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Abstract We present the solution to the Phillips–Kato restricted extension problem
about description and parametrization of the domains of all maximal accretive and
sectorial quasi-self-adjoint extensions ˜S(S ⊂ ˜S ⊂ S∗) of a closed, densely defined
nonnegative operator S in some Hilbert space. This description and parametrization
are presented in terms of some sort of an analogy of von Neumann’s formulas for quasi-
self-adjoint extensions. We use the approach proposed by Arlinskiı̆ and Tsekanovskiı̆
(Integr Equ Oper Theory 51:319–356, 2005) and our new formulas match the corre-
sponding ones in the case of nonnegative self-adjoint extensions of S. An application
to operators corresponding to finite number δ′-interactions on the real line is given as
well as to the parametrization of all resolvents of maximal accretive extensions.
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1 Introduction

Let S be a closed densely defined symmetric operator acting in the Hilbert space H.
An operator ˜S is called a quasi-self-adjoint extension of S if

S ⊂ ˜S ⊂ S∗.

Suppose S is nonnegative, i.e., (S f, f ) ≥ 0 for all f ∈ Dom (S). We are inter-
ested in a solution of the restricted Phillips–Kato extension problem about descrip-
tion and parametrization of the domains of all quasi-self-adjoint maximal accretive
(m-accretive) and maximal sectorial (m-sectorial) with vertex at zero [35] extensions
˜S of S. This problem is a special case of the general Phillips problem [45,46] on
parametrization of all m-accretive extensions for the given densely defined accre-
tive operator. It was established by Phillips that any closed densely defined accre-
tive operator admits an m-accretive extension. In order to obtain a description of all
m-accretive extension Phillips proposed to use the approach connected with geome-
try of spaces with indefinite inner product. His approach has been applied in [28,29]
for m-accretive boundary value problems generated by positive definite ordinary dif-
ferential expression, and in [44] for an abstract positive definite symmetric operator
with finite defect numbers. The fractional–linear transformation reduces the Phil-
lips problem to the dual problem of a parametrization of all contractive extensions
for a given non-densely defined contraction. Such parametrization has been obtained
in [21].

The problem of existence and description of all quasi-self-adjoint m-accretive exten-
sions of a nonnegative symmetric operator via fractional–linear transformation has
been solved in [14] and via abstract boundary conditions in [4,25,26,36,43]. We
refer on this matter to the survey [18] where one can find information about vari-
ous approaches to the extension problem of nonnegative symmetric operators. In this
paper we give an intrinsic description and parametrization ( in terms of some analogy
of von Neumann’s formulas for quasi-self-adjoint extensions) of the domains of all
m-accretive and m-sectorial quasi-self-adjoint extensions of nonnegative S. For this
purpose we develop and apply the method recently proposed in [15–17] for the char-
acterization of nonnegative self-adjoint extensions. Main results of this paper have
been announced in [10].

We keep the following notations: L(H1,H2) denotes the Banach space of all con-
tinuous linear operators acting from the Hilbert space H1 into the Hilbert space
H2,L(H) = L(H,H) and Dom (T ), Ran (T ),Ker T, ρ(T ) denote the domain,
the range, the null-space and the resolvent set of a linear operator T , respectively.
The Moore–Penrose inverse of a a self-adjoint operator B is defined by ̂B−1, i.e.,
by definition ̂B−1 = (B� Ran (B))−1 ⊕ 0� Ker B. Symbols C+(C−) and �+(�−)
denote the upper (lower) and right (left) open half-planes of the complex plane C,
respectively.
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2 Preliminaries

2.1 Symmetric, Self-Adjoint, and Dissipative Operators

Let H be a separable Hilbert space with the inner product (·, ·). A closed linear oper-
ator S in H is called symmetric if its domain Dom (S) is a dense linear manifold in
H and the quadratic form (S f, f ) takes real values for all f ∈ Dom (S). This means
that (S f, g) = ( f, Sg) for all f, g ∈ Dom (S). Equivalently S ⊂ S∗, where S∗ is the
adjoint operator to S. An operator A is called self-adjoint if A = A∗. It is well known
that ρ(A) ⊃ C+ ∪ C−.

An operator T in H is called dissipative (anti-dissipative) if

Im (T f, f ) ≥ 0 (Im (T f, f ) ≤ 0) for all f ∈ Dom (T ).

A dissipative (anti-dissipative) operator T is called maximal dissipative (maximal
anti-dissipative) if ρ(T ) ∩ C− �= ∅ (ρ(T ) ∩ C+ �= ∅).

2.2 Nonnegative Symmetric, Accretive, and Sectorial Operators

A symmetric operator S is called nonnegative (we will write S ≥ 0) if (S f, f ) ≥ 0
for all f ∈ Dom (S).

If B and C are two bounded self-adjoint operators acting on H, then the notation
B ≥ C means that the operator B − C ≥ 0. As is well known the square root B1/2 of
a nonnegative self-adjoint operator B has the following properties:

Ran (B1/2) =
{

g ∈ H : sup
f ∈Dom (B)

|( f, g)|2
(B f, f )

< ∞
}

,

(2.1)

‖̂B−1/2g‖2 = sup
f ∈H

|( f, g)|2
(B f, f )

, g ∈ Ran (B1/2),

lim
z↑0

(

(B − z I )−1g, g
)

=
{ ‖̂B−1/2g‖2, g ∈ Ran (B1/2),

+∞, g ∈ H \ Ran (B1/2),
(2.2)

cf. [41].
A linear operator T in H is called accretive if Re (T f, f ) ≥ 0 for all f ∈ Dom (T )

and maximal accretive (m-accretive) if it is accretive and has no accretive extensions
in H. The following statements are equivalent [46]:

(i) the operator T is m-accretive;
(ii) the operator T is accretive and ρ(T ) ∩�− �= ∅;

(iii) the operators T and T ∗ are accretive.

The resolvent set ρ(T ) of m-accretive operator contains the open left half-plane
�− and

||(T − z IH)
−1|| ≤ 1

|Re z|, Re z < 0.
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It is well known [35] that if T is m-accretive operator, then the one-parameter
semigroup

T (t) = exp(−tT ), t ≥ 0

is contractive. Conversely [35], if {T (t)}t≥0 is a strongly continuous one-parameter
contractive semigroup in a Hilbert space H, with T (0) = IH (C0-semigroup), then the
generator T of T (t):

T u := lim
t→+0

(IH − T (t))u

t
, u ∈ Dom (T ),

where the domain Dom (T ) is defined by the condition:

Dom (T ) =
{

u ∈ H : lim
t→+0

(IH − T (t))u

t
exists

}

,

is an m-accretive operator in H.
Let α ∈ (0, π/2) and denote by S(α) the following sector of the complex plane:

S(α) = { z ∈ C : | arg z| ≤ α } .
A linear operator T in a Hilbert space H is said to be sectorial with vertex at the origin
and semi-angle α, if its numerical range

W (T ) = { (T f, f ) : ‖ f ‖ = 1, f ∈ Dom (T ) }
is contained in the sector S(α), cf. [35]. This condition is equivalent to

|Im (T f, f )| ≤ tan α Re (T f, f ) for all f ∈ Dom (T ).

If T is m-accretive and sectorial, then T is called maximal sectorial. A maximal sec-
torial operator T is densely defined and its adjoint T ∗ is also a maximal sectorial
operator. In the sequel we will call such operators m-α-sectorial. Clearly, nonnegative
(self-adjoint) operator is m-0-sectorial. The resolvent set of m-α-sectorial operator T
contains the set C \ S(α) and

||(T − z IH)
−1|| ≤ 1

dist (z,S(α)), z ∈ C \ S(α).

It is well-known [35] that a C0-semigroup T (t) = exp(−tT ), t ≥ 0 has contractive
and holomorphic continuation into the sector S(π/2 − α) if and only if the generator
T is m-α-sectorial operator.

2.3 Classes CH(α)

Let α ∈ (0, π/2). A bounded operator T on a Hilbert space H is said to belong to the
class CH(α) [3] if

‖T sin α ± i cosα I‖ ≤ 1. (2.3)
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Clearly, T belongs to CH(α) if and only if T ∗ belongs to CH(α). Put

DT = (I − T ∗T )1/2, DT = Ran (DT ).

Condition (2.3) is equivalent to each of the following two:

|(TI f, f )| ≤ tan α

2
‖DT f ‖2 for all f ∈ H; (2.4)

or

the operator (I − T ∗)(I + T ) is m-α-sectorial. (2.5)

cf. [5]. Moreover, it follows from (2.3) that the operators belonging to CH(α) are con-
tractive. From (2.4) and (2.3) it is naturally to consider all self-adjoint contractions
and all contractions in H as operators of the classes CH(0) and CH(π/2), respectively.

Note that the linear fractional transformation T = (I − S)(I + S)−1 of an m-α-
sectorial operator S is an operator of the class CH(α). Let

˜CH =
⋃

{CH(α) : α ∈ [0, π/2)}.

Some properties of the operators in the class ˜CH were studied in [3,5]. In particular,
in [3] it was proved that T ∈ ˜CH implies that

Ran (DT n ) = Ran (DT ∗n ) = Ran (DTR ), n = 1, 2, . . . ,

where TR is the real part of T . Furthermore it was proved in [3] that the subspace DT

reduces the operator T , that the operator T � KerDT is self-adjoint and unitary, and
that T � DT is a completely non-unitary contraction of the class C00, i.e.,

lim
n→∞ T n f = lim

n→∞ T ∗n f = 0 for all f ∈ DT ,

cf. [48].

2.4 Linear Relations

As is well known a linear relation (l.r.) in a Hilbert space H is a subspace in H2 :=
H ⊕ H equipped by the standard inner product

(�u, �v)H2 = (u1, v1)+ (u2, v2)

for �u = 〈u1, u2〉 , �v = 〈v1, v2〉 ∈ H2. In particular the graph

Gr(T ) = {〈h, T h〉 , h ∈ Dom (T )}
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of a linear operator T in H provides an example of l.r.. If T is a l.r., then by definition

Dom (T) = {x ∈ H : 〈x, x ′〉 ∈ T for some x ′ ∈ H
}

,

Ran (T) = {x ′ ∈ H : 〈x, x ′〉 ∈ T for some x ∈ H
}

,

Ker T = {x ∈ Dom (T) : 〈x, 0〉 ∈ T} ,
λT = {〈x, λx ′〉 ,

〈

x, x ′〉 ∈ T
}

,

T−1 = {〈x ′, x
〉 : 〈x, x ′〉 ∈ T

}

.

For x ∈ Dom (T) we set

Tx = {x ′ ∈ H : x ′ ∈ Ran (T)
}

.

The subspace

T(0) = {x ′ ∈ H : 〈0, x ′〉 ∈ T
}

is called the multi-valued part of T. A subspace T � 〈0,T(0)〉 is the graph of a linear
operator T,Dom (T ) = Dom (T), which is called the operator part of T. Clearly,
Tx = T x ⊕ T(0). The adjoint T∗ to T is given by

T∗ = H2 � {〈−x ′, x
〉

,
〈

x, x ′〉 ∈ T
}

.

The numerical range of a l.r. T is the set

W (T) = {(Tx, x), x ∈ Dom (T), ||x || = 1} .

As has been shown in [47] if W (T) �= C, then T(0) ⊆ H � Dom (T).
A l.r. T is called

• Hermitian if W (T) ⊆ R ⇐⇒ T ⊆ T∗;
• selfadjoint if T = T∗;
• nonnegative if W (T) ⊆ R+;
• accretive if W (T) ⊆ �+;
• m-accretive if T is accretive and has no accretive extensions in H2;
• α-sectorial if W (T) ⊆ S(α);
• m-α-sectorial if T is α-sectorial and m-accretive.

It is well-known that is there is one-to-one correspondence between all m-accretive
l.r. U in a Hilbert space H and all contractions U in H given by fractional–linear
transformations

U = {〈(I + U)h, (I − U)h〉 , h ∈ H} = (I − U)(I + U)−1,

U(x + x ′) = x − x ′,
〈

x, x ′〉 ∈ U ⇐⇒ U = (I − U)(I + U)−1.

Moreover [3]

U ∈ CH(α) ⇐⇒ U = (I − U)(I + U)−1 is m-α-sectorial l.r..
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In particular, a l.r. U is self-adjoint and nonnegative if and only if the operator U is
self-adjoint contraction.

2.5 Sectorial Sesquilinear Forms

Recall some definitions and results from [35]. Let τ [·, ·] be a sesquilinear form in a
Hilbert space H defined on a linear manifold Dom (τ ). The form τ is called symmetric
if τ [u, v] = τ [v, u] for all u, v ∈ Dom (τ ) and nonnegative if τ [u] := τ [u, u] ≥ 0
for all u ∈ Dom (τ ).

The form τ is called sectorial with the vertex at the point γ ∈ C and a semi-angle
α ∈ [0, π/2) if its numerical range

W (τ ) = {τ [u], u ∈ Dom (τ ), ||u|| = 1}

is contained in the sector {z ∈ C : | arg(z − γ )| ≤ α}, i.e.,

∣

∣

∣Im (τ [u] − γ ||u||2)
∣

∣

∣ ≤ tan α Re (τ [u] − γ ||u||2), u ∈ Dom (τ ).

Thus, τ is sectorial with vertex at γ if and only if the form τ [u, v]−γ (u, v) has vertex
at the origin.

Let τ be a sesquilinear form. The form τ ∗[u, v] := τ [v, u] is called the adjoint
to τ , and the forms

τR[u, v] : = 1

2

(

τ [u, v] + τ ∗[u, v]) ,

τI[u, v] : = 1

2i

(

τ [u, v] − τ ∗[u, v]) , u, v ∈ Dom (τ )

are called the real and the imaginary parts of τ , respectively.
A sequence {un} is called τ -converging to the vector u ∈ H if

lim
n→∞ un = u and lim

n,m→∞ τ [un − um] = 0.

The form τ is called closed if for every sequence {un} τ -converging to a vector u
it follows that u ∈ Dom (τ ) and limn→∞ τ [u − un] = 0. A sectorial form τ with
vertex at the origin is closed if and only if the linear manifold Dom (τ ) is a Hilbert
space with the inner product (u, v)τ = τR[u, v] + (u, v) [35]. The form τ is called
closable if it has a closed extension; in this case the closure of τ is the smallest closed
extension of τ . If τ is a closed, densely defined sectorial form, then according to First
Representation Theorem [35,37] there exists a unique m-sectorial operator T in H,
associated with τ , i.e.,

(T u, v) = τ [u, v] for all u ∈ Dom (T ) and for all v ∈ Dom (τ ).
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In this case the operator T ∗ is associated with the adjoint form

τ ∗[u, v] = τ [v, u], u, v ∈ Dom (τ ).

The nonnegative self-adjoint operator, denoted by TR , associated with the real part

τR[u, v] = 1

2

(

τ [u, v] + τ ∗[u, v]) , u, v ∈ Dom (τ )

of the form τ is called the “real part” of T . According to Second Representation
Theorem [35,37] the identities hold:

Dom (τ ) = Dom

(

T
1
2

R

)

, τR[u, v] =
(

T
1
2

R u, T
1
2

R v

)

.

If the form τ is α-sectorial, then it has the representation

τ [u, v] = ((I + i M)T
1
2

R u, T
1
2

R v), u, v ∈ Dom (τ ),

where M is a bounded self-adjoint operator in the subspace Ran (TR) and ||M || ≤
tan α. For T one obtains

Dom (T )={u ∈ Dom (τ ) : (I + i M)T 1/2
R u ∈ Dom (τ )}, T = T 1/2

R (I + i M)T 1/2
R u.

If T is a sectorial operator, then the form

τ [u, v] = (T u, v), u, v ∈ Dom (T )

is closable. The domain of its closure T [·, ·] we denote by D[T ].
If τ is closed but non-densely defined sectorial form in the Hilbert space H, then

with τ is associated the m-sectorial linear relation T [47]. Moreover,

(Tx, y)H = (T x, y)H, x, y ∈ Dom (T),

Dom (τ ) = D[T] = D[T ],

where T is the operator part of T. Let T1 and T2 be two nonnegative self-adjoint linear
relations. We write T1 ≤ T2 if

D[T1] ⊇ D[T2] and T1[u] ≤ T2[u], u ∈ D[T2].

The next theorem will be used in Sect. 3.

Theorem 2.1 Let a sesquilinear form τ [u, v] be nonnegative and closed in the Hilbert
space H with the inner product (·, ·)H. Let T be the associated nonnegative self-
adjoint linear relation in H and let T be its fractional–linear transformation T =
(I − T)(I + T)−1.
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A m-accretive l.r. U satisfies the condition

Ran (U) ⊂ Dom (τ ), Re (Ux, x)H ≥ τ [Ux], x ∈ Dom (U) (2.6)

if and only if the fractional–linear transformation U of U has the representation

U = I − 1

2
(I + T )1/2(I + Y)(I + T )1/2, (2.7)

where Y is a contraction in the subspace Dom (τ ) = Ran (I + T ).

Proof Let x = (I + U)h, x ′ = (I − U)h, where h ∈ H. Then
〈

x, x ′〉 ∈ U and

(x ′, x)H = (Ux, x)H = ((I − U)h, (I + U)h)H
= −‖(I − U)h‖2

H + 2 ((I − U)h, h)H
= −||x ′||2H + 2 ((I − U)h, h)H .

Similarly for y = (I + T )h and y′ = (I − T )h we have
〈

y, y′〉 ∈ T and

(y′, y)H = (Ty, y)H = −||y||2H + 2
∥

∥

∥(I + T )1/2h
∥

∥

∥

2

H .

Passing to the closure, we obtain

Dom (τ ) = Ran
(

(I + T )1/2
)

,

τ [v] = −||v||2H + 2
∥

∥

∥(I + T )−1/2v

∥

∥

∥

2

H , v ∈ Dom (τ ),

where (I + T )−1 is Moore–Penrose inverse for (I + T ).
Hence

Ran (U) ⊂ Dom (τ ) ⇐⇒ Ran (I − U) ⊂ Ran
(

(I + T )1/2
)

and

(Ux, x)H − τ [Ux] = 2 ((I − U)h, h)H − 2
∥

∥

∥(I + T )−1/2(I − U)h
∥

∥

∥

2

H (2.8)

for x = (I + U)h,Ux = x ′ = (I − U)h, h ∈ H.
Suppose that Re (Ux, x)H ≥ τ [Ux] for all x ∈ Dom (U). Then

Re ((I − U)h, h)H ≥
∥

∥

∥(I + T )−1/2(I − U)h
∥

∥

∥

2

H for all h ∈ H. (2.9)

Let UR = (U + U∗)/2 be the real part of U . Then (2.9) yields the equality

(I + T )−1/2(I − U) = V(I − UR)
1/2,
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where V : Ran (I − UR) → Ran (I + T ) is a contraction. It follows that

I − U = (I + T )1/2V(I − UR)
1/2

and for all h ∈ H
∥

∥

∥(I − UR)
1/2h

∥

∥

∥

2

H = Re ((I − U)h, h)H = Re
(

(I + T )1/2h,V(I − UR)
1/2h

)

H
≤
∥

∥

∥(I + T )1/2h
∥

∥

∥H

∥

∥

∥(I − UR)
1/2h

∥

∥

∥H .

Therefore
∥

∥(I − UR)
1/2h

∥

∥H ≤ ∥

∥(I + T )1/2h
∥

∥H and, as a consequence, for all
h, g ∈H

∣

∣((I − U)h, g)H
∣

∣ =
∣

∣

∣

(

V(I − UR)
1/2h, (I + T )1/2g

)

H

∣

∣

∣

≤
∥

∥

∥(I − UR)
1/2h

∥

∥

∥H

∥

∥

∥(I + T )1/2g
∥

∥

∥H
≤
∥

∥

∥(I + T )1/2h
∥

∥

∥H

∥

∥

∥(I + T )1/2g
∥

∥

∥H .

It follows that

I − U = (I + T )1/2Z(I + T )1/2, (2.10)

where Z is a contraction in the subspace H0 := Ran (I + T ). This equality produces
for all h ∈ H

Re ((I − U)h, h)H = Re
(

Z(I + T )1/2h, (I + T )1/2h
)

H ,

and by (2.9)

Re
(

Z(I + T )1/2h, (I + T )1/2h
)

H ≥
∥

∥

∥Z(I + T )1/2h
∥

∥

∥

2

H .

Therefore

Re (Zϕ, ϕ)H ≥ ||Zϕ||2H for all ϕ ∈ H0. (2.11)

Let Y = 2Z − I . Then Z = (I + Y)/2. Because

2Re ((I + Y)ϕ, ϕ)H − ‖(I + Y)ϕ‖2
H = ||ϕ||2H − ||Yϕ||2H, ϕ ∈ H0,

(2.11) yields that Y is a contraction in H0 and

U = I − 1

2
(I + T )1/2(I + Y)(I + T )1/2.
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Conversely, suppose that an operator U takes the form (2.7) with some contraction Y
in H0. Let us prove that U is a contraction in H. Because of

2Re ((I − U)h, h)H − ‖(I − U)h‖2
H = ||h||2H − ||Uh||2H, h ∈ H

it is sufficient to proof that 2Re ((I − U)h, h)H − ‖(I − U)h‖2
H ≥ 0 for all h ∈ H.

Denote ϕ = (I + T )1/2h. By (2.7) we have

2Re ((I − U)h, h)H − ‖(I − U)h‖2
H = Re ((I + Y)ϕ, ϕ)H

−1

4

∥

∥

∥(I + T )1/2(I + Y)ϕ
∥

∥

∥

2

H = Re ((I + Y)ϕ, f )H

−1

4
‖(I + Y)ϕ‖2

H − 1

4
(T (I + Y)ϕ, (I + Y) f )H

= Re ((I + Y)ϕ, f )H − 1

2
‖(I + Y)ϕ‖2

H

+1

4
‖(I + Y)ϕ‖2

H − 1

4
(T (I + Y)ϕ, (I + Y) f )H

= ||ϕ||2H − ‖Yϕ‖2
H + 1

4

∥

∥

∥(I − T )1/2(I + Y)ϕ
∥

∥

∥

2

H ≥ 0.

Thus the operator U is contraction in H. Moreover, Ran (I −U) ⊂ Ran
(

(I +T )1/2
) =

Dom (τ ) and

(I + T )−1/2(I − U) = 1

2
(I + Y)(I + T )1/2.

Denoting again ϕ = (I + T )1/2h, where h ∈ H we obtain

Re ((I − U)h, h)H ≥
∥

∥

∥(I + T )−1/2(I − U)h
∥

∥

∥

2

H

= 1

2
Re ((I + Y)ϕ, ϕ)H − 1

4
‖(I + Y)ϕ‖2

H

= 1

4

(

||ϕ||2H − ‖Yϕ‖2
H
)

≥ 0.

Thus, holds (2.9). Let U = {〈(I + U)h, (I − U)h〉 , h ∈ H}. Since U is a contraction,
the linear relation U is m-accretive, Ran (U) ⊂ Dom (τ ), and

Re (Ux, x)H ≥ τ [Ux], x ∈ Dom (U)

holds. ��
Corollary 2.2 A m-accretive l.r. U in H satisfies the condition

Ran (U) ⊂ Dom (τ ),

tan α (Re (Ux, x)H − τ [Ux]) ≥ |Im (Ux, x)H| , x ∈ Dom (U)
(2.12)
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if and only if the fractional–linear transformation U of U has the representation (2.7)
with Y satisfying the condition

‖Y sin α ± i cosα I‖H ≤ 1, (2.13)

i.e., Y ∈ CH0(α), where H0 = Dom (τ ).

Proof Condition (2.13) is equivalent to the following

tan α
(

||ϕ||2H − ||Yϕ||2H
)

≥ 2|Im (Yϕ, ϕ)H|, ϕ ∈ Dom (Y). (2.14)

From (2.8) and (2.7) it follows that (2.12) is equivalent to

tan α

(

Re ((I + Y)ϕ, ϕ)H − 1

2
‖(I + Y)ϕ‖2

H
)

≥ ∣∣Im ((I + Y)ϕ, ϕ)H
∣

∣

for all ϕ ∈ H0 = Dom (Y). The right hand side of the above inequality is exactly

1

2

(

||ϕ||2H − ||Yϕ||2H
)

.

Thus U satisfies (2.12) iff (2.13) holds. ��
Remark 2.3 In [17] for nonnegative self-adjoint l.r. U and T it is proved that the
following statements

(i) Ran (U) ⊂ Dom (T) and (Uu, u) ≥ T[Uu], u ∈ Dom (U),
(ii) U ≥ T−1,

(iii) U−1 ≤ T

are equivalent.
If U is a l.r. and T is a nonnegative l.r., then one can easily prove that the statements

(i) Ran (U) ⊂ Dom (T) and Re (Uu, u) ≥ T[Uu],
(ii) Re (U−1x, x) ≥ T[x], x ∈ Ran (U)

are equivalent.

2.6 Quasi-Self-Adjoint Extensions of Symmetric Operator

Let H be a separable complex Hilbert space and let S be a symmetric operator in H.
Let

Nz = H � (S − z̄ I ) = Ker (S∗ − z I ), Im z �= 0

be the defect subspace of S. The numbers n± = dim N±i are called the defect numbers
of S. By well-known J. von Neumann’s formula the direct decomposition

Dom (S∗) = Dom (S)+̇Nz+̇Nz̄, Im z �= 0
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holds. We consider the domain Dom (S∗) of the adjoint S∗ to S as the Hilbert H+
space with the inner product

(u, v)+ = (u, v)+ (S∗u, S∗v). (2.15)

Then holds (+)-orthogonal decomposition:

H+ = Dom (S)⊕ Ni ⊕ N−i .

Extensions T of S possessing property

S ⊂ T ⊂ S∗

are called quasi-self-adjoint (proper, intermediate) extensions of S.
Let

L := Ni ⊕ N−i .

Then

S∗2 f = − f, (S∗ f, S∗g)+ = ( f, g)+, f, g ∈ L. (2.16)

The next statement is well-known.

Theorem 2.4 The formulas

Dom (T ) = Dom (S)⊕ K, T = S∗� Dom (T ) (2.17)

give a one-to-one correspondence between subspaces K ⊂ Ni ⊕ N−i and quasi-self-
adjoint extensions T of S. The adjoint operator T ∗ is given by

Dom (T ∗) = Dom (S)⊕ S∗K⊥, T ∗ = S∗� Dom (T ∗), (2.18)

where K⊥ := L � K is (+)-orthogonal complement to K in L.
In particular, a maximal dissipative (anti-dissipative) extension T of S is quasi-

self-adjoint and

Dom (T ) = Dom (S)⊕ (I − M)Ni (Dom (T ) = Dom (S)⊕ (I − M)N−i ),

Dom (T ∗) = Dom (S)⊕ (I − M∗)N−i
(

Dom (T ∗) = Dom (S)⊕ (I − M∗)Ni
)

,

where M ∈ L(Ni ,N−i ) (L(N−i ,Ni )) is a contraction in H (H+) and M∗ ∈
L(N−i ,Ni ) (L(Ni ,N−i )) denotes its (+)-adjoint.
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According to J. von Neumann the operator S has self-adjoint extensions in H if
and only if defect numbers of S are equal. In this case the domain of any self-adjoint
extension A of S takes the form

Dom (A) = Dom (S)⊕ (I − V )Ni ,

where V is an isometric operator in H (H+) from Ni onto N−i . Fix a self-adjoint
extension A of S and put

NA = (I − V )Ni , MA = (I + V )Ni ,

where V is the corresponding isometry from Ni onto N−i . Then the following relations
hold:

MA = ANA, (A + i I )NA = Ni , (A − i I )NA = N−i ,

NA = { f ∈ Dom (A) : S∗ A f = − f
}

,

MA = { f ∈ Dom (S∗) : AS∗ f = − f
}

, (2.19)

Dom (A) = Dom (S)⊕ NA,

H+ = Dom (S)⊕ NA ⊕ MA.

A quasi-self-adjoint extension T is called relatively prime (or disjoint) with A if

Dom (T ) ∩ Dom (A) = Dom (S)

and transversal to A if

Dom (T )+ Dom (A) = Dom (S∗).

The part of following Proposition related to self-adjoint extensions is proved in [15].

Proposition 2.5 The formulas

Dom (T ) = Dom (S)⊕ (A + C)Dom (C),

T ( f0 + (A + C)h) = A( f0 + Ch)− h, f0 ∈ Dom (S), h ∈ Dom (C) (2.20)

give a one-to-one correspondence between quasi-self-adjoint extensions T of S
relatively prime with A and closed operators C in NA.

The extension T is transversal to A if and only if Dom (C) = NA.
The extension T is self-adjoint if and only if C is self-adjoint operator in NA.
The extension T is maximal dissipative if and only if C is maximal dissipative

operator in NA.

Proof The closed operator C : NA → NA can be represented as

C(I − V ) fi = (I − V )U fi , fi ∈ Dom (U ) ⊂ Ni ,
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where U is a closed operator. Then

(A + C)(I − V ) fi = i(I + V ) fi + (I − V )U fi

= (i I + U ) fi + V (i I − U ) fi , fi ∈ Ni .

It follows that T is maximal dissipative if and only if the operator M := (U − i I )(i I +
U )−1 is well defined on whole Ni and is a contraction or equivalently, the operator
U is maximal dissipative in Ni . The last is equivalent to U is the maximal dissipative
operator in NA ⊂ H+. ��
Proposition 2.6 Let U be a (+)-closed and densely defined operator in NA. Then the
operator T given by

Dom (T ) = Dom (S)⊕ (I + AU )Dom (U ),

T ( f0 + (I + AU )h) = A( f0 + h)− Uh, f0 ∈ Dom (S), h ∈ Dom (U )
(2.21)

is a quasi-self-adjoint extension of S. Its adjoint T ∗ is of the form

Dom (T ∗) = Dom (S)⊕ (I + AU∗)Dom (U∗),
T ∗ ( f0 + (I + AU∗)e

) = A( f0 + e)− U∗e, (2.22)

f0 ∈ Dom (S), e ∈ Dom (U∗),

where U∗ is (+)-adjoint of U in NA. In this case the extension T is relatively prime
with A if and only if Ker U = {0} and is transversal to A if and only if the number 0
is the regular number of U, i.e. Ker U = {0} and Ran (U ) = NA.

Proof Let us find the orthogonal complement L � (I + AU )Dom (U ). Let ϕ ∈ L.
Then

ϕ = ϕ1 + ϕ2, ϕ1 ∈ NA, ϕ2 ∈ MA = S∗NA.

Then for all f ∈ Dom (U ), using (2.16), we have

((I + AU ) f, ϕ)+ = ( f, ϕ1)+ + (AU f, ϕ2)+ = ( f, ϕ1)+ − (U f, S∗ϕ2)+.

Put h = S∗ϕ2 then h ∈ NA and ϕ2 = −S∗h = −Ah. Then

((I + AU ) f, ϕ)+ = 0 for all f ∈ Dom (U ) ⇐⇒ h ∈ Dom (U∗) and ϕ1 = U∗h.

Thus

L � (I + AU )Dom (U ) = (U∗ − A)Dom (U∗),
S∗ (L � (I + AU )Dom (U )) = (I + AU∗)Dom (U∗).

Now relations (2.22) follow from (2.4). ��
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2.7 Nonnegative Self-Adjoint Extensions of a Nonnegative Symmetric Operator

Let S be a nonnegative symmetric operator. Then the defect numbers of S are equal
and therefore S admits self-adjoint extensions.

Recall the definition of the Friedrichs extension of S [35]. Let S[·, ·] the closure
of the sesquilinear form (S f, g), f, g ∈ Dom (S). According to First Representation
Theorem there exists a nonnegative self-adjoint operator SF associated with S[·, ·], i.e.

(SF u, v) = S[u, v], v ∈ D[S], u ∈ Dom (SF ).

The operator SF is a self-adjoint extension of S and is called the Friedrichs extension
of S. Note that

Dom (SF ) = D[S] ∩ Dom (S∗)

and according to Second Representation Theorem the equalities

D[S] = D[SF ] = Dom (S1/2
F ), S[ϕ,ψ] = (S1/2

F ϕ, S1/2
F ψ), ϕ,ψ ∈ Dom (S1/2

F )

hold.
Kreı̆n [37] established that any nonnegative, densely defined symmetric operator S

admits, so called, minimal nonnegative self-adjoint extension. This extension is called
the Kreı̆n–von Neumann extension SK . The operator SK can be defined as follows
[2,20]: SK = ((S−1)F

)−1
,where S−1 denotes in this context the inverse nonnegative

linear relation to the graph S. It was proved in [2] that

D[SK ] = Dom (S1/2
K ) =

{

u ∈ H : sup
f ∈Dom (S)

|(u, S f )|2
(S f, f )

< ∞
}

,

sup
f ∈Dom (S)

|(u, S f )|2
(S f, f )

= ||S1/2
K u||2 = SK [u], u ∈ D[SK ].

(2.23)

Kreı̆n proved that ˜S is a nonnegative self-adjoint extension of S if and only if

SK ≤ ˜S ≤ SF

in sense of the associated closed quadratic forms, i.e.,

D[SF ] ⊆ D[˜S] ⊆ D[SK ],
SF [v] = ˜S[v], v ∈ D[SF ], ˜S[u] ≥ SK [u], u ∈ D[˜S].

Nonnegative self-adjoint extension ˜S of S is called extremal [4] if

inf
{

(˜S(u − x), u − x), x ∈ Dom (S)
} = 0 for all u ∈ Dom (˜S).
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The Friedrichs and Kreı̆n–von Neumann extensions are extremal. The next theorem
is established in [7].

Theorem 2.7 If˜S is a nonnegative self-adjoint extension of a nonnegative symmetric
operator S, then the form

(˜Su, v)− SK [u, v], u, v ∈ Dom (˜S)

is nonnegative and closable in the Hilbert space D[SK ]. Moreover, the formulas

D[˜S] = Dom (η),

˜S[u, v] = SK [u, v] + η[u, v], u, v ∈ D[˜S] (2.24)

give a one-to-one correspondence between all closed forms ˜S[·, ·] associated with
nonnegative self-adjoint extensions ˜S of S and all nonnegative sesquilinear forms
η[·, ·] closed in the Hilbert space D[SK ] and such that η[ϕ] = 0 for all ϕ ∈ D[S]. In
addition, the closed form associated with extremal extensions are closed restrictions
of the form SK [·, ·] on the linear manifolds M such that

D[S] ⊆ M ⊆ D[SK ].

Notice that investigations of all extremal extensions in more detail and their applica-
tions are presented in the paper [9].

Now we describe an approach proposed in [15–17] for parametrization of nonneg-
ative self-adjoint extensions. Let NF be (+)-orthogonal complement of Dom (S) in
Dom (SF ), i.e.,

Dom (SF ) = Dom (S)⊕ NF .

Put MF = SFNF . Then (see (2.19))

H+ = Dom (S)⊕ NF ⊕ MF = Dom (SF )⊕ SFNF ,

where decomposition is (+)-orthogonal decomposition. In addition

S∗SF e = −e, e ∈ NF .

Let

N0 = Ran (S1/2
F ) ∩ NF . (2.25)

Then S has a unique nonnegative self-adjoint extension if and only if N0 = {0}
[15–17,37]. Suppose that N0 �= {0} and define the sesquilinear form on N0

w0[e, g] = (S1/2
F e, S1/2

F g)+ (̂S−1/2
F e,̂S−1/2

F g) = (̂S−1/2
F e,̂S−1/2

F g)+, (2.26)
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where ̂S−1/2
F denotes the Moore–Penrose inverse to S1/2

F . This form is closed in H+
and w0[e] ≥ 2||e||2 for all e ∈ N0. Let W0 be a (+)-nonnegative self-adjoint linear
relation in NF associated with the closed form w0. In view of w0[e] > 0 for all
e �= 0 ∈ N0, the inverse l.r. W−1

0 is densely defined in NF and therefore is the graph
of a (+)-self-adjoint nonnegative operator. We denote this operator by W −1

0 . Clearly,
Ker W −1

0 = W(0) = NF � N0 (the (+)-orthogonal complement).

Theorem 2.8 The formulas

Dom (˜S) = Dom (S)⊕ (I + SF˜U )Dom (˜U ),
˜S(ϕ + h + SF˜Uh) = SF (ϕ + h)− ˜Uh, ϕ ∈ Dom (S), h ∈ Dom (˜U ),

Dom (˜S1/2) = Dom (S1/2
F )+̇SF Ran (˜U 1/2), (2.27)

||˜S1/2( f + SF h)||2 = ||S1/2
F f −̂S−1/2

F h||2 + ˜U−1[h] − w0[h],
f ∈ Dom (S1/2

F ), h ∈ Ran (˜U 1/2)

give a one-to-one correspondence between all non-negative self-adjoint extensions ˜S
of S and their square roots and all (+)-self-adjoint operators ˜U in NF satisfying the
condition

0 ≤ ˜U ≤ W −1
0 . (2.28)

An extension ˜S coincides with the Kreı̆n–von Neumann extensions SK iff ˜U = W −1
0 .

The extension˜S given by (2.27) is relatively prime with SF if and only if the operator
˜U is invertible and transversal to SF iff ˜U−1 is bounded.

Observe, that the condition (2.28) is equivalent to one of the following [12,14]:

Ran (˜U ) ⊂ N0 and (˜U f, f )+ ≥ w0[˜U f ] for all f ∈ Dom (˜U ),

Ran (˜U ) ⊂ N0 and
(

(˜U P
˜U )

−1e, e
)

+ ≥ w0[e] for all e ∈ Ran (˜U ),

where P
˜U is the (+)-orthogonal projection in NF onto Ran (˜U ).

From Theorem 2.8 it follows that

Dom (S1/2
K ) = Dom (S1/2

F )⊕ SFN0,

||S1/2
K ( f + SF e)||2 = ||S1/2

F f −̂S−1/2
F e||2, f ∈ Dom (S1/2

F ), e ∈ N0. (2.29)

In addition from (2.29) it follows the relation

inf
{

||S1/2
K (g − ψ)||2, ψ ∈ Dom (S)

}

= 0 for all g ∈ Dom (S1/2
K ). (2.30)
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2.8 Quasi-Self-Adjoint m-Accretive and m-Sectorial Extensions of Nonnegative
Symmetric Operators via Fractional–Linear Transformations

Let A be a nondensely defined Hermitian contraction in the Hilbert space H with the
domain Dom (A) =: H0 and let N := H�Dom (A). Let P0 and PN be the orthogonal
projections in H onto H0 and N , respectively. Then the operator A0 = P0 A is con-
tractive and self-adjoint in the subspace H0. Let DA0 = (I − A2

0)
1/2 be the defect

operator determined by A0. The operator A21 = PN A is also contractive. Moreover,
it follows from A∗ A ≤ I that A∗

21 A21 ≤ D2
A0

. Therefore, the identity

K0 DA0 f = PN A f, f ∈ Dom (A),

defines a contractive operator K0 from DA0 := Ran (DA0) into N , cf. [27,30]. This
gives the following decomposition for the Hermitian contraction A

A = A0 + K0 DA0 =
(

A0
K0 DA0

)

. (2.31)

Let the Hermitian contraction A in H be defined on the subspace H0 = Dom (A). A
linear operator T is called quasi-self-adjoint contractive extension of A (qsc-extension
of A) [11,12,14] if

Dom (T ) = H, T ⊃ A, T ∗ ⊃ A, ||T || ≤ 1.

It was established by Kreı̆n [37] that the set of all contractive extensions of A forms
an operator interval [Aμ, AM ], where the endpoints posses the properties

inf
{

((I + Aμ)(h − φ), h − φ), φ ∈ H0
} = 0,

inf {((I − AM )(h − φ), h − φ), φ ∈ H0} = 0

for all h ∈ H. These equalities are equivalent to [37]

Ran ((I + Aμ)
1/2) ∩ N = {0}, Ran ((I − AM )

1/2) ∩ N = {0}. (2.32)

Moreover, it is proved in [37] that if S is a densely defined closed symmetric and
nonnegative operator in H and if A = (I − S)(I + S)−1, then

SF = (I − Aμ)(I + Aμ)
−1,

and the operator

SM = (I − AM )(I + AM )
−1

is the minimal nonnegative self-adjoint extension of S. Thus SM coincides with the
Kreı̆n–von-Neumann extension SK of S.
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In [11,12] it is established that the set of all qsc-extensions of A forms the operator
ball

B

(

Aμ + AM

2
,

AM − Aμ
2

)

with the center (Aμ + AM )/2 and equal left and right radii Rl = Rr = (AM −
Aμ)1/2/

√
2, i.e., there is a one-to-one correspondence between all qsc-extensions T

of A and all contractions X in N0 := Ran (AM − Aμ) given by the relation

T = Aμ + AM

2
+
(

AM − Aμ
2

)1/2

X

(

AM − Aμ
2

)1/2

. (2.33)

As is shown in [13] the qsc-extension T belongs to the class CH(α) if and only if the
contraction X in (2.33) belong to the class CN0(α).

Decompose A according to H = H0 ⊕ N as in (2.31). Let T be a qsc-extension
of A and decompose T = (Ti j ) also with respect to H = H0 ⊕ N . Then clearly
T11 = A0, T ∗

12 = T21 = K0 DA0 . The next result gives a parametrization of all qsc-
extensions of A and some of its subclasses by means of block formulas, cf. [19,22,49],
and [11,14].

Theorem 2.9 Let A be a Hermitian contraction in H = H0 ⊕N with Dom (A) = H0
and decompose A as in (2.31). Then:

(i) the formula

T =
(

A0 DA0 K ∗
0

K0 DA0 −K0 A0 K ∗
0 + DK ∗

0
X DK ∗

0

)

:
H0
⊕
N

→
H0
⊕
N

(2.34)

gives a one-to-one correspondence between all qsc-extensions T of the
Hermitian contraction A = A0 + K0 DA0 and all contractions X in the sub-
space DK ∗

0
:= Ran (DK ∗

0
) ⊂ N ;

(ii) T in (2.34) belongs to the class CH(α) if and only if X belongs to the class
CDK∗

0
(α), α ∈]0, π/2[;

(iii) T is a self-adjoint extension of A if and only if X in (2.34) is a self-adjoint
contraction in DK ∗

0
.

From (2.34) it follows that

Aμ =
(

A0 DA0 K ∗
0

K0 DA0 −K0 A0 K ∗
0 − D2

K ∗
0

)

,

AM =
(

A0 DA0 K ∗
0

K0 DA0 −K0 A0 K ∗
0 + D2

K ∗
0

)

(2.35)
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with X = −I � DK ∗
0

and X = I � DK ∗
0
, respectively. From the formulas (2.35) it is

seen that

Aμ + AM

2
=
(

A0 DA0 K ∗
0

K0 DA0 −K0 A0 K ∗
0

)

,
AM − Aμ

2
=
(

0 0

0 D2
K ∗

0

)

.

It is easy to see from (2.34) and (2.35) that if T is a qsc-extension of A such that
TR = (T + T ∗)/2 = Aμ (AM ), then in fact T = Aμ (AM ). Namely, X = X R + i X I

satisfies
{

0 ≤ X∗ X = X2
R + i(X R X I − X I X R)+ X2

I ≤ I,
0 ≤ X X∗ = X2

R − i(X R X I − X I X R)+ X2
I ≤ I,

(2.36)

so that 0 ≤ X2
R + X2

I ≤ I and here clearly X2
R = I implies X I = 0.

Remark 2.10 Block formulas for describing all contractive extensions of a dual pair,
in particular qsc-extensions of a Hermitian contraction, appear in [19,22,49].

3 Parametrization of all Quasi-Self-Adjoint m-Accretive Extensions

In this section we develop a method described in Sect. 2.7 (see Theorem 2.8) to the
problem of m-accretive quasi-self-adjoint extensions. We need the followings results
established in [6].

Theorem 3.1 Let S be a nonnegative symmetric operator and let ˜S be a m-accretive
extension of S. The following conditions are equivalent:

(i) ˜S ⊂ S∗;
(ii) Dom (˜S) ⊂ D[SK ] and

Re (˜S f, f ) ≥ SK [ f ] = ||S1/2
K f ||2 for all f ∈ Dom (˜S);

(iii)

|(Sg, f )|2 ≤ (Sg, g)Re (˜S f, f ) for all f ∈ Dom (˜S), g ∈ Dom (S).

The extension˜S is quasi-self-adjoint and m-α-sectorial if and only if the sesquilinear
form

w[ f, h] = (˜S f, h)− SK [ f, h], f, h ∈ Dom (˜S) (3.1)

is α-sectorial.

Proof If˜S is an accretive extension of S then for all g ∈ Dom (S), for all f ∈ Dom (˜S),
and for all t ∈ R it follows

0 ≤ Re (˜S(tg + f ), tg + f )= t2(Sg, g)+ t
(

Re (Sg, f )+ Re (˜S f, g)
) + Re (˜S f, f ).



698 Y. Arlinskiı̆ et al.

If in addition ˜S ⊂ S∗, then Dom (˜S) ⊂ Dom (S∗) and (Sg, f ) = (g,˜S f ). Hence

t2(Sg, g)+ 2tRe (Sg, f )+ Re (˜S f, f ) ≥ 0

for all t ∈ R. Now we get

|Re (Sg, f )|2 ≤ (Sg, g)Re (˜S f, f )

and therefore

|(Sg, f )|2 ≤ (Sg, g)Re (˜S f, f )

for all g ∈ Dom (S) and all f ∈ Dom (˜S), i.e., (i) ⇒ (iii). The equivalence (iii) ⇐⇒
(ii) follows from (2.23).

Let us show that (iii) implies (i). Let A = (I−S)(I+S)−1 and ˜A = (I−˜S)(I+˜S)−1.
Then A is Hermitian contraction defined on Dom (A) = (I + S)Dom (S) and ˜A is
contractive extension of A defined on H. Then the inequality in (iii) can be rewritten
as follows

|((I − A)ϕ, (I + ˜A)h)|2 ≤ ((I − A)ϕ, (I + A)ϕ)Re ((I − ˜A)h, (I + ˜A)h)

for all ϕ ∈ Dom (A) and all h ∈ H. Using the relation Aϕ = ˜Aϕ and simplifying we
obtain

|(D2
˜A
ϕ − 2i˜AIϕ, h)|2 ≤ ||D

˜Aϕ||2||D
˜Ah||2 for all ϕ ∈ Dom (A) and all h ∈ H.

From (2.2) we obtain that

D2
˜A
ϕ − 2i˜AIϕ ∈ Ran (D

˜A) for all ϕ ∈ Dom (A)

and

||̂D−1
˜A
(D2

˜A
ϕ − 2i˜AIϕ)||2 ≤ ||D

˜Aϕ||2, ϕ ∈ Dom (A).

Since D2
˜A
ϕ ∈ Ran (D

˜A), we get ˜AIϕ ∈ Ran (˜A) and

||D
˜Aϕ − 2îD−1

˜A
˜AIϕ||2 ≤ ||D

˜Aϕ||2, ϕ ∈ Dom (A).

Hence

||D
˜Aϕ||2 + 4||̂D−1

˜A
˜AIϕ||2 ≤ ||D

˜Aϕ||2.

It follows that ˜AIϕ = 0 for all ϕ ∈ Dom (A). This means that ˜A∗ ⊃ A, i.e., ˜A is a
qsc-extension of A. Therefore, ˜S is a quasi-self-adjoint extension of S.



Accretive and Sectorial Extensions 699

Suppose that the sesquilinear form ω given by (3.1) is α-sectorial. Then
Re (˜S f, f ) ≥ SK [ f ] for all f ∈ Dom (˜S). Therefore ˜S is m-accretive and quasi-
self-adjoint extension of S. On the other hand for all f ∈ Dom (˜S) we have

tan α Re (˜S f, f )± Im (˜S f, f ) = tan α Reω[ f ] ± Imω[ f ] + SK [ f ] ≥ 0.

Hence ˜S is m-α-sectorial extension of S.
Conversely, let ˜S is quasi-self-adjoint and m-α-sectorial extension of S. Hence

Dom (˜S) ⊂ D[SK ]. Since for each ϕ ∈ Dom (S) ⊂ Dom (SK ) and all f ∈ D[SK ]
one has SK [ f, ϕ] = ( f, Sϕ) and SK [ϕ, f ] = (Sϕ, f ), we get

ω[ f − ϕ] = ω[ f ]

for all f ∈ Dom (˜S) and all ϕ ∈ Dom (S). Because

inf
ϕ∈Dom (S)

SK [ f − ϕ] = 0

for all f ∈ D[SK ], for given f ∈ D[SK ] and for every ε > 0 one can find ϕ0 ∈
Dom (S) such that

SK [ f − ϕ0] < ε.

It follows that

tan α Re ω[ f ] ± Imω[ f ] = tan αRe ω[ f − ϕ0] ± Imω[ f − ϕ0]
= tan αRe (˜S( f − ϕ0), f − ϕ0)

±Im (˜S( f − ϕ0), f − ϕ0)− SK [ f − ϕ0] > −ε.

Since ε is an arbitrary positive number, the form ω is α-sectorial. ��
Remark 3.2 In addition to the statements in Theorem 2.7 from results obtained in [7]
follows that the relations

D[˜S] = Dom (η), ˜S[u, v] = SK [u, v] + η[u, v]

establish a one-to-one correspondence between all closed forms associated with quasi-
self-adjoint m-α-sectorial extensions of nonnegative S and all sesquilinear α-sectorial
forms η closed in the Hilbert space D[SK ] and such that η[ϕ] = 0 for all ϕ ∈ D[S].
Corollary 3.3 [50] If SF = SK and if ˜S is m-accretive quasi-self-adjoint extension
of S, then ˜S = SF .

Proof Since SF coincides with SK , from Theorem 3.1 it follows that Dom (˜S) ⊂
D[SF ]. But Dom (˜S) ⊂ Dom (S∗) and Dom (S∗) ∩ D[SF ] = Dom (SF ). Hence,
˜S = SF . ��
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Next theorem gives a parametrization of all quasi-self-adjoint m-accretive and
m-sectorial extensions of S.

Theorem 3.4 The formulas

Dom (˜S) = Dom (S)⊕ (I + SF˜U )Dom (˜U ),
˜S(ϕ + h + SF˜Uh) = SF (ϕ + h)− ˜Uh, ϕ ∈ Dom (S), h ∈ Dom (˜U ) (3.2)

give a one-to-one correspondence between all m-accretive quasi-self-adjoint exten-
sions ˜S of S and all (+)-m-accretive operators ˜U in NF satisfying the condition

Ran (˜U ) ⊂ N0 and Re (˜Ue, e)+ ≥ w0[˜Ue] for all e ∈ Dom (˜U ). (3.3)

The extension ˜S in (3.2) is m-α-sectorial if and only if

˜U in NF is (+)− m-accretive, Ran (˜U ) ⊂ N0,

the sesquilinear form τ
˜U [e, h] := (˜Ue, h)+ − w0[˜Ue, ˜Uh], e, h ∈ Dom (˜U ),

is α-sectorial. (3.4)

If this is the case, then associated with ˜S closed form ˜S[·, ·] is given by

D[˜S] = D[S]+̇SFD[˜U−1],
˜S[ϕ1 + SF h1, ϕ2 + SF h2] =

(

S1/2
F ϕ1 −̂S−1/2

F h1, S1/2
F ϕ2 −̂S−1/2

F h2

)

+˜U−1[h1, h2] − w0[h1, h2],
ϕ1, ϕ2 ∈ D[S], h1, h2 ∈ D[˜U−1]. (3.5)

The extension˜S in (3.2) is relatively prime with SF iff the operator ˜U is invertible,
˜S is transversal to SF iff ˜U−1 is bounded.

Proof Suppose that˜S is accretive quasi-self-adjoint extension of S. Then Dom (˜S) ∩
MF = {0}. In fact if e ∈ Dom (˜S)∩MF , then e = SF g, g ∈ NF and˜Se = S∗SF g =
−g,Re (˜Se, e) = −(g, SF g) ≤ 0. Since SF is nonnegative self-adjoint operator, it
follows that e = SF g = 0.

This implies that the domain Dom (˜S) can be represented as follows

Dom (˜S) = Dom (S)⊕ (I + SF˜U )Dom (˜U ),

where ˜U is a linear operator in NF with some domain Dom (˜U ).
Let us show that ˜U is a (+)-accretive operator in NF . Consider an arbitrary vec-

tor f ∈ Dom (˜S) of the form f = h + SF˜Uh, h ∈ Dom (˜U ). Then ˜S f = S∗ f =
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SF h − ˜Uh and

(˜S f, f ) = (SF h − ˜Uh, h + SF˜Uh)

= (SF h, h)− (˜Uh, SF˜Uh)+ (SF h, SF˜Uh)− (˜Uh, h)

= (SF h, h)− (˜Uh, SF˜Uh)+ (SF h, SF˜Uh)+ (h, ˜Uh)

−2Re (˜Uh, h)

= (SF h, h)− (˜Uh, SF˜Uh)+ (h, ˜Uh)+ − 2Re (˜Uh, h).

Since ˜S is an accretive quasi-self-adjoint extension of S, by Theorem 3.1 every
vector f ∈ Dom (˜S) belongs to Dom (S1/2

K ) and the inequality Re (˜S f, f ) ≥
||S1/2

K f ||2 holds. From (2.29) it follows that Ran (˜U ) ⊂ N0 and for f = h +
SF˜Uh, h ∈ Dom (˜U ) holds

||S1/2
F h −̂S−1/2

F
˜Uh||2 ≤ (SF h, h)− (˜Uh, SF˜Uh)+ Re (h, ˜Uh)+ − 2Re (˜Uh, h).

Since

||S1/2
F h −̂S−1/2

F
˜Uh||2 = (SF h, h)+ ||S−1/2

F
˜Uh||2 − 2Re (˜Uh, h),

we get

||̂S−1/2
F

˜Uh||2 + ||S1/2
F
˜Uh||2 ≤ Re (h, ˜Uh)+.

By (2.26) we get

w0[˜Uh] ≤ Re (˜Uh, h)+ for all h ∈ Dom (˜U ). (3.6)

This inequality yields that the operator ˜U is (+)-accretive.
Suppose now that˜S is m-accretive operator. Then its adjoint˜S∗ is also m-accretive

and is a quasi-self-adjoint extension of S. In this case the operator ˜U is (+)-closed
and has dense domain. Indeed, if the vector e ∈ NF is (+)-orthogonal to Dom (˜U ),
i.e., (e, h)+ = 0 for all h ∈ Dom (˜U ) then by definition of the inner product (·, ·)+
we have

(SF e, SF h)+ (e, h) = 0, h ∈ Dom (˜U ).

Using (+)-orthogonality SFNF to Dom (S)+̇NF , one obtains that for every
ϕ ∈ Dom (S)

(−e, ϕ + h + SF˜Uh) = (SF e, Sϕ + SF h − ˜Uh).

The latter means that the vector SF e belongs to Dom (˜S∗). It is shown above that
e = 0. Thus, if ˜S is m-accretive quasi-self-adjoint extension of S, then the corre-
sponding operator ˜U is (+)-closed, densely defined in NF , (+)-accretive and satisfies
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condition (3.6). Moreover, for the adjoint ˜S∗ holds the decomposition

Dom (˜S∗) = Dom (S)⊕ (I + SF˜U
∗)Dom (˜U∗),

where ˜U∗ is the (+)-adjoint to ˜U in NF . Since ˜S∗ is accretive, the operator ˜U∗
is (+)-accretive (and also satisfies the condition (3.6) with replacement ˜U by ˜U∗).
Because ˜U and ˜U∗ are both (+)-accretive operators, the operator ˜U (as well as ˜U∗)
is (+)-m-accretive in the subspace NF and satisfies (3.6).

Conversely, suppose that ˜U in NF satisfies (3.3). Let the operator ˜S be given by
(3.2). Then˜S is closed quasi-self-adjoint extension of S and one can verify that for the
vector f = h + SF˜Uh the condition Re (˜S f, f ) ≥ ||SK f ||2 holds. Therefore, from
(2.23) it follows that

|(Sϕ, f )|2 ≤ (Sϕ, ϕ)Re (˜S f, f )

for all ϕ ∈ Dom (S). The last inequality yields |(Sϕ, f )| ≤ (Sϕ, ϕ) + Re (˜S f, f ).
Hence,

Re (˜S(ϕ + f ), ϕ + f ) = (Sϕ, ϕ)+ Re (˜S f, f )+ 2Re (˜Sϕ, f )

≥ (Sϕ, ϕ)+ Re (˜S f, f )− (Sϕ, ϕ)− Re (˜S f, f ) = 0.

Thus, the operator˜S is accretive. Consider the pair
〈

S,˜S
〉

. Because (Sϕ, g) = (ϕ,˜Sg)
for all ϕ ∈ Dom (S) and all g ∈ Dom (˜S) and ˜S is closed accretive operator, there
exists [48] a m-accretive operator ˜S′ such that ˜S′ ⊃ ˜S and ˜S

′∗ ⊃ S. Therefore,

S ⊂ ˜S ⊂ ˜S′ ⊂ S∗.

This means that ˜S′ is quasi-self-adjoint m-accretive extension of S. Since ˜S′ extends
˜S, the corresponding operator ˜U ′ in the representation

Dom (˜S′) = Dom (S)⊕ (I + SF˜U
′)Dom (˜U ′),

is (+)-accretive extension in NF of the operator ˜U . Because ˜U is m-accretive, we get
the equality ˜U ′ = ˜U and therefore ˜S′ = ˜S, i.e. ˜S already is m-accretive extension
of S.

Since null-spaces of a m-accretive operator and its adjoint coincide, the condition
(3.6) is equivalent to the condition (3.3).

Now suppose that quasi-self-adjoint and m-accretive extension ˜S of S is given by
(3.2). Let ϕ ∈ Dom (S), h ∈ Dom (˜U ), and let g = ϕ + h + SF˜Uh. Then taking into
account that (˜Uh, ϕ)+ = 0, and therefore (˜Uh, ϕ) = −(SF˜Uh, SFϕ), we get

(˜Sg, g) = (SF (ϕ + h)− ˜Uh, ϕ + h + SF˜Uh) = (SF (ϕ + h), ϕ + h)

+(SF (ϕ + h), SF˜Uh)− (˜Uh, ϕ + h)− (˜Uh, SF˜Uh)

= (SF (ϕ + h), ϕ + h)+ 2Re (SF˜Uh, SFϕ)+ (˜Uh, SF˜Uh)− 2Re (˜Uh, h)

+(h, ˜Uh)+.
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From (2.29) it follows

||S1/2
K g||2 = ||S1/2

F (ϕ + h)−̂S−1/2
F

˜Uh||2
= (SF (ϕ + h), ϕ + h)+ ||̂S−1/2

F
˜Uh||2 − 2Re (ϕ + h, ˜Uh)

= (SF (ϕ+h), ϕ+ h)+ ||̂S−1/2
F

˜Uh||2 − 2Re (h, ˜Uh)+ 2Re (SFϕ, SF˜Uh).

Since ||S1/2
F
˜Uh||2 + ||̂S−1/2

F
˜Uh||2 = w0[˜Uh], we obtain

(˜Sg, g)− ||S1/2
K g||2 = (h, ˜Uh)+ − w0[˜Uh]. (3.7)

According Theorem 3.1 the operator˜S is α-sectorial if and only if the quadratic form

(˜Sg, g)− ||S1/2
K g||2, g ∈ Dom (˜S)

is α-sectorial. Now from (3.7) it follows that the operator ˜S is α-sectorial if and only
if the form

τ
˜U [e, h] = (e, ˜Uh)+ − w0[˜Ue, ˜Uh], e, h ∈ Dom (˜U )

is α-sectorial.
Observe that from conditions (3.4) it follows that the operator ˜U and the inverse lin-

ear relation ˜U−1 are α-sectorial. Hence, the form
(

˜U−1e, h
)

+ has the closure ˜U−1[·, ·]
in NF . Moreover, D[˜U−1] ⊆ N0 = Dom (w0) and the sesquilinear form

ν
˜U [e, h] := ˜U−1[e, h] − w0[e, h], e, h ∈ D[˜U−1]

is α-sectorial. Relations (3.5) can be proved in similar way as in [17]. We note that
the form ν

˜U is closed in the Hilbert space D[SK ]. ��
Proposition 3.5 Suppose that the operator W −1

0 is (+)-bounded in NF . Then

1) the formula

˜U = 1

2
W −1

0 + 1

2
W −1/2

0
˜Z W −1/2

0 (3.8)

gives one-to-one correspondence between (+)-m-accretive operators ˜U in NF ,
satisfying the condition (3.3) and (+)-contractions ˜Z in N0,

2) the formula (3.8) gives one-to-one correspondence between operators ˜U in NF ,
satisfying the condition (3.4) and operators ˜Z in N0, such that ||˜Z sin α ±
i cosα I ||+ ≤ 1 ( ⇐⇒ ˜Z ∈ CN0

(α)).

Proof Boundness of W −1
0 is equivalent to that the formw0 defined by (2.26) is bounded

from below in NF , i.e. w0[e] = ||̂S−1/2
F e||2+ ≥ c||e||2+ for all e ∈ N0 with c > 0.
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Because the condition (3.3) is equivalent to (3.6), we get for all h ∈ Dom (˜U ):

||˜Uh||+ ||h||+ ≥ Re (˜Uh, h)+ ≥ w0[˜Uh] ≥ c||˜Uh||2+.

It follows that ˜U is bounded in NF (with Ran (˜U ) ⊂ N0).
Let W0 be the operator part of the relation W0. Then W0 is (+)-nonnegative

self-adjoint operator in N0,Ker W −1
0 = NF �N0, and W0 =

(

W −1
0 � N0

)−1
. Further

we have for every h ∈ NF :

w0[˜Uh] − Re (˜Uh, h)+ = ||W 1/2
0
˜Uh||2+ − Re (˜Uh, h)+

= ||W 1/2
0
˜Uh − 1

2
W −1/2

0 h||2+ − 1

4
||W −1/2

0 h||2+.

Therefore, (3.6) is equivalent to

||W 1/2
0
˜Uh − 1

2
W −1/2

0 h||2+ ≤ 1

4
||W −1/2

0 h||2+, h ∈ NF . (3.9)

This conditions is equivalent to the equality

W 1/2
0
˜U − 1

2
W −1/2

0 = 1

2
˜Z W −1/2

0 .

with some (+)-contraction ˜Z in N0. The last is equivalent to

˜U = 1

2
W −1

0 + 1

2
W −1/2

0
˜Z W −1/2

0 .

One can verify that the condition

tan α
(

Re (˜Uh, h)+ − w0[˜Uh]) ≥ ∣∣Im (˜Uh, h)+
∣

∣

for all h ∈ Dom (˜U ) is equivalent to the following

∥

∥

∥

∥

W 1/2
0
˜Uh − 1 ± i cot α

2
W −1/2

0 h

∥

∥

∥

∥

2

+
≤ 1

4 sin2 α

∥

∥

∥W −1/2
0 h

∥

∥

∥

2

+. (3.10)

Because ˜U satisfies (3.6), it has the representation (3.8) with (+)-contraction˜Z . Hence
(3.10) is equivalent

∥

∥(˜Z sin α ± i cosα I )e
∥

∥

2
+ ≤ ||e||2+, e ∈ N0.

��
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Observe that if the defect numbers of S are finite, then the subspace NF is finite-
dimensional and becausew0[e] ≥ 2||e||2 for all e ∈ N0, the formw0 is (+)-positively
definite in N0. Therefore, the operator W −1

0 is (+)-bounded.
In general case of unbounded operator W −1

0 a description of all ˜U satisfying (3.3)
or (3.4) can be given by means of fractional–linear transformation of ˜U and W0.

Let W0 be the linear fractional transformation of W0, i.e.

W0(e + e′) = e − e′, where
〈

e, e′〉 ∈ W0.

Then W0 is a (+)-contraction in NF and moreover

W0 =
(

W −1
0 − I

) (

W −1
0 + I

)−1
. (3.11)

Now from Theorems 3.4, 2.1 and Corollary 2.2 we obtain the following result

Theorem 3.6 There is the one-to-one correspondence between quasi-self-adjoint
m-accretive extensions ˜S of a nonnegative symmetric operator S and (+)-contrac-
tions ˜Y in N0. This correspondence is given by the formulas

Dom (˜S) = Dom (S)⊕ (I + SF˜U
)

Dom (˜U ),

˜U = (I − ˜U)(I + ˜U)−1, (3.12)

˜U = I − 1

2
(I + W0)

1/2(I + ˜Y)(I + W0)
1/2,

where W0 is given by (3.11). The extension ˜S is quasi-self-adjoint and m-α-sectorial
if and only if the operator ˜Y satisfies the condition

||˜Y sin α ± i cosα I ||+ ≤ 1( ⇐⇒ Y ∈ CN0
(α)).

3.1 Extremal m-Accretive Quasi-Self-Adjoint Extensions

Definition 3.7 [4,8] Quasi-self-adjoint m-accretive extension˜S of a nonnegative sym-
metric operator S is called extremal if

inf
{

Re
(

˜S( f − ψ), f − ψ
)

, ψ ∈ Dom (S)
} = 0

for all f ∈ Dom (˜S).

By means of fractional linear transformation (I − ˜S)(I + ˜S)−1 the notion and
characterization of quasi-self-adjoint extremal extensions were given in [14].

Proposition 3.8 The following conditions are equivalent:

(i) the quasi-self-adjoint m-accretive extension ˜S of a nonnegative symmetric
operator S is extremal;
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(ii) the maximal (+)-accretive operator ˜U in NF in the representation (3.2) satisfies
the condition

Ran (˜U ) ⊂ N0 and Re (˜Uh, h)+ = w0[˜Uh], h ∈ Dom (˜U ); (3.13)

(iii) the maximal (+)-accretive operator ˜U in NF in the representation (3.2) satisfies
the condition

Ran (˜U ) ⊂ N0 and Re
(

(˜U P
˜U )

−1e, e
)

+ = w0[e] for all e ∈ Ran (˜U ),

(3.14)

where P
˜U is the (+)-orthogonal projection in NF onto Ran (˜U );

(iv) the operator ˜Y in (3.12) is (+)-isometric in N0.

If the operator W −1
0 is (+)-bounded then ˜S given by (3.2) is extremal if and only if

the operator ˜U is of the form (3.8) with (+)-isometric operator ˜Z in N0.

Proof Let˜S be a quasi-self-adjoint m-accretive extensions of S and let g ∈ Dom (˜S).
Then by (3.2) the vector g has the representation g = ϕ + h + SF˜Uh, where h ∈
Dom (˜U ). We will use the relation (3.7):

(˜Sg, g)− ||S1/2
K g||2 = (h, ˜Uh)+ − w0[˜Uh].

Let ψ ∈ Dom (S). Then

(

˜S(g − ψ), g − ψ
) = ||S1/2

K (g − ψ)||2 + (h, ˜Uh)+ − w0[˜Uh].

Now it follows from (2.30)

inf
{

Re
(

˜S(g − ψ), g − ψ
)

, ψ ∈ Dom (S)
} = (h, ˜Uh)+ − w0[˜Uh].

Therefore, the extension ˜S is extremal if and only if (h, ˜Uh)+ = w0[˜Uh] for every
h ∈ Dom (˜U ). Passing to the inverse in the last equality we get the equivalent condition
(3.14).

In terms of the fractional linear transformations of ˜U and W0(W
−1
0 ) condition

(3.13) takes the form (see (2.8))

Re
(

(I − ˜U)e, e
)

+ −
∥

∥

∥(I + W0)
−1/2(I − ˜U)e

∥

∥

∥

2

+ = 0, e ∈ NF .

Using the (3.12) we obtain

1

2
Re
(

(I + ˜Y)ϕ, ϕ
)

+ = 1

4

∥

∥(I + ˜Y)ϕ
∥

∥

2
+ ,

where ϕ = (I + W0)
1/2e which is the same as ‖˜Yϕ‖+ = ‖ϕ‖+ for all ϕ ∈ N0.
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If the operator W −1
0 is (+)-bounded then according (3.8) the condition (3.13) takes

the form

1

2
Re
(

(I + ˜Z)W −1/2
0 e,W −1/2

0 e
)

+ = 1

4

∥

∥

∥(I + ˜Z)W −1/2
0 e

∥

∥

∥

2

+ , e ∈ NF ,

which is the same as ‖˜Zϕ‖+ = ‖ϕ‖+ for all ϕ ∈ N0. ��

4 Symmetric Operator with Finite Defect Numbers

Consider an operator S with finite defect numbers.

Proposition 4.1 Suppose that nonnegative symmetric operator S has defect numbers
〈m,m〉 , m ∈ N,N0 = NF and let {e1, e2, . . . , em} be a linear basis of the subspace
NF . Denote by G and W following m × m matrices:

G = ||(ek, e j )+||mk, j=1, W0 = ||w0[ek, e j ]||mk, j=1.

There is a one-to-one correspondence between

1) all m-accretive quasi-self-adjoint extensions of S and all m × m matrices U =
‖ukj‖m

k, j=1, satisfying the condition

UG + GU∗ ≥ 2UW0U∗; (4.1)

2) all m-α-sectorial quasi-self-adjoint extensions of S and all m × m matrices
U = ‖ukj‖m

k, j=1, satisfying the condition

{

tan α · (UG + GU∗)+ i(UG − GU∗) ≥ 2 tan α · UW0U∗,
tan α · (UG + GU∗)− i(UG − GU∗) ≥ 2 tan α · UW0U∗. (4.2)

This correspondence is given by the formulas

Dom (˜S)=
⎧

⎨

⎩

f +
m
∑

j=1

λ j e j +
m
∑

k, j=1

ukjλk SF e j , f ∈Dom (S), (λ1, . . . , λm)∈C
m

⎫

⎬

⎭

,

˜S

⎛

⎝ f +
m
∑

j=1

λ j e j +
m
∑

k, j=1

ukjλk SF e j

⎞

⎠ = SF f +
m
∑

j=1

λ j SF e j −
m
∑

k, j=1

ukjλke j .

If U = GW−1
0 , then the corresponding extension is the Kreı̆n–von Neumann

extension SK .
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Proof Let h =
m
∑

j=1
λ j e j ∈ NF and let U be the operator in NF given by

U

⎛

⎝

m
∑

j=1

λ j e j

⎞

⎠ :=
m
∑

k, j=1

ukjλke j .

Then

(Uh, h)+ =
m
∑

k, j=1

λ j λ̄k

(

m
∑

l=1

u jl(el , ek)+

)

. (4.3)

Observe that the matrix W = ‖wk j‖m
k, j=1 of the operator W0 associated with the

form w0[·, ·] in the basis {e j }m
j=1 coincides with the matrix W0G−1. Indeed since

w0[h] = (W0h, h)+ =
m
∑

k, j=1

λ j λ̄k

(

m
∑

l=1

w jl(el , ek)+

)

and

w0[h] =
m
∑

k, j=1

λ j λ̄kw0[e j , ek], (4.4)

we get W0 = WG.
Denote gkj = (ek, e j )+ and w0

k j = w0[ek, e j ]. Due to (4.3), (4.4) the condition

Re (Uh, h)+ ≥ ω0[Uh], h ∈ Dom (U )

can be rewritten as follows

m
∑

k, j=1

λ j λ̄k

⎛

⎝

m
∑

s=1

(u js gsk + g js ūks)− 2
m
∑

s,l=1

u jsw
0
sl ūkl

⎞

⎠ ≥ 0.

This yields

UG + GU∗ − 2UW0U∗ ≥ 0.

Extension ˜S is m-α-sectorial iff the sesquilinear form

q[h, e] := (Uh, e)+ − w0[Uh,Ue] (4.5)

is α-sectorial, i.e.

|Im q[h]| ≤ tan α · Re q[h], h ∈ Dom (U ). (4.6)
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From (4.3) and (4.4) we get

Re q[h] = 1

2

m
∑

k, j=1

λ jλk

⎛

⎝

m
∑

s=1

(u js gsk + g js ūks)− 2
m
∑

s,l=1

u jsw
0
sl ūkl

⎞

⎠ ,

Im q[h] = 1

2i

m
∑

k, j=1

λ j λ̄k

(

m
∑

s=1

(u js gsk − g js ūks)

)

.

Then (4.6) becomes:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2i

m
∑

k, j=1
λ j λ̄k

(

m
∑

s=1
(u js gsk − g js ūks)

)

≤ tan α · 1
2

m
∑

k, j=1
λ jλk

(

m
∑

s=1
(u js gsk + g js ūks)− 2

m
∑

s,l=1
u jsw

0
sl ūkl

)

,

1
2i

m
∑

k, j=1
λ j λ̄k

(

m
∑

s=1
(g js ūks − u js gsk)

)

≤ tan α · 1
2

m
∑

k, j=1
λ j λ̄k

(

m
∑

s=1
(u js gsk + g js ūks)− 2

m
∑

s,l=1
u jsw

0
sl ūkl

)

.

The latter gives

{

1
2i (UG − GU∗) ≤ tan α · ( 1

2 (UG + GU∗)− UW0U∗),
1
2i (GU∗ − UG) ≤ tan α · ( 1

2 (UG + GU∗)− UW0U∗).

In the equivalent form

{

tan α · (UG + GU∗)+ i(UG − GU∗) ≥ 2 tan α · UW0U∗,
tan α · (UG + GU∗)− i(UG − GU∗) ≥ 2 tan α · UW0U∗.

The fact that SK is determined by U = GW−1
0 is established in [17]. ��

5 m-Accretive Hamiltonians Corresponding to Finite Numbers of δ′
Interactions

As application of our results we consider one example from solvable models of quan-
tum mechanics [1]. Let y1, y2, . . . , ym ∈ R. Consider linear operator:

{

Dom (S) = { f ∈ W 2
2 (R) : f ′(y j ) = 0, j = 1, . . . ,m},

S = − d2

dx2 ,
(5.1)

where W 2
2 (R) is the Sobolev space. Operator S densely defined symmetric and non-

negative operator in L2(R) with defect numbers 〈m,m〉. It can be proved that the
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Friedrichs extension SF of S is given by:

Dom (SF ) = W 2
2 (R), SF = − d2

dx2 .

Using the Fourier transform:

f̂ (p) = (F f ) (p) = lim
R→∞

1√
2π

R
∫

−R

f (x)e−i px dx

we obtain in the p-representation the nonnegative symmetric operator A and its
Friedrichs extension AF :

Dom (A) = {h(p) ∈ L2(R, dp) :
∫

R

h(p)p exp(i py j )dp = 0, j = 1, . . . ,m},

(Ah)(p) = p2h(p), h(p) ∈ Dom (A),

Dom (AF ) = H2(R) := L2(R, (p4 + 1)dp),

(AF h)(p) = p2h(p), h(p) ∈ Dom (AF ).

Let e j (p) = p
exp(−i py j )

1+p4 , j = 1, . . . ,m, then

NF = span {e1(p), . . . , em(p)},
MF = span {p2e1(p), . . . , p2em(p)}.

The adjoint operator is given by

Dom (A∗) = Dom (A)+̇NF +̇MF = H2(R)+̇MF ,

A∗( f (p)+
m
∑

j=1

λ j p2e j (p)) = p2 f (p)−
m
∑

j=1

λ j e j (p),

f (p) ∈ H2(R), (λ1, . . . , λm) ∈ C
m .

Since

Dom (A1/2
F ) = H1(R) := L2(R, (p2 + 1)dp),

(A1/2
F f )(p) = |p| f (p), f (p) ∈ H1(R),

then

A−1/2
F e j (p) = p exp(−i py j )

|p|(1 + p4)
∈ H1(R), j = 1, . . . ,m.
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Clearly that AF �= AK and N0 = NF . It follows that NF = N0 = Ran (A1/2
F )∩ NF .

Hence, the Friedrichs and Kreı̆n extensions AF and AK are transversal. Providing
direct calculation we obtain:

gkj = (ek(p), e j (p))+ = π√
2

exp

(

−|yk − y j |√
2

)(

cos
|yk − y j |√

2
− sin

|yk − y j |√
2

)

,

ωk j = (A1/2
F ek(p), A1/2

F e j (p))+ (A−1/2
F ek(p), A−1/2

F e j (p))

= π√
2

exp

(

−|yk − y j |√
2

)(

cos
|yk − y j |√

2
+ sin

|yk − y j |√
2

)

.

Let

W0 = ||ωk j ||mk, j=1, G = ||gkj ||mk, j=1.

From Proposition 4.1 we obtain next description of 1) all m-accretive quasi-self-
adjoint extensions ˜A of A, 2) all m-α-sectorial quasi-self-adjoint extensions ˜A of A:

Dom (˜A) =
⎧

⎨

⎩

f0(p)+
m
∑

j=1

λ j e j (p)+
m
∑

k, j=1

ukjλk p2e j (p)

⎫

⎬

⎭

,

f0(p) ∈ Dom (A), (λ1, . . . , λm) ∈ C
m,

˜A

⎛

⎝ f0(p)+
m
∑

j=1

λ j e j (p)+
m
∑

k, j=1

ukjλk p2e j (p)

⎞

⎠

= p2 f0(p)+
m
∑

j=1

λ j p2e j (p)−
m
∑

k, j=1

ukjλke j (p),

where the matrices U = ||ukj ||mk, j=1 satisfies the condition:

1) UG + GU∗ ≥ 2UW0U∗,

2)

{

tan α · (UG + GU∗)+ i(UG − GU∗) ≥ 2 tan α · UW0U∗,
tan α · (UG + GU∗)− i(UG − GU∗) ≥ 2 tan α · UW0U∗.

In case, when m = 1 we get:

Dom (˜A) =
{

f0(p)+ λ
(1 + up2) exp(−i py)

1 + p4

}

,

˜A

(

f0(p)+ λ
(1 + up2) exp(−i py)

1 + p4

)

= p2 f0(p)+ λp
(p2 − u) exp(−i py)

1 + p4 ,

f0(p) ∈ Dom (A), λ ∈ C, y ∈ R,
(

Re u − 1

2

)2

+ (Im u)2 ≤ 1

4
for m-accretive extensions,
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(

Re u − 1

2

)2

+
(

Im u ± cot α

2

)2

≤ 1

4 sin2 α
for m-α-sectorial extensions.

The inverse Fourier transform F−1 is given by the next equality

F−1 f̂ = f (x) = lim
R→∞

1√
2π

R
∫

−R

f̂ (p) exp(i px)dp.

We have S = F−1 AF , SF = F−1 AFF .
Providing direct calculation we obtain:

F−1e j (p) = g j (x) = i

√

π

2
exp

(

−|x − y j |√
2

)

sin

( |x − y j |√
2

)

,

F−1 AF e j (p) = h j (x) = i

√

π

2
exp

(

−|x − y j |√
2

)

cos

( |x − y j |√
2

)

.

Since F the unitary operator we obtain next theorem.

Theorem 5.1 Let operator S is defined as (5.1). Then formulas

Dom (˜S) =
⎧

⎨

⎩

f0(x)+
m
∑

j=1

λ j g j (x)+
m
∑

k, j=1

ukjλkh j (x)

⎫

⎬

⎭

,

f0(x) ∈ Dom (S), (λ1, . . . , λm) ∈ C
m,

˜S

⎛

⎝ f0(x)+
m
∑

j=1

λ j g j (x)+
m
∑

k, j=1

ukjλkh j (x)

⎞

⎠

= − d2

dx2 f0(x)+
m
∑

j=1

λ j h j (x)−
m
∑

k, j=1

ukjλk g j (x),

give one-to-one correspondence between of

1) all m-accretive quasi-self-adjoint extensions ˜S of S and all matrices U =
||ukj ||mk, j=1 satisfying the condition

UG + GU∗ ≥ 2UW0U∗,

2) all m-α-sectorial quasi-self-adjoint extensions ˜S of S and all matrices U =
||ukj ||mk, j=1 satisfying the condition

{

tan α · (UG + GU∗)+ i(UG − GU∗) ≥ 2 tan α · UW0U∗,
tan α · (UG + GU∗)− i(UG − GU∗) ≥ 2 tan α · UW0U∗.
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In particular, if m = 1 then

Dom (˜S) =
{

f0(x)+ λ exp

(

−|x − y|√
2

)(

sin
|x − y|√

2
+ u cos

|x − y|√
2

)}

,

f0(x) ∈ Dom (S), λ ∈ C, y ∈ R,
(

Re u − 1

2

)2

+ (Im u)2 ≤ 1

4
for m-accretive extensions,

(

Re u − 1

2

)2

+
(

Im u ± cot α

2

)2

≤ 1

4 sin2 α
for m-α-sectorial extensions

˜S

(

f0(x)+ λ exp

(

−|x − y|√
2

)(

sin
|x − y|√

2
+ u cos

|x − y|√
2

))

= − d2

dx2 f0(x)+ λ exp

(

−|x − y|√
2

)(

cos
|x − y|√

2
− u sin

|x − y|√
2

)

.

6 Resolvents of Quasi-Self-Adjoint m-Accretive Extensions

6.1 Boundary Triplets and Abstract Boundary Conditions

Recall the definition of the boundary triplet (boundary value space) [33,34].

Definition 6.1 The triplet {H, �1, �0} is called a boundary triplet of S∗ ifH is a Hilbert
space and�0, �1 are bounded linear operators from the Hilbert space H+ = Dom (S∗)
with the graph norm into H such that the map �� = 〈�0, �1〉 is a surjection from H+
onto H2 and the Green identity holds:

(

S∗ f, g
)− ( f, S∗g

) = (�1 f, �0g)H − (�0 f, �1g)H for all f, g ∈ H+. (6.1)

The relations

Dom (˜S) =
{

u ∈ Dom (S∗) : ��u ∈ ˜T
}

, ˜S = S∗ � Dom (˜S) (6.2)

give a one-to-one correspondence between all proper extensions˜S of S (S ⊂ ˜S ⊂ S∗)
and all linear relations ˜T in H. An extension ˜S is a self-adjoint one if and only if the
relation˜T is self-adjoint in H.

As it was shown in [24,25] the operators S0, S1 defined as follows

Sk = S∗� Ker �k, k = 0, 1

are transversal to each other self-adjoint extensions of S. The function �0(λ) =
(�0� Nλ)

−1 is the γ -field corresponding to S0 [39,40]. Note that as a consequence of
(6.1) one can obtain the equality

�0(λ) =
(

�1(S0 − λI )−1
)∗
. (6.3)



714 Y. Arlinskiı̆ et al.

Derkach and Malamud [23–25] define the Weyl (Weyl–Titchmarsh) function M0(λ)

by the equality

M0(λ) = �1�0(λ). (6.4)

The function M0 is Kreı̆n–Langer Q-function [39,40]. In terms of boundary triplet
the connection between a self-adjoint extension ˜S

˜T defined by relations (6.2) and its
resolvent is given by

(

˜S
˜T − λI

)−1 = (S0 − λI )−1 + �0(λ)
(

˜T − M0(λ)
)−1

�∗
0(λ). (6.5)

The triplet {H,−�0, �1} also forms a boundary triplet of S and the γ -field �1(λ) =
(�1� Nλ)

−1 corresponding to the self-adjoint extension S1 determines the Weyl–
Titchmarsh function M1(λ) = −�0�1(λ) which is connected with M0(λ) by the
relation M1(λ) = −M−1

0 (λ).
Let S be a nonnegative symmetric operator and let S0 = S∗

0 ≥ 0 be an extension
of S. Choose the boundary triplet {H, �1, �0} such that Ker �0 = Dom (S0). It was
established [23–25] (see also [26,31,32,42]) the following theorem.

Theorem 6.2 Let S be a closed nonnegative symmetric operator. Then S has a non-
unique nonnegative self-adjoint extension if and only if

D =
{

h ∈ H : lim
x↑0

(M0(x)h, h)H < ∞
}

�= {0},

and the quadratic form

τ [h] = lim
x↑0

(M0(x)h, h)H , D[τ ] = D

is bounded from below. If M0(0) is a self-adjoint linear relation in H associated with τ ,
then the Kreı̆n–von Neumann extension SK can be defined by the boundary condition

Dom (SK ) = {u ∈ Dom (S∗) : 〈�0u, �1u〉 ∈ M0(0)
}

.

The relation M0(0) is also the strong resolvent limit of M0(x) when x → −0. More-
over, S0 and SK are disjoint iff D = H and transversal iff D = H. In addition, if
S0 = SF , then there is a one-to-one correspondence given by (6.2) between nonneg-
ative self-adjoint extensions ˜S

˜T and self-adjoint relations˜T satisfying the condition

˜T ≥ M0(0). (6.6)
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6.2 Special Boundary Triplet and Description of Resolvents of Quasi-Self-Adjoint
m-Accretive Extensions

Denote by P+
MF

the orthogonal projection in H+ onto MF . Put

H = NF , �0 = −S∗ P+
MF

, �1 = P+
NF
. (6.7)

Using the relations S∗SF e = −e, e ∈ NF and SF S∗h = −h, h ∈ MF = SFNF one
can easily check that the triplet {NF , �1, �0} is a boundary triplet for S∗,Ker �0 =
Dom (SF ) and

�0(λ)e = (SF − λI )−1(I + λSF )e + SF e, e ∈ NF

is the γ -field corresponding to SF . The Weyl–Titchmarsh function (6.4) in this case
takes the form

M0(λ) = P+
NF
(SF − λI )−1(I + λSF )�NF . (6.8)

It is easy to verify that from (6.3) follows the relation

�∗
0(λ) = P+

NF
(SF − λI )−1.

The next statement is established in [17].

Proposition 6.3 Suppose that Ran (S1/2
F ) ∩ NF = N0 �= {0}. Then

N0 =
{

e ∈ NF : lim
x↑0

(M0(x)e, e)+ < ∞
}

,

lim
x↑0

(M0(x)e, e)+ = w0[e], e ∈ N0.
(6.9)

Now we obtain that the linear relation W0 is associated with the closed quadratic
form

lim
x↑0

(M0(x)e, e)+ = w0[e], e ∈ N0.

Let ˜S be a quasi-self-adjoint m-accretive extension of S. By Theorem 2.8 we have

Dom (˜S) = Dom (S)+̇ (I + SF˜U
)

Dom (˜U ),

where the (+)-m-accretive operator ˜U satisfies condition (3.3). From (6.7) for �� =
〈�0, �1〉 we get

��Dom (˜S) = {〈˜Ue, e
〉

, e ∈ Dom (˜U )
}



716 Y. Arlinskiı̆ et al.

or

Dom (˜S)={u ∈ Dom (S∗) : �0u =˜U�1u
}

, Re (˜Ue, e)+ ≥ w0[˜Ue], e ∈ Dom (˜U ).

So, we obtain the description of all quasi-self-adjoint m-accretive extensions in terms
of boundary conditions. Now using (6.5) we get the following theorem.

Theorem 6.4 The formula

(

˜S − λI
)−1 = (SF − λI )−1

+
[

(SF −λI )−1(I +λSF )+SF

]

˜U
(

I − M0(λ)˜U
)−1

P+
NF
(SF −λI )−1

establishes a one-to-one correspondence between all quasi-self-adjoint m-accretive
extensions of S and all m-accretive operators ˜U in NF satisfying condition (3.3).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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