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Multiple Choice

Don van Ravenzwaaij
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Andrew Heathcote
University of Tasmania

Independent racing evidence-accumulator models have proven fruitful in advancing understanding of

rapid decisions, mainly in the case of binary choice, where they can be relatively easily estimated and are

known to account for a range of benchmark phenomena. Typically, such models assume a one-to-one

mapping between accumulators and responses. We explore an alternative independent-race framework

where more than one accumulator can be associated with each response, and where a response is

triggered when a sufficient number of accumulators associated with that response reach their thresholds.

Each accumulator is primarily driven by the difference in evidence supporting one versus another

response (i.e., that response’s “advantage”), with secondary inputs corresponding to the total evidence for

both responses and a constant term. We use Brown and Heathcote’s (2008) linear ballistic accumulator

(LBA) to instantiate the framework in a mathematically tractable measurement model (i.e., a model

whose parameters can be successfully recovered from data). We show this “advantage LBA” model

provides a detailed quantitative account of a variety of benchmark binary and multiple choice phenomena

that traditional independent accumulator models struggle with; in binary choice the effects of additive

versus multiplicative changes to input values, and in multiple choice the effects of manipulations of the

strength of lure (i.e., nontarget) stimuli and Hick’s law. We conclude that the advantage LBA provides

a tractable new avenue for understanding the dynamics of decisions among multiple choices.

Keywords: evidence accumulation models, RT tasks, Hick’s law, lateral inhibition, max-next

In everyday life, we are constantly confronted with tasks that

require choosing one among many options. These decisions

often become more difficult as the number of alternatives

increase, leading to slowed response time (RT) and decreases in

choice accuracy. It is attractive to model the dynamics of such

multiple-choice decisions with racing evidence-accumulation

processes as such models can be applied to choosing among any

number of options by simply allocating one accumulator to each

option. These models assume that once the relevant information

is perceptually encoded and/or extracted from memory, each

accumulator accrues evidence favoring its option. The first

accumulator to satisfy a stopping rule (e.g., a threshold on its

evidence total) leads to the response with which it is associated.

Notable recent examples include the leaky competing accumu-

lator (LCA; Usher & McClelland, 2001), the “max-next”

(Brown, Steyvers, & Wagenmakers, 2009; McClelland, Usher,

& Tsetsos, 2011; McMillen & Holmes, 2006), the ballistic

accumulator (Brown & Heathcote, 2005), and the linear ballis-

tic accumulator (LBA; Brown & Heathcote, 2008). The LBA

model differs from the others in that the “stopping rule” which

determines when a response is chosen depends only on whether

accumulated evidence has exceeded a threshold, and in that

accumulation is independent. Throughout this article, we use

independence to refer to the relationship among accumulators

during accumulation (see the Discussion section for discussion

of this and alternative definitions). These assumptions make it

functionally and computationally simple, mathematically trac-
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table, and easily extended to more complex decision paradigms

(e.g., Eidels, Donkin, Brown, & Heathcote, 2010; Holmes,

Trueblood, & Heathcote, 2016; Trueblood, Brown, & Heath-

cote, 2014).

A typical multiple-choice experiment either: (a) presents one of

N possible stimuli on each trial, with each stimulus associated with

a single correct response (e.g., Lacouture & Marley, 1995; Leite &

Ratcliff, 2010; Pachella & Fisher, 1972); or (b) simultaneously

presents N stimuli on each trial, again with each stimulus associ-

ated with a single correct response (e.g., Brown et al., 2009;

Dassonville, Lewis, Foster, & Ashe, 1999; Kveraga, Boucher, &

Hughes, 2002; Lee, Keller, & Heinen, 2005; ten Hoopen, Aker-

boom, & Raaymakers, 1982; Vickrey & Neuringer, 2000). A

well-known problem in the application of independent racing

accumulator models to both multiple-choice paradigms is that the

conventional one-to-one mapping between stimuli and accumula-

tors leads to faster decisions with more accumulators (i.e., “statis-

tical facilitation”; Raab, 1962), whereas in practice decisions slow

down. One proposed solution is to relax the assumption that

accumulation is independent, as occurs in the LCA via lateral

inhibitory interactions. Another is a stopping rule that depends on

the moment-to-moment evidence totals in more than one accumu-

lator, as occurs in the max-next model through requiring a mini-

mum difference between the largest and second largest evidence

totals to initiate a response. A third solution involves adjusting

response thresholds for increasing number of choices to counteract

the increase in RT. Here we explore an alternative framework,

which applies to both types of multiple-choice paradigm, and

which maintains independence in accumulation, but relaxes the

assumption that each response is represented by only one accu-

mulator. The stopping rule for the framework we propose can

depend on more than one accumulator, but only through threshold-

crossing events and not through the evidence levels in each accu-

mulator. This makes the framework mathematically tractable.

In our proposed framework the rate of evidence accumulation

for each unit is primarily based on relative rather than absolute

inputs (see Marley, 1991 and Tversky & Simonson, 1993, for

relative evidence models of choice probabilities, and Usher &

McClelland, 2004 and Trueblood et al., 2014, for relative advan-

tage models of both RT and choice). Specifically, we propose that

alternatives are evaluated in pairs, so, when there are more than

two alternatives, more than one accumulator is associated with

each response. The input for each accumulator is a weighed sum

of: (a) the difference or advantage in evidence for the alternative

associated with the accumulator over the other alternative, (b) the

total evidence for both alternatives, and (c) a bias term (see

Blavatskyy, 2012, for a related formulation). Because our fits to

data show the first term has the dominant effect we describe this as

an advantage input scheme. We explore the mathematically trac-

table situation where these pairwise comparisons run indepen-

dently and in parallel. When this parallel independent race model

is instantiated using LBAs, as we do here, we call the resulting

model the “advantage LBA” (ALBA).

One new contribution of our modeling framework is the idea

that a response option may be associated with more than one

accumulator. This occurs when there are more than two response

options, whereas when there are only two options a one-to-one

mapping applies. Thus, we are able to release independent accu-

mulator models of multiple-alternative choice from the traditional

one-to-one mapping between accumulators and responses while

remaining consistent with traditional approaches to binary choice.

We first show that our advantage-input scheme enables good fits

of the ALBA to data from a two-alternative forced-choice para-

digm that have been problematic for independent racing accumu-

lator models but consistent with dependent accumulation as in-

stantiated in the LCA model (Teodorescu, Moran, & Usher, 2016,

Experiment 1). We then extend the two-alternative ALBA to

choices among more than two response alternatives, and demon-

strate that it provides good fits to data from both types of multiple-

choice paradigm that are problematic for existing independent-race

models. The mathematical properties of the accumulators and

input scheme in the multiple-alternative ALBA are identical to

those in the two-alternative ALBA, but an extension to the idea of

a stopping rule is required to account for the association of each

response to more than one accumulator.

A second new contribution of our work is an exploration of

stopping rules. In the main body of the paper we focus on a

“win–all” stopping rule, with details of alternative stopping rules

reported in Appendix A “ALBA Stopping Rules”. We report fits of

the win-all ALBA to a task requiring choice among four simulta-

neously presented alternatives (Teodorescu & Usher, 2013, Exper-

iment 1a) in which effects of the relative strengths of nontarget

(lure) response options were best fit by the max-next model, and

which were taken to be incompatible with independent accumula-

tion. We show that the win-all ALBA, whose stopping rule is

conceptually related to the max-next stopping rule, provides an

accurate and detailed account of this data. We then extend the

win-all ALBA to address a data set that exemplifies a long-

standing benchmark phenomenon for multiple-choice paradigms

when assigning a single stimulus into one of many classes, Hick’s

law (van Maanen et al., 2012). Hick’s law states that the mean RT

and the logarithm of the number of choice alternatives are linearly

related (Hick, 1952; Hyman, 1953). We demonstrate that the

win-all ALBA naturally provides an account of Hick’s law.

In both of the applications of the ALBA to multiple-choice data,

we show that all the parameters of the win-all ALBA are identi-

fiable by performing parameter-recovery simulations. These suc-

cessful recoveries underline a significant improvement in the util-

ity of our approach for behavioral applications compared to

nonindependent race models. Nonindependent models tend to be

mathematically intractable, and so it is difficult to compute a key

quantity required to fit them to data, their likelihood functions.

Miletic, Turner, Forstmann, & Van Maanen (2017) explored a

computationally intensive simulation-based method to obtain the

LCA’s likelihood, but found that it was “extremely difficult to

faithfully recover the parameters of the LCA model” (p. 25). When

parameter recovery is not possible it is difficult to interpret esti-

mated parameter values as they may not be psychologically mean-

ingful. Note that we are not implying that the parameters them-

selves are meaningless, only their estimates. Further, even if this is

the case it does not mean that such models are of no use. Psycho-

logical questions can still be addressed through model selection

techniques, as was shown with reference to the LCA by Evans,

Holmes, and Trueblood (2019). Parameter recovery may also be

possible for restricted versions of the LCA (see Miletic et al., 2017,

for further discussion). For the win-all ALBA, in contrast, we can

safely interpret parameter estimates, and so we present and discuss

them in each application, particularly highlighting the consistency of
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estimated weights for the sums and difference components of the

advantage coding scheme that hold over the variety of paradigms we

examine. In the next section we begin by defining this coding scheme

for the simple binary-choice case.

Advantage-Input Coding for Binary Choice

The standard LBA model for binary choice (Brown & Heath-

cote, 2008) has two accumulators, each of which starts from an

independently sampled and uniformly distributed point between 0

and Ai � 0, i � 1, 2, after which evidence is accumulated linearly

for each response option if the stimulus input remains fixed

throughout the trial. Each evidence accumulator has a drift rate di,

and for each trial each drift rate is independently drawn from a

normal distribution truncated at zero (Heathcote & Love, 2012),

with means vi, and standard deviations si.
1 Thresholds bi � Ai

determine a speed-accuracy trade-off; smaller values lead to faster

decisions at the cost of a higher error rate. Sometimes the thresh-

olds and/or maximum starting points are assumed to be the same

for both accumulators, in which case the subscript can be dropped.

Usually, rather than directly estimating the threshold the distance

from the maximum starting point (A) to the response threshold (b),

B � b – A, is estimated. This makes it easy to fulfill the assumption

that an accumulator cannot start above its threshold (i.e., b � A) by

enforcing B � 0. Manipulations affecting the a priori plausibility

of responses (say, a cue that predicts the correct response 80%

of the time; Teodorescu & Usher, 2013) can be expected to elevate

the mean starting point of the compatible stimulus and/or depress

the mean starting point of the incompatible stimulus. This is

equivalent to an equal but opposite effect on the threshold in terms

of RT and probability (Heathcote, Holloway, & Sauer, 2019).

Together, the accumulator (A and B) and input (v and s) param-

eters define a distribution of decision times (DTs). RTs also

include the time taken for processes such as stimulus encoding and

response production, which together make up the nondecision time

(Luce, 1986). We assume nondecision time is a constant, t0 � 0,

that shifts the distribution of DT such that RT � DT � t0.

For binary choice based on perceptual properties, stimulus i has

a physical value Oi, i � 1, 2, and these determine the drift rates for

evidence accumulation. For example in Experiment 1 of Teodor-

escu et al. (2016), which we analyze with the ALBA, the lumi-

nance (in lumens) of the visual stimuli are linear with respect to a

measure (vis., MATLAB RGB values) for which 0 (resp., 1)

represents the minimum (resp., maximum) screen luminance. We

assume that those objective values, in the interval (0, 1), are

logarithmically transformed to subjective brightness values, Si �

log(Oi; Fechner, Boring, Howes, & Adler, 1966). The advantage-

input rate for each accumulator is then an additive combination of

the difference between the subjective brightness values, S1 – S2

(resp., S2 – S1), with weight wD, and their sum, S1 � S2, with

weight wS, plus a bias parameter, v0 � 0; see Equations 1 and 2

below.

To clearly differentiate this type of input scheme from that used

in past applications of the standard LBA (where objective values

and/or their mapping to subjective values were often not known

and so rates were freely estimated) we denote the mean rate for the

accumulator associated with the advantage of Stimulus 1 over 2

(and hence also associated with a response favoring Stimulus 1) as

v1–2, and similarly v2–1 for the other accumulator.

v1�2 � v0 � wD(S1 � S2) � wS(S1 � S2) (1)

v2�1 � v0 � wD(S2 � S1) � wS(S1 � S2). (2)

The bias parameter, v0, can take on values that ensure that each

accumulator has a nonnegative drift rate and hence eventually

reaches its threshold, which in turn ensures that a response is made

in finite time (for a similar mechanism see, e.g., Bogacz, Usher,

Zhang, & McClelland, 2007; Busemeyer, Townsend, Diederich, &

Barkan, 2005; van Ravenzwaaij, van der Maas, & Wagenmakers,

2012). Different schemes for ensuring that some or all drift rates

are positive are also possible, such as by taking the ratio rather than

difference of positive subjective brightness values (e.g., Hawkins

et al., 2014). These possibilities may have practical and conceptual

advantages, but we leave their investigation to future work. The

“difference weight,” wD, is constrained to be nonnegative and

therefore the drift rate v1–2 (resp., v2�1) increases (resp., decreases)

as the brightness difference S1 – S2 increases. We constrain the

“sum weight” wS to non-negative values and therefore the drift rate

increases with the overall magnitude of the pair.

We describe this as an advantage input coding scheme as

typically wD �� wS, and so the difference term dominates in

determining the drift rate. A large difference effect makes sense as

it means the rates favor the correct response. However, a nonzero

sum term is also necessary in order to account for effects of the

absolute strength of the stimuli. In the framing given by Teodor-

escu et al. (2016), whose work inspired this formulation and whose

data we fit in the next section, these rates are partially absolute but

mostly relative.

Each of v0, wS, and wD are estimated from the data, and so the

units used to measure the stimuli do not matter up to a linear

transformation—that is, the stimulus measures are interval scales.

We assume a common variance, s, for the drift rate distribution of

all advantage accumulators within a condition, and we assume that

the inputs to the accumulators are uncorrelated. An illustration

of the two-alternative ALBA for a brightness identification task

with two response options is given in Figure 1. In the next section,

we test this model by fitting data that test the relative influences of

the sum and difference components of the inputs.

Absolute Versus Relative Input

Teodorescu et al.’s (2016) Experiment 1 compared two-

alternative forced choice of the brightest stimulus in a baseline

condition with luminance values of {.4 vs. .3}, against perfor-

mance in an “additive boost” condition, in which luminance values

were elevated through the addition of 0.2 to {.6 vs. .5}, and a

“multiplicative boost” condition, in which they were elevated

through multiplication by 1.5 to {.6 vs. .45}. The two boosts were

chosen such that the correct stimuli have identical objective values

(.6). As a result, the additive and multiplicative conditions differ

only in the luminance values of their incorrect stimuli. Although

the task required a judgment about relative brightness, the authors

found that both accuracy and RT were also sensitive to the abso-

lute values of luminance relative to the baseline condition, both

1 The original 2008 model assumed an unbounded normal distribution.
Other drift rate distributions also yield tractable models (e.g., Terry et al.,
2015), but most recent applications of the LBA assume a normal distribu-
tion truncated at zero.
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when the absolute value of the difference in luminance between

stimuli was the same as in the baseline condition (i.e., in the

additive condition) and when the ratio of luminance was the same

(i.e., in the multiplicative condition; see Teodorescu et al., 2016,

Figure 1c, bottom panel; see also Figure 2 of this paper). The

authors attributed this pattern either to nonindependent accumula-

tion of absolute values, due to lateral inhibition as in the LCA, or

independent accumulation of differences with activation depen-

dent processing noise. Here we show that the latter mechanism can

be replaced in an independent accumulation model by allowing the

sum of the subjective brightness values over stimuli to have a

small effect on drift rates.

In Teodorescu et al.’s (2016) experiment, each participant per-

formed 1,200 trials, 400 in each condition, with the conditions

randomly intermixed. As described in the previous section, we

assumed subjective brightness to be the logarithm of the luminance

values and these subjective brightness values were entered into

Equations 1 and 2 to calculate drift rates. Note that the logarithmic

transformation means the baseline and multiplicative conditions

have equal subjective differences, which are larger than the sub-

jective difference for the additive condition, whereas the subjective

sum increases from baseline to multiplicative to additive condi-

tions. There are no parameters which are free to vary between

conditions in the ALBA model for these data. Instead, the sum and

difference values entirely account for condition effects, with the

same seven estimated parameters applied to the objective bright-

ness inputs from each condition: baseline drift rate (v0), sum (wS)

and difference (wD) weights, nondecision time (t0), rate variability

(s), start-point variability (A), and the right-response accumulator

threshold (BR). The left-response accumulator threshold was fixed

at BL � 1 to make the model identifiable (Donkin, Brown, &

Heathcote, 2009) and different thresholds for each accumulator

allowed for response bias.

Details of the estimation methods are given in the Estimation

Details: Absolute Versus Relative Input subsection in Appendix B.

Table 1 reports posterior median parameter estimates. For all

participants the difference component of the rates had a much

higher weight than the sum component, on average by approxi-

mately an order of magnitude, but the sum component was non-

negligible. This resulted in mean drift rates for the target advantage

accumulator of 4.06, 4.65, and 4.1 for baseline, multiplicative, and

additive conditions, respectively, and 0.65, 1.24, and 1.94, respec-

tively, for the lure advantage accumulator. The small sum compo-

nent does not change the equal target-lure differences in subjective

brightness for baseline and multiplicative conditions (both 3.41),

with a much smaller difference in the additive condition (2.16)

reflecting the smaller difference in subjective brightness. How-

ever, the sum component is sufficient to account for the small

absolute effects in the data.

Figure 2 shows the model fits the data well, not only in terms of

accuracy and average RT but also RT distribution. The ALBA

parameter estimates are consistent with Teodorescu et al.’s (2016)

conclusion that accumulation is partially absolute (the sum com-

ponent of the ALBA) and partially relative (the difference com-

ponent of the ALBA). Our model fit is at least as good as their fit

with the LCA. In the next section, we show how ALBA can be

generalized to multiple alternatives.

The Multiple-Alternative ALBA

The multiple-alternative ALBA maintains the same underlying

type of accumulation as the two-alternative ALBA, but decisions

are made when each of a prespecified set of accumulators has

crossed its threshold, as opposed to a single accumulator crossing

a threshold (for a similar approach, see Eidels et al., 2010). The

combination stopping rules may be thought of as being realized by

counters, with one counter for each possible response, although

other conceptualizations are also possible (e.g., logic gates).

Counts are incremented by threshold-crossing events in a set of

accumulators connected to the counter. The response associated

with the counter is initiated as soon as a criterion number of counts

is achieved.

As an example, consider a task in which a participant has to

decide which of four stimuli is the brightest: 1, 2, 3, or 4. For this

decision, a standard accumulator model, such as the LBA, would

assume a one-to-one mapping between accumulators and choices.

This leads to four accumulators, which we denote as 1, 2, 3, and 4

with corresponding drift rates d(1), d(2), d(3), and d(4). For the

same decision, the ALBA has a total of 12 advantage accumula-

tors, each taking as input a difference between the evidence values

for an ordered pair of stimuli. We denote these accumulators: 1–2,

2–1, 1–3, 3–1, 1–4, 4–1, 2–3, 3–2, 2–4, 4–2, 3–4, and 4–3. In

general, for n responses there are n(n�1)/2 comparisons that can

be made and hence n(n � 1) accumulators, half for comparisons in

one direction and half for comparisons in the other direction (e.g.,

1–2 and also 2–1).

Even though the ALBA model has more accumulators than

the standard LBA model, all of the ALBA drift rates are

produced from stimulus inputs via the same set of base param-

eters as in the two-choice example above. To illustrate, consider

a trial on which Stimulus 1 is brightest and the other stimuli, all

less bright than Stimulus 1, are equally bright to one another. In

the traditional LBA, this stimulus set provides a strong “match-

ing” subjective input value SM to Accumulator 1 and a smaller

0 

A 

B 

b 

1-2 

Decision Time 

2-1 

Figure 1. The advantage linear ballistic accumulator (ALBA) and its

parameters for a two-alternative brightness identification task. Evidence

accumulation begins at a start point drawn randomly from a uniform

distribution on the interval [0, A]. Evidence accumulation is governed by

drift rates d1–2 and d2–1, drawn across trials from a normal distribution with

means v1–2 and v2–1 and standard deviation s, truncated to positive values.

A response is given as soon as one accumulator reaches the threshold b �

A � B. Observed reaction time is an additive combination of the time

during which evidence is accumulated and nondecision time t0.
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“mismatching” subjective input value of Sm to all other accu-

mulators. In the corresponding case for the ALBA, each

“matching” advantage accumulator (i.e., 1–2, 1–3, and 1– 4,

where the matching term is first) would have an advantage drift

rate value of v0 � wD (SM – Sm) � wS (SM � Sm); each

mismatching advantage accumulator (i.e., 2–1, 3–1, and 4 –1,

where the matching term is second) would have an advantage

drift rate value of v0 � wD (Sm – SM) � wS (SM � Sm); and each

Figure 2. Posterior predictive data for fits to the Experiment 1 data of Teodorescu et al. (2016). Reaction times

(RTs) for the .5 (black), .1, and .9 (gray) deciles calculated for the baseline (Base), multiplicative (Mult), and

additive (Add) conditions, and the proportion of correct responses for the respective conditions, both at the

individual level (left 3 columns and top of right column) and for aggregate data (bottom right column). For all

panels, error bars represent posterior predictive data simulated from model fits (the bar extends to the middle

95% of generated summary statistics, with the dot in the middle indicating the median) and lines represent data.

Ppn � participant.

Table 1

Median Parameter Values, With 95% Credible Intervals for Two-Alternative ALBA Model Fit to Teodorescu et al. (2016) Experiment 1

Pp A BR t0 v0 s wD wS

1 1.38 (.78, 2.12) .87 (.80, .94) .22 (.16, .27) 2.73 (2.01, 3.73) 1.39 (.99, 1.92) 5.43 (3.52, 8.19) .76 (.45, 1.25)
2 4.81 (3.40, 6.97) 1.18 (1.04, 1.37) .42 (.39, .45) 6.56 (4.82, 9.10) 2.28 (1.65, 3.26) 11.14 (7.56, 17.18) 1.56 (.97, 2.47)
3 1.27 (.76, 1.86) .97 (.91, 1.02) .17 (.12, .22) 2.96 (2.24, 3.82) 1.11 (.84, 1.46) 2.92 (2.03, 4.07) .33 (.16, .57)
4 4.20 (3.07, 5.64) .90 (.79, 1.03) .30 (.28, .32) 7.72 (5.83, 10.21) 3.75 (2.87, 4.9) 14.31 (10.17, 20.08) 1.31 (.60, 2.24)
5 1.87 (1.43, 2.65) 1.28 (1.19, 1.41) .12 (.10, .17) 3.15 (2.63, 4.15) 1.26 (1.08, 1.68) 3.16 (2.52, 4.58) .61 (.41, .95)
6 1.63 (1.19, 2.22) 1.07 (1.01, 1.14) .21 (.13, .27) 2.05 (1.65, 2.58) .66 (.51, .86) 2.03 (1.48, 2.84) .17 (.07, .30)
7 2.62 (2.15, 3.16) .93 (.85, 1.02) .10 (.10, .12) 2.11 (1.81, 2.44) .77 (.70, .85) 2.52 (2.19, 2.93) .35 (.22, .50)
Mean 2.54 (1.82, 3.52) 1.03 (.94, 1.13) .22 (.18, .26) 3.90 (3.00, 5.15) 1.60 (1.23, 2.13) 5.93 (4.21, 8.55) .73 (.41, 1.18)

Note. Rows correspond to participants (Pp), except the bottom row, which is the average of the corresponding values above. Mean parameter estimates
across participants are presented in the bottom row.
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of the remaining six “unrelated” accumulators (i.e., 2–3, 2– 4,

3–2, 3– 4, 4 –2, and 4 –3, where the matching term does not

appear) would have an advantage drift rate value of v0 � wS

(Sm � Sm), as the difference term is zero. These values serve

as the mean drift rates for their respective advantage

accumulators.

Unless stated otherwise, we assume that the standard deviation

for the drift rate distribution of all advantage accumulators is the

same. We also assume that the inputs to all accumulators are

uncorrelated. These assumptions correspond to the case where, on

each trial for each accumulator, an independent random sample

drawn from the same distribution is added to the mean drift rate of

the accumulator.2

In summary, the mean drift rates for all advantage accumulators

are determined by only three free parameters, the baseline rate, v0,

and the sum, wS, and difference, wD, weights. Each of the advan-

tage accumulators has an input, and hence mean drift rate, deter-

mined by the dimensions of the stimuli (see Trueblood et al., 2014,

for another approach where multiple-choice drift rates are con-

structed from differences). For our applications here, other stan-

dard LBA parameters A, B, and t0 are assumed to be identical

across advantage accumulators and are free parameters to be

estimated from the data. However, situations likely exist where

these restrictions must be relaxed. For instance, to accommo-

date response bias, different values of B could be allowed for

the different sets of accumulators associated with each re-

sponse. A lower value of B would make it quicker for accumu-

lators in the set to finish, and hence bias responding toward the

associated response.

With the details of the advantage accumulators established, the

last thing is to determine a stopping rule: which (set of) accumu-

lator(s) needs to finish before a response is initiated? Here, we

focus on one stopping rule, which we call win-all, that is concep-

tually closest to a max-next model. We investigated two other

stopping rules, lose-all, and lose-one, both of which are discussed

in Appendix A. Note that for the two-alternative case, all these

stopping rules collapse to the same end result, as there are only two

advantage accumulators.

Win-All

The win-all rule assumes that a response is made as soon as each

of the accumulators associated with one of the response options

has reached its threshold. For example, a win-all rule will choose

Option 1 from {1, 2, 3} if and only if:

1. Accumulators 1–2 and 1–3 have reached their thresholds,

and:

2. At least one of the accumulators in each of the sets {2–1,

2–3} and {3–1, 3–2} has not reached its threshold.

Put simply, response Option 1 is chosen if it is the first option

to have beaten every other response option. This rule could be

instantiated by linking each response with a counter having two

inputs (e.g., from 1–2 and 1–3 for a 1 response) and requiring two

counts to trigger its response. An illustration for a brightness

identification task with three response options is given in Figure 3.

With the win-all rule, it is mathematically possible for accumu-

lator termination (i.e., threshold crossing) sequences to occur

which give rise to responses in a way that appears counterintuitive.

For example, the termination sequence 2–1, 3–1, 1–2, and then 1–3

would result in choosing Option 1, as it is the first option to have

beaten all of its competitors. This may appear counterintuitive,

because Option 1 has also been beaten by each of its competitors.

With reasonable parameter settings such sequences are exceed-

ingly unlikely, because they would require opposite pairs to reach

threshold close together in a sequence, which will only happen if

they have similar inputs. However, in this case the difference

between inputs will be small, and so they are unlikely to complete

early in the sequence.

Under the win-all rule, probability of responding with Choice 1

at time t is:

p1(t) � �
I�1 �PDF1�I(t) � �

J�[1,I]

CDF1�J(t)�
� �

I�1 �1 � �
K�I

CDFI�K(t)� (3)

where I is an option in the set {2, 3}, J is an option in the same set

that is not I, and K is an option in the set {1, 2, 3} that is not I. The

cumulative distribution functions (CDFs) and probability density

functions (PDFs) are those of the standard LBA model (Terry et

al., 2015; also see Appendix A). The derivation for Equation 3 may

also be found in the Win-All Derivation subsection of Appendix A.

In the max-next model a decision is made as soon as the

difference between the most active and the next most active

accumulator exceeds a given threshold. The win-all model is

similar in that a response is made once the winning accumulator

has beaten all of its competitors—that is, all relevant accumulators

corresponding to pairwise comparisons have exceeded a given

threshold. With this rule, the last advantage accumulator to cross

its threshold will—on average—represent a contrast between the

winner and the next best response option. The win-all ALBA and

max-next models are also similar in terms of computational com-

plexity, as for the latter model a full evaluation of the stopping rule

must be made at each moment during accumulation. One possible

serial algorithm for the max-next stopping rule involves first

identifying the accumulator with the highest evidence total, then

the one with the second highest, then comparing the difference to

a threshold. A possible parallel algorithm could involve evaluating

the same set of advantages (in this context differences in momen-

tary evidence totals) as in the ALBA, with a response initiated

when an accumulator has both the maximum advantage (and hence

must have the maximum evidence total) and a minimum advantage

greater than a threshold amount.

The max-next model does not have an easily computed likeli-

hood, so requires the same simulation methods as the LCA to be

fit to data in an optimal way, but its computational complexity, like

that of the LCA (whose number of lateral inhibitory connections

increase with the square of n), makes that practically difficult as

2 If the drift rate standard deviation was in part due to variability in each
input, and that variability could differ between inputs, then only equality of
drift rate standard deviation between advantage accumulators with the
same inputs (e.g., 2–1 and 1–2) follows. That is, correlations would arise
among accumulators that share inputs, which would make the model less
mathematically tractable. However, systematic differences in rate variabil-
ity across accumulators that are not a function of inputs do not affect
tractability, and were implemented in some of the model fits of the Hick’s
law data set below.
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the number of options increases. In contrast, ALBA does have an

easily computed likelihood, which makes it straightforward to fit

data from choices among many options, as illustrated below in an

application requiring choice among up to nine options. Before

reporting that application, we report fits of data from forced

choices among four simultaneously presented options where the

max-next and LCA models were preferred over independent ac-

cumulation (Teodorescu & Usher, 2013).

Strong Versus Weak Lures

In Experiment 1A reported by Teodorescu and Usher (2013) par-

ticipants made a forced choice about which of four patches was

brightest. The key comparison was between trials that had one rela-

tively attractive incorrect answer and two very unattractive incorrect

answers (from here on, a “difficult trial”) and trials with a set of three

relatively unattractive incorrect answers (from here on, an “easy

trial”). Teodorescu and Usher theorized that, due to the comparatively

elevated input of the attractive incorrect answer in the difficult trial, an

independent race model will always predict a speed-up for correctly

answered difficult trials compared to easy trials, due to statistical

facilitation. In contrast, they found correct responses on difficult trials

were actually slower than on easy trials.

Eight participants performed between 1,000 and 1,200 trials.

Half of these trials constituted the easy condition with luminance

values of {.4, .2, .2, .2}, respectively, for the target and three lures.

The other half of the trials constituted the difficult condition with

brightness values of {.4, .3, .15, .15} (Figure 4; e.g., stimuli,

adapted from Teodorescu & Usher, 2013, Figure 4). Trials from

the easy and difficult condition were randomly mixed within each

block. In each condition, the sum of the brightness values is the

same, so that normalizing these values by dividing them by the

sum preserves the ratios between values, a feature which was used

to rule out independent race models with sum-normalized feed-

forward input competition. The ALBA is another kind of input-

competition model, but with a different architecture and stopping

rule.

As described in section Advantage-Input Coding for Binary

Choice: The Two-Alternative ALBA section we assume lumi-

nance values are log-transformed to obtain subjective brightness

values. Advantage accumulators for each pair are dictated by

Equations 1 and 2. Unfortunately, due to a computer error, the data

for this experiment only recorded whether the response was correct

or incorrect (A. R. Teodorescu, personal communication, 6 De-

cember 2013). As a result, in the case of an incorrect response it is

unknown which of the incorrect options was chosen. To respect

this, we aggregated the model’s log-likelihoods for all three error

response options in our fits to the data.

We constrained parameters A, B, t0, v0, wS, wD, and s to be

identical across the two conditions. We fixed the value of s � 1

and estimated the remaining six parameters.3 Details of the esti-

mation methods are given in the Estimation Details: Strong Versus

Weak Distractors subsection in Appendix B. We confirmed the

model was identifiable with a parameter-recovery study (for de-

tails see the Parameter Recovery Strong Versus Weak Distractors

subsection in Appendix C).

Parameter estimates for the win-all ALBA fit can be found in

Table 2. As with our fits to Teodorescu et al. (2016)’s binary

choice data, the difference component of the rates had a higher

weight than the sum component for all participants, again, on

average, by approximately an order of magnitude. Taking the first

participant as a representative example, the mean drift rates in the

easy condition that follow from the median parameter estimates in

the table are 3.1 for the target accumulator and �1.6 for the lure

3 We also fit a model that relaxed the assumption of equal rate variability
for the easy and difficult condition, estimating it for one and fixing it to s �
1 for the other. Model fit did not qualitatively improve (see the Additional
Fits Strong Versus Weak Distractors subsection in Appendix D), so we
report the more parsimonious model here.

Figure 3. The win-all version of advantage linear ballistic accumulator (ALBA) for a three-alternative task.

Only the first counter to reach a count of 2 triggers a response.

Figure 4. Example stimuli from the easy condition (left) and the difficult

condition (right). In the actual task, the numbers were not presented.
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accumulators. Mean drift rate estimates for the difficult condition

involving easy and hard lures bracket these values: for the target

relative to the hard and easy lures 1.8 and 4.0, respectively, and for

the hard and easy lures �0.1 and �2.6, respectively.

Posterior predictive data from the win-all ALBA are com-

pared against the observed data in Figure 5, showing that the

model fits relatively well. The number of free parameters re-

quired to obtain this fit (6) is no larger than the number of free

parameters (6 or 7) in the several models that were fit by

Teodorescu and Usher (2013). The model misfits accuracy for

the difficult condition for some participants, although the ag-

gregate posterior predictive data (right-most column) captures

the data at least as well as the best (max-next) model reported

by Teodorescu and Usher (2013).

To confirm the shortcomings of a conventional race model with

one-to-one accumulator-to-response mapping, we also fit a regular

LBA to the data. This LBA had one correct drift rate and three

error drift rates for each of the two conditions, along with the

standard A, B, and t0 parameters. This parametrization makes the

model very flexible, and includes any potential input competition

or feedforward inhibition model as a special case. Despite this

flexibility, it did not fit as well as the win-all ALBA; in order to

capture the pattern in RTs between the easy and difficult condition

it somewhat overpredicts error rates in both conditions (see the

Additional Fits Strong Versus Weak Distractors” subsection in

Appendix D). We performed model selection using the deviance

information criterion (DIC; Spiegelhalter, Best, Carlin, & van der

Linde, 2002), a measure that balances goodness-of-fit against

model complexity. A smaller DIC for the ALBA (2,854) than the

LBA (3,089) suggests it is the superior model. Aside from a better

fit, the ALBA model is more parsimonious with six free parame-

ters compared to 11 free parameters for the LBA. These results

suggest that it is one-to-one assumption of the traditional LBA,

rather than the way in which stimuli map to drift rates, that is

problematic.

In this section, we have demonstrated that the ALBA model can

account for the strong versus weak lure data. This result suggests

instead of independence, it is the assumption of a one-to-one

mapping of accumulators to responses and the associated response

rule that is problematic for the class of input-competition models.

Next, we turn to another challenging empirical pattern for a

multiple-alternative accumulator model: Hick’s law.

Hick’s Law

Hick’s law is a long-standing benchmark result for multiple-

alternative decisions (Hick, 1952; Teichner & Krebs, 1974). It

states that the mean RT and the logarithm of the number of choice

alternatives are approximately linearly related. A well-known

problem with independent race models with a one-to-one accumu-

lator to response mapping is that they produce the opposite trend

to Hick’s law, faster decisions with more accumulators, because of

statistical facilitation (Raab, 1962). Usher, Olami, and McClelland

(2002) note that competitive accumulation (i.e., lateral inhibition

among accumulators) can produce increasing RT with the number

of options (see also Usher & McClelland, 2001), but at least in the

LCA they found this was not sufficient to quantitatively account

for Hick’s law. They then showed that both in the LCA and an

independent racing accumulator model, Hick’s law can be accom-

modated if evidence thresholds are increased with set size in order

to compensate for a decrease in accuracy that otherwise occurs as

the number of choices increases.

Like the LCA, the win-all ALBA naturally predicts longer RTs

as the number of options (n) increases. This is because at least n �

1 accumulators need to reach threshold before a decision can be

triggered. Effectively this means DT increases as the maximum of

a set of random variables (the times for accumulators to each

threshold), where the size of that set increases in proportion to n.

Simulations with a range of different random variables indicate

that this increase is approximately linear in the logarithm of n.

However, the question remains whether the ALBA can quantita-

tively account for the fine details of RT and accuracy changes as

a function of the number of response options due to this feature of

its architecture alone, or whether evidence thresholds or other

parameters also need to change with set size.

We took advantage of the tractability of the ALBA to directly fit

an archival Hick’s law data set (van Maanen et al., 2012). This

approach allows us to go beyond the conventional formulation of

Hick’s law in terms of mean RT, expanding our test of the ALBA

to its ability to account for the effects of choice-set-size simulta-

neously on both accuracy and the full distribution of RT (see also

Brown, Marley, Donkin, & Heathcote, 2008; Hawkins, Brown,

Steyvers, & Wagenmakers, 2012a, 2012b).

van Maanen et al. (2012) had participants view displays con-

sisting mostly of randomly moving dots with a subset that move

Table 2

Posterior Median Parameter Values, With 95% Credible Intervals for the Win-All ALBA Model of Teodorescu and Usher (2013)

Experiment 1A Data

Pp B A t0 v0 wS wD

Hyper .18 (.01, .53) 1.03 (.21, 1.79) .51 (.11, .64) 1.26 (.43, 1.71) .17 (.01, .90) 1.61 (.45, 3.55)
1 .05 (.00, .19) .87 (.74, 1.02) .66 (.62, .69) 1.33 (.80, 2.00) .23 (.02, .59) 3.38 (2.86, 3.80)
2 .09 (.01, .32) 1.11 (.89, 1.35) .68 (.61, .72) 1.02 (.32, 1.70) .31 (.03, .78) 3.91 (3.25, 4.62)
3 .01 (.00, 2.13) .58 (.15, .70) .64 (.27, .65) 1.41 (.91, 10.25) .17 (.00, 3.26) 3.13 (1.32, 3.45)
4 .11 (.00, .37) 4.07 (3.39, 4.81) .48 (.37, .56) 1.28 (.86, 1.75) .09 (.00, .34) 3.69 (3.30, 4.04)
5 .39 (.07, .75) 1.19 (1.00, 1.38) .58 (.50, .65) 1.40 (.91, 3.42) .24 (.02, 1.49) 4.16 (3.64, 5.48)
6 .55 (.23, 1.21) 1.84 (1.52, 2.22) .63 (.50, .70) 1.73 (1.24, 2.32) .05 (.00, .26) 3.58 (3.10, 4.14)
7 .35 (.11, .93) 2.34 (1.98, 2.74) .60 (.47, .67) 1.57 (1.08, 13.33) .21 (.03, 4.43) 3.95 (1.77, 4.54)
8 .00 (.00, .07) .91 (.78, 1.07) .64 (.60, .66) .96 (.12, 11.39) .47 (.10, 4.15) 4.05 (2.02, 4.41)

Note. Rows correspond to participants (Pp), except the top row, which contains parameters of the group-level distributions (hyper). Group level (hyper)
parameter estimates are presented in the top row.
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coherently in one direction (Britten, Shadlen, Newsome, &

Movshon, 1992). Each trial involved either three, five, seven, or

nine directions, with the corresponding number of responses.

There were eight blocks of trials, and within each block, trials were

pseudorandomized, such that no more than two consecutive trials

had the same number of response options. In the “clustered”

condition, which we address here, the angular spacing between

adjacent stimulus directions was the same for all set sizes, and

hence the range of the stimulus directions increased with set-size,

in an attempt to equate perceptual discriminability across set sizes.

All four conditions were administered within all five subjects, and

there were 144 trials per condition.

Assume there are n stimuli, and therefore n responses matched

to stimuli in a 1-to-1 fashion. Let stimulus k, k � {1, . . . , n}, have

subjective value sk. In the experiment we consider, we assume

the stimuli are subjectively equally spaced; that is, there is a

subjective stimulus value s such si � sj � (i – j)s for all i, j �{1,

. . . , n}. We assume that the subject has a (referent) memory of the

subjective value of each stimulus that is presented in the current

task. Let Sj|i denote the “strength” of response j when stimulus i is

presented. Then we assume Sj|i has the form4:

Sj |i � � 1

1 �
| sj � si |

s
��

� � 1
1 � | j � i | 	

�

with a constant � � 0. To provide some intuition about this

function, consider the condition with five choice options, and a

trial in which Stimulus 2 is presented. For � � 1, this leads to the

set of input values {0.5, 1, 0.5, 0.33, 0.25}, reflecting the fact that

nearby options are more plausible than options further removed.

For � � �, this leads to the set of input values {0, 1, 0, 0, 0},

reflecting no difference in the input values for competitors (i.e., no

4 The presented form is for stimuli that are subjectively equally spaced
and, as we see later, does not fit certain data for stimuli at, or near, the ends
of the range of presented stimuli well. A complete theory, building on the
current assumptions, might include a rehearsal component, similar to that
in the Selective Attention, Mapping, and Ballistic Accumulation model
(SAMBA; Brown et al., 2008).

Figure 5. Posterior predictive data for fits to the Experiment 1A data of Teodorescu and Usher (2013). Reaction times

(RTs) for the .5 (black), .1, and .9 (gray) deciles calculated for the easy (top-left) and difficult (top-right) condition, and the

proportion of correct responses for the easy (bottom-left) and difficult (bottom-right) condition, both at the individual level

(left 4 columns) and for aggregate data (right column). For all panels, error bars represent posterior predictive data simulated

from model fits (the bar extends to the middle 95% of generated summary statistics, with the dot in the middle indicating

the median) and lines represent data. See text for details. Ppn � participant.
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effect of proximity). Calculation of drift rates for each advantage

accumulator followed a slightly modified version of Equations 1

and 2 to account for the fact that inputs depend on the angular

distance from the correct response:

vj�k |i � v0 � wD(Sj |i � Sk |i) � wS(Sj |i � Sk |i) (4)

vk�j |i � v0 � wD(Sk |i � Sj |i) � wS(Sj |i � Sk |i). (5)

Details of model fitting can be found in the Estimation Details:

Hick’s Law subsection in Appendix B. We confirmed the model

was identifiable with a parameter-recovery study (for details see

the Parameter Recovery Hick’s Law subsection in Appendix C). In

order to see if the win-all ALBA naturally produces Hick’s law we

fit a model that constrained all parameters to be equal across

set-size conditions (i.e., B, A, t0, v0, wS, wD, and �), with a fixed

value of s � 1 (ALBA-1). Estimated parameters for the resulting

model are given in Table 3. The pattern of weight parameters

follows that found in earlier fits with the difference weight more

than an order of magnitude greater than the sum weight. Although

estimates of � are relatively small, mean rates change monotoni-

cally with the distance between inputs. For example, based on the

median posterior parameter estimates for the first participant, mean

rates for the accumulator associated with the advantage of the

correct choice over Options 1, 2, and 3 spaces removed are 1.1,

1.7, and 2.1, respectively. Similarly, for the advantage accumulator

associated with choice options 1, 2, and 3 spaces removed from the

correct choice mean rates were �0.9, �1.5, and �1.9, respec-

tively. Estimates of A were quite large, indicating strong effects of

factors like response biases due to carryover effects from previous

responses (Heathcote, Suraev, Curley, Gong, & Love, 2015), In

comparison, B estimates were small, although they were, in most

cases, clearly greater than zero, indicating that participants exer-

cised a small degree of response caution.

As shown in Figure 6, the model fit the median RT data well,

consistent with the ALBA architecture accommodating the loga-

rithmically increasing effect of set size. It also fit effects on fast

RTs, but did not fit the increase in error rates with set size and RTs

in the slow tail of the distributions for higher set sizes. Given the

misfit we explored models that allowed selected parameters to

change with set size n. These analyses demonstrate how the

ALBA’s easily computed likelihood makes it practical to fit and

evaluate a range of alternative model parameterizations. DIC val-

ues for all models can be found in Table 4. The table also reports

the two components of DIC, one of which quantifies the model

misfit, and the other that determines the penalty for model com-

plexity.

Following Usher et al. (2002), we first examined a model that

allowed thresholds to vary across set-size conditions. Varying

threshold with set size could occur because set-size was manipu-

lated between blocks of trials so participants could implement a

trade-off between speed and accuracy (model ALBA-4B). Al-

though there were small improvements in both DIC and the ac-

count of accuracy effects, there was still clear misfit (see Appendix

D, Figure D3).

As parameters determining the level of trial-to-trial variabil-

ity (i.e., start-point noise, A, and rate variability, s) affect error

rates, it seems likely that this aspect of the misfit might be

addressed by allowing one or more of these parameters to

change with set size. We first considered changes in A. Start-

point noise is usually attributed to factors like response biases

due to carryover effects from previous responses (Heathcote et

al., 2015) and so could plausibly vary with the number of

responses. We allowed a different value of A for every set size

(ALBA-4A), with all other parameters constrained to be equal

across set-size conditions. However, although DIC and the fit

were again slightly improved, substantial misfit was still evi-

dent (see Appendix D, Figure D4).

We next considered rate variability (s), and, inspired by the

work of Ratcliff, Voskuilen, and Teodorescu (2018), we fit a

model (ALBA-�) that assumed it increased linearly with the set

size and in proportion to the mean rate. This was achieved by

estimating one additional free (slope) parameter, �, where sn �

1 � � 	 (n – 3) 	 v. This equation fixes s � 1 for the smallest

set size (N � 3), which makes the model identifiable. We

bounded the value of sn below by 0.01 to enforce the necessary

nonnegativity of a standard deviation. Note that a more complex

model with a different value of s estimated for each set size did

not fit much better. Again, all other parameters were con-

strained to be equal across set-size conditions. Despite requir-

ing the estimation of only one extra parameter, there was a very

substantial reduction in misfit and improvement in DIC. As

shown in Figure 7, this model produced a good fit to almost all

aspects of the data, including the decrease in accuracy with

increasing set size, with only accuracy for Set Size 3 being

underestimated.

Estimated parameters for the ALBA-� model are given in Table

5. Estimates of � were positive for all participants, which forced

drift rate variability (s) to increase with mean drift rate, although

the increase was modest. Overall, mean rates were more extreme

than those for the baseline (ALBA-1) model. For example, based

on the median parameter estimates for the first participant, mean

Table 3

Estimated Parameters of the ALBA-1 Model for the Van Maanen et al. (2012) Data Set

Pp B A t0 v0 wS wD �

Hyper .11 (.01, .32) 1.18 (.94, 1.45) .34 (.19, .41) .20 (.01, .80) .34 (.04, .73) 10.00 (4.58, 15.17) .16 (.07, .48)
1 .11 (.01, .32) 1.22 (1.02, 1.51) .33 (.25, .39) .13 (.01, .43) .13 (.01, .34) 10.21 (3.95, 19.08) .14 (.08, .40)
2 .05 (.00, .17) 1.14 (.94, 1.34) .37 (.32, .42) .32 (.02, .86) .27 (.02, .51) 16.56 (10.64, 26.53) .09 (.05, .14)
3 .14 (.03, .38) 1.25 (1.03, 1.56) .30 (.20, .36) .12 (.01, .42) .11 (.00, .36) 12.17 (4.03, 21.38) .15 (.09, .44)
4 .05 (.00, .17) 1.03 (.82, 1.22) .33 (.27, .37) .28 (.02, .99) .42 (.06, .65) 14.88 (9.89, 23.64) .09 (.06, .14)
5 .19 (.06, .40) 1.19 (1.02, 1.44) .43 (.37, .46) .20 (.01, 1.38) 1.12 (.27, 1.42) 4.49 (3.02, 15.19) .38 (.12, .58)

Note. Displayed are the median parameter values, with a 95% credible interval of the posterior presented in parentheses. Rows correspond to participants
(Pp), except the top row, which contains parameters of the group-level distributions (hyper). Group level (hyper) parameter estimates are presented in the
top row. ALBA � advantage linear ballistic accumulator.
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rates were 4.8, 6.5, and 7.8 for the correct choice over Options 1,

2, and 3 spaces removed, respectively, and �1.2, �3.0, and �4.3

for choice Options 1, 2, and 3 spaces removed relative to the correct

choice. This occurred because s estimates were greater than s � 1 for

larger set sizes, which leads to more errors. For Set Size 5, for

example, s values associated with the correct choice over Options 1,

2, and 3 spaces removed were 2.3, 2.7, and 3.0, respectively, although

this was partially compensated for by decreased variability for choice

Options 1, 2, and 3 spaces removed from the correct choice, with

values of 0.7, 0.2, and 0.01, respectively. The other parameter values

shared with the ALBA-1 model were similar, except that � was larger,

producing a shallower decrease in rates with distance from the stim-

ulus direction, and B was close to zero, indicating that participants

exercised minimal response caution.

Finally, we examined two models that allowed threshold (B) to

vary with set size in addition to a between-trial variability param-

eter. For the case where A also varies with set size (model ALBA-

4BA) there was a very large improvement in DIC, although this

was still not sufficient to be selected over the much simpler

ALBA-� model. The ALBA-4BA model also underpredicts accu-

racy for the smallest set size and overpredicts accuracy for the two

largest set-sizes (Appendix D, Figure D5).

The case where B and s vary with set size (model ALBA-�4B)

produced the lowest DIC of any model in Table 4 but the improve-

ment compared to the ALBA-� model was modest. Figure 8 shows

that accuracy for Set Size 3 is now captured slightly better than the

ALBA-� model, but is still somewhat underpredicted. Estimated

parameters for the ALBA-�4B model are given in Table 6. Most

parameters shared with the ALBA-� follow a similar pattern. The

B parameters for the ALBA-�4B generally decrease as set size

increases, starting at values similar to the ALBA-1 model for

smaller set sizes with the values for n � 9 being similar to the

single estimate for the ALBA-� at close to zero, indicating a very

low level of response caution.

Finally, we also fit a standard LBA model, in which we let A, B,

vc (corresponding to mean drift rate matching the correct direc-

tion), and ve (corresponding to mean drift rate not matching the

correct direction) all vary freely with set size, but constrained t0 to

be equal across set size. Despite its complexity, this model, with 17

free parameters, failed to fit the data satisfactorily, because it

Figure 6. Posterior predictive data for the ALBA-1 fit to the van Maanen et al. (2012) data. Reaction times

(RTs) for the .5 (black), .1, and .9 (gray) deciles (top) and the proportion of correct responses (bottom) as a

function of set size (N) on a logarithmic scale. Posterior predictives are presented at the individual level and for

aggregate data (bottom-right panel). For all panels, box-and-whiskers represent posterior predictive data (the box

contains 95% of the simulated data, with a bar across the middle indicating the median, and whiskers extend to

the data extremes) and lines represent data. See text for details. Ppn � participant.
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overestimated the increase in error rate for increasing set sizes (for

details, see Appendix D). Note that the fits presented in van

Maanen et al. (2012) were based on even larger numbers of free

parameters.

In summary, these analyses clearly show that the win-all ALBA

naturally predicts Hicks law in terms of the central tendency of RT,

and is able to capture most fine-grained effects of set size not only

on the full distribution of RT, but also on accuracy, at least when

some of its parameters are allowed to change with set size in

reasonable ways. In the data set examined here (van Maanen et al.,

2012) there was strong support for a parsimonious account in

terms of a linear effect of set size on a proportional relationship

between the mean and standard deviation of variability in rates,

and some evidence for a decrease in response caution as set size

increased. Whether such effects apply to other instances of Hick’s

law remains to be seen.

It is possible that the remaining misfit, underprediction of ac-

curacy for the smallest set size of three, may not be due to the

win-all ALBA itself but instead because of our specification of the

way mean rates change as a function of distance from the correct

response. Although the function we specified is flexible, it does

not take account of “edge effects”–improved discriminability for

stimuli at the extremes of the stimulus set—which are known to be

prevalent in absolute identification tasks, such as the present one,

that require classification of stimuli along a single dimension (Brown

et al., 2008). For n � 3 the majority of the stimuli are at the edges,

whereas this proportion drops off rapidly as n increases, consistent

with a pronounced underprediction of accuracy for n � 3.

Discussion

We have proposed a theory of multiple choice decisions in terms

of advantages, directed pairwise comparisons among the subjec-

tive values of response alternatives. We instantiated this theory

through a linear scheme for mapping subjective values to the

inputs for linear evidence accumulation processes that race inde-

pendently to determine a choice. Together these assumptions are

required for the validity of the simple race equation that we use to

instantiate the theory in the ALBA model, making it sufficiently

mathematically tractable to support an easily computed likelihood.

We exploited this likelihood to explore the ability of the model to

provide comprehensive fits to both choice probabilities and the full

distribution of RT. We addressed tasks requiring either identifica-

tion or forced choice among sets of responses ranging in size from

two to nine, with a focus on phenomena that have been claimed to

rule out independent race models (Teodorescu & Usher, 2013).

Contrary to these claims, the ALBA provided a good account of

these data in a parsimonious and parametrically plausible and

coherent manner.

We first focused on a task requiring two-alternative forced

choices based on brightness (Teodorescu et al., 2016, Experiment

1). We exploited the known luminance values and research sup-

porting a logarithmic mapping to subjective brightness values

(Fechner et al., 1966) to test a linear mapping to the rate of

evidence accumulation in terms of three estimated parameters, an

intercept and weights on the sum of and difference between

the subjective brightness values for the two options being com-

pared by each advantage accumulator. We described this as an

advantage-input coding scheme because it is the difference com-

ponent that determines whether responses are accurate. Consistent

with this nomenclature, the difference weight was estimated as an

order of magnitude greater than the sum weight. This finding was

replicated in our two subsequent applications of the ALBA, for

choices among more than two brightness values and movement

directions in forced choice and identification, respectively, bolster-

ing the plausibility of the advantage-input coding scheme. In all

cases the sum weight, although smaller, was nonnegligible, con-

sistent with Teodorescu et al.’s (2016) conclusion, that forced

choice has both absolute and relative components.

Although we focused on cases in which objective stimulus

values are known and a mapping assumed that produces corre-

sponding subjective values for each stimulus, the advantage-input

coding scheme also enables subjective values to be directly esti-

mated, at least when there are sufficiently many stimuli. In binary

choice, for example, with only two stimuli the corresponding two

subjective values cannot be identified because a total of five

parameters must be estimated (i.e., the 2 subjective values and 3

advantage-input parameters) in order to specify four rates (i.e.,

inputs for each of the 2 accumulator for each stimulus). However,

with three stimuli identification is possible because the required

number of six estimated parameters is commensurate with the six

required rates. As the number of stimuli (S) increases estimates

become increasingly constrained as only S � 3 parameters are

required to calculate 2 	 S rates. Thus, our approach provides a

method to estimate a scaling of subjective values for a set of three

or more stimuli based on binary responses that, for the first time to

our knowledge, takes account of RT as well as choices. This

approach can be applied when objective values are unknown (e.g.,

for items in a recognition memory experiment) and also when they

are known to infer an unknown mapping to subjective values.

The same logic applies to estimating subjective values from

choices among more than two options. This offers potential effi-

ciencies above standard methods of obtaining a scaling based on

testing all possible binary comparisons among a set of stimuli, as

all such binary comparisons are assumed to occur as part of the

ALBA architecture. Clearly further work is needed to determine

the best designs to realize this potential. Our applications here

focused on cases like brightness judgments where a unidimen-

Table 4

DIC Summed Over Participants for ALBA Fits to the Van

Maanen et al. (2012) Data

Model Pars Misfit Complexity DIC

ALBA-1 7 6,439 36 6,475
ALBA-4B 10 6,399 �15 6,384
ALBA-4A 10 6,303 56 6,359
ALBA-4BA 13 6,020 66 6,085
ALBA-� 8 6,045 �8 6,037
ALBA-�4B 11 5,925 17 5,943
LBA 17 33,213 71 33,355

Note. Parameter(s) varying with set size, ALBA-1: None, ALBA-4B: B,
ALBA-4A: A, ALBA-4BA: Both B and A, ALBA-�: s, ALBA-�4B: Both
s and B. DIC � deviance information criterion; LBA � linear ballistic
accumulator; ALBA � advantage LBA; Pars � number of free parameters
per participant for all four conditions; Misfit � �2 times the likelihood of
the median parameter estimate; Complexity � �4 times the median
likelihood of the overall model � 4 times the likelihood of the median
parameter estimate; DIC � misfit � complexity.
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sional scaling of subjective values is likely to apply. However, our

approach could be applied more broadly to cases where multidi-

mensional scalings might be required, such as in multiattribute

choice. In this case subjective coordinates would be estimated and

differences taken according to an assumed distance metric (e.g.,

Euclidean or city block), and goodness of fit used to adjudicate

among potential choices of dimensionality and metric (e.g., Lee,

2001).

In more complex situations that violate simple scalability, such

as the multiattribute choice context effects studied by Trueblood et

al. (2014), a potential approach is an architecture in which there

is a separate ALBA for each attribute, so each attribute is treated

Table 5

Estimated Parameters of the ALBA-� Model for the Van Maanen et al. (2012) Data Set

Pp B A t0 v0 wS wD � �

Hyper .01 (.00, .05) 1.76 (.84, 2.48) .41 (.28, .46) 1.21 (.35, 1.80) .20 (.01, .61) 9.08 (4.67, 13.37) .32 (.10, 1.00) .07 (.01, .13)
1 .01 (.00, .04) 2.61 (2.05, 3.31) .42 (.37, .46) 1.87 (1.18, 2.48) .08 (.00, .31) 3.30 (2.79, 5.73) 1.32 (.41, 1.70) .13 (.07, .17)
2 .01 (.00, .05) 1.48 (1.23, 1.80) .42 (.39, .44) 1.19 (.43, 1.58) .12 (.01, .51) 14.49 (7.44, 25.39) .13 (.07, .26) .05 (.04, .06)
3 .01 (.00, .07) 1.79 (1.46, 2.21) .42 (.38, .45) .92 (.17, 1.40) .15 (.01, .56) 11.60 (4.16, 20.97) .21 (.11, .68) .10 (.07, .12)
4 .01 (.00, .03) 1.21 (1.02, 1.45) .39 (.37, .41) 1.28 (.50, 1.73) .16 (.01, .57) 13.30 (8.01, 24.51) .15 (.08, .26) .06 (.05, .08)
5 .01 (.00, .10) 1.80 (1.43, 2.28) .49 (.46, .51) 1.78 (.45, 3.03) .57 (.03, 1.38) 10.80 (6.12, 20.18) .30 (.16, .56) .03 (.02, .04)

Note. Displayed are the median parameter values, with a 95% credible interval of the posterior presented in parentheses. Rows correspond to participants
(Pp), except the top row, which contains parameters of the group-level distributions (hyper). Group level (hyper) parameter estimates are presented in the
top row. ALBA � advantage linear ballistic accumulator.

Figure 7. Posterior predictive data for the advantage linear ballistic accumulator (ALBA)-� fit to the van Maanen

et al. (2012) data. Reaction times (RTs) for the .5 (black), .1, and .9 (gray) deciles (top) and the proportion of correct

responses (bottom) as a function of set size (N) on a logarithmic scale. Posterior predictives are presented at the

individual level and for aggregate data (bottom-right panel). For all panels, box-and-whiskers represent posterior

predictive data (the box contains 95% of the simulated data, with a bar across the middle indicating the median, and

whiskers extend to the data extremes) and lines represent data. See text for details. Ppn � participant.
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like a separate stimulus, and an appropriate stopping rule applied

to combine the outputs of each ALBA. In Appendix E we inves-

tigated one such win-all type stopping rule, choosing the option

whose entire set of advantages (for both attributes) finishes first.

We obtained the attraction effect (Huber, Payne, & Puto, 1982),

where an indifferent forced binary choice is tipped toward one

option in a trinary choice by adding a stimulus that is equal on one

attribute and slightly inferior on the other to the now-favored

stimulus. We also obtained the compromise effect (Simonson,

1989), where the added stimulus is clearly dominated on one

attribute and dominates on the other attribute relative to the new

favored stimulus, but less so than the now-disfavored stimulus.

Qualitative and quantitative details on why ALBA is able to

produce these effects are provided in Appendix E.

We offer these findings as a demonstration that the ALBA is not

necessarily incompatible with, and offers a potential alternative

approach to, phenomena that violate simple scalability. We are

certainly not claiming that this version of the win-all ALBA

provides the same sort of comprehensive account of context effects

on RT and choice as the currently leading models, the Multiattrib-

ute Linear Ballistic Accumulator Model (MLBA; Trueblood et al.,

2014), LCA (Tsetsos, Usher, & Chater, 2010) and Multi-

alternative Decision Field Theory (MDFT; Roe, Busemeyer, &

Townsend, 2001). However, it might offer an attractive alternative

route to pursue in modeling these effects as it has recently been

shown that not only the LCA, but also MDFT and the MLBA are

not measurement models (i.e., a model whose parameters can be

successfully recovered from data, Evans et al., 2019). Of course, it

remains to be shown if the multiattribute model we have proposed,

with one ALBA per attribute, is a measurement model.

Our second application of the ALBA focused on a four-

alternative forced-choice task, again requiring selection of the

brightest stimulus (Teodorescu & Usher, 2013), so we used the

same method of determining rates from objective stimulus values.

With n � 4 possible responses there are n(n � 1) � 12 advantage

accumulators, with each response being associated with a set of

n � 1 advantages. We showed that a win-all decision rule was able

to accommodate the “near-competitor” effect, whereby decisions

are slower and less accurate when a lure stimulus is close in value

to the correct stimulus. This occurs under the win-all rule because

Figure 8. Posterior predictive data for the ALBA-�4B fit to the van Maanen et al. (2012) data. Reaction times

(RTs) for the .5 (black), .1, and .9 (gray) deciles (top) and the proportion of correct responses (bottom) as a

function of set size (N) on a logarithmic scale. Posterior predictives are presented at the individual level and for

aggregate data (bottom-right panel). For all panels, box-and-whiskers represent posterior predictive data (the box

contains 95% of the simulated data, with a bar across the middle indicating the median, and whiskers extend to

the data extremes) and lines represent data. See text for details. Ppn � participant.
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DT is determined by the slowest member of the winner’s set of

n � 1 advantages, which for an accurate response will typically

correspond to the contrast between the correct stimulus (with the

maximum stimulus value) and the near competitor (with the next-

to-maximum value). As the later contrast has a slow rate (i.e., the

average advantage is small) the near-competitor effect arises, and

as we noted this also makes the win-all ALBA similar to the

max-next model.

Our final application was to an identification task that varied the

number of potential responses between n � 3 and n � 9 (van

Maanen et al., 2012), with a focus on Hick’s law, a linear increase

in mean RT with the logarithm of n. Hick’s law is problematic for

independent race models with a one-to-one mapping between

stimuli and accumulators, because DT corresponds to the mini-

mum of the n accumulator completion times, which, all other

things being equal, decreases with n. For the win-all ALBA the

same logic about a minimum time applies, but to the counters that

require all of their n � 1 accumulators to complete before they

complete. Hence, all other things are not equal, as the completion

time of a counter depends on the maximum completion time over

its n � 1 accumulators, which increases with n. We showed that

Hick’s law naturally emerges from this “minimum-of-maxima”

setup.

The win-all stopping rule is a key component in successfully

extending the ALBA to tasks with more than two choices. How-

ever, it is only one of a variety of potential stopping rules. In

Appendix A “ALBA Stopping Rules”, we detail two alternative

stopping rules. The lose-all rule assumes that the decision maker

responds as soon as all but one of the response options have been

beaten by every other contrasting alternative. The lose-one rule

assumes that the decision maker responds as soon as all but one of

the response options have been beaten by at least one contrasting

alternative. We focused on the win-all rule because of its concep-

tual similarity to max-next models, because of the relatively trans-

parent way in which it explains the near-competitor effects and

Hick’s law, and because it provided the best fit to the data we

examined. However, we do not believe it would be prudent to

conclude that the later finding will always hold, that the same

stopping rule necessarily applies in all situations, or indeed that the

three we considered are the only possibilities. That said, at present

we recommend the win-all rule as the default choice for applica-

tions of the ALBA.

Our further analysis of van Maanen et al.’s (2012) data show-

cased the power afforded by the ALBA’s easily computed likeli-

hood in terms of our ability to relatively easily fit and evaluate a

range of alternative model parameterizations despite the compu-

tational complexity associated with n � 9 choices, and hence

n(n � 1) � 72 accumulators. We were able to explore six models

with Bayesian methods that enabled us to thoroughly evaluate and

compare them. This also demonstrated the application of a flexible

functional method for determining subjective values from objec-

tive stimulus values. We did not intend either the proposed map-

ping or the model exploration to be definitive, but rather as

illustrative of the potential for future applications of the ALBA.

Even so, we were able to show that the ALBA was able to fit

fine-grained detail in a complex data set.

Throughout this article we have made a number of simplifying

assumptions in the interests of parsimony or tractability. However,

it is important to acknowledge that in some of these cases there is

no in principle objection to relaxing these assumptions. First, we

generally attempted to minimize differences in trial-to-trial vari-

ability. We always assumed the start-point range (A) to be fixed

between accumulators within trials. Rate variability (s) was fixed

between accumulators for most applications, but was allowed to

change linearly with the mean rate (v) and set-size to account for

the reduction in accuracy with increasing set size for the Hick’s

law data set. It is possible that future applications will require

further relaxation of assumptions about trial-to-trial variability.

Throughout this article we also assumed independence in two

senses. The first is in the relationship between accumulators during

accumulation (i.e., that the value in one accumulator does not

affect the value in another). The second sense refers to the values

of starting points and drift rates on a given trial being sampled

independently over accumulators. However, we note that there are

a number of ways to define independence (Teodorescu & Usher,

2013), and that we did not assume independence in the relationship

Table 6

Estimated Parameters of the ALBA-�4B Model for the Van Maanen et al. (2012) Data Set

Pp B3 B5 B7 B9 A t0

Hyper .12 (.01, .35) .16 (.03, .31) .05 (.00, .14) .01 (.00, .07) 1.81 (1.20, 2.41) .39 (.22, .45)
1 .06 (.00, .19) .21 (.12, .34) .07 (.01, .17) .01 (.00, .03) 2.40 (1.80, 3.09) .41 (.35, .45)
2 .30 (.21, .41) .19 (.12, .28) .06 (.01, .12) .01 (.00, .03) 1.58 (1.30, 1.90) .39 (.35, .42)
3 .09 (.01, .18) .11 (.02, .18) .03 (.00, .09) .02 (.00, .11) 1.83 (1.52, 2.22) .39 (.36, .43)
4 .18 (.10, .28) .13 (.06, .21) .04 (.00, .10) .01 (.00, .04) 1.43 (1.19, 1.77) .35 (.32, .37)
5 .03 (.00, .11) .19 (.11, .31) .06 (.01, .17) .02 (.00, .12) 1.81 (1.49, 2.34) .48 (.45, .50)

v0 wS wD � �

Hyper 1.10 (.31, 1.73) .35 (.03, .77) 8.19 (4.57, 11.88) .37 (.14, 1) .07 (.01, .12)
1 1.73 (1.16, 2.28) .07 (.00, .34) 3.33 (2.69, 6.20) 1.19 (.37, 1.61) .12 (.07, .15)
2 1.10 (.18, 1.73) .31 (.02, .82) 11.27 (7.06, 17.63) .17 (.11, .30) .06 (.05, .07)
3 .91 (.13, 1.43) .21 (.01, .64) 9.63 (5.17, 18.86) .26 (.12, .55) .10 (.08, .12)
4 1.22 (.23, 1.95) .39 (.03, .97) 12.10 (7.42, 20.98) .17 (.10, .30) .06 (.05, .08)
5 1.30 (.23, 2.93) 1.06 (.19, 1.79) 8.19 (5.08, 13.01) .41 (.25, .65) .03 (.03, .04)

Note. Displayed are the median parameter values, with a 95% credible interval of the posterior presented in parentheses. Rows correspond to participants
(Pp), except the top row, which contains parameters of the group-level distributions (hyper). Group level (hyper) parameter estimates are presented in the
top row. ALBA � advantage linear ballistic accumulator.
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of the inputs that are fed into different accumulators, which is the

type of independence Teodorescu and Usher (2013) focused on. It

is possible that future work aiming to maintain mathematical

simplicity may also relax the second sense in which we used

independence, as the resulting race models remain tractable in

some cases (Heathcote & Love, 2012). This may be desirable as

plausible mechanisms exist that could result in positively or neg-

atively correlated thresholds and/or rates over accumulators. For

example positive correlations could result from trial-to-trial fluc-

tuations in attention that have a common effect on the rates of both

accumulators, or fluctuations in response caution that have a

common effect on the thresholds of both accumulators.

The ALBA shares with the LCA and max-next models a high

degree of computational complexity that either scales with the

square of the number of possible responses or involves some serial

components. In the LCA this increase in computational complexity

occurs because, although there are only n accumulators, n(n � 1)

lateral inhibitory connections are required. For the max-next model

this increase in computational complexity occurs either because

several serial operations are required at each moment during

accumulation or because a parallel version requires the same order

of advantage comparisons as the ALBA. A common element here

is the requirement to base decisions on some sort of pairwise

comparison among potential responses, which naturally leads to a

polynomial increase in computational cost with n. Although ways

to avoid this have been proposed, such as normalizing inputs, it has

been argued that this approach is inadequate (Teodorescu & Usher,

2013). A reviewer pointed out that in the LCA the number of

inhibitory connections, and hence computational complexity,

could be reduced to a linear function of n by outputs from each

accumulator projecting to a single unit that then sends back the

same inhibitory value to each accumulator. This possibility was

explicitly explored by Wang (2002; see also Bogacz, Brown,

Moehlis, Holmes, & Cohen, 2006, Figure 3). Further, even in the

standard LCA in which all response units mutually inhibit, typi-

cally all connections are assumed to have equal strength, and so

only a single free parameter is added. These considerations show

that computational simplifications are possible for the LCA,

whereas analogous simplifications to the ALBA’s architecture are

much more difficult to envisage. The ALBA expresses this cost in

terms of a complex architecture, but we would argue that it is

plausible, given the brain’s massively parallel architecture.

In conclusion, this paper presents a new framework for model-

ing multialternative speeded-choice data. The framework is based

on racing accumulators corresponding to binary advantages of

choice options. It can be used to instantiate a tractable independent

accumulator model with an explicit likelihood function that sup-

ports comprehensive and efficient fitting to data. Further, the

model can account for a number of benchmark data sets in per-

ceptual decision making in terms of psychologically interpretable

parameters. On a broader scale, this framework provides a general

way of dealing with key phenomena for multiple choice, such as

response competition, the effect of number of choice options, and

simultaneous absolute and relative effects among choice options,

that are potentially important beyond perceptual decision making.

When combined with the fact that it supports a measurement

model, which, in turn, allows it to address cases where objective

input values, or their mapping to subjective values, must be in-

ferred, we believe this framework could be applied more widely

than perceptual choice, potentially providing detailed quantitative

characterizations performance in areas ranging from memory and

psycho-linguistics to judgment and decision making and thinking

and reasoning.
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Appendix A

ALBA Stopping Rules

All stopping rules for the ALBA require access to an analytical

expression for the probability density function (PDF) and cumu-

lative density function of a single accumulator. As shown in Terry

et al. (2015), the cumulative distribution function (CDF) for the

random variable associated with the decision time (DT; t � 0) of

a single accumulator is given by:

CDF(t) � 1 � �tZ(t) � b
A 	G�b

t 	 � �b � A � tZ(t)
A 	G�b � A

t 	
(A1)

with

Z(t) �
1

G�b
t 	 � G�b � A

t 	



b�A

t

b

t ug(u)du. (A2)

Here, G and g represent the CDF and PDF for the distribution of

drift rates, respectively. The PDF for finishing times of a single

accumulator is obtained by differentiation of (6) with respect to t.5

Assuming Z(t) is differentiable for all t � 0, and denoting its

derivative by Z=(t), we get

PDF(t) � �Z(t) � tZ�(t)
A 	G�b

t 	

� �tZ(t) � b
A 	��

b

t2	g�b
t 	��Z(t) � tZ�(t)

A 	G�b � A
t 	

� �b � A � tZ(t)
A 	��(b � A)

t2 	g�b � A
t 	. (A3)

Note that Equations A1 and A3 only involve the expressions for

the PDF and CDF of the drift rate distribution (g and G, respec-

tively). This results in expressions for the PDF and CDF for a

single accumulator that are analogous to those presented as Equa-

tions 1 and 2 of Brown & Heathcote (2008).

Win-All Derivation

In this section, we unpack the equations for the win-all version

of the ALBA model, (Equation 3) for a decision trial with three

response options (i.e., 1, 2, and 3). It can be written out as:

p1(t) � PDF1�2(t) � CDF1�3(t) � �
I�A �1 � �

K�I

CDFI�K(t)�
�PDF1�3(t) � CDF1�2(t) � �

I�A �1 � �
K�I

CDFI�K(t)� (A4)

where I is an option in the set {2, 3} and K is an option in the set

{1, 2, 3} that is not I. The first line represents the scenario where

Accumulator 1–2 is the terminating accumulator that prompts the

response (PDF1–2(t)), Accumulator 1–3 had finished before

(CDF1�3(t)), and at least one accumulator out of each of the sets

{2–1, 2–3}, and {3–1, 3–2} had not yet finished (
I�1[1�
K�I

CDFI�K(t)]).

Similarly, the second line represents the scenario where Accu-

mulator 1–3 is the terminating accumulator that prompts the re-

sponse (PDF1�3(t)), accumulator had finished before (CDF1–2(t)),

and at least one accumulator out of each of the sets {2–1, 2–3}, and

{3–1, 3–2} had not yet finished (�I�1 �1 � �K�I CDFI�K�t	�).
The PDF for Response 1 is completed by summing the expres-

sions on both of these lines.

Lose-All Stopping Rule

The lose-all model assumes that the decision maker responds as

soon as all but one of the response options have been beaten by

every other contrasting alternative; thus, the lose-all model is a

“last man standing” algorithm, and the conceptual inverse of the

win-all model. For example, the decision maker chooses one from

three response options (i.e., 1, 2, and 3) if and only if

1. All of the accumulators in each of the sets {1–2, 3–2},

and {1–3, 2–3} have reached their threshold, and:

2. At least one of the accumulators in the set {2–1, 3–1}

has not reached its threshold.

Specifically, response Option 1 is the sole remaining option that

has not yet been beaten by every competitor. This rule could be

instantiated by linking each response with a counter having six

inputs (e.g., all but 1–2, and 1–3 for a 1 response) and requiring six

counts to trigger its response.

Again, accumulator termination sequences can arise that look

somewhat contradictory. For example, consider the following se-

quence of accumulators reaching threshold: all of the accumulators

in {1–2, 1–3}, followed by accumulators {2–1, 3–1}, and {2–3}.

Then Response 2 is made, despite the fact that 1 started out beating

every competitor. Again, with sensible drift rates, this set of events

is exceedingly unlikely.

The PDF for the distribution of Responses 1 at time t is given by

p1(t) � �
I�1 ��J�I

�PDFJ�I(t) � �
K�I,J

CDFK�I(t) � �
L�I,1

�
M�L

CDFM�L(t)	�
� �1 � �

I�1

CDFI�1(t)	 (A5)

5 Note that there is a typo in Equation 3 of Terry et al. (2015); the form
presented here is the corrected version.

(Appendices continue)
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where I is an option in the set {2, 3}, J is an option in the set {1,

2, 3}, K is an option in the set {1, 2, 3} that is neither I nor J, L

is an option in the set {2, 3} that is not I, and M is an option in the

set {1, 2, 3} that is not L. Each CDF is obtained by applying

Equation A1 to the respective advantage accumulator, and each

PDF is obtained by applying Equation A3 to the respective advan-

tage accumulator.

For a decision trial with three response options (i.e., 1, 2, and 3),

Equation A5 can be expanded as:

p1(t)��
J�2

�PDFJ�2(t) � �
K�2,J

CDFK�2(t) � �
L�2,1

�
M�L

CDFM�L(t)	
� �1 � �

I�1

CDFI�1(t)	
��

J�3
�PDFJ�3(t) � �

K�3,J

CDFK�3(t) � �
L�3,1

�
M�L

CDFM�L(t)	
� �1 � �

I�1

CDFI�1(t)	 (A6)

where I and L are options in the set {2, 3}, J is an option in the set

{1, 2, 3}, K is an option in the set {1, 2, 3} that is not J, and M is

an option in the set {1, 2, 3} that is not L. The first line represents

the sum of all scenarios of J where accumulator J–2, where J is not

2, is the terminating accumulator that prompts the response

(PDFJ–2(t)), all accumulators K–2, where K is not 2 or J, had

finished before (
K�2,JCDFK�2(t)), all accumulators out of the set

{1–3, 2–3} had finished before (
L�2,1
M�LCDFM�L(t)), and at

least one accumulator out of the set {2–1, 3–1} had not yet finished

(1�
I�1CDFI�1(t)).

Similarly, the second line represents the sum of all scenarios of

J where accumulator J–3, where J is not 3, is the terminating

accumulator that prompts the response (PDFJ–3(t)), all accumula-

tors K–3, where K is not 3 or J, had finished before

(
K�3,JCDFK�3(t)), all accumulators out of the set {1–2, 3–2} had

finished before (
L�C,A
M�LCDFM�L(t)), and at least one accu-

mulator out of the set {2–1, 3–1} had not yet finished

(1�
I�1CDFI�1(t)).

The PDF for Response 1 is completed by summing the expres-

sions on both of these lines.

Lose-One Stopping Rule

The lose-one model assumes that the decision maker responds as

soon as all but one of the response options have been beaten by at least

one contrasting alternative. That is, the decision maker chooses one

from three response options (i.e., 1, 2, and 3) if and only if

1. At least one of the accumulators in each of the sets

{1–2, 3–2}, and {1–3, 2–3} have reached their thresh-

old, and:

2. None of the accumulators in the set {2–1, 3–1} has

reached their threshold.

Specifically, response Option 1 is the last remaining option

which has not been beaten by any competitor (another version of

last man standing). Two layers of counters are required to instan-

tiate this stopping rule. Three counters in the first layer take input

from the sets of two just described, each requiring only one count

to be triggered. Three counters in the second layer each correspond

to a response. They take inputs from two counters in the previous

layer (e.g. the counter corresponding to the 1 response takes inputs

from the two sets in no. 1 above), and require two counts to trigger

their response.

An advantage of this model is that it cannot produce sequences

in which the winning response has ever lost in a direct comparison.

However, it is possible to respond 1 without any accumulator that

favors 1 having reached threshold (e.g., the sequence 2–3, 3–2 will

trigger a Response 1). Again, with sensible drift rates, this set of

events is exceedingly unlikely.

The probability density function for the distribution of Re-

sponses 1 at time t is given by

p1(t) � �
I�1 ��J�I

�PDFJ�I(t) � �
K�I,J

�1 � CDFK�I(t)�

� �
L�I,1 �1 � �

M�L
�1 � CDFM�L(t)��	� � �

I�1
�1 � CDFI�1(t)�

(A7)

where I is an option in the set {2, 3}, J is an option in the set {1,

2, 3}, K is an option in the set {1, 2, 3} that is neither I nor J, L

is an option in the set {2, 3} that is not I, and M is an option in the

set {1, 2, 3} that is not L. Each CDF is obtained by applying

Equation A1 to the respective advantage accumulator, and each

PDF is obtained by applying Equation A3 to the respective advan-

tage accumulator.

For a decision trial with three response options (i.e., 1, 2, and 3),

Equation A7 can be expanded as:

p1(t)��
J�2

�PDFJ�2(t) � �
K�2,J

�1 � CDFK�2(t)�

� �
L�2, 1 �1 � �

M�L

�1 � CDFM�L(t)��	 � �
I�1

�1 � CDFI�1(t)�

��
J�3

�PDFJ�3(t) � �
K�3,J

�1 � CDFK�3(t)�

� �
L�3, 1 �1 � �

M�L

�1 � CDFM�L(t)��	 � �
I�1

�1 � CDFI�1(t)�

(A8)

(Appendices continue)
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where I and L are options in the set {2, 3}, J is an option in the set

{1, 2, 3}, K is an option in the set {1, 2, 3} that is not J, and M is

an option in the set {1, 2, 3} that is not L. The first line represents

the sum of all scenarios of J where accumulator J–2, where J is not

2, is the terminating accumulator that prompts the response

(PDFJ–2(t)), all accumulators K–2, where K is not 2 or J, had not

yet finished (
K�2,J[1�CDFK–2(t)]), at least one accumulator out

of the set {1–3, 2–3} had finished before (
L�2,1{1�
M�L

[1�CDFM�L(t)]}), and no accumulator out of the set {2–1, 3–1}

had finished yet (
I�1[1�CDFI�1(t)]).

Similarly, the second line represents the sum of all scenarios of

J where accumulator J–3, where J is not 3, is the terminating

accumulator that prompts the response (PDFJ–3(t)), all accumula-

tors K–3, where K is not 3 or J, had not yet finished (
K�3,J

[1�CDFK–3(t)]), at least one accumulator out of the set {1–2, 3–2}

had finished before (
L�3,1{1�
M�L[1�CDFM�L(t)]}), and no

accumulator out of the set {2–1, 3–1} had finished yet

(
I�1[1�CDFI�1(t)]).

The PDF for Response 1 is completed by summing the expres-

sions on both of these lines.

Appendix B

Estimation Details

Estimation Details: Absolute Versus Relative Input

The model was fit to each participant’s data separately using

Bayesian Markov-chain Monte Carlo (MCMC) methods in R with

the DMC software (Heathcote, Lin, et al., 2019).6 All scripts,

RData files, and plotting code of these and subsequent fits are

available on https://osf.io/2s6ax/.

Vague normal priors were used, truncated at zero for all param-

eters except t0, which was bounded between 0.1 s and 1 s, with the

following means: A � 25, BR � 1, v0 � 5, wS � 5, wD � 100, s �

5, and t0 � 0.3. Prior standard deviations had the same values,

except for t0, where it was 0.2. After burn in, 21 chains of 500

samples, thinned to retain every 10th sample, were used for anal-

ysis, with convergence supported by multivariate scale-reduction

factors (Brooks & Gelman, 1998) of less than 1.01 in all cases, and

confirmed visually, as was dominance of the posterior by the prior.

Estimation Details: Strong Versus Weak Distractors

We estimated parameters for a hierarchical version of the win-

all model using a differential evolution MCMC procedure (ter

Braak, 2006; Turner, Sederberg, Brown, & Steyvers, 2013).

Starting values for the MCMC chains for individual parameters

were drawn from the following distributions: B � N�0.5, 0.05	 |
�0,	, A � N�1, 0.1	 | �0,	, t0 � N�0.2, 0.02	 | �0,	, v0 � N�1, 0.1	 |
�0,	, wS � N�1, 0.1	 | �0,	, and wD � N(1, 0.1) | (0,).

Priors for all group level mean parameters were normal distri-

butions, with B	 � N�0.5, 0.2	 | �0,	, A	 � N�1, 0.5	 | �0,	, t0	 �
N�0.2, 0.1	 | �0,	, v0	 � N�1, 0.5	 | �0,	, wS	 � N�1, 0.5	 | �0,	, and

wD
�N(1, 0.5) | (0,). Priors for all group level standard deviation

parameters were exponential distributions with a mean of 1. Start-

ing values for the MCMC chains for group level 
 parameters

were drawn from the same distributions as those for the individual

parameters, and starting values for group level � parameters were

derived from starting value distributions for the individual param-

eters by dividing the mean by 10 and the standard deviation by 2.

For sampling, we used 32 interacting Markov chains for all runs,

and ran each for 1,000 burn-in iterations followed by 1,000 iter-

ations after convergence. The two tuning parameters of the differ-

ential evolution proposal algorithm were set to standard values

used in previous work: random perturbations were added to all

proposals drawn uniformly from the interval [�.001, .001]; and

the scale of the difference added for proposal generation was set to

� � 2.38 	 (2K)�0.5, where K is the number of parameters per

participant. The MCMC chains blocked proposals separately for

each participant’s parameters, and also blocked the group-level

parameters in {
, �} pairs.

Following burn in, sampling chains that were at least 3 across-

chain standard deviations removed from the mean were reset to the

mean in an iterative procedure for each estimated parameter (2.6%

of all chains were reset this way). Parameter convergence was

assessed visually and considered satisfactory (trace plots are avail-

able on https://osf.io/2s6ax/).

Estimation Details: Hick’s Law

We used the same Bayesian hierarchical estimation methods as

in the previous section. Again, following burn in, each parameter

chain that was at least 3 across-chain standard deviations removed

from the mean was reset to the mean in an iterative procedure

(2.8% of all chains were reset this way). Parameter convergence

was assessed visually and considered satisfactory (trace plots are

available on https://osf.io/2s6ax/).

6 We provide an RStudio project containing the data, DMC functions,
and scripts to fit and check the model as a special case of a more general
modeling framework that allows a power transformation of objective to
subjective values and for rate variability to increase with the mean rate.

(Appendices continue)
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Starting values for the MCMC chains for individual parameters

were drawn from the following distributions: B � N�0.5, 0.05	 |
�0,	, A � N�2, 0.2	 | �0,	, t0 � N�0.25, 0.025	 | �0,	, v0 � N

�1, 0.1	 | �0,	, wS � N�0.5, 0.05	 | �0,	, wD � N�6, 0.6	 | �0,	, 
 � N

�0.1, 0.01	 | �0,	, and log(�) � N(0, 0.3) | (�3,).

Priors for all group level mean parameters were normal

distributions, with B	 � N�0.5, 0.25	 | �0,	, A	 � N�2, 1	 |
�0,	, t0	 � N�0.25, 0.1	 | �0,	, v0	 � N�1, 0.5	 | �0,	, wS	 � N

�0.5, 0.25	 | �0,	, wD	 � N�6, 3	 | �0,	, 
	 � N�0.1, 0.05	 | �0,	,
and log(�
) � N(3, 1) | (�3,). Priors for all group level standard

deviation parameters were exponential distributions with a

mean of 1. Starting values for the MCMC chains for group level


 parameters were drawn from the same distributions as those

for the individual parameters, and starting values for group

level � parameters were derived from starting value distribu-

tions for the individual parameters by dividing the mean by 10

and the standard deviation by 2.

For sampling, we used 32 interacting Markov chains for all runs,

and ran each for 2,000 burn-in iterations followed by 2,000 iter-

ations after convergence. The two tuning parameters of the differ-

ential evolution proposal algorithm were set to standard values

used in previous work: random perturbations were added to all

proposals drawn uniformly from the interval [�.001, .001]; and

the scale of the difference added for proposal generation was set to

� � 2.38 	 (2K)�0.5, where K is the number of parameters per

participant. The MCMC chains blocked proposals separately for

each participant’s parameters, and also blocked the group-level

parameters in {
, �} pairs.

Appendix C

Parameter Recovery

Parameter Recovery Strong Versus Weak Distractors

Parameter recovery was performed by generating data from the

median parameter estimates of a win-all fit to the Teodorescu et al.

(2016) data set. The win-all model with the same parameter con-

straints that were used on the empirical data set was then fit to this

generated data set. The resulting parameter estimates (95% credible

interval in parentheses) were then compared to the true parameters.

Parameter recovery was excellent; details are shown in Table C1.

Parameter Recovery Hick’s Law

Parameter recovery was performed by generating data from

the median parameter estimates of the ALBA-1 fit to the van

Maanen (2012) data set. The resulting parameter estimates

(95% credible interval in parentheses) were then compared to

the true parameters. Parameter recovery was excellent; details

are shown in Table C2.

Table C1

Estimated Parameters of the ALBA Model for the Generated Teodorescu et al. (2016) Data Set

Pp B A t0 v0 wS wD

Hyper .18 (.03, .44) 1.03 (.23, 1.83) .51 (.16, .62) 1.26 (.61, 2.14) .17 (.06, .79) 1.61 (.36, 2.97)
1 .07 (.06, .35) .88 (.72, .95) .65 (.58, .66) 1.41 (1.43, 2.62) .21 (.09, .62) 3.28 (2.48, 3.20)
2 .11 (.07, .40) 1.12 (.97, 1.33) .67 (.58, .68) 1.08 (1.04, 12.11) .29 (.18, 4.21) 3.84 (2.30, 4.48)
3 .01 (.00, .08) .59 (.54, .70) .64 (.61, .64) 1.58 (1.45, 8.97) .20 (.04, 2.75) 3.07 (1.48, 3.17)
4 .12 (.01, .42) 4.08 (3.39, 4.32) .47 (.37, .52) 1.31 (1.36, 2.70) .10 (.21, .84) 3.65 (3.50, 4.24)
5 .43 (.09, .43) 1.19 (1.02, 1.35) .57 (.57, .66) 1.50 (.83, 2.40) .25 (.16, 1.13) 4.09 (4.31, 5.78)
6 .63 (.24, .94) 1.86 (1.77, 2.30) .61 (.53, .68) 1.86 (1.86, 3.31) .06 (.05, .74) 3.51 (3.22, 4.01)
7 .39 (.17, .77) 2.34 (2.27, 2.92) .59 (.49, .63) 1.67 (1.34, 2.39) .23 (.01, .48) 3.88 (3.41, 4.25)
8 .01 (.03, .28) .91 (.81, 1.05) .64 (.55, .63) 1.05 (.61, 1.95) .46 (.14, .75) 4.01 (3.12, 4.15)

Note. Displayed are the true parameter values, with a 95% credible interval of the posterior for the recovered parameters presented in parentheses.
Columns represent parameters and rows represent different participants. Hyper � parameters of the group-level distributions; ALBA � advantage linear
ballistic accumulator.

(Appendices continue)
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Appendix D

Additional Fits

Additional Fits Strong Versus Weak Distractors

The posterior predictive data for the win-all fit with rate variability

s free to vary are shown in Figure D1. Figure D1 shows that this

model fits the data well, but offers no qualitative improvement over

the model with rate variability s constrained between conditions.

The posterior predictive data for the LBA fit can be found in

Figure D2. Figure D2 shows that this model fits the RT data well,

but overestimates error rates in both conditions.

Additional Fits Hick’s Law

The posterior predictive data for the win-all version of the

ALBA model with parameter B free to vary with set-size condi-

tions can be found in Figure D3. Figure D3 shows that relaxing B

to vary across set sizes does not yield a noticeable improvement

over the more constrained model; it cannot pick up the increasing

error rates for higher set-sizes.

The posterior predictive data for the win-all version of the

ALBA model with parameter A free to vary with set-size condi-

tions can be found in Figure D4. Figure D4 shows that relaxing A

to vary across set sizes does not yield a noticeable improvement

over the more constrained model, it cannot pick up the increasing

error rates for higher set sizes.

The posterior predictive data for the win-all version of the ALBA

model with parameters B and A free to vary with set-size conditions

can be found in Figure D5. Figure D5 shows that relaxing both B and

A allows the model to pick up both the RT and proportion correct data

fairly well. Compared to the model that varies rate variability S

presented in the main text, the model with B and A free to vary

struggles to pick up proportion correct data for Set Size 3 and

struggles to capture some of the slower RT quantiles.

The posterior predictive data for the LBA fit can be found in

Figure D6. Figure D6 shows that this model fits the RT data well,

but overestimates the increase in error rates for higher set sizes.

(Appendices continue)

Table C2

Estimated Parameters of the ALBA-� Model for the Generated Van Maanen Data Set

Pp B A t0 v0 wS wD �

Hyper .11 (.01, .34) 1.16 (1.02, 1.27) .35 (.21, .39) .21 (.03, .90) .41 (.03, .68) 11.66 (4.81, 12.78) .15 (.07, .50)
1 .11 (.11, .34) 1.22 (1.00, 1.21) .33 (.26, .36) .13 (.01, .47) .13 (.01, .27) 10.21 (6.46, 15.28) .14 (.09, .22)
2 .05 (.02, .14) 1.14 (1.03, 1.19) .37 (.33, .39) .32 (.04, .85) .27 (.02, .45) 16.56 (9.86, 25.10) .09 (.06, .15)
3 .14 (.07, .25) 1.25 (1.12, 1.33) .30 (.26, .34) .12 (.01, .39) .11 (.00, .20) 12.17 (6.91, 14.06) .15 (.13, .29)
4 .05 (.01, .12) 1.03 (1.01, 1.17) .33 (.29, .34) .28 (.06, 1.10) .42 (.02, .59) 14.88 (10.28, 22.82) .09 (.06, .14)
5 .19 (.16, .37) 1.19 (1.11, 1.27) .43 (.38, .44) .20 (.08, 1.17) 1.12 (.64, 1.25) 4.49 (3.17, 5.06) .38 (.32, .55)

Note. Displayed are the true parameter values, with a 95% credible interval of the posterior for the recovered parameters presented in parentheses.
Columns represent parameters and rows represent different participants. Hyper � parameters of the group-level distributions; ALBA � advantage linear
ballistic accumulator.
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Figure D1. Posterior predictive data for fits to the Experiment 1A data of Teodorescu and Usher (2013) with

rate variability s free to vary between the two conditions. Reaction times (RTs) for the .5 (black), .1, and .9 (gray)

deciles calculated for the easy (top-left) and difficult (top-right) condition, and the proportion of correct

responses for the easy (bottom-left) and difficult (bottom-right) condition, both at the individual level (left four

columns) and for aggregate data (right column). For all panels, error bars represent posterior predictive data

simulated from model fits (the bar extends to the middle 95% of generated summary statistics, with the dot in

the middle indicating the median) and lines represent data. See text for details. Ppn � participant.

(Appendices continue)
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Figure D2. Linear ballistic accumulator (LBA) posterior predictive data for the Teodorescu et al. (2016) data.

Reaction times (RTs) for the .1, .5, and .9 deciles (top) and the proportion of correct responses (bottom) as a

function of set size (N) on a logarithmic scale. Posterior predictives are presented at the individual level and for

aggregate data (bottom-right panel). For all panels, box-and-whiskers represent posterior predictive data (the box

contains 95% of the simulated data, with a bar across the middle indicating the median, and whiskers extend to

the data extremes) and lines represent data. See text for details. Ppn � participant.

(Appendices continue)
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Figure D3. Posterior predictive data for the advantage linear ballistic accumulator (ALBA)-4B fit to the van

Maanen et al. (2012) data. Reaction times (RTs) for the .5 (black), .1, and .9 (gray) deciles (top) and the

proportion of correct responses (bottom) as a function of set size (N) on a logarithmic scale. Posterior predictives

are presented at the individual level and for aggregate data (bottom-right panel). For all panels, box-and-whiskers

represent posterior predictive data (the box contains 95% of the simulated data, with a bar across the middle

indicating the median, and whiskers extend to the data extremes) and lines represent data. See text for details.

(Appendices continue)
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Figure D4. Posterior predictive data for the advantage linear ballistic accumulator (ALBA) �4A fit to the van

Maanen et al. (2012) data. Reaction times (RTs) for the .5 (black), .1, and .9 (gray) deciles (top) and the

proportion of correct responses (bottom) as a function of set size (N) on a logarithmic scale. Posterior predictives

are presented at the individual level and for aggregate data (bottom-right panel). For all panels, box-and-whiskers

represent posterior predictive data (the box contains 95% of the simulated data, with a bar across the middle

indicating the median, and whiskers extend to the data extremes) and lines represent data. See text for details.

Ppn � participant.

(Appendices continue)
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Figure D5. Posterior predictive data for the advantage linear ballistic accumulator (ALBA)-4BA fit to the van

Maanen et al. (2012) data. Reaction times (RTs) for the .5 (black), .1, and .9 (gray) deciles (top) and the

proportion of correct responses (bottom) as a function of set-size (N) on a logarithmic scale. Posterior predictives

are presented at the individual level and for aggregate data (bottom-right panel). For all panels, box-and-whiskers

represent posterior predictive data (the box contains 95% of the simulated data, with a bar across the middle

indicating the median, and whiskers extend to the data extremes) and lines represent data. See text for details.

Ppn � participant.

(Appendices continue)
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Figure D6. Linear ballistic accumulator (LBA) posterior predictive data for the van Maanen et al. (2012) data.

Reaction times (RTs) for the .1, .5, and .9 deciles (top) and the proportion of correct responses (bottom) as a

function of set size (N) on a logarithmic scale. Posterior predictives are presented at the individual level and for

aggregate data (bottom-right panel). For all panels, box-and-whiskers represent posterior predictive data (the box

contains 95% of the simulated data, with a bar across the middle indicating the median, and whiskers extend to

the data extremes) and lines represent data. See text for details. Ppn � participant.

(Appendices continue)
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Appendix E

Context Effects

Here, we show that the ALBA can produce two multiattribute

context effects: the attraction effect (Huber et al., 1982; also called

the asymmetric dominance effect) and the compromise effect

(Simonson, 1989). There is a third well-known multiattribute

context effect, the similarity effect (Tversky, 1972), which the

ALBA does not produce. Each of these effects are about two

stimuli, S1 and S2, that differ on two attributes, A1 and A2. S1 is

preferable on A1, but S2 is preferable on A2, such that in a binary

choice S1 and S2 are indifferent. The attraction effect occurs when

a third stimulus, S3, is introduced that is slightly inferior to S1 on

both A1 and A2, resulting in a preference for S1 over S2. The

compromise effect occurs when a third stimulus, S4, is introduced

that is even more preferable on A1 and even less preferable on A2

than S1, resulting in a preference for S1, the intermediate option.

The similarity effect occurs when a third stimulus, S5, is intro-

duced that is very similar to S2 on both attributes, resulting in a

preference for S1, the dissimilar option.

The purpose of this section is not to provide a detailed ALBA of

context effects. Researchers interested in quantitatively capturing

these phenomena should use a specialized model like the one

developed by Trueblood et al. (2014). Rather, this section intends

to explain in a qualitative way how the architecture of ALBA

naturally produces some context effects.

For this simulation, context effects were modeled as follows. All

three effects were examined using two basic stimuli that varied on

two attributes: S1 had subjective input values {4, 6} for A1 and

A2, respectively, S2 had subjective input values {6, 4} for A1 and

A2, respectively. We investigated the consequences of adding an

extra stimulus to this pair. For the attraction effect, the extra

stimulus (S3) had subjective input values {3, 6} for A1 and A2,

respectively. The attraction effect posits that the presence of S3

should lead decision makers to choose S1, because S1 “dominates”

S3. For the compromise effect, the extra stimulus (S4) had sub-

jective input values {2, 8} for A1 and A2, respectively. The

compromise effect posits that the presence of S4 should lead

decision makers to choose S1, because it is a compromise between

S2 and S4. For the similarity effect, the extra stimulus (S5) had

subjective input values {5.5, 4.5} for A1 and A2, respectively. The

similarity effect posits that the presence of S5 should lead decision

makers to S1, because it is different from the highly similar S2 and

S5.

All effects were simulated in the ALBA using Equations 1 and

2 by modeling two separate ALBA processes, one for A1 and one

for A2. A decision was made once the stopping rule was satisfied

for both processes. For the win-all stopping rule, this meant S1

needed to beat the other stimuli on both A1 and A2 before a

response in favor of S1 was executed.

For every effect, we ran 10,000 individual simulations. Individ-

ual parameters were B � 0.2, A � 1, t0 � 0.5, v0 � 1.3, wS � 0.2,

and wD � 3.5. Results of the simulations are presented in Table

E1. The table presents the proportion of times each of the three

stimuli was chosen. The probability of choosing S1 (resp., S2)

from the set {1, 2} is 1/2 (resp., 1/2).

The attraction effect is shown by the fact that S1 is chosen from

the set {1, 2, 3} more often than either S2 or S3. The intuition for

this result is as follows: the win-all stopping rule should produce

equal probabilities of choosing S1 and S2 without the presence of

S3. Adding S3 adds 1–3 advantage accumulators for A1 and A2

that need to finish for S1 to be chosen, and 2–3 advantage accu-

mulators for A1 and A2 that need to finish for S2 to be chosen. The

1–3 advantage accumulators have inputs 4-3 and 6-6 for A1 and

A2, respectively; of these two the slowest one will usually be 6-6.

The 2-3 advantage accumulators have inputs 6-3 and 4-6 for A1

and A2, respectively; of these two the slowest one will usually be

4-6. As the win-all stopping rule hinges on the last advantage

accumulator finishing, S2 (with the inclusion of 4-6) will become

less popular compared to S1 (with the inclusion of 6-6).

The compromise effect is shown by the fact that S1 is chosen

from the set {1, 2, 4} more often than either S2 or S4. The intuition

for this result is as follows: the Win-all stopping rule should

produce equal probabilities of choosing S1 and S2 without the

presence of S4. Adding S4 adds 1–4 advantage accumulators for

A1 and A2 that need to finish for S1 to be chosen, and 2–4

advantage accumulators for A1 and A2 that need to finish for S2

to be chosen. The 1–4 advantage accumulators have inputs 4-2 and

6-8 for A1 and A2, respectively; of these two the slowest one will

usually be 6-8. The 2-4 advantage accumulators have inputs 6-2

and 4-8 for A1 and A2, respectively; of these two the slowest one

will usually be 4-8. As the win-all stopping rule hinges on the last

advantage accumulator finishing, S2 (with the inclusion of 4-8)

will become less popular compared to S1 (with the inclusion of

6-8).

(Appendices continue)

Table E1

Attraction and Compromise Effects, as Indicated by the

Proportion of Times Stimulus 1 was Chosen

Stimulus Attribute 1 Attribute 2 Attraction Compromise Similarity

1 4 6 .51 .57 .26
2 6 4 .30 .32 .32
3 3 6 .19
4 2 8 .11
5 5.5 4.5 .43

Note. Attribute values for Stimulus 3 (attraction effect) and Stimulus 4
(compromise effect) are displayed in the rows below attribute values for
Stimulus 1 and 2. The most common choice is printed in bold type.
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The similarity effect would be shown by the fact that S1 is

chosen from the set {1, 2, 5} more often than either S2 or S5, but

the ALBA does not produce the similarity effect. The intuition for

this result is as follows: the win-all stopping rule should produce

equal probabilities of choosing S1 and S2 without the presence of

S5. Adding S5 adds 1–5 advantage accumulators for A1 and A2

that need to finish for S1 to be chosen, and 2–5 advantage accu-

mulators for A1 and A2 that need to finish for S2 to be chosen. The

1–5 advantage accumulators have inputs 4-5.5 and 6-4.5 for A1

and A2, respectively; of these two, the slowest one will usually be

4-5.5. The 2–5 advantage accumulators have inputs 6-5.5 and

4-4.5 for A1 and A2 respectively; the slowest one will usually

be 4-4.5. As the Win-All stopping rule hinges on the last advantage

accumulator finishing, S1 (with the inclusion of 4-5.5) will be-

come less popular compared to S2 (with the inclusion of 4-4.5).

Most popular is S5, similar to the result for the compromise effect,

as it presents the intermediate option for both attributes.

The fact that the ALBA produces the attraction and compromise

effects, but not similarity effect is consistent with recent work that

shows that people who exhibit the attraction and compromise

effects often do not exhibit the similarity effect (Berkowitsch,

Scheibehenne, & Rieskamp, 2014).
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