing plate
(e.g. Seeley et al. 1974). According to Scholl & von
Huene (2007), of the c. 42 000 km of active conver-
gent margin subduction zones only some 30% have
well-developed subduction complexes, and these
are commonly characterized by a trench floor with
a well-developed turbidite sequence and an orthog-
onal convergence rate of less than 40–50 km Ma21.
Examples include Nankai, East Alaska, Cascadia
and Sumatra–Andaman margins. Some high-
latitude convergent margins (southern Chile and
Alaska), contain small, young prisms developed
through enhanced input of glacial age turbidites to
trenches (Scholl & von Huene 2009). In southern
Chile, the long-term processes on the margin are
non-accreting or erosive (Bangs & Cande 1997).

A range of physical conditions extends from the
trench floor to deep within the subduction complex.
High fluid pressure and shearing lead to a spectrum
of structures within the prism ranging from discrete
thrust imbrication of relatively coherent sedi-
mentary packages to chaotic mélange formation.
Where least disrupted, the sequence displays a dis-
tinctive ocean plate stratigraphy consisting, from
bottom to top, of a succession of mid-ocean ridge
basalt (MORB), chert, hemipelagic mudstone, turbi-
dite or sandstone and conglomerate (Fig. 10). This
sequence records the history of sedimentation on

the ocean floor as it travels from a mid-ocean
ridge spreading centre to a trench. The biostratigra-
phy, structure, and geochemistry of this offscraped
sequence has been studied in, for example, Phaner-
ozoic circum-Pacific orogens in Japan (Isozaki et al.
1990; Matsuda & Isozaki 1991; Kimura & Hori
1993; Kato et al. 2002), California (Cowan &
Page 1975; Sedlock & Isozaki 1990; Isozaki &
Blake 1994), Alaska (Kusky & Bradley 1999;
Kusky & Young 1999), Eastern Australia (Cawood
1982, 1984; Fergusson 1985) and New Zealand
(Coombs et al. 1976; Mortimer 2004). Imbricated
ocean plate stratigraphy is also increasingly recog-
nized in Precambrian orogens; for example, in
the 600 Ma Mona Complex of Anglesey, North
Wales (Kawai et al. 2006, 2007; Maruyama et al.

in press), the 2.7 Ga Point Lake greenstone belt
(Kusky 1991), and possibly the 3.5 Ga chert–
clastic sequence in the Archaean Pilbara craton
(Kato et al. 1998; Kato & Nakamura 2003) and
the 3.8 Ga Isua greenstone belt, West Greenland
(Komiya et al. 1999). However, the validity of the
Pilbara successions as an imbricated ocean-plate
has been questioned by Van Kranendonk et al.

(2007), who favoured a plume-related intraconti-
nental setting. These rocks are interlayered with
felsic volcanic rocks, and Williams & Collins
(1990) have pointed out that they are commonly
intruded by granites of the same age.

Systematic disruption of the ocean plate and
trench sequence results in the production of broken

Fig. 9. Schematic section of accretionary prism showing sediment accretion through frontal accretion and basal
accretion, and internal deformation of the wedge through contraction and extension (adapted from Kusky et al. 1997b).
Particle paths are simplified net vectors and are drawn relative to backstop (see van Gool & Cawood 1994). Backstop
is arc basement, and is composed of magmatic arc igneous rock or ophiolitic material.
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formation and mélange (Greenly 1919; Hsü 1971).
Results from southern Alaska and eastern Australia
have shown that controls on whether chaotic
mélange or coherent flysch are accreted at conver-
gent margins may lie in the thickness of the sedi-
mentary pile being subducted on the downgoing
plate (Fergusson 1984; Kusky et al. 1997b; Kusky
& Bradley 1999; Sisson et al. 2003). Downgoing
plates with a thin sediment cover tend to concentrate
shear strain in a thin zone that includes oceanic
basement structural highs, whereas plates with
thick sediment cover tend to disperse shear strains
through a thick stratigraphic section with resulting
less obvious deformation.

Bathymetric highs on the downgoing oceanic
plate, such as guyots, may be offscraped into, and
disrupt, the accretionary prism. Modern examples
of seamount subduction appear to be associated
with both sedimentary and tectonic disruption of
the accretionary wedge (Ballance et al. 1989;
Cawood 1990). Inferred seamount material, includ-
ing alkali basalt and oceanic reef limestones, occurs
in late Palaeozoic to Mesozoic accretionary prisms
in Japan (Isozaki et al. 1990; Tatsumi et al. 1990;
Isozaki 1997), including the huge late Jurassic
Sorachi oceanic plateau, which was accreted in the
early Cretaceous (Kimura et al. 1994). The eclogitic
slab on the Sanbagawa mountains was derived from
part of an oceanic plateau that was accreted, sub-
ducted and exhumed (Maruyama, pers. comm.).
The Izu–Bonin arc collided with the Honshu arc
in the late Cenozoic to give rise to spectacular

indentation and curvature of the whole of central
Japan (Soh et al. 1998).

Differentiating sedimentary successions

within the accretionary orogen

Continuing convergent plate margin processes
(subduction, magmatism, accretion, tectonic
erosion), as well as subsequent processes involved
in the incorporation and stabilization of convergent
plate margin elements within continental litho-
sphere, destroy the original geometry so that
accretionary orogens rarely contain a continuous
and idealized distribution of lithotectonic elements.
This structural complication may lead to uncertainty
in ascertaining original settings and affinities for
these elements, particularly in relation to their
previous tectonothermal evolution, location of
the original arc, apparent lack of accretionary
prisms, occasional large dimension, and the
composition and tectonic setting of the ophiolite
slivers.

Many accretionary orogens, particularly the
larger, less well-understood varieties, contain vast
accumulations of deep-water turbidites that are tec-
tonically intercalated with arc terranes and intruded
by post-tectonic granites. The critical question here
is whether these turbidites are accretionary wedge
material, with ophiolitic slivers interpreted as
ocean-floor lithosphere derived from the subducted
plate, or whether they are back-arc basin fills, inter-
layered with the ophiolitic slivers representing

Fig. 10. Schematic section through a coherent thrust slice of offscraped ocean plate showing lithotectonic associations
that develop on the plate as it moves from a mid-ocean ridge spreading centre to a trench.
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remnants of the back-arc basin (see Foster & Gray
2000; Collins 2002a; Foster et al. 2009).

One of themajor uncertainties has been the origin
and timing of the heat budget within such turbidite
assemblages, as many display a high-temperature
(T ), low-pressure (P) secondary mineral assem-
blage. If the turbidites are interpreted as offscraped
subduction-related sequences then the mineral
assemblage requires the migration of the magmatic
arc, the inferred source of the heat, into the subduc-
tion complex (see Matsuda & Uyeda 1971) during
oceanward propagation of the plate boundary during
slab retreat. In this situation, the models that envi-
sage accretionary orogens simply as subduction–
accretion complexes require that the high-T
regimes associated with arc magmatism should be
superimposed upon low-T high-P regimes, includ-
ing blueschist-facies terranes related to subduction
accretion. Such overprints have been documented
in the Chugach complex in Alaska and the New
England segment of the Terra Australis orogen
(Dirks et al. 1992, 1993), but many high-T, low-P
metamorphic terranes bear no record of such over-
printing. It is possible that the high-Tmetamorphism
was sufficient to destroy all high-P evidence, but
equally, many extensive turbidite complexes pre-
serve original bedding and stratigraphic continuity
over large areas, so it can be demonstrated that they
never experienced high-Pmetamorphism associated
with an evolving prism. In such instances, such tur-
bidite piles could have filled back-arc basins, with
the first metamorphism being associated with
emplacement of igneous rocks, within either an
arc (intra-arc basin) or a back-arc setting.

Another determinant of original setting of accre-
tionary orogen turbidite assemblages is sedimentary
lithotype. Accretionary prisms typically receive det-
ritus from the adjacent arc and hence, commonly,
are lithic-rich, whereas back-arc basins are likely
to include detritus shed from the adjacent continen-
tal interior, and are likely to be more quartzose
(Dickinson & Suczek 1979; Dickinson & Valloni
1980; Cawood 1983, 1990, 1991a, b; Dickinson
1985). Accordingly, arc–trench sandstones (forearc
basins–accretionary prisms) also should contain a
much higher proportion of young arc-derived
zircons than old cratonic grains (Cawood et al.
1999; Cawood & Nemchin 2001). None the less,
this is not always definitive, as far-travelled conti-
nental detritus can be deposited in accretionary
prisms, such as the Barbados Ridge in the Lesser
Antilles, which largely consists of Andean detritus
shed via the Amazon (Parra et al. 1997).

The composition and structural relations of
ophiolites are also probably discriminants between
accretionary prisms and back-arc basins. Green-
stones of accretionary prisms are typically fault-
bound slivers ranging from those at the base of a

relatively coherent thrust sheet (Fig. 10) to dismem-
bered tectonic lozenges in amélange. They can show
either MORB or ocean island basalt (OIB) geo-
chemical signatures (e.g. Cawood 1984), with the
former rocks being detached from their base and
occurring at the bottom of an ocean-plate sedimen-
tary sequence (Fig. 10), where stratigraphic relations
are preserved. Ocean island basalts can occur inter-
stratified within the sedimentary sequence and may,
if originating as guyots, be overlain or associated
with limestone lenses. In contrast, back-arc basins
are likely to contain sills and flows of basalts,
which typically preserve original contact relations.
Moreover, these basalts are MORB-like, but with
a subtle subducted slab flux component, evident as
elevated large ion lithophile element (LILE) abun-
dances, which form the typical spiked pattern of
subduction-related arc basalts on spidergrams,
although this pattern is more subdued than that of
arc basalts (Jenner et al. 1987; Hawkins 1994;
Collins 2002b). In the 1970s and 1980s, such
subtle LILE additions were commonly perceived
as metasomatic effects from metamorphism, or as
the products of melting mantle lithosphere enriched
during a previous subduction event. However,
through the Ocean Drilling Program, it became
evident that these basalts were the dominant type
of oceanic back-arc basins (e.g. Smellie 1994).
These basalts also happen to be the most common
type in retreating accretionary orogens.

The presence or absence of silicic tuff horizons is
another possible discriminant of sedimentary suc-
cessions in supra-subduction zone settings. Back-arc
basins reflect the transitional tectonic stage between
extending arc and formation of oceanic back-arc
basins. They commonly receive the volcanic pro-
ducts associated with crustal melting during the
initial stages of back-arc extension, and the explo-
sive nature of arcmagmasmeans that pyroclastic and
volcaniclastic detritus is easily redistributed into the
back-arc, and directly overlies the oceanic litho-
sphere and may be interstratified with, and dispersed
within, any hemi-pelagic successions. In contrast,
the ocean plate sequence incorporated into accre-
tionary prisms, commonly located at least several
hundred kilometres outboard from the prism, is less
likely to contain volcanic layers, particularly ash
flow ignimbrites. Accordingly, the presence of
silicic volcanic rocks (with orwithoutmafic counter-
parts), particularly in the deeper part of the strati-
graphic succession, and intermittent silicic tuff
horizons higher in the turbidite pile, are indicators
of back-arc basin environments. It should be
noted, however, that tuffs occur interbedded with
cherts as part of an ocean plate stratigraphy in the
Ordovician Ballantrae ophiolite in Scotland, which
were then imbricated into an interpreted forearc
accretionary environment (Sawaki et al. in press).
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Metamorphic patterns in accretionary

orogens

Miyashiro (1961, 1972, 1973b) highlighted that
convergent plate margins are characterized by
two regional, paired metamorphic belts of inferred
similar age but contrasting mineral assemblages
representing discrete P–T regimes. These are a
high-P belt formed under a low geothermal gradi-
ent, which lies on the oceanward side of a low-P
belt formed under a high geothermal gradient
(Oxburgh & Turcotte 1970, 1971). The high-P belt
was equated with the zone of the accretionary prism
and the low-P belt with the magmatic arc and
back-arc (Miyashiro 1972, 1973b). This duality of
metamorphic belts is a characteristic feature of
accretionary plate margins (Ernst 2005). The age
equivalence and primary across-strike setting of
paired belts was, however, critically investigated
by Brown (1998b) for part of the Japanese arc. He
proposed that the inboard, low-P–high-T Ryoke
Belt and the outboard high-P–low-T Sambagawa
Belt originally lay along strike and were juxtaposed
by sinistral strike-slip motion along the Median
Tectonic Line. The high-T metamorphism in belts
such as the Ryoke and Abukuma in Japan are,
according to Brown (1998a), the result of ridge sub-
duction and slab window formation just inboard of
the trench and downgoing plate (Bradley et al.

2003). This represents an alternative mechanism
to the magmatic arc and back-arc for producing
high-T metamorphism. The distribution of low-P,
high-T metamorphic assemblages and any associ-
ated magmatism will be limited to the site of ridge
subduction, and age relationships will be diachro-
nous, reflecting ridge–trench migration.

‘Back-arc basin’ orogeny

One of the more enigmatic features of accretionary
orogens is the presence of peak (high-T ) metamor-
phic assemblages during contraction (Thompson
et al. 2001; Collins 2002a), which is impossible to
reproduce during the structural evolution of an
accretionary prism (Jamieson et al. 1998).
Hyndman et al. (2005) realized that back-arcs
were always regions of high heat flow, irrespective
of whether the orogen was advancing or retreating.
They showed that around the entire Pacific Rim,
elevated heat flow and thin crust are normal in back-
arcs. Even in the North American Cordillera, where
high mountains, fold-and-thrust belts, and foreland
basins attest to long-term crustal shortening associ-
ated with an advancing orogen, the crust of the
Cordillera is only 30–35 km thick and heat flow
(c. 75 mW m22) is almost twice that of the adjacent
craton (c. 40 mW m22). The high heat flow exists

because the entire lithosphere is only 50–60 km
thick (see also Currie & Hyndman 2006; Currie
et al. 2008). This hot, thin zone of lithospheric
weakness becomes the focus of shortening during
periods of increased compressive stress, and the
heat is a natural consequence of shallow convection
in the hydrous mantle wedge above the subducting
plate (Hyndman et al. 2005). As a result, compres-
sional features in accretionary orogens, which form
above the subducting plate, develop up to 1000 km
away from the accretionary prism.

Furthermore, the high heat flow and correspond-
ing rheological weakness of the back-arc region
make it the likely site for the focusing of defor-
mation within the accretionary orogen system.
Deformation in the eastern Myanmar–western
Thailand region of SE Asia (Shan-Thai block) is
focused within a pre-existing back-arc basin sub-
jected to oblique strain related to the India–Asia
collision (Morley 2009). Strain partitioning is
characteristic of this region and is heterogeneous,
with adjoining regions of cold lithosphere, corre-
sponding to a forearc basin setting (e.g. Central
Basin in Myanmar), remaining undeformed and
the site of continuing sedimentation.

Cratonization and driving mechanisms

of orogenesis in accretionary orogens

Conversion of convergent plate margins into stable
continental crust typically involves deformation
and crustal thickening during one or more tecto-
nothermal events. This conversion occurs in an
environment of continuing plate convergence such
that orogenesis involves transfer and concentration
of stress in the upper plate through transitory coup-
ling across the plate boundary (Cawood & Buchan
2007). Potential mechanisms of coupling include:
(1) subduction of buoyant oceanic lithosphere (flat-
slab subduction); (2) accretion of buoyant litho-
sphere (terrane accretion); (3) plate reorganization
causing an increase in convergence across the
boundary (Fig. 11). The effects of flat-slab subduc-
tion (e.g. Ramos et al. 2002) and suspect terrane
accretion (e.g. Maxson & Tikoff 1996) should be
spatially limited to the region of either the flat slab
or the accretion zone, which in turn should result
in short-lived orogenesis and/or diachronous
events that migrate along the convergent margin in
harmony with the subducted plate movement
vector. These are local mechanisms in which the
effect (e.g. orogenesis) is directly linked to the
cause (buoyant slab causing coupling). These mech-
anisms can be observed in modern orogens (Kay &
Mpodozis 2001; Mann & Taira 2004) and are com-
monly invoked as a mechanism in the geological
record (e.g. Holm et al. 2005; St-Onge et al.
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2009). Accretion of arc and continental fragments
has played a major role in the growth of SE Asia
and the North American Cordillera (Coney et al.

1980; Metcalfe 1996a, b, 2002; Hall 2002, 2009).
In contrast, the effects of plate reorganization are
broader in scale and should extend synchronously
along an orogen or plate boundary, albeit with vari-
able effects, and reflect widespread and possibly
long-term changes in orogenic character. Plate reor-
ganization may traverse plate boundaries and be
inter-orogen in extent. This reorganization is a
regional mechanism in which the cause (plate reor-
ganization) is not directly preserved at the site of its
effect (orogenesis).

Crucial in establishing the potential contribution
of these different coupling mechanisms to orogen-
esis is a detailed understanding of the spatial and
temporal distribution of the tectonothermal effects
of orogenic events in accretionary orogens. Syn-
chroneity and cyclicity of accretionary orogenesis
on an intra- and inter-orogen scale would suggest
plate reorganization as the possible driver for oro-
genesis. Diachroneity, and/or orogenic events or
belts restricted within an orogen would favour
local events associated with terrane accretion or flat-
slab subduction, or ridge subduction.

Subduction of buoyant oceanic lithosphere

(flat-slab subduction)

Subduction of buoyant oceanic lithosphere will
induce a flattening of the slab and can result from
either the migration of young lithosphere associated
with a spreading ridge or the thickened lithosphere
of a hotspot (Fig. 11a; Gutscher et al. 2000;
Gutscher 2002). Flat-slab subduction is currently
occurring in a number of regions around the world,
notably in southern Japan and South America
(Ramos et al. 2002; van Hunen et al. 2002). Orogen-
esis driven by flat-slab subduction should be
spatially limited to the region above the buoyant
subducting lithosphere and will be relatively short-
lived and diachronous, moving in concert with the
subducting plate movement vector. Kay & Mpodo-
zis (2001, 2002) argued that the thermal conse-
quences of changing slab dip, combined with
subduction of the Juan Fernandez Ridge hotspot
track, have left a predictable magmatic and mineral-
ization record in the Andes. Murphy et al. (1998)
suggested that plume subduction led to flattening
of the downgoing slab, generating ‘plume-modified
orogeny’ (see Murphy et al. 1999, 2003; Dalziel
et al. 2000). Flat-slab subduction and the resultant
transitory plate coupling has been invoked as an
important mechanism of orogenesis in the accre-
tionary Lachlan orogen (Collins 2002a), in the
North American Cordillera (Dickinson & Snyder
1978; Saleeby 2003), and in development of the
Japanese accretionary orogen (Osozawa 1988;
Underwood 1993; Isozaki 1996; Maeda & Kagami
1996; Brown 1998a). The mechanism for increased
buoyancy with flat-slab subduction depends on the
nature and rate of input of the thermal anomaly
(Bradley et al. 2003; Kusky et al. 2003). Ridge
subduction will be associated with a progressive
increase in buoyancy, whereas plateau or hotspot
subduction will induce a rapid change in crustal
thickness and, hence, buoyancy. Subduction of
plateaux and ridges has been proposed as a mechan-
ism of orogenic growth in the Palaeoproterozoic
Birimian terranes (Abouchami et al. 1990), and in
the Archaean Zimbabwe craton (Kusky & Kidd
1992).

Ridge subduction is a diachronous process that
typically involves a major change in plate conver-
gence vectors between the upper plate and two sub-
ducting plates, with the change in plate convergence
vectors across the subducting spreading ridge separ-
ated by a period of heating and igneous intrusion in
the forearc and accretionary prism (above the slab
window; Fig. 12). Such ridge–trench interaction
played a major role in the development of the
Tertiary North American Cordillera from Kodiak
Island, Alaska, to Vancouver Island, British
Columbia (Bradley et al. 2003; Sisson et al. 2003).

Fig. 11. Three possible modes of plate coupling that can
drive orogenesis in an accretionary orogen: (a) flat-slab
subduction; (b) terrane accretion; (c) plate reorganiza-
tion leading to increased convergence.
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Deformation can be intense and is related not only to
the plate convergence vectors (surface forces) but
also to a change in dip of the subducting lithosphere
as the ridge migrates along the trench (Kusky et al.
1997a; Haeussler et al. 2003; Pavlis et al. 2003;
Roeske et al. 2003).

As a spreading ridge approaches a trench, pro-
gressivelyyoungerpackagesofoffscrapedsediments
and volcanic rocks (Fig. 10) will be accreted to the
overriding plate, and after a ridge is subducted, the
accreted slabs will include progressively older
packages of sediment and basalt along with the
young sediments. Deformation becomes younger
towards the trench and is superimposed on this
complex pattern of ages of accreted sediments.

Accretion of buoyant lithosphere

(terrane accretion)

If the lithosphere (oceanic or continental) is rela-
tively thick (and buoyant) it may result in a tempor-
ary interruption to the subduction process through
choking of the subduction zone, leading to the step-
ping out or flipping of the subduction zone (e.g.
Ontong–Java Plateau; Petterson et al. 1999; Lister
et al. 2001; Mann & Taira 2004). This flip will prob-
ably be associated with an interruption and/or
migration of the magmatic arc (Fig. 11b). Terrane
accretion was adopted by Coney et al. (1980) to
explain the faulted juxtaposition of oceanic and
convergent plate margin tectonostratigraphic units
within the North American Cordillera. It is con-
sidered by many to constitute the main (sole)
driving force for convergent margin orogenesis in
that ‘eventually a downgoing plate will carry conti-
nental or island arc crust into a subduction zone’

(Moores & Twiss 1995, p. 212) to induce arc–arc
or arc–continent collision, or terrane accretion
(Dickinson 1977; Coney et al. 1980). Maxson &
Tikoff (1996) argued that Cordilleran terrane accre-
tion was the driving mechanism for the Laramide
orogeny. Recent work in the Cordillera has empha-
sized that the number of terranes in the Cordillera is
considerably less than originally envisaged by
Coney and colleagues, and that many of the remain-
ing terranes may not be suspect but are upper plate
fragments that represent arcs and continental ribbons
that lay outboard of, and along strike from, the
Cordilleran margin (Monger & Knokleberg 1996;
Johnston 2001; Colpron & Nelson 2006, 2009;
Colpron et al. 2007). Seismic data across the north-
ern Cordilleran orogen suggest that at least some of
the accreted terranes are superficial with no deep
crustal roots (Snyder et al. 2002, 2009) and may
not be major impactors that drove orogenic events
(Cawood & Buchan 2007); the terrane accretion
model of orogenesis may therefore be ‘suspect’.

Plate reorganization

Tectonic plate reorganization resulting from a
change in the position and angular motion of Euler
poles, perhaps related to termination of plate bound-
aries through collision or an increased spreading
rate, will lead to a global readjustment in plate
interactions and has been invoked as a potential
cause of accretionary orogenesis (Colblentz &
Richardson 1996). Vaughan (1995; see also
Vaughan & Livermore 2005) proposed that pan-
Pacific margin tectonic and metamorphic effects
were a response to major plate reorganization
associated with an increased spreading rate in the
Pacific during the mid-Cretaceous (Sutherland &
Hollis 2001). Cawood & Buchan (2007) highlighted
evidence for deformation, mountain building and
resultant crustal growth in accretionary orogens
during phases of supercontinent assembly (Boger
& Miller 2004; Foden et al. 2006). They undertook
a detailed analysis of the timing of collisional oro-
genesis associated with supercontinent assembly
compared with that for accretionary orogenesis
along the margins of a supercontinent. They
showed that age relations for assembly of Gond-
wana and Pangaea indicate that the timing of colli-
sional orogenesis within the interior of the
supercontinents was synchronous with subduction
initiation and contractional orogenesis within the
marginal Terra Australis orogen, which extended
along the palaeo-Pacific margin of the these
supercontinents.

Final assembly of Gondwana occurred at the end
of the Neoproterozoic to early Palaeozoic, between
about 590 and 510 Ma. Thiswas coevalwith a switch
along the Pacific margin of the supercontinent from

Fig. 12. Oblique view of hypothetical ridge–trench–
trench triple junction, showing how structures in the
upper plate will change with the passage of the triple
junction, reflecting kinematic coupling between plates B
and C before ridge subduction, and plates A and C after
ridge subduction (adapted from Kusky et al. 1997a).
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passive to convergent margin activity, followed by
the Delamerian–Ross–Pampean orogenesis. Simi-
larly, the final stages of assembly of the Pangaean
supercontinent occurred during the end-Palaeozoic
to early Mesozoic, between c. 320 and 250 Ma,
and involved the accretion of Gondwana, Laurasia
and Siberia. This phase of major plate boundary
reorganization was accompanied by regional oro-
genesis along the Pacific margin of Gondwana–
Pangaea (Gondwanide orogeny). The correspon-
dence of this transitory coupling with, or immedi-
ately following, plate boundary reorganization,
suggests that it may reflect plate kinematic readjust-
ment involving increased relative convergence
across the plate boundary. Cawood & Buchan
(2007; see also Murphy & Nance 1991) suggested
that this relationship probably reflects the global
plate kinematic budget where termination of con-
vergence during supercontinent assembly is com-
pensated by subduction initiation and/or increased
convergence along the exterior of the superconti-
nent. Transitory coupling across the plate boundary
during subduction possibly accounts for the defor-
mation and metamorphic pulses that develop in
the accretionary orogens.

The analysis of Oncken et al. (2006b) suggests
that Cenozoic orogenesis in the Andes is a response
to global kinematic adjustment, in this case driven
by opening of the Atlantic, resulting in an increase
in westward drift of the South American plate
relative to the Nazca plate (see Silver et al. 1998).
Recently, Silver & Behn (2008) proposed that
supercontinent collision may lead to a global loss
of subduction. The data of Cawood & Buchan
(2007), however, show that this concept is unlikely,
at least in association with Gondwana and Pangaea
assembly.

Accretionary orogens and plate tectonics;

when did plate tectonics begin?

Because accretionary orogens require convergent
plate margins, their appearance in the geological
record heralds the initiation of horizontal plate
interactions on the Earth. The question of when
plate tectonics began, what criteria can be used to
recognize it in the rock record and, once established,
whether it was continuous, episodic and/or alter-
nated with some alternative process are much
debated (Sleep 2000; Hamilton 2003; Stern 2005;
O’Neill et al. 2007; Condie & Kröner 2008). The
consensus of opinion, however, is that convergent
plate interaction and the recycling and subduction
of material from the Earth’s surface into the
mantle has been active since at least 3.2–3.0 Ga
(Cawood et al. 2006; Dewey 2007; Condie &
Kröner 2008; Windley & Garde 2009) and possibly

considerably earlier (Komiya et al. 1999; Harrison
et al. 2005; Nemchin et al. 2008; Nutman et al.
2009; Polat et al. 2009). Well-constrained palaeo-
magnetic data demonstrate differential horizontal
movements of continents in both Palaeoproterozoic
and Archaean times, consistent with the lateral
motion of lithospheric plates at divergent and con-
vergent plate boundaries (Cawood et al. 2006).
Well-preserved and unambiguous ophiolites associ-
ated with juvenile island-arc assemblages and
modern-style accretion tectonics occur in the
Palaeoproterozoic Trans-Hudson orogen of the
Canadian shield (2.0 Ga Purtuniq ophiolite, Scott
et al. 1992), the Svecofennian orogen of the Baltic
shield (1.95 Ga Jormua ophiolite, Peltonen &
Kontinen 2004), and in the Mazatzal–Yavapai
orogens of southeastern Laurentia (1.73 Ga Payson
ophiolite, Dann 1997). Furnes et al. (2007) proposed
that ophiolite-related sheeted dykes and pillow
basalts occur in the 3.8 Ga Isua greenstone belt in
SW Greenland, but this has been disputed by
Nutman & Friend (2007). Late Archaean mafic–
ultramafic complexes in the North China craton
have also been interpreted as ophiolites (Kusky
et al. 2001; Kusky 2004), but have also been dis-
puted (Zhao et al. 2007). Paired high-P–low-T
and high-T–low-P tectonothermal environments
(Miyashiro 1961, 1972, 1973b), requiring plate sub-
duction, have been recognized as far back as the
Neoarchaean (Brown 2006, 2009).

Inferred arc-related assemblages (magmatic arc,
intra-arc basins and back-arc basins), indicative of
subduction and convergent plate interaction occur
within greenstone sequences in many Archaean
cratons including Yilgarn, Pilbara, Superior, North
China, Slave, and southern Africa. The lithological
association in these greenstones, including calc-
alkaline volcanic rocks, and locally boninite, sho-
shonite and high-Mg andesite, along with the associ-
ated geochemical signatures, are almost identical to
those found in rocks of modern convergent plate
margin arcs (Condie & Harrison 1976; Hallberg
et al. 1976; de Wit & Ashwal 1997; Bai & Dai
1998; Polat & Kerrich 1999, 2004; Cousens 2000;
Percival & Helmstaedt 2004; Smithies et al. 2004,
2005; Kerrich & Polat 2006; Polat et al. 2009).

Styles of Archaean and Proterozoic mineraliz-
ation resemble Phanerozoic deposits related to sub-
duction environments (Sawkins 1990; Kerrich et al.
2005), including a Palaeoarchaean porphyry Cu
deposit (Barley 1992) and Archaean and Palaeopro-
terozoic volcanogenic massive sulphide Cu–Zn
deposits (Barley 1992; Allen et al. 1996; Syme
et al. 1999; Wyman et al. 1999a, b).

Condie & Kröner (2008) listed several dis-
tinctive petrotectonic assemblages such as accre-
tionary prisms as well as arc–back-arc–forearc
associations that argue for the existence of
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accretionary orogens since the early Archaean. For
instance, the 3.2 Ga Fig Tree greywacke–shale
sequence of the Barberton greenstone belt in South
Africa has long been interpreted in terms of an
accretionary prism (e.g. Lowe & Byerly 2007, and
references therein), and there is geochronological,
structural and geophysical evidence for terrane
accretion in the late Archaean Abitibi greenstone
belt, Superior Province, Canada through convergent
plate interaction (Percival & Helmstaedt 2004, and
references therein). The recognition of ocean plate
stratigraphy in an orogen’s rock record is a key indi-
cator of both mid-ocean ridge spreading, required
for its generation, and subduction accretion, necess-
ary for its preservation. As such, it provides a key
indicator for plate tectonics in the rock record. The
proposal that an ocean plate stratigraphy is pre-
served in the Marble Bar greenstone belt in the
Pilbara craton, supported by trace element geo-
chemical data (Kato & Nakamura 2003), and in
the Isua greenstone belt in Greenland (Komiya
et al. 1999), suggests that ridge–trench movements
and therefore plate tectonics were in operation in the
Palaeoarchaean.

Deep seismic reflection profiling across a number
of late Archaean and Palaeoproterozoic belts has
identified dipping reflectors, in some cases extend-
ing into the mantle, which underlie arc assemblages
in the preserved accretionary orogen and are inter-
preted as a frozen subduction surface (Calvert et al.
1995; Cook et al. 1999; Cook&Erdmer 2005; Korja
& Heikkinen 2005; Percival et al. 2006; Lahtinen
et al. 2009).

Nutman et al. (2009) and Polat et al. (2009) have
presented data in support of convergent plate margin
processes within the Eoarchaean accretionary
orogens of Isua, Greenland and Anshan, China
(c. 3.8–3.6 Ga). They showed that the lithotectonic
assemblages in these regions and their geochemistry
are similar to those in Phanerozoic convergent plate
margins involving the subduction of young, hot
lithosphere. Harrison et al. (2005) inferred that sub-
duction may extend back to the earliest phases of
Earth evolution. They suggested that the isotopic
systematics of Jack Hills zircons, northern Yilgarn,
indicate formation in a continental environment
characterized by calc-alkaline magmatism and
crustal anatexis, features seen in the modern Earth
in convergent margin settings and implying that
subduction was established by 4.4 Ga ago.

Accretionary orogens and

continental growth

Continental growth involves the addition of mantle-
derived (juvenile) material to the crust. Arc magma-
tism within accretionary orogens is invoked as the

major source of this material but with additional
input derived frommantle plumes. Geochemical and
isotopic data have shown that the composition of
continental crust resembles subduction-related
igneous rocks and suggest that that there has been
progressive growth of continental crust through
time (Fig. 13; Taylor 1967; Taylor & McClennan
1985; McCulloch & Bennett 1994; Arculus 1999).
Thus, accretionary orogens, with their subduction-
related plate margins, are seen as the sites of net con-
tinental growth, rather than collisional orogens,
which are envisaged as sites of crustal reworking
(Dewey et al. 1986). Geochemical and isotopic
studies from Neoproterozoic to Phanerozoic accre-
tionary orogens in the Arabian–Nubian Shield, the
Canadian Cordillera and the Central Asian Orogenic
Belt indicate massive addition of juvenile crust
during the period of 900–100 Ma (Samson et al.

1989; Kovalenko et al. 1996; Jahn et al. 2000a;
Wu et al. 2000; Jahn 2004; Stern in press). How-
ever, recent whole-rock Nd and zircon Hf(–O)
isotope data imply that continental crust formation
was episodic,with significant pulses of juvenilemag-
matism and crustal growth in the Archaean and
Palaeoproterozoic, and with no significant addition
in the Phanerozoic (Fig. 13; Condie 1998, 2004;
Hawkesworth & Kemp 2006; Kemp et al. 2006).
Punctuated crustal growth may be related to mantle
plume activity (Stein & Hofmann 1993; Condie
1998), and creates a paradox of global proportions,
because plate tectonics can account for c. 90% of
Earth’s current heat loss with the remainder lost
through plume activity (Davies 1999), and thusmag-
matic arcs should be the major site of continental
growth. The isotopic age data outlined in Figure 13
are based on an analysis of the preserved rock
record and the assumption that it is representative
of the record of growth. In addition, improved
microanalytical techniques are suggesting that the
contribution of subduction processes to continental
growth may have been masked. Hf–O isotopic
analysis of zircons from the classic I-type granites
of eastern Australia show that these rocks were
formed by reworking of sedimentary materials
through mantle-derived magmas rather than by
melting of igneous rocks (Kemp et al. 2007) and
thus are critical components of continental growth.
Bulk rock isotopes will mask this component, and
this suggests that the component of such material
in continental growth may have been underesti-
mated in the past.

The volume of continental crust that is added
through time via juvenile magma addition appears
to be effectively compensated by the return of con-
tinental and island arc crust to the mantle. Clift et al.
(2009) and Scholl & von Huene (2009) have esti-
mated that the long-term global average rate of
arc magma additions is 2.8–3.0 km3 a21. Crustal
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addition rates vary within arc systems over time,
with the initial phase of arc construction (first
10 Ma) marked by rates that can be up to an order
of magnitude larger than the long-term rate for an
arc (Stern & Bloomer 1992; Stern 2004; Jicha
et al. 2008).

Recycling of continental crust at convergent
plate margins occurs by sediment subduction, sub-
duction erosion and detachment of deeply under-
thrust crust (Scholl et al. 1980; Scholl & von
Huene 2007, 2009; Clift et al. 2009). Sediment sub-
duction entails the movement of lower plate sedi-
ment beneath the arc along the subduction channel
(Fig. 9; Cloos & Shreve 1988a, b). Arc material may
also be transported into the trench and then carried
into the subduction channel. Material in the channel
is carried beneath the frontal arc and if not under-
plated is carried into the mantle on the downgoing
plate. Subduction erosion involves the transfer of
material from the upper plate into the subduction
channel and downward into the mantle. The loss
of continental and arc crust through sediment
subduction and subduction erosion has been esti-
mated by Scholl & von Huene (2009) to be around
2.5 km3 a21 of which some 60% is due to erosion.
Scholl & von Huene (2009) noted that continent

and island arc crust is also carried into the mantle,
where it can be detached, and is lost during final
ocean closure and collision. They estimated that
an additional 0.7 km3 a21 is recycled into the
mantle by this process. Thus, the total volume of
crustal material moved into the mantle at subduction
zones is around 3.2 km3 a21. This rate is sufficient
that if plate tectonics has been operating since
around 3.0 Ga (see Cawood et al. 2006) then a
volume equal to the total current volume of conti-
nental crust would have been recycled into the
mantle (Scholl & von Huene 2009).

Given uncertainties in these estimates for both
the addition of crust and its removal from conver-
gent plate margins, the net growth of continental
crust is effectively zero, with crustal growth through
magma addition effectively counterbalanced by
removal of material. Thus, plate tectonics in
general and convergent plate margins in particular,
as represented by accretionary orogens, are not the
sites of continental growth through time but rather
sites of crustal reworking. Any single arc system
can, however, show net addition or removal of
material, hence allowing its preservation or removal
from the rock record. For example, the South
American margin has been undergoing long-term

Fig. 13. Histogram of volume distribution of juvenile continental crust based on a compilation of U–Pb zircon ages
integrated with Nd isotopic ages and lithological associations. Also plotted are models of continental growth, with 100%
representing the present-day cumulative volume of crust (adapted from Condie 2005). Early models suggested slow
initial growth followed by more rapid recent growth and were based on the geographical distribution of Rb–Sr and
K–Ar isotope ages (Hurley & Rand 1969), which we now realize are probably reset by younger orogenic events. Some
models suggested rapid early growth of continental crust, slowed by recycling of continental material and therefore
resulting in a slower rate of growth or even a decrease in continental volume (Fyfe 1978; Reymer & Schubert 1984;
Armstrong 1991). Other models have taken an intermediate approach to growth and require a more linear growth
(unlabelled) or rapid growth during the late Archaean followed by steady-state growth driven by island arc magmatism
(Taylor & McClennan 1985).
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crustal loss such that the trench has migrated land-
ward with respect to the upper plate with time,
resulting in the magmatic arc younging away from
the trench and Jurassic arc magmas forming the
most seaward land outcrops in the current forearc
(Stern 1991; Franz et al. 2006; Glodny et al. 2006;
Kukowski & Oncken 2006). Areas of rapid accre-
tion of material, either through arc magmatism
during the early stages of arc development or through
the accretion of already assembled continental (e.g.
arc fragments of the North American Cordillera)
and thickened oceanic (e.g. Ontong–Java) crustal
fragments, are more likely to survive the effects of
crustal reworking and are more likely to be pre-
served in the geological record. This may therefore
lead to selective preservation of periods of continen-
tal growth in the rock record as exemplified in
Figure 13. In addition, the thickened crust of oceanic
islands and plateaux, once incorporated into conver-
gent plate margins (such as Wrangellia, Sorachi,
Sanbagawa and some Archaean greenstones), are
selectively preserved even during periods of
subduction erosion.

This is a contribution to the International Lithosphere
Program, Task Force 1 (ERAS) and is Publication 499 of
the Mainz Geocycles Cluster. We appreciate discussions
with our ERAS colleagues during field workshops in
Taiwan and Japan. R. M. Clowes, G. S. Fuis, B. M. Jahn,
E. C. Leitch, G. S. Lister, S. Maruyama and Y. X. Wang
have generously shared their many insights with us.
B. Murphy and P. Leat are thanked for their reviews of
themanuscript. This paper is dedicated to AkihoMiyashiro
(1919–2008), pioneer of petrology and tectonics, father of
paired metamorphic belts in accretionary orogens, and
strong advocate of an island arc setting for ophiolites.
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