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Recently, microwave communication networks have been shown to be valuable tools for rainfall monitoring, based on the well-
known Power-Law which relates rain-rate to attenuation in microwave frequencies. However, once precipitation other than pure
rain exists (e.g., snow), the Power-Law relation is no longer accurate. In this paper we propose a model which relates the induced
attenuation to rain, snow, and sleet. Based on this model we propose estimating the total accumulated precipitation, regardless
of the precipitation type, using measurements from multiple microwave links. Our technique takes advantage of the commercial
communication networks, need for redundancy, which dictates the use of multiple microwave links at the same area. We show
that by using measurements from at least three microwave links better estimation of the total accumulated precipitation fall can
be provided, when rain, snow, sleet, or a mixture of them coexists. To demonstrate the proposed approach, it has been applied on
actual microwave links attenuationmeasurements, which were provided by a cellular carrier.	e estimation results were compared
with Rain-Gauges and disdrometer measurements and show very good agreement and improved accuracy.

1. Introduction

Since microwave communication networks (MCNs) usually
make use of the 10GHz–40GHz frequencies range, which
is known to be a
ected by precipitation, it was only natural
to assume that rainfall should have a measurable e
ect on
these networks. And indeed, it has been shown back in 2006
[1], that it is possible to monitor rainfall accurately using
only the standard attenuationmeasurements which are being
recorded by the MCNs operators (i.e., the cellular operators).
Soon a�er, numerous studies presented di
erent methods
for precipitation monitoring, using the widespread MCNs as
tools. Among these methods, there are methods for detection
and separation of wet and dry periods [2], estimation of the
rainfall intensity [3, 4], and analysis of the rain-rate estima-
tion errors [5, 6].

	ese studies, however, have been focused on rainfall.
Once snow and sleet (i.e., a mixture of snow and rain) par-
ticles are considered as well, it was suggested [7] to use
a specic predetermined dual-frequency Microwave Links

(MLs) setup, which recorded the phase as well as the Received
Signal Level (RSL) data, in order to estimate the precipitation
rate.	ese techniques, unfortunately, cannot be implemented
with current MCNs protocols, since in a commercial setup
theMLs frequencies are predetermined by the operators, and
the datawhich is regularly logged is the RSL attenuation alone
(thus, the phase information is unavailable).

In this study we suggest a new approach which can be
used in order to achieve reliable estimation of the total ac-
cumulated amount of the fallen precipitation, even when
multiple types of precipitation exist, using MCNs. 	is new
estimation procedure uses the fact that commercial MCNs,
especially in developed and highly populated areas, are
generally built from a large number of di
erent MLs. 	us,
multimeasurements of the same phenomenon are available,
and multiparameter estimation can be performed.

	e rest of the paper is organised as follows. In Section 2
we describe the precipitation induced Microwave Link
(ML) attenuation, as well as the Proposed Estimation Pro-
cedure. Section 3 describes a real setup which was used to
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demonstrate the procedure feasibility, followed by Section 4,
which summarises the results. Lastly, Section 5 concludes this
paper and includes a discussion regarding future applications
and research.

2. Materials and Methods

First, it is imperative to understand how rain, snow, and sleet
a
ect the ML attenuation. 	is is going to be inquired in the
following sections.

(1) Rainfall InducedAttenuation.	erelationship between the
instantaneous rain-rate and the ML attenuation is given by
the well-known Power-Law [8]:

�� = � ⋅ ��� ⋅ �, (1)

where �� is the rain induced attenuation in (dB), �� is the
ML-path averaged rain-rate in (mm/h), � is the ML length
in (km), and � and � are parameters which are determined
by theML radiation frequency, polarisation, the surrounding
temperature, and theDrop SizeDistribution (DSD).	us, the� and �parameters are specic for di
erent environments and
conditions, and their typical values can be found in literature
[9, 10].

(2) Snowfall Induced Attenuation. Similar to the rainfall
Power-Law, an equivalent “Snowfall-Law,” which describes
the ML attenuation due to ice particles such as snow, has
been developed (	e following equation has been developed
considering microwave frequencies, while assuming a sur-
rounding temperature of ≈0∘C. For di
erent frequencies and
lower temperatures, the coe�cients di
er.) [11, 12]:

�� = (0.00349�1.6�
4 + 0.00224��
 ) ⋅ �, (2)

where�� is the attenuation due to snow in (dB),�� is theML-
path averaged (liquid equivalent) snowfall-rate in (mm/h), �
is the ML length in (km), and 
 is the ML radiation specic
wavelength in (cm).

Previous studies have shown that dry-snow particles (i.e.,
a mixture of pure ice and air) induce a much smaller e
ect
on the ML attenuation, compared to the e
ect induced by
rainfall [10, 13, 14]. 	is assumption, however, is no longer
met once amixture of liquid and solid water particles, such as
sleet [15, 16], is considered. Since the sleet induced attenuation
model is lacking, we will next suggest a Sleet-ML Attenuation
relationship.

(3) Sleet InducedAttenuation.Asleet particle can be described
as an ice core, covered by a thin layer of liquid water. Sleet
particles usually form near the freezing point of water, where
both rain and snow particles coexist [12, 17].

Since the sleet particles’ outer layers are made of liquid
water, it is not surprising that the sleet induced attenuation
has been shown to resemble the one induced by rain particles
[12]. 	us, an approximation of the sleet induced attenuation

is proposed, taking the existing rainfall Power-Law (1) as a
basis [18]:

�Sl = �̃ ⋅ (�Sl)�̃ ⋅ �, (3)

where �Sl is the sleet induced attenuation in (dB), �Sl

is the average (liquid equivalent) sleet fall-rate in (mm/h)
throughout the ML-path, � is the ML length in (km), and �̃
and �̃ are analogue to the Power-Law (1) � and � parameters.

Now, the following approximations are assumed.

(i) Since sleet particles are made either from rain par-
ticles which pass through the freezing layer and/or
from snow particles which pass through the melting
layer near the freezing point of water [17, 19], it can
be assumed that during sleet-fall, liquid precipitation
particles exist. 	us, we propose to model the instan-
taneous sleet-rate to be proportional by an unknown
ratio to the instantaneous liquid particles fall-rate
(i.e., the rain-rate):

�Sl = �� ⋅ ��, (4)

where �� is a unit-less ratio between�Sl and��.	us,�� ⋅ �� is the e
ective instantaneous sleet fall-rate.
(ii) Since the Power-Law (1) dependence on the DSD has

been shown to be of a second order for typical MLs
frequencies [20], andnoting that for those frequencies
the Power-Law (1) � parameter is close to one (� ≈1) [9, 10], the sleet Power-Law equivalent �̃ and �̃
(3) parameter can be approximated to the rain-rate
Power-Law � and � (1) parameters. Further discussion
regarding this assumption is presented in Section 5.

Combining these two assumptions, the instantaneous
sleet induced attenuation (3) can be written as

�Sl = � ⋅ (�� ⋅ ��)� ⋅ �, (5)

where

�� ≈ �� (6)

and � and � are the Power-Law (1) known parameters. 	us,�� ⋅ �� is the approximated instantaneous sleet fall-rate.

(4) Total Precipitation Induced Attenuation. Putting (1), (2),
and (5) together, the total instantaneous ML attenuation
induced by precipitation, �pr(��), can be formalised. Written
in (dB), the instantaneous ML induced attenuation due to
rain, snow, and sleet particles can be presented as

�pr (��) = �� (��) + �� (��) + �Sl (��) , (7)

where �pr(��), ��(��), ��(��), and �Sl(��) are the total precip-
itation, the rainfall, the snowfall, and the sleet fall induced
attenuation, respectively, sampled at time ��. Using (1), (2),
and (5), an explicit form of (7) can be formalised:

�pr (��) ={� ⋅ [��(��)� + (�� (��) ⋅ �� (��))�]

+0.00349��(��)1.6
4 + 0.00224�� (��)
 } ⋅ �.
(8)
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It can be clearly seen that �pr(��) is a function of three time-
dependent variables: the rain-rate��(��) (1), the snowfall-rate��(��) (2), and the sleet-rate coe�cient ��(��) (6).
2.1. �e Proposed Estimation Procedure. In order to estimate
the accumulated fallen precipitation for a specic weather
event, one should assume a channel model. Let � tot(��)
represent the total ML attenuation sampled at time ��. 	us,
the channel model can be described as

� tot (��) = �pr (��) + �� (��) + �dc, (9)

where �pr(��) is the instantaneous precipitation induced
attenuation at time index �� (8), ��(��) is the unknown
additivemeasurement noise, and�dc is the assumed constant
attenuation level (over the observation period) from sources
other than precipitation. 	e �dc is known as the Zero-Level
(ZL) attenuation, which is the attenuation in no precipitation
conditions due to propagation, scattering, fading, absorption
by air, and others. Various approaches regarding the ZL
attenuation have been discussed thoroughly in previous
studies [2, 21–23].

2.1.1. Measurements Model. Following (9), the measurements
model can be formulated as follows:

� (��) = � tot (��) − �dc = ℎ (� (��)) + �� (��) , (10a)

ℎ (� (��)) = �pr (��) , (10b)

� (��) = [
[
�� (��)�� (��)�� (��)

]
]
, (10c)

where �(��) is the ML attenuation in (dB) at time index �� and�(��) is the model parameters vector at �� (8).
2.1.2. Paramater Estimation. It is clear that in order to esti-
mate the parameters vector (10c), a minimum of three di
er-
ent ML attenuation measurements are needed, in which �(��)
is identical. Fortunately, due to the high Quality of Service
(QoS) desired by the cellular operators, MCNs are built to be
redundant by usingmultipleMLswithin the same path.	us,
the following equation can be rewritten as

[[[[[[
[

�1 (��)�2 (��)�3 (��)...�	 (��)

]]]]]]
]

=
[[[[[[[
[

ℎ1 (� (��))ℎ2 (� (��))ℎ3 (� (��))...ℎ	 (�) (��)

]]]]]]]
]
+
[[[[[[
[

��1 (��)��2 (��)��3 (��)...��� (��)

]]]]]]
]
, (11)

where�
(��) is the totalML attenuation in the �thML in (dB),ℎ
(�(��)) equals �pr(��) (8) for the �th ML (and thus it is a
function of each ML time-indepenenet specic properties),
and ���(��) is the additive noise portion in the �th ML
measurement.

Noting that (11) is a nonlinear parameter estimation prob-
lem with �(��) as the parameters vector, the estimation can be

performed via various parameter estimation methods, such
as Least Squares [24].

Denoting the resulting estimate for time index �� by �̂�:

�̂� = [
[
�̂� (��)�̂� (��)�̂� (��)

]
]
, (12)

where �̂�(��), �̂�(��), and �̂�(��) are the estimated variables,

from which the total fallen precipitation rate P̂rec(��) can be
calculated in (mm/h) (1), (2), and (5) as follows:

P̂rec (��) = �̂� (��) + �̂� (��) + �̂� (��) ⋅ �̂� (��) . (13)

2.1.3. Accumulated Precipitation Calculation. Since we are in-
terested in the accumulated precipitation fall, rather than the
precipitation rate, the following calculation is performed:

"̂tot (#) = ℎ ⋅ �∑
�=1
P̂rec (��) , (14)

where "̂tot(#) is the total accumulated precipitation, ℎ is the
sampling interval, and # is the number of samples within a
given weather event. So,# ⋅ ℎ is the observation interval.

3. Application Using Actual Data

In order to demonstrate the feasibility of the proposed pro-
cedure, a test case was designed and executed during 2010–
2013. 	e site chosen for this test is kibbutz Ortal, located in
northern Israel. 	is specic site was chosen since it holds
a major microwave communication network (MCN) node,
which acts as a base-station for numerous xed terrestrial
MLs, employed for transmission purposes by the Israeli cel-
lular operator Cellcom, as well as the fact that only northern
Israel has a probable chance to experience snow and sleet
weather events.

Since the aim of this test is to present the potential of the
proposed procedure, a reference for the local precipitation
fall was needed. For this purpose, readings from three Rain-
Gauges (RGs) operated by the Israeli Meteorological Service
(IMS) were gathered.

In order to classify the fallen precipitation, an OTT
Parsivel Disdrometer Weather Sensor [25–27] was installed
nearOrtal’sMCN node.	e disdrometer, as well as Cellcom’s
MCN tower can be seen in Figure 1(a).

3.1. Available Data. During the test case, bothMLs Attenua-
tion Data and Meteorological Data were obtained.

3.1.1. Available MLs Attenuation Data. From the dozen com-
mercial MLs transmitting from and/or to Ortal node, data
from fourMLs which share the same path has been collected.
	ese four MLs are clustered in a single path of 12.08 km,
between kibbutz Ortal and kibbutz Odem (Figure 1(b)). It
is worth noting, that by using only MLs which share the
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(a) Disdrometer (b) Area Map

Figure 1:	e installedOTT Parsivel DisdrometerWeather Sensor near Ortal’s MCN base-station tower (a), and the test area map showing the
ML’s 12.08 km path, as well as the three available RGs: RG-Ortal, RG-Merom-Golan and RG-El-Rom (b). (Image (a) was taken by Y. Dagan.
Image (b) was created via Google Earth).
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(b) Precipitation

Figure 2: An example of mRSL and MRSL data series, sampled at 15min intervals, with 1 dB quantization error (a), and the actual measured
fallen precipitation divided into rain, snow, and sleet, as detected by the OTT Parsivel Disdrometer Weather Sensor (b).

Table 1: Available microwave links.

ML number Location Length Frequency Polarization

1 Ortal-Odem 12.08 km 18.3600GHz Vertical

2 Ortal-Odem 12.08 km 18.3600GHz Horizontal

3 Ortal-Odem 12.08 km 19.3700GHz Vertical

4 Ortal-Odem 12.08 km 19.3700GHz Horizontal

same path, the � parameters vector (10c) is guaranteed to be
identical for all MLs. Further details regarding the MLs are
presented in Table 1.

Due to the rough and nonlinear preprocessing made by
the cellular operator, eachML contributes only themaximum
Received Signal Level (MRSL) and the minimum Received
Signal Level (mRSL) for every 15 minutes quantised in 1 dB.

An example of the MRSL/mRSL data series recorded by a
given ML during a storm is presented in Figure 2(a).

3.1.2. Rain-Gauges. In order to capture the actual precipita-
tion fall, three RGs located in kibbutz Ortal, Merom-Golan,
and El-Rom were monitored. 	ese three kibbutzes (and
hence, RGs) are distributed roughly evenly and in close prox-
imity (≤2.2 km) to the MLs path. 	e RGs are operated by
the IMS and record the daily fallen accumulated precipitation
(	e RGs data can be accessed online under: http://www.ims
.gov.il/). 	e RGs locations can be seen in Figure 1(b).

3.1.3. Parsivel DisdrometerWeather Sensor. Since RGs cannot
distinguish between di
erent types of precipitation, the OTT
Parsivel Disdrometer Weather Sensor was monitored in order
to classify the di
erent fallen precipitation types. During the
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Table 2: Gathered meteorological data.

Event date Event length Accumulated precipitation
Type via disdrometer

Rain Snow Sleet

10 December 2010 96 h 179mm 76% 9% 15%

16 January 2012 96 h 23mm 100% 0% 0%

04 January 2013 144 h 234mm 78% 6% 16%

28 January 2013 48 h 18mm 100% 0% 0%

test period, the following precipitation types were detected
(as reported by the disdrometer):

(i) liquid precipitation types: Light andmoderate drizzle,
strong drizzle, light and moderate drizzle with rain,
strong drizzle with rain, light and moderate rain, and
strong rain; precipitation in this group was treated as
“rain,”

(ii) solid precipitation types: light and moderate snow
and strong snow, precipitation in this groupwas treated
as “snow,”

(iii) mixture of both liquid and solid precipitation types:
light and moderate rain drizzle and snow, strong rain
drizzle and snow, and freezing rain; precipitation in
this group was treated as “sleet”.

An example of the raw data which was reported by the Par-
sivel disdrometer is shown in Figure 2(b). 	e full list of
precipitation types which are supported by the Parsivel dis-
drometer can be found in [25, 26].

3.2. Analyzed Weather Events. During December 2010 and
January 2013, two major weather events (which include rain,
snow, and sleet particles) have been analyzed. Since an ML
monitors the path-averaged precipitation fall, for each event,
the accumulated precipitation values reported by the three
available RGs (as presented in Figure 1(b)) were monitored
and averaged. Furthermore, measurements from the Parsivel
DisdrometerWeather Sensor were used to classify the types of
the fallen precipitation. In addition, two periods of pure rain-
fall (with no other precipitation types detected)were analyzed
in order to examine the proposed procedure performance
during rain-only events.

Details regarding the four weather events are presented
in Table 2, where the accumulated precipitation column
presents the averaged total accumulated precipitation as
reported by the RGs, and the type via disdrometer column
presents the percentage of the di
erent precipitation types
throughout each event, as reported by the disdrometer.

It is worth noting, that for the available weather events
(of a duration of ≥48 h) and location (northern Israel), the
variation in the total accumulated fallen precipitation along
the MLs path and the corresponding RGs’ locations (which
are ≤2.2 km away from the MLs path) were shown to be
negligible [28].

3.3. Data Preparation. We will now go into details regarding
the data preparation needed for the estimation processes.

3.3.1.MLAttenuationData Series. Eventhough eachML con-
tributes both the MRSL and the mRSL data series, previous
study has found that formoderate and heavy storms, the con-
tribution of the MRSL data series for the estimation process
in this region is negligible [29]. 	us, in this demonstration,
only the mRSL data series were used.

For each mRSL data series, the value of�dc (as dened in
(9)) was determined by taking themRSLmost common value
during the dry period prior to each storm. Further discussion
regarding the ZL is presented in Section 5.

3.3.2. � and �, 
, and � Values. As mentioned in Section 2,
the values of � and � (1) parameters are well-studied and
can be found in the literature [9, 10]. However, those values
are applicable for instantaneous attenuation measurements.
In our case, we have access only to the mRSL/MRSL mea-
surements. In [18, 30] we show that by replacing � by an
appropriate �� > �, the overestimation of the rain estimates
due to the usage of the mRSL only can be compensated. We
have calibrated �� empirically for this region to the value of0.39 (dB/km)(mm/h)−� [18], which is used in the sequel.

	e value of � was taken as 1.12, which corresponds to
the 18-19GHz frequencies range [9, 10]. Since the expected
di
erence in the values of � and � due to the MLs di
erent
polarisations and frequencies within the 18-19GHz range is
small [9], the same � and � set was used for all MLs.

	e value of 
 (2) was taken as 1.6 cm, corresponding
to a frequency of 18.74GHz, which is roughly the average
frequency used by the four MLs (Table 1). It is worth noting,
that each ML uses a slightly di
erent frequency. However,
since the di
erence between those frequencies is small, the
changes to 
 are negligible.

Lastly, the value of � (1), (2) was taken as 12.08 km, which
is the MLs path’s length.

Note, that � and �, 
, and � parameters are time-
independent, and thus their specic values were taken as con-
stants during the entire experiment duration.

3.4. Accumulated Precipitation Estimation. For each weather
event (as presented in Table 2), two di
erent estimation pro-
cesses have been performed. First, the proposed model based
estimation was executed (11), and the estimated precipitation
rate (13) was calculated. Second, the known Power-Law (1)
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Table 3: Results throughout the events.

Time since
start

10 December 2010 16 January 2012 04 January 2013 28 January 2013

96 hours 96 hours 144 hours 48 hours

PM PL RG PM PL RG PM PL RG PM PL RG

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

24 h 1 1 0 9 6 12 5 5 6 8 7 7

48 h 55 48 75 22 16 17 36 31 45 22 17 18

72 h 164 143 169 27 20 20 93 79 135 — — —

96h 181 158 179 34 25 23 143 122 174 — — —

120 h — — — — — — 181 156 215 — — —

144 h — — — — — — 198 170 234 — — —

Storm 181mm 158mm 179mm 34mm 25mm 23mm 198mm 170mm 234mm 22mm 17mm 18mm

end (101%) (88%) 100% (136%) (109%) 100% (85%) (73%) 100% (122%) (94%) 100%
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(a) 10–14 December 2010 event, mixed precipitation
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Figure 3: Accumulated precipitation between 10 December 2010 and 14 December 2010 (a) and the accumulated precipitation between 04
January 2013 and 10 January 2013 (b), as observed by the Rain-Gauges, as estimated by the proposed model, and as estimated by the Power-
Law model. 	e estimates errors throughout the storms are presented: It can be seen, that the proposed model achieved better estimates
throughout the storms.

estimation was executed (by using the same estimation
algorithm (11), with �� = 0 and �� = 0). 	is was done in
order to establish the current widely used estimation process
[1, 3], which treats the snow and sleet e
ects as negligible,
as a baseline for comparison. 	ese two estimations were
performed for every sampling interval.

Lastly, by using (14), the total accumulated precipitation
during each storm was calculated, both for the proposed
procedure and for the Power-Lawmodel based estimation.

4. Results

From December 2010 until January 2013, data from two
extreme weather events in Israel have been collected and
analysed.	ese events include di
erent types of precipitation,
including rain, snow, and sleet particles. In addition, two

rain-only events were analysed, in order to test the proposed
model mismatch during rain-only scenarios.

In Figures 3 and 4, the proposed model based estimation

results for every event, "̂tot(#) of (14), is plotted, as well
as the average of the measurements of the three RGs. For
comparison, the Power-Law (1) estimates are plotted as well.

In addition, "̂tot(#) specic values throughout the events
can be seen in Table 3, where PM represents the proposed
model estimates, PL represents the comparison Power-Law
estimates, and RG represents the RGsmeasurements average.

4.1. Results Analysis. Looking at Figure 3 and Table 3, it is
easy to conclude that once other than pure rain precipitation
types are involved, the proposedmodel based estimation out-
performs the Power-Law estimation by a signicant margin.
	e estimation based on the proposedmodel achieved a total
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(b) 28–30 January 2013 event, pure rain

Figure 4: Accumulated precipitation between 16 January 2012 and 20-Jan-2012 (a) and the accumulated precipitation between 28-Jan-2013
and 30-Jan-2013 (b), as observed by the Rain-Gauges, as estimated by the proposed model, and as estimated by the Power-Law model. 	e
estimates errors throughout the storms are presented: It can be seen that in general, the Power LawModel achieved better estimates throughout
the storms. However, the proposed model estimation error is contained.

accumulated precipitation values which are much closer to
the RGs’ observed ones. Furthermore, by inspecting Table 3,
it is clear that the proposed model estimates achieved better
performance throughout the events progression, compared
with the Power-Law based estimation model.

While Figure 3 emphasises the robustness properties of
the proposed precipitation estimation procedure versus the
specicity of thePower-Law based estimationmodel, the pure
rainfall events (Figure 4) have put to a test the possible draw-
backs of such robustness. And indeed, during the rain-only
events, the Power-Law estimation systematically achieved
more accurate results than the proposed pocedure estima-
tion. However, once the total accumulated precipitation fall
detected in these events (18mm–23mm) are considered, it
can be seen that the absolute errors of the proposed procedure
are rather small (≈11mm in 96 h for the 16 January 2012 event
and ≈4mm in 48 h for the 28 January 2013 event), suggesting
that the proposed model mismatch during rain-only events
damages the estimation accuracy only mildly.

Nonetheless, it is worth mentioning, that during periods
of strong precipitation rate, both estimates tend to under-
estimate the accumulated precipitation fall. 	is underes-
timation can be attributed to the nite dynamic range of
the mRSL. During extremely intense precipitation fall, the
mRSL may drop to its absolute minimum, and thus stronger
precipitation rate will not be distinguished. Example of such
an intense precipitation rate can be seen in Figure 3(b),
starting from 07 January 2013.

5. Conclusion and Discussion

In this paper we established a new approach for monitoring
other than pure rain precipitation, by using MCNs. 	is

approach takes advantage of the fact that MCNs o�en
contain multiple MLs at the same location, which gave us
the possibility to estimate more unknown parameters and
therefore to employ an expandedmodel, fromwhich the total
accumulated fallen precipitation, regardless of the precipita-
tion type, can be estimated. And indeed, by using actualMCN
data, we have demonstrated that during weather events with
mixed precipitation this proposed model and the resulting
estimation exhibited better performance compared to the
standard Power-Law based estimation. In addition, despite
the robustness nature of this new method, it exhibited only
mild absolute errors during estimation of pure rain weather
events.	us, this study suggests a new tool, which can be used
for precipitation estimation, especially at locations where
mixed types of precipitation are common.

	is research presents promising results. However, in
order to deal with specic physical phenomena, as well as
with challenges which arose due to the usage of actual
MCNsmeasurements, wemade a number of assumptions and
approximations which may have introduced some errors into
the estimation process. Since these sources of errors are either
out of the scope of this paper or are yet to be fully understood,
their e
ects on the estimation accuracy should be further
studied. We will now list the main sources of errors which
should be addressed further.

5.1. Sources of Errors due to Physical Phenomena. In this
research we have developed a procedure which is capable of
treating multiple types of precipitation. 	is development is
based on some assumptions and approximations regarding
the sleet, which may introduce some errors. Additionally,
other physical phenomenamay also introduce errors into the
estimation process [31, 32].
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5.1.1. �e Sleet Induced Attenuation Approximations. In
Section 2, we presented a new precipitation induced atten-
uation model, which generalises the well-known individual
models of rain and snow induced attenuation, while adding a
new term which accounts for the sleet induced attenuation.
	is model is based on a number of approximations. 	e
sleet induced attenuation term (5) is approximated based
on the assumption that the sleet induced attenuation can be
modelled via the rain induced attenuation term. While the
assumption that sleet a
ects the microwave radiation similar
to the e
ects caused by rain has been proven [11, 12], once
considering sleet particles, the specic � and � parameters are
yet to be determined. Due to the lack of better knowledge, we
considered the fact that the � and � set for sleet should be
similar to the set already found for rain [20], and thus the
same set of � and � was taken both for rain and for sleet.
However, since the sleet DSD may be di
erent than the DSD
of rain particles, better understanding of the sleet specic� and � parameters should be considered. In addition, the
proposedmodel is based on the assumption that the sleet fall-
rate is proportional to the rain-rate alone. Eventhough snow
induced attenuation is negligible compared to the attenuation
induced by rain or sleet [12, 13], rening the sleet relationship
further in relation to both rain and snow particles may yield
better overall accuracy.

5.1.2. Zero-Level, Wet Antenna, and Estimation Bias. Estab-
lishing the ZL has been a topic of past research [2, 21, 23],
and it is out of the scope of this paper. In general, we
assume a knownZL,meaning that it needs to be preestimated.
During our experimental study, for simplicity reasons, and
because we concentrated on demonstrating the feasibility of
the proposed procedure, the ZLwas taken as a constant value,
which was determined by the dry period prior to the storm.
However, in recent studies, it has been suggested that the ZL
may �uctuate during the storm, as well as be a
ected by a bias
caused by the Wet Antenna (WA) e
ect [33, 34]. While these
errors’ in�uence during moderate and heavy storms is small
[29, 30], during lighter storms the ZL and the WA induced
errors may indeed be signicant. 	us, in order to achieve a
more accurate estimation, adjustments for the ZL and theWA
should be considered. Lastly, due to the high variations of the
precipitation fall (as can be seen in Figure 2(b)), the use of
more advanced estimation algorithms may be considered as
well.

5.1.3. Hail Eects. In this research, we demonstrated the
proposed procedure abilities by using storms data available
to us. 	ese storms included mixtures of rain, snow, and
sleet particles. Eventhough that in theory hail induced ML
attenuation should be similar to the attenuation induced by
sleet [12, 17], we have yet to deal with hail, so further study
regarding the e
ects of hail is suggested.

5.2. Sources of Errors due toActualMCNsUsage. ActualMCN
measurements su
er from limitations from our point of view,
since they aim into communication purposes, rather than

precipitation monitoring. 	ese limitations are additional
sources of errors.

5.2.1. Quantization Error. As mentioned throughout this
paper, the mRSL/MRSL data series o�en pass a quantizer
which introduces quantization errors. In our specic exper-
imental setup, the mRSL/MRSL data series were a
ected by
a quantization error of 1 (dB). While the quantization errors
are relatively small during heavy and long storms (due to
the large dynamic range of the mRSL/MRSL compared to
the 1 (dB) quantization error, as well as the fact that the
quantization error bias is zero), once lighter or shorter storms
are estimated, the weight of the quantization errors may rise
and possibly in�uence the estimation accuracy. Since the
quantization error is nonlinear and nonadditive, treating this
kind of error is not straight-forward and should be addressed
in the future.

5.2.2. General MCN Architecture. 	e approach proposed
in this research takes advantage of multiple MLs which
share the same path. While actual MCN setup is inherently
redundant, having four MLs sharing the same path is not
unusual; the question of generalising our results to MLs at
spatial diversity is an open one. Indeed, in a limited area,
precipitation elds are coherent [28], and this coherency can
be extracted to achieve better performance. Preliminary tests
have shown that using the spatial locations of the di
erent
MLs, and creating a covariancematrix as part of an alignment
preprocess, may achieve promising results. However, this
subject is yet to be fully examined.
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