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Abstract 20 

The release of engineered nanoparticles (ENPs) into the environment has raised concerns about the 21 

potential risks to food safety and human health.  There is a particular need to determine the extent of ENP 22 

uptake into plant foods.  Belowground vegetables growing in direct contact with the growth substrate are 23 

likely accumulate the highest concentration of ENPs.  Carrot (Daucus carota) was grown in sand 24 

amended with ZnO, CuO, or CeO2 NPs or the same concentrations of Zn2+, Cu2+, or Ce4+.  Treatment with 25 

ZnO or Zn2+ produced a concentration-dependent decrease in root and total biomass.  Ionic Cu2+ and Ce4+ 26 

caused a greater reduction in shoot biomass as compared to the corresponding ENP treatments.  27 

Accumulation of Zn, Cu, or Ce in the taproot was restricted to the taproot periderm.  Metal concentrations 28 

in the taproot periderm were higher for the ionic treatments than for the ENP treatments.  Radial 29 

penetration of the metals into the taproot and subsequent translocation to shoots was also generally 30 

greater for plants receiving the ionic treatment than the ENP treatment.  The distribution of the metals 31 

from the ENP treatments across the periderm, taproot, and shoots differed from that observed for the ionic 32 

treatments.  Overall, the ENPs were no more toxic than the ionic treatments and showed reduced 33 

accumulation in the edible tissues of carrot.   The results demonstrate that the understanding of ionic 34 

metal transport in plants may not accurately predict ENP transport and that additional 35 

comparative study is needed for this and other crop plants.   36 

 37 

Keywords:  Nanoparticles, Nanomaterials, Metals, ZnO, CuO, CeO2, Carrot 38 

 39 



3 

 

1. Introduction 40 

 The nanotechnology industry is a rapidly expanding commercial sector.  The market 41 

share of commercial products incorporating nanotechnology reached $174 billion in 2007 and is 42 

expected to grow to $2.5 trillion by 2015.1   The unique properties that emerge when materials 43 

are fabricated at the nanoscale (i.e., at least one dimension <100 nm) have given rise to 44 

thousands of applications and proposed inclusion in hundreds of consumer, medical, and 45 

industrial products.1  The anticipated increase in the use of nanomaterials, in particular some 46 

metallic oxide nanoparticles, has also produced concern that there may be detrimental effects of 47 

these materials upon intentional or accidental release into the environment.   Assessing the 48 

toxicity of nanoparticles to animals, plants, fungi, and microorganisms has been a principle focus 49 

to date.2-6  Another concern is possible particle bioaccumulation in terrestrial food webs and the 50 

human food supply.7, 8   51 

 Crop plants could potentially come in contact with engineered nanoparticles (ENPs) 52 

through application of biosolids to agricultural fields 9, 10 or the application of nano-enabled 53 

agricultural products to plants or to the soil.11-13   Additional routes by which crop plants may be 54 

exposed to ENPs include accidental discharges, contact with nanomaterials intended for soil or 55 

water remediation, the application of irrigation water containing ENPs, and potential aerial 56 

deposition.  The presence of ENPs in plant foods represents a likely pathway by which the 57 

general public might be exposed to these materials.  A variety of studies have focused on the 58 

accumulation of Ag and other metal oxide (e.g., CuO, CeO2, ZnO) ENPs in the edible tissues of 59 

various crops.2-4, 14  Most of these studies have focused on leafy or stem vegetables (e.g., lettuce 60 

and spinach), fruits (e.g., tomato, zucchini, legumes), and grains (e.g., barley, rice, maize).  61 

Where data on accumulation in these and other plants is presented, the results frequently indicate 62 
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that plant roots accumulate considerably higher concentrations of ENPs as compared to the 63 

aboveground tissues.  This tendency of roots to retain ENPs has been attributed to the small pore 64 

size (2-20 nm) of the root cell wall network that is generally smaller than most ENPs 4, 15 and the 65 

capacity of the root to act as a selective “sieve” to trap ENPs.16  The propensity of roots to 66 

accumulate ENPs suggests that belowground root, tuberous, and bulb vegetables, due to their 67 

direct contact with ENPs in the growth substrate, may be more likely to accumulate ENPs.   68 

 There is limited information available on the accumulation of ENPs in belowground 69 

vegetables; consequently, the study described here had two primary objectives.  The first 70 

objective was to assess the accumulation of Ce, Cu, or Zn in carrot (Daucus carota) when 71 

irrigated with solutions of CeO2, CuO, or ZnO nanoparticles or the corresponding ionic metal 72 

form of each.  Carrot has been included in some prior studies with nanoparticles 17, 18 but the 73 

response of this species to these metal oxide nanoparticles, and the resulting accumulation, have 74 

yet to be evaluated.  Carrot is also a nutritionally important root vegetable crop with >28,000 ha 75 

in cultivation in the US alone with a market value of >$650 million for fresh carrots alone.19  76 

Carrot can be cultivated in soils receiving biosolid amendments in the US within the guidelines 77 

established by the US Environmental Protection Agency.20  The second objective was to derive 78 

basic information on the spatial distribution of the accumulated element in the carrot tissue.  One 79 

approach was to determine the extent to which the metals from the added nanoparticles 80 

penetrated the outer “peel” of the carrot into the inner edible taproot flesh.  The data derived 81 

would help illustrate the degree to which this cell layer of the carrot taproot serves as a filter to 82 

limit accumulation.  Alternatively, the distribution of the metals across the three tissues (peel, 83 

taproot flesh, shoot) was examined as a function of treatment concentration and chemical form 84 

(ENP or ionic) to provide information on the internal partitioning of the accumulated metals.   85 
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 86 

2. Materials and methods 87 

2.1 Nanoparticles and Plant Materials   88 

The three nanoparticles used, ZnO (30-40 nm), CuO (25-55 nm), and CeO2 (30-50 nm), 89 

were selected as representatives of the ten most commonly used materials as identified by Keller 90 

et al. 21.  The nanoparticles were obtained from US Research Nanomaterials, Inc. (Houston, TX).  91 

The CuO (99.95% purity) was in powder form while the ZnO (99.5% purity) and CeO2 (99.9% 92 

purity) were obtained as aqueous dispersions in deionized water at initial concentrations of 20% 93 

wt.  The metal salts CuSO4.5H2O and ZnSO4.7H2O were purchased from Fisher Scientific (New 94 

Jersey, USA) whereas Ce(SO4)2.4H2O was obtained from Acros Organic (New Jersey, USA).  95 

Seeds of carrot (Daucus carota cv Danvers Half Long) were obtained from Burpee Seeds and 96 

Plants (W. Atlee Burpee & Co, Warminster, PA).   97 

 98 

2.2 Preparation and characterization of nanoparticle solutions  99 

Nanoparticle treatment solutions were prepared to provide final concentrations of 100 

elemental Zn, Cu, or Ce at 1, 10, 100, and 1,000 mg L-1.  Preparing the solutions based on the 101 

concentration of the metal  was to provide an alignment with the corresponding metal ion 102 

treatments (see below).  The ZnO and CeO2 solutions were prepared by diluting the commercial 103 

suspension with 18 m deionized water to achieve the desired concentrations.  To prepare the 104 

CuO treatment solutions, the required mass of the nanopowder was mixed with deionized water 105 

and each solution was sonicated (130 W, 20 kHz) for 15 min (model VCX 130, Sonics & 106 

Materials Inc., Newtown, CT) to facilitate dispersion.  The hydrodynamic size was determined 107 

using a Zetasizer Nano ZS90 (Malvern Instruments, UK).  All the measurements were taken in 108 
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triplicate.  There was significant aggregation of ZnO in solution across the four concentrations, 109 

with hydrodynamic sizes ranging from <1,200 to >2,100 nm (Table S1).  There was some 110 

evidence of CuO aggregation in solution, with the greatest aggregation observed at the highest 111 

solution concentration.  The hydrodynamic size for the lower three CuO concentrations was 112 

similar (i.e., ~330 – 410 nm) but increased to >1,200 nm at 1,000 mg Cu L-1.  There was less 113 

aggregation of CeO2 particles and the hydrodynamic sizes were consistent across the four initial 114 

concentrations (i.e., ~250 – 290 nm).  The corresponding solutions of ionic Zn, Cu, and Ce were 115 

prepared by dissolving the required mass of the salts in deionized water.  All solutions were 116 

prepared fresh on the day that the treatments were to be imposed. 117 

 118 

2.3 Plant Growth and Exposure   119 

Plastic pots (0.95 L total volume) were filled with 1.3 kg of dry coarse sand and wetted to 120 

the equivalent of 80% field capacity with deionized water.  Three carrot seeds were planted 121 

approximately 1.5 cm below the sand surface.  The pots were transferred to a phytotron growth 122 

chamber (16 h photoperiod, light intensity 200-350 mol m-2 s-1, 18-22°C, and ambient relative 123 

humidity) to facilitate germination.  Pots were maintained during germination at 80% field 124 

capacity by watering with deionized water every other day.  The amount of water needed to 125 

maintain 80% field capacity was determined by weighing the pots to estimate the water losses to 126 

evaporation.  After emergence, the plants were thinned to one seedling per pot.  Once per week 127 

after emergence, each pot received 0.05 L of nutrient solution with the following composition: 128 

0.6 mM KNO3, 0.4 mM Ca(NO3)2, 0.05 mM NH4H2PO4, 0.1 mM MgSO4, 50 μM KCl, 12.5 μM 129 

H3BO3, 1 μM MnSO4, 1 μM ZnSO4, 0.5 μM CuSO4, 0.1 μM NiSO4, and 0.1 μM H2MoO4.  The 130 

solution was buffered with 1 mM n-morpholinoethanesulfonic acid (MES), titrated to pH 6.0 131 



7 

 

with KOH.  Iron was provided as 10 μM Fe-EDTA.  Pots were weighed intermittently during the 132 

course of each week to assess water loss to evapotranspiration.  Deionized water was added 133 

when needed during the week to maintain the soil moisture near 80% of field capacity.  Plants 134 

were grown for 16 weeks to establish biomass and initiate formation of the taproot before 135 

treatments began.    136 

For each of the three metals, the experimental design consisted of either the nanoparticle 137 

or corresponding ionic solution at one of four concentrations (1, 10, 100, or 1,000 mg L-1) and a 138 

control treatment (i.e., no metal).  Each treatment was replicated five times, giving 45 pots (one 139 

plant per pot) per metal.  The pots were randomly assigned to a treatment and arrayed in a 140 

completely random pattern.  The treatments were imposed by watering the pots once per week 141 

for 13 weeks with 0.05 L of nanoparticle or ionic solution or with deionized water.  By the end 142 

of the 13 week treatment period, the calculated final concentration of these metals in the pots 143 

was 0.5, 5, 50, or 500 mg kg DW-1 respectively.  This broad range of concentrations was chosen 144 

to be conservative due to the lack of information of the concentrations of ENPs in the 145 

environment. The pots were also watered once per week with a 1:2 dilution of the nutrient 146 

solution described above at a different time from the treatment irrigation.   The nutrient solution 147 

used to irrigate the pots prior to and through the entire treatment period introduced <0.1 and 148 

<0.05 mg total of Zn or Cu, respectively, and therefore had a minimal effect on the total 149 

concentration of either elements in the pots.    150 

At harvest, plants were removed from the pots, separated into green, aboveground 151 

petioles and stems (hereafter referred to as shoots) and belowground taproot and then rinsed with 152 

deionized water.  The carrot taproot was gently abraded with a vegetable brush to insure removal 153 

of any adhering sand particles.  The taproot was peeled with a standard vegetable peeler, 154 
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removing the outer 1-2 mm of the carrot taproot periderm (for simplicity, this tissue layer will be 155 

referred to hereafter as the “peel”).  The peeled taproot, comprised primarily of the secondary 156 

phloem and xylem, was considered as the edible “flesh” of the carrot.   The fresh weight of the 157 

tissues was determined and all tissues were then dried to constant mass at 60°C.  The dried peel 158 

and flesh mass for each replicate was combined to represent total root dry weight.  The dried 159 

tissues were ground to a particle size of <5 mm and digested using EPA method 3050b 22 using a 160 

combination of trace metal grade nitric acid and 30% hydrogen peroxide.  The digested samples 161 

were analysed for Zn, Cu, or Ce using inductively coupled plasma mass spectroscopy (ICP-MS, 162 

Agilent 7500ce, Santa Clara, CA). 163 

 The bioconcentration factor (BCF) in the tissues in response to treatment was calculated 164 

by dividing the metal concentration in that tissue by the final metal concentration in the sand 165 

growth medium.  Using the tissue concentration and the total dry mass data, the total mass of Zn, 166 

Cu, or Ce in each tissue was calculated.  The transfer factor (TF) was calculated as the mass of a 167 

metal in the shoot divided by the total mass of that metal in the taproot (i.e., total metal in peel 168 

and flesh).  The mass of an element in those three tissues was also summed to obtain the total 169 

mass of that element per plant.  The percent of Zn, Cu, or Ce element in each tissue was 170 

calculated by dividing the mass of the element in that tissue by the total mass for that plant.  The 171 

percent of total added Zn, Cu, or Ce removed by a plant was determined by dividing the sum of 172 

the total Zn, Cu, or Ce in an entire plant by the total mass of each element add to the substrate.   173 

 174 

2.4 Data analysis   175 

 Each biomass parameter, the root:shoot ratio, shoot metal concentration, shoot BCF, 176 

shoot TF, and the percent of added metal removed per plant for a given element were analyzed 177 
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using a two-way ANOVA with treatment concentration and chemical form (nanoparticle or 178 

ionic) as the main effects.  For root dry weight concentration and root BCF, a three-way 179 

ANOVA was used with treatment concentration, chemical form, and root tissue (peel or flesh) as 180 

the main effects for a given element.  As the plants used for the Zn treatments, the Cu treatments, 181 

and the Ce treatments were grown sequentially not simultaneously during the course of this 182 

research, data were not compared between elements, but only within each element.   183 

 184 

3. Results   185 

3.1 Influence of nanoparticle and ionic treatments on plant growth and development 186 

 During the course of the experiment, there were no overt signs of toxicity or stress (e.g., 187 

chlorosis, necrosis) in any plants.  There was no evident malformation or splitting of the taproots.  188 

Within each metal treatment, the effect of the nanoparticle and ionic treatments had statistically 189 

significant (Table S2) yet modest effects on tissue biomass and primarily at the highest 190 

concentration of the ionic metal treatment.  For Zn, there was no significant effect of treatment 191 

on shoot biomass (Figure 1A) or root:shoot ratio (Figure 2A).  There was for root mass a 192 

significant concentration effect across both chemical forms of Zn, but not an effect of Zn 193 

chemical form (nanoparticle versus ionic).  The effect of Zn concentration can be seen most 194 

notably in the reduction in root biomass at the highest ionic Zn treatment concentration.  Total 195 

plant biomass showed the same pattern as root biomass in response to Zn treatment (Table S2).  196 

Both concentration and chemical form are significant factors for shoot biomass (Figure 1B) 197 

(Table S2).  There was no effect of Cu treatment on root biomass or root:shoot ratio (Figure 2B).  198 

A significant interaction between concentration and chemical form was obtained for Cu for total 199 

plant biomass, driven primarily by the reduction in root biomass seen for the two highest 200 
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concentrations of the ionic Cu treatment.  There was a significant interaction (Table S2) between 201 

the main effects for shoot biomass (Figure 1C) and for root:shoot (Figure 2C) ratio in response to 202 

the Ce treatments.  There was no significant effect of Ce treatment on root biomass and for total 203 

plant biomass, the only significant effect was in response to the treatment concentration.  204 

Overall, the change in biomass resulting from the nanoparticle treatments was generally not 205 

different from the effects of the ionic metal treatments.  A difference in biomass was not 206 

observed until the highest treatment concentration for each element and it was the ionic treatment 207 

for Zn2+ or Cu2+ that produced the greatest decrease in biomass.   208 

 209 

3.2 Influence of nanoparticle and ionic treatments on metal accumulation and partitioning 210 

 Within each of the three elemental treatments there were highly significant interactions 211 

between the main effects with respect to the metal concentration in the taproot tissues or the 212 

shoots (Table S3).  For the taproot tissues, there were three patterns that were generally 213 

consistent across the three metals.  The first and most consistent pattern was that the peel tissues 214 

from the taproot had significantly higher concentrations of the metal than the underlying flesh 215 

tissues (Figures 3-5, Table S3).  The peel concentrations of Zn, Cu, or Ce generally increased in 216 

a concentration-dependent manner.  One exception observed was for the two lowest 217 

concentrations of the ZnO treatment where the peel concentrations did not differ significantly 218 

from the control plants.  The concentration of Zn, Cu, or Ce in peels varied from as little as two-219 

fold greater than the flesh concentrations for the lowest treatment concentrations to an order of 220 

magnitude higher than the flesh at the highest treatment concentration. 221 

 The second recurring pattern was that for a given concentration and element, the ionic 222 

treatment resulted in a significantly higher concentration in both the peels and flesh as compared 223 
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to the nanoparticle treatment (Figures 3-5, Table S3).  There were only a few exceptions to this 224 

trend, namely the peel Zn concentration for the highest concentration applied and also for the 225 

peel and flesh Cu concentration for the lowest concentration applied.  The third pattern was also 226 

associated with a difference between the nanoparticle and the ionic treatment.  For the three 227 

highest Zn and Cu ionic treatments, the concentration of that metal in the flesh increased 228 

significantly relative to the untreated control and the lowest ionic treatment concentration.  The 229 

flesh Ce concentration increased significantly compared to the control for all the ionic Ce 230 

treatments.  In sharp contrast, the concentration of Zn, Cu, or Ce in the edible flesh from the 231 

nanoparticle treatment was significantly greater only for the highest treatment,  which was still 232 

less than that for the corresponding ionic treatment.    233 

 There were also highly significant differences and several significant interactions 234 

between the main effects for the calculated BCF values for the root peel and flesh tissues (Table 235 

1, Table S3).  There were also three notable trends in the BCF results.  Two of these trends were 236 

the same as for the concentration data in that the BCF values were greater for peels as compared 237 

to the taproot flesh and were significantly higher for carrot grown in the presence of ionic form 238 

than the nanoparticle form.  The third trend was an inverse relationship, where in most cases the 239 

BCF value for peels and taproot flesh decreased as treatment concentration increased.  The BCF 240 

values were the largest at the lowest concentration and then decreased sharply from the 0.5 to 5 241 

mg kg sand-1 treatments.    242 

 The concentrations of each metal in the carrot shoots displayed the same pattern in 243 

response to the nanoparticle and ionic treatments as did the taproot tissues (Figures 3-5, Table 244 

S3).  The BCF for each element in shoot tissues (Table 2) followed much the same patterns as 245 

for the root tissues with the same three general trends.  With respect to the change in BCF value 246 
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as a function of treatment concentration, there were evident exceptions at the higher 247 

concentration of Zn and Cu for plants receiving the ionic treatment where the BCF values 248 

showed a marked increase from the 50 to 500 mg kg-1 treatment.  There were significant effects 249 

of form and concentration for all three elements but the interaction between these main effects 250 

was significant only for Cu (Table S3).  The transfer factors (TF), which expresses the ratio of 251 

concentration in the shoot to that in the taproot, were between 0.01 and 0.5 for all Zn treatments 252 

with the exception of the highest ionic treatment concentration (Table 2, Table S3).  The TF 253 

values for the ionic and nanoparticle Cu treatments were not significantly different from one 254 

another while for the Ce treatments, there was a significant interaction between form and 255 

concentration but not for either factor alone (Table S3).           256 

Another perspective from which to consider the results, and perhaps the best to visualize 257 

the distribution of each metal, is to express the data as the percent of total metal within each 258 

plant tissue (Figure 6).  This approach illustrates the partitioning of the metals from each 259 

treatment across the taproot peel, taproot flesh, and shoot tissues.   For the untreated control 260 

plants, the peel and shoots accounted for the majority of the metal in each plant, 71.7% of the 261 

total Zn in the carrot, 75.2% of the total Cu, and 96.4% of the total Ce.  More Zn was associated 262 

with peels than shoots, but the converse was observed for Cu and Ce.  The partitioning of the 263 

metals between these three tissues differed between metals and in some cases between the 264 

nanoparticle and ionic treatments.  The percentage of total Zn associated with the root tissues 265 

increased with nanoparticle concentrations but the percentage of Zn associated with the edible 266 

flesh decreased.  The pattern for ionic Zn was different, with both the total root Zn and the 267 

percentage of Zn associated with the edible tissues increased with concentration, except for the 268 

highest ionic Zn treatment where the majority of the Zn was associated with the shoot tissues.  In 269 
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contrast to the difference between the two chemical forms of Zn, the partitioning of Cu within 270 

the plant tissues was somewhat similar between the nanoparticle and ionic treatments at each 271 

concentration, with the flesh Cu concentration generally decreasing with increasing treatment 272 

concentration.  The results for Ce were comparable to those for Zn except that the concentration 273 

of Ce in the flesh was similar across the nanoparticle treatments and decreased compared to the 274 

ionic Ce treatments.   275 

 While the concentration of each element in the various tissues tended to increase with the 276 

treatment concentrations, the proportion of the total Zn, Cu, or Ce added to the substrate that 277 

accumulated in the carrot plants showed a significant decrease along the same gradient (Table 3, 278 

Table S3).  Aside from the lowest concentration of each treatment, the plants removed <5% of 279 

the added metal and for Ce the values were <2%.  For Zn and Ce, significantly more of the ionic 280 

metal added to the substrate was removed into the plant tissues than the corresponding 281 

nanoparticle treatment, which is expected given the higher carrot tissue concentrations for each 282 

element observed for the plants receiving the ionic treatments.  There was no significant 283 

difference for Cu in terms of chemical form.   284 

   285 

4. Discussion 286 

Even though there have been many studies examined the uptake and accumulation of 287 

ENPs by plant, only a handful of studies examined accumulation in comparison to the 288 

accumulation of the ionic forms of each metal, especially for underground vegetables.23, 24  289 

Carrot was chosen both because of its popularity as a vegetable and its unique anatomical 290 

structure.  Instead of a typical dicotyldenous root structure of central vascular bundle, 291 

endodermis, cortex, and epidermis, (i.e., anatomical organization from center radially outward), 292 
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the carrot taproot displays secondary growth analogous to that of woody plants.  That is, as the 293 

carrot root enlarges radially, that growth is achieved by replacing the cortex and epidermis with 294 

concentric rings of secondary vascular tissues laid down by a mitotically active cambium cell 295 

layers.25, 26  The inner secondary vascular tissue is the secondary xylem and the outer is the 296 

secondary phloem.  Immediately to the outside of the secondary phloem is the periderm.  The 297 

periderm is a layer of dead cells that form the protective outer surface of the taproot.  The “peel” 298 

collected here would have been comprised mostly of periderm.   299 

The patterns observed in the data for metal accumulation were likely dictated by the 300 

anatomy of the carrot taproot.  The periderm for example displayed a clear capacity to retain a 301 

large fraction of metals from either the ENP or the ionic treatments.  Although correlating the 302 

histological distribution to ENP to regions within the periderm is certainly of interest, this was 303 

not a goal in the currently investigation.  Previous studies have shown that the cell wall of the 304 

root epidermal layer has the capacity to trap ENPs.  The typical pore size of the plant cell wall is 305 

2-20 nm 4, 15, which is smaller than most metal oxide ENPs and smaller than the hydrodynamic 306 

size measured for the ENPs suspensions used here (Table S1).  Some studies have reported that 307 

ENPs can be found sorbed only to the epidermal cell wall surface.23, 27  Others have reported that 308 

ENPs or the metal ions that dissociate from the ENPs penetrate into the root but may then 309 

precipitate or aggregate in the root cell wall network, restricting further transport and 310 

accumulation.28  The cork cell layer of the carrot taproot periderm is thicker than a typical root 311 

epidermis.   Moreover, as dead cells the cork layer could not only sorb metals in the cell wall 312 

network but perhaps also retain metals within the cells themselves.  One recent study examined 313 

the distribution of potassium across the radius of 90 day old carrot taproots and found the 314 

periderm cells to have the highest concentration of that element.25  The periderm of the potato 315 
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tuber has also been shown to retain Cd from the external media and restrict the penetration of 316 

that element into the tuber interior.29  Such results suggest that the periderm has a large capacity 317 

to retain ions sorbed from the external media, as indicated by the BCF values obtained for the 318 

peel tissues (Table 1).  The affinity of the periderm for ions such as Zn, Cu, and Ce (whether as 319 

ENPs or ions) must be quite high as the BCF values for those tissues were highest at the lowest 320 

treatment concentrations.  One could speculate that the periderm cells associated with the peel 321 

sorbed a large fraction of the metals and that at low concentrations this accounted for a large 322 

fraction of the total metal in solution.  In other words, the sorption capacity of the periderm cells 323 

was large enough to bind a large fraction of the metal in solution, hence the large BCF values.  324 

Sorption capacity was likely finite however and as the treatment concentrations increased, the 325 

cells could have become saturated with the metals giving rise to the decreasing BCF values with 326 

increasing treatment concentration.  Comparable inverse trends between tissue BCF values and 327 

the external metal concentration have been observed in other studies with plants and metal 328 

absorption.30-33   The same rationale would likely explain the parallel trends in the taproot flesh, 329 

but the correspondingly lower BCF values given the lower tissue concentrations for this taproot 330 

tissue.  331 

The capacity of the periderm peel to screen ENPs is evident when contrasted with the 332 

results observed for the ionic treatments.  The ions more readily migrated through the periderm 333 

layer into the carrot taproot flesh and reached the secondary xylem for translocation to the shoots 334 

as indicated by the significantly larger shoot concentrations and shoot BCF values for the ionic 335 

treatments.  The radial transport and translocation of Zn2+ and Cu2+ is not unexpected as these 336 

two elements are essential micronutrients for plants, needed in both the belowground and 337 

aboveground tissues.  Cerium from rare earth element fertilizers and other sources has been 338 
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detected in plant shoots, indicating that this element can be translocated to plant shoots in the 339 

ionic form.8, 34, 35  The significant aggregation of the ENPs in the initial suspensions (Table S1) 340 

suggested that these ENPs were not stable in liquid suspension and quite likely contributed to 341 

their greater association with the periderm and the lower translocation of the associated elements 342 

to shoots.       343 

The accumulation of Zn, Cu, or Ce from all the treatments was generally greater in the 344 

shoots than in the flesh of the carrot taproot, which may also be attributable to the anatomy of the 345 

carrot taproot.  The majority of the carrot taproot is vascular tissue (secondary phloem and 346 

secondary xylem) rather than the cortex tissues found in most herbaceous plant roots.  While 347 

these secondary vascular tissues do have a storage capacity, that storage is devoted principally to 348 

the accumulation of sugars and starch, along with osmotically active solutes to maintain the 349 

proper water status of those cells.25  If the distribution of potassium in the carrot taproot is used 350 

as a general guide for the pattern of ion distribution, results have shown that the concentrations 351 

are highest in the periderm and pith of the mature taproot, and significantly lower in the 352 

secondary phloem and xylem tissues.25  Potassium was found predominantly in the apoplasm, 353 

which likely allowed this element to migrate through the wall space radially to the carrot taproot 354 

core (i.e., secondary xylem and pithlike center), giving rise to the reported pattern.  The same 355 

might not necessarily be observed for every nutrient or trace element but such information is 356 

lacking for this plant species.  The results for Cu and Ce from this study, and for the ZnO 357 

treatment, suggest a similar radial migration pattern for Zn, Cu, and Ce, with the elements 358 

readily reaching the secondary xylem for translocation to shoots and retained to only a modest 359 

extent in the secondary phloem that comprises the bulk of the taproot diameter.  The results for 360 

the ionic Zn treatments demonstrate a more extensive retention in the taproot flesh.  The reason 361 



17 

 

for this specific pattern of Zn accumulation is not clear at present but may be related to the 362 

aforementioned control of osmotically active solutes and ions in the taproot.  The flush of Zn2+ 363 

that was translocated to the carrot shoots at the highest Zn2+ concentration was unexpected but 364 

may be related to the decrease in biomass of the taproots in this treatment, and possibly the onset 365 

of phytotoxic effects.  Such conclusions are speculative and would require further study to 366 

clarify.    367 

The study performed here did not attempt for the ENP treatments to determine whether 368 

the Zn, Cu, or Ce accumulated in the taproot tissues or translocated to the shoots was parent ENP 369 

or dissociated ions from the ENP.  There have been reports that intact ENPs are translocated to 370 

aboveground plant tissues 36 but most studies report xylem translocation of the metal from the 371 

ENP, but not the intact metal oxide ENPs themselves.23, 37-39  Intact ENPs could readily reach the 372 

secondary xylem for translocation if there was splitting of the carrot taproot to expose the core, 373 

but no splitting was observed in this study.  In the absence of splitting, intact ENPs would either 374 

have to migrate radially across the taproot diameter across the secondary phloem and vascular 375 

cambium or would have to reach the secondary xylem via the more direct connections created by 376 

xylem rays (Figure S1).  Xylem rays are reportedly present however only in the early stages of 377 

taproot development and are lost later in development as secondary growth continues and the 378 

taproot matures 26, but this conclusion was based on one anatomical study.  Small xylem rays 379 

have been observed in field grown carrot after harvest.40   No splitting of the taproots was 380 

evident in this study, but an anatomical examination for the presence or absence of xylem rays 381 

was not performed.  Both ZnO and CuO can undergo dissolution, releasing Zn2+ or Cu2+, 382 

respectively.24, 41  Dissociation of ZnO or CuO in the sand culture and/or in the periderm may 383 

have released ions which were transported radially and then translocated.  The dissolution of 384 
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ZnO or CuO was either limited in extent or kinetically slow otherwise the accumulation of Zn 385 

and Cu from the ZnO and CuO treatments would have been more similar to the comparable ionic 386 

treatments.  CeO2 ENPs are more stable and reportedly do not undergo significant dissolution 35, 387 

which likely explains the greater retention of Ce from the ENP treatment as compared to the 388 

ionic treatment.   Nonetheless the results here demonstrate that Ce from the added CeO2 ENPs 389 

migrated radially through the flesh and was translocated to the shoots.  Similar results for Ce 390 

translocation have been reported for other food crops 8, 28, 38, 42, including radish 43, which shows 391 

secondary growth comparable to that of carrot.  There is little evidence that intact CeO2 ENPs 392 

are translocated to plant shoots; most studies have detected cerium in plant shoots but not 393 

necessarily intact CeO2 ENPs.35, 37, 38  One recent study demonstrated that Ce uptake from CeO2 394 

ENPs may involve dissolution of Ce to ionic form, uptake of the ion, and reassembly of the Ce 395 

into ENP form within the plant.44   The tissue distribution data for each element (Figure 6) 396 

demonstrated that the metal from the nanoparticles was distributed quite differently from the 397 

ionic forms.  This underscores the need to understand the specific aspects of the interaction of 398 

plants with each ENP.             399 

 400 

5. Conclusions 401 

In conclusion, carrot showed significantly less accumulation of Zn, Cu, or Ce from ENPs 402 

than from the ionic forms of each element.  These results are in agreement with other studies that 403 

have compared the uptake of metal oxide ENPs to their ionic counterparts.23, 24  The 404 

accumulation of the elements principally in the taproot peel (which we presume corresponds 405 

primarily to the periderm layer of the carrot taproot structure) and the shoots, along with lower 406 

accumulation in the edible flesh (i.e., secondary tissues and pith), are probably functions of the 407 
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specific anatomy of the carrot taproot and is similar to the distribution of cerium accumulation 408 

reported for radish 43, another vegetable with a comparable root anatomy and secondary growth.  409 

The contribution of xylem rays to radial movement and translocation is one particular aspect of 410 

the root anatomy that may be important.  In the absence of specific data on the dissolution of the 411 

ENPs in the sand culture system or the chemical form of Zn, Cu, or Ce in the carrot tissues, no 412 

specific conclusion can be drawn here as to whether intact ENPs are transported radially within 413 

the taproot or translocated to shoots.  Additional study will be required to address these 414 

questions, including a focus on how ENP aggregation alters the hydrodynamic size and 415 

properties of the nanomaterials.  Although there were obvious differences in most data between 416 

the ENP and ionic treatments, when viewed from the perspective of the overall mass of added 417 

metal removed from the sand culture systems, the results were much more similar for the two 418 

chemical forms of each element except at the lowest treatment concentration.  On the other hand, 419 

given the results in Figure 6 showing the distribution of metal across the peel, taproot flesh, and 420 

shoots as a percentage of total metal in the plant, there are more obvious differences between the 421 

two chemical forms (ENP versus ionic) and between the three metals in terms of their fate within 422 

the plant tissues.  This distribution is directly germane to human health as it relates specifically 423 

to the presence of those metals in the edible tissues as well as to decisions associated with the 424 

basic preparation of that plant food for consumption (i.e., how important is peeling the taproot).  425 

In order to corroborate such an assumption, more detailed anatomical and histological studies 426 

will be needed to relate specific aspects of the carrot taproot structure to the capacity to retain 427 

ENPs.  Further comparative studies between the ENPs and their ionic equivalents will be 428 

necessary to understand the difference in behavior of the two chemical forms of these elements.  429 

The information obtained from these continued studies will be necessary to understand the fate 430 
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and transport of these ENPs and to assess the potential food safety risks that may be associated 431 

with the consumption of carrots or other edible plants grown in the presence of these metal oxide 432 

nanomaterials.  433 
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