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Abstract

This paper proposes a new information-theoretic method based on the information en-
hancement method to extract important input variables. The information enhancement
method was developed to detect important components in neural systems. Previous meth-
ods have focused on the detection of only the most important components, and there-
fore have failed to fully incorporated the information contained in the components into
learning processes. In addition, it has been observed that the information enhancement
method cannot always extract input information from input patterns. Thus, in this paper
a computational method is developed to accumulate information content in the process of
information enhancement. The method was applied to an artificial data set and the anal-
ysis of mission statements. The results demonstrate that while we were able to explicitly
extract the symmetric properties of the data from the artificial data set, only one main
factor was able to be extracted from the mission statement, namely, “contribution to the
society”. The companies with higher profits tend to have mission statements concerning
the society. The results can be considered to be a first step toward the full clarification of
the importance of mission statements in actual business activities.

1 Introduction

1.1 Necessity of Detailed Information

Information-theoretic methods have been
widely used as an important learning technique
in neural networks [1], [2], [3], [4]. Though
information-theoretic methods sometimes need
heavy computations to approximate information
content, a number of simplified computational
methods have been proposed, particularly for fa-
cilitating computational procedures [5], [6], [7]. In
addition, more direct relations have been found be-
tween existing learning methods and information-
theoretic approaches. Namely, competitive learning

as well as self-organizing maps [8], [9], [10] can
be realized by mutual information maximization
[11], [12], [13], [14], [15], [16]. When mutual in-
formation is defined for output neurons and input
patterns, and is maximized, just one output neu-
ron fires, while all the others cease to do so. By
changing mutual information obtained by the neu-
ral networks, the degree of competition can easily
be changed as well. Thus, the method is a more
flexible type of competitive learning and can be
applied to many problems.

Such methods have shown that the information-
theoretic approach is a promising one for neural net-
works for almost every aspect of learning. How-
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ever, one of the main problems of the approach is
that the majority of the methods are based on mu-
tual information, which is averaged over all compo-
nents - information-theoretic methods should aim
to analyze the behavior of neural networks in more
detail. Specifically, information-theoretic methods
have reached the stage where researchers should ex-
amine what kind of and how much information is
stored in the components of neural networks. One
of the main merits of such a detailed analysis of
stored information content is that it allows for inter-
pretation of how a component functions in response
to input patterns. In addition, it can be inferred how
important a component is. When a component con-
tributes to an increase in mutual information, the
component can be considered to be more important.
In addition, a component with much mutual infor-
mation naturally contains more information in input
patterns. Thus, if it is possible to extract a few im-
portant and informative components, those compo-
nents alone will be enough to fully understand the
mechanisms of the neural network.

1.2 Accumulative Information Enhance-
ment

To extend mutual information to provide a more
detailed description of the components in neural
networks, the information enhancement and infor-
mation loss methods were introduced [17], [18],
[19], [20], [21]. In information enhancement, a
component of a neural network is more strongly ac-
tivated while forcing other components to be inac-
tive. In this way it is possible to know how much
mutual information is increased; subsequently, the
importance of the component can be determined.
On the other hand, in information loss, a target com-
ponent is forced to be inactive while all the oth-
ers remain active. Here, we examine how a neu-
ral network behaves without the target component,
and can actually measure how much mutual infor-
mation is decreased. Consequently, the importance
of the component can be determined.

Both methods have shown good performance
for relatively simple problems. However, one of
the main problems of the methods is that there
have been some cases where the enhancement of a
component does not affect the overall performance
of the neural networks. More concretely, there
have been cases where mutual information does not

change even when a component is enhanced. This
means that it is impossible to extract important in-
dividual components using these methods. To over-
come this problem, neural networks are re-trained,
taking into account the importance of components,
which becomes gradually clearer [20]. These re-
sults show that the importance of components can
be gradually clarified by repeating the information
enhancement procedures.

As discussed above, to make information en-
hancement function more explicitly, we need to
augment the enhancement of the components by re-
peating the enhancement procedures. For this pur-
pose, we propose a computational method for mu-
tual information which tries to absorb as much in-
formation possible contained in input patterns. Be-
cause information in each processing state is gradu-
ally accumulated, we call it ”accumulative informa-
tion maximization”.

The method is related to the multi-stages of in-
formation processing. For example, Linsker [1],
[2], [3], [4] proposed the organizing principle called
“infomax” by analyzing visual systems. In info-
max, visual information is processed in multiple
stages from simple to complex forms. In each pro-
cessing stage, the amount of information is max-
imally preserved. By this successive information
maximization, feature-analyzing functions are sup-
posed to emerge spontaneously. In the same way,
it is supposed that informational processing in our
neural systems goes through multiple stages, from
rough processing to more explicit processing. The
multiple information processing with the maximum
information preservation principle is applied to the
extraction of a few important input neurons (vari-
ables), related to variable selection. With multiple
stages of information maximization, it can be ex-
pected that important input neurons will gradually
emerge.

1.3 Application to the Analysis of Mission
Statements

To demonstrate the effectiveness of the present
method, we applied it to the analysis of company
creeds or mission statements. It is well known
that mission statements play very important roles in
business. For example, companies make decisions
according to their mission statements, which spec-
ify business plans and philosophies are specified.
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The company’s mission statements should represent
the main principles of business activities.

However, few attempts have been made to ana-
lyze relations between mission statements and prof-
itability [22], [23]. For example, Oda and Mit-
suhashi reported [24] three types of mission state-
ments: those which stress employees’ ideal vision,
the contribution to society, and business expan-
sion. They stated that companies with an employee-
focused mission statement were the most profitable.
However, the data in those papers were limited, and
it may be impossible to explore further the valid-
ity of this hypothesis. The scope of the data is here
extended more widely, using mission statements of
companies listed in the second section of the Tokyo
Stock Exchange (TSE) [25].

Because the datasets of mission statements are
complex, the present method is well suited for this
kind of problem. The method aims to condense the
information in the complex data as much as possi-
ble, meaning in this case that information content
is forced to be represented in a fewer number of
components. Thus, it becomes easier to interpret
the meaning of the complex data, because it is only
necessary to examine a few number of condensed
components.

1.4 Outline

In Section 2, the close relationship between
competitive learning and mutual information maxi-
mization is explained. Then, we propose the com-
putational method for the importance of input neu-
rons by using mutual information. In particular,
the learning processes of accumulative information
maximization is fully explained. In Section 3, two
experimental results are presented, namely, an ar-
tificial data set and the mission statements. In the
artificial data set, it is intuitively shown that the ac-
cumulative information maximization can be used
to accentuate the main parts of the input patterns
and connection weights. The present method excels
in extracting one the main factors behind the mis-
sion statements.

2 Theory and Computational
Methods

2.1 Information-Theoretic Competitive
Learning

Information-theoretic methods have been intro-
duced to realize competitive processes in neural net-
works [26], [12], [13]. Competitive learning has
been established as one of the fundamental meth-
ods of learning in neural networks [27]. In compet-
itive learning, when an input pattern is given to a
neural network, only one output neuron fires, while
all the others cease to fire, as shown in Figure 1.
In addition, on average, each neuron is expected
to fire uniformly [28], [29], [30], [31], [32], [33].
There have been many attempts to improve com-
petitive learning by solving such problems as dead
neurons, initial conditions, and the number of neu-
rons [34], [35], [36], [33], [37], [38], [39], [40]. It
has been found that competitive learning can be re-
alized by maximizing mutual information between
output neurons and input patterns, as shown in Fig-
ure 1.
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(b) Final state

Figure 1. Concept of competitive learning for
output neurons

Now, let p(s) and p( j | s) denote the probability
of occurrence of the sth input pattern and the fir-
ing rate of the jth output neuron for the sth input
pattern. Then, mutual information between output
neurons and input patterns can be defined by

MI = ∑
s

p(s)∑
j

p( j | s) log
p( j | s)

p( j)
. (1)

Mutual information is maximized when an output
neuron fires for an input pattern while all other neu-
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rons cease to do so, and when the average firing rate
p( j) is uniform. Thus, we can say that mutual infor-
mation can be used to realize competitive learning.

If competitive learning is considered to be a re-
alization of information maximization, the impor-
tance of individual components can be immediately
determined. Specifically, components which in-
crease information can be considered to be very im-
portant. This concept is applied to the detection of
important variables (neurons). When an input neu-
ron can increase mutual information between input
patterns and output neurons, the input neuron can
be considered to be important.

2.2 Information Enhancement Method

Output neuronsInput neurons
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(a) Initial state

p(k|s)

p(s)

(b) Final state

Figure 2. Concept of important input neurons

The present section shows how to enhance a
specific input neuron (variable) and to force other
neurons to be inactive. In this information en-
hancement, the importance of input neurons is de-
termined with respect to information in output neu-
rons, as shown in Figure 2.

The sth input pattern can be represented by
xs = [xs

1,x
s
2, · · · ,xs

L]
T , s = 1,2, · · · ,S. Connection

weights into the jth output neuron are computed
by w j = [w1 j,w2 j, · · · ,wL j]

T , j = 1,2, . . . ,M. The
output from the output neuron, when the tth input
neuron is enhanced, is defined by

vs
j,k = exp

(
−

L

∑
l=1

(xs
l −wl j)

2

2σ2
kl

)
, (2)

where σ denotes the spread parameter. The spread
parameter is changed by using the parameter β (β >
0)

σkl =

{
1/β, k = l(enhanced)
β, otherwise.

In enhancing the kth input neuron, the parameter
1/β is used. On the other hand, the remaining neu-
rons are relaxed by the parameter β.

By normalizing this output, the firing probabil-
ity is computed by

p( j | s;k) =
vs

j,k

∑M
m=1 vs

m,k
. (3)

By using this probability, the mutual information
for the kth input neuron is defined as

MI(k) =
S

∑
s=1

M

∑
j=1

p(s)p( j | s;k) log
p( j | s;k)

p( j;k)
, (4)

where

p( j;k) =
1
S

S

∑
s=1

p( j | s;k). (5)

By using this mutual information, the firing proba-
bility for input neurons is

p(k) =
MI(k)

∑M
l=1 MI(l)

. (6)

When the firing probability becomes higher, mutual
information becomes larger.

The input information obtained by input neu-
rons is introduced, defined by the decrease from
maximum uncertainty to observed uncertainty

I = logL+
L

∑
k=1

p(k) log p(k). (7)

When this input information increases, fewer input
neurons fire.

2.3 Accumulative Information Maximiza-
tion

In accumulative information maximization,
connection weights are obtained through two steps
of learning, namely, the inner and outer learning
cycle in Figure 3. In the outer learning cycle,
the spread parameter β is gradually increased us-
ing connection weights at the previous β−1th step,
where β = 1,2, · · · ,g. In the inner learning cycle,
the parameter β is fixed, and learning is forced to
continue until no change in connection weights can
be seen. The step in the inner learning cycle is de-
noted by θ = 1,2, · · · , f .

Let us now show how to compute the connec-
tion weights. At the βth stage of outer learning,
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the firing probabilities of input neurons and connec-
tion weights at the β− 1th stage of outer-learning
are used. Then, the inner learning begins, where
winners are determined and connection weights are
updated until connection weights cease to change,
namely, the learning cycle reaches the θ f th step.
Then, the β+ 1th outer learning cycle begins with
the same procedures of inner learning.

Now, the parameter β is set in the outer learning
cycle, and the inner learning cycle begins with the
fixed value of the parameter. Let xs and (β,θ f )w j de-
note the input and weight column vectors at the βth
outer learning cycle and the θ f th final inner learning
step. Then, the distance between input patterns and
connection weights at the (β,1)th cycle, namely, at
the βth outer cycle and the first inner cycle is

(β,1)∥xs−w j∥2 =
L

∑
k=1

(β−1,θ f )p(k)(xs
k−(β−1,θ f )wk j)

2.

(8)
The (β,1)csth winning neuron is computed by

(β,1)cs = argmin j
(β,1)∥xs −w j∥. (9)

Let us consider the following neighborhood func-
tion usually used in self-organizing maps

h j(β,1)cs = exp

(
−
∥r j − r(β,1)cs∥2

2σ2
γ

)
, (10)

where r j and r(β,1)cs denote the position of the jth
and the (β,1)csth neuron on the output space and σγ
is a spread parameter. Then, the re-estimation equa-
tion in the batch mode becomes

(β,1)w j =
∑S

s=1 h j(β,1)csxs

∑S
s=1 h j(β,1)cs

. (11)

As mentioned, the inner learning cycle continues
until a certain stopping criterion is met, namely,
until the inner learning cycle reaches its final step
of (β,θ f ). The inner learning cycle is considered
to be finished when distances between connection
weights at the present and at the previous learning
inner learning cycle are less than 0.001. Then, the
value of the parameter β is increased and again a
new inner learning cycle begins. The strength of
this method lies in the accumulation of information
obtained in learning. More specifically, the present
learning process is based on the information ob-
tained in the previous steps.

θ=1

θ=f

θ=2

β=1

θ=1

θ=f

θ=2

β=2

θ=1

θ=f

θ=2

β=g

Outer learning 

Inner learning 

Figure 3. Concept of outer and inner learning

3 Results and Discussion

3.1 Symmetric Data

First, symmetric and artificial data was used in
Figure 4(a) to intuitively show how information en-
hancement works. The number of input neurons
was 16 as shown in Figure 4(a). The number of
output neurons was 13 by 6 neurons. The number
of output neurons was larger than what would be
expected for this size of data to clearly demonstrate
the performance of our method. Naturally, similar
results could be obtained even if the network size
was smaller. In the middle of Figure 4, the U-matrix
was inserted by using self-organizing maps (SOM),
a well-known method for visualizing class bound-
aries in SOM, representing distances between neu-
rons. The U-matrix represents the distance between
two neurons

Ujm =∥ w j −wm ∥ . (12)

Because focus was on the performance of our new
information enhancement method, very conven-
tional methods were used to evaluate its perfor-
mance. Thus, it can be expected that the results
presented here can be easily reproduced.

Figure 5 shows information as a function of
the parameter β by standard information maximiza-
tion (1), the inner learning cycles (2), and accu-
mulative information maximization (3). As can be
seen in the figures, information was increased al-
most up to two by accumulative information maxi-
mization in Figure 5(a3). This value of information
was much larger than those by standard informa-
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Figure 4. Data (a), network architecture with U-matrx (b) by SOM for the symmetric data
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Figure 5. Input information (a) and quantization errors (b) by standard information maximization (1), with
the inner learning cycle (2) and accumulative information maximization (3)
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tion maximization (a1) and the inner learning cycle
(a2). Figures 5(b1), (b2) and (b3) show the quan-
tization errors by standard information maximiza-
tion, the inner learning cycle and accumulative in-
formation maximization, respectively. By using the
standard information maximization in Figure 5(b1),
the quantization error obtained was larger than that
by SOM. When the parameter β was increased from
one to 10, the quantization error became closer to
that by SOM. By using the inner learning cycle in
Figure 5(b2) and accumulative information maxi-
mization in Figure 5(b3), the quantization error de-
creased far below the level obtained by SOM. When
accumulative information maximization was used,
the lowest error rate was obtained, as shown in Fig-
ure 5(b3).

Figure 6(a) shows the firing probabilities p(k)
for 15 input neurons using standard information
maximization. The firing probabilities remained al-
most flat even if the parameter β was increased from
two to 10 in Figures 6(a1)-(a5). By using the inner
learning cycle in Figure 6(b), the firing probabilities
at the center became gradually stronger when the
parameter β was increased from two in Figure 6(b1)
to 10 in Figure 6(b5). Finally, when using accu-
mulative information maximization in Figure 6(c),
only two neurons at the center became stronger,
while all the other neurons became weaker when
the parameter β was four in Figure 6(c2)

Figure 7(a) shows the U-matrices by standard
information maximization. The class boundaries in
warmer colors divided the input patterns into sev-
eral parts. When the inner learning cycle was used,
the class boundaries became clearer when the pa-
rameter β was increased from six in Figure 7(b3)
to 10 in Figure 7(b5). When accumulative informa-
tion maximization was used in Figure 7(c), the class
boundary in the middle of the matrix became much
stronger and clearer, in Figures 7(c2) to (c5).

3.2 Mission Statements

3.2.1 Data Preparation

The mission statements we analyzed were ex-
tracted from 123 manufacturing companies listed
in the second section of the Tokyo Stock Exchange
(TSE). They were grouped into four industry cate-
gories: chemical, machinery, food and electric ap-
pliances. The data were constructed by following

two steps. First, the mission statements were ex-
tracted from the web sites of the companies. If the
mission statements contained plural messages, only
one message among them was selected.

Second, text mining was used to analyze the
mission statements. Text mining is a technique
which analyzes words and sentences to extract the
main features of written documents [41]. Text min-
ing includes both morphological and syntax anal-
ysis. Morphological analysis aims to extract mor-
phemes or minimum elements of words from sen-
tences. Syntax analysis examines how words are
connected with each other. The software “JUMAN”
[41] is a well-known morphological analysis soft-
ware which was used for this purpose.

For the analysis, only content words (noun, verb
and adjective), the names of categories and the
names of domains were extracted. For example,
the category and the domain of a word “school”
are “area - institution” and “education”. The data
set was composed of 44 variables (the three parts
of speech, the 28 names of categories and the 13
names of domains). Though the number of original
“JUMAN” categories and domains was 34, several
new items were added to create a total of 41 do-
mains.

The mission statements were analyzed in five
steps, as shown in Figure 8. After determining
the data sets to be analyzed (a), text mining tech-
nique was used to obtain the morphological data
(b). Then, using accumulative information en-
hancement (AIE), a few important variables were
extracted which corresponded to the domain and
categories (d). Finally, words closely associated
with these variables were selected for easy interpre-
tation (e).

3.2.2 Experimental Results

To show how to analyze the mission statements
concretely, we presented one example of the anal-
yses using accumulative information maximization
for simplification. Naturally, the same procedure
can be applied to the other data sets. Figures 9(a)
and (b) show the U-matrices and labels by the con-
ventional SOM and accumulative information max-
imization (AIE) for the food industry. The U-matrix
is a well-known method to visualize connection
weights in SOM. The matrix represents the aver-
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Figure 6. Firing rates when the parameter β was increased from two (1) to 10 (5) by standard information
maximization (a), with inner learning (b) and accumulative information maximization (c) for the

symmetric data
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(a) Standard information maximization

(a1) Beta=2 (a2) Beta=4 (a3) Beta=6 (a4) Beta=8 (a5) Beta=10

(a) Inner learning

(b1) Beta=2 (b2) Beta=4 (b3) Beta=6 (b4) Beta=8 (b5) Beta=10

(c) Accumulative information maximization

(c1) Beta=2 (c2) Beta=4 (c3) Beta=6 (c4) Beta=8 (c5) Beta=10

Figure 7. U-matrices when the parameter β was increased from two (1) to 10 (5) by standard information
maximization (a), with inner learning (b) and accumulative information maximization (c) for the

symmetric data set
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age distance between output neurons. In the figure,
when the color is warmer, the distance between neu-
rons becomes larger. This means that warmer colors
indicate the existence of class boundaries.
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Figure 9. U-Matrix and labels for the food
industry by the conventional SOM (a) and the

accumulated information maximization (b)

Figure 9(a) shows the U-matrix and labels
by the conventional SOM. The class boundary in
warmer colors seems to be located on the lower left
hand side of the matrix. In addition, several weak
boundaries could be seen on the matrix. However, it
was impossible to detect any clear class boundaries.
As mentioned, the knowledge of SOM is sometimes
very ambiguous, which prevents us from interpret-
ing its meaning, especially for complex data sets.

On the other hand, using accumulative infor-
mation enhancement in Figure 9(b), a strong class
boundary in warmer colors could be detected imme-
diately on the lower side of the matrix. By this class
boundary, input patterns or companies could be di-
vided into two classes or groups. This shows that
accumulative information enhancement was able to
condense information content in the mission state-
ments, indicated by the extraction of clearer class
structure.

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Neuron

F
ir

er
in

g
 P

ro
b
ab

il
it

y Education

Society and learning

Figure 10. Firing probabilities of input neurons by
the accumulated information maximization
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Figure 9. U-Matrix and labels for the food
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Figure 9(a) shows the U-matrix and labels
by the conventional SOM. The class boundary in
warmer colors seems to be located on the lower left
hand side of the matrix. In addition, several weak
boundaries could be seen on the matrix. However, it
was impossible to detect any clear class boundaries.
As mentioned, the knowledge of SOM is sometimes
very ambiguous, which prevents us from interpret-
ing its meaning, especially for complex data sets.

On the other hand, using accumulative infor-
mation enhancement in Figure 9(b), a strong class
boundary in warmer colors could be detected imme-
diately on the lower side of the matrix. By this class
boundary, input patterns or companies could be di-
vided into two classes or groups. This shows that
accumulative information enhancement was able to
condense information content in the mission state-
ments, indicated by the extraction of clearer class
structure.
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ACCUMULATIVE INFORMATION ENHANCEMENT IN . . .

Let us now show how accumulative information
enhancement can condense the information into a
smaller number of components. Figure 10 shows
the firing probabilities p(k) of input neurons, corre-
sponding to their relative importance. When the fir-
ing probability of an input neuron becomes higher,
mutual information of the neuron becomes larger.
By increasing information content in input neurons,
more mutual information can be accumulated. This
means that information content is condensed into a
smaller number of neurons by this accumulation. It
is thus possible to condense all necessary informa-
tion into one input neuron when information con-
tent is maximally accumulated.

The figure shows that the most important in-
put neuron or variable is a neuron with the do-
main name “education”. The domain name ”edu-
cation” is associated with words such as “society”
and “learning”. Group No.2 on the upper side of the
matrix did not contain these words. On the other
hand, these words were commonly found in group
No.1 on the lower side.

It is necessary to attempt to explain this divi-
sion. For this purpose, the average profitability
of each company was computed in terms of “Re-
turn On Assets” (ROA). ROA was computed by
using the ordinary profit and assets published by
the Japanese financial services agency “EDINET”
(Electronic Disclosure for Investors’ NETwork).
When this ROA increases, the profit performance
of the companies becomes stronger.

For each group, the average values of ROA were
computed. The average ROA of group No.2 was
3.19, while that of group No.1 was 4.40. This
means that group No.1, represented by the asso-
ciated words ”society” and ”learning”, had higher
profitability.

3.2.3 Summary of Experimental Results

Table 1 shows the ROA results for the four in-
dustry groups. In the chemical industry, the val-
ues of group No.1 and No.2 were 3.55 and 1.34
(β = 10). In the machinery industry, the values of
group No1. and No.2 were 4.13 and 2.94 (β = 10).
In the food industry, the values of group No.1 and
No.2 were 4.40 and 3.19 (β= 10). In the electric in-
dustry, the values of group No.1 and No.2 were 6.40
and 1.70 (β = 30). With those parameter values, the

clearest representations were obtained. On average,
the ROA value of group No.1 was 4.62, which was
much higher than the 2.29 of group No.2. Across
the four industry groups, it was possible to classify
companies into two groups with higher and lower
ROA values by the important words “contribution
to the society”.

Table 1. ROA values for two company groups

ROA
Industry Group No.1 Group No.2

Chemical 3.55 1.34
Machinery 4.13 2.94

Food 4.40 3.19
Electric 6.40 1.70
Average 4.62 2.29

Figure 11 shows the important variables ex-
tracted and their associated words by accumulative
information maximization. The chemical, food and
electric industries can be represented by the words
“contribution to the society”. The “machinery” in-
dustry does not simply imply “contribution to the
society”. The machinery industry is related to the
words ”device” and ”product”, which seems to be
different from the other industry groups. However,
it was found that those words could be interpreted
by “contributing to the society by supplying prod-
ucts or technology”. Thus, in all cases, the most
important factor was “contribution to the society”.

4 Discussion

4.1 Validity of Methods and Experimental
Results

This paper proposed a new information-
theoretic method called ”accumulative information
maximization”, which aims to acquire more infor-
mation content in input patterns by information en-
hancement. The information enhancement method
was introduced to detect important components in
neural networks. By focusing on or enhancing a
component, it is possible to examine how much in-
formation is obtained by this component. When the
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ACCUMULATIVE INFORMATION ENHANCEMENT IN . . .

obtained information content is larger, the compo-
nent becomes more important. Though the method
was successfully applied to several problems, sev-
eral cases were found where the information en-
hancement couldn’t be used to increase informa-
tion content. This means that it is impossible to
detect important components by using information
enhancement alone.

To overcome this shortcoming, accumulative
information maximization was introduced. The
main principle of this method lies in the acquisition
of information content at every stage of the learn-
ing processes. Accumulative information maxi-
mization is composed of two stages, namely, inner
and outer learning. The learning starts with an ini-
tial value of the parameter β. In inner learning,
with a fixed value of the parameter β, the learn-
ing processes are repeated to obtain stable firing
probabilities p(k). Then, the learning shifts to the
outer learning, where the parameter β is slightly in-
creased. The same procedures of inner and outer
learning are repeated until the final condition is met
and the same learning procedures have been con-
ducted.

The method was applied to two data sets,
namely, artificial and symmetric data and the anal-
ysis of mission statements. In the artificial data
set, input information by accumulative information
maximization became much larger than by the other
methods. In addition, quantization errors were
much smaller. By examining the firing probabilities
and U-matrices, it was found that the accumulative
information maximization focused only on the main
parts of input patterns, completely ignoring the oth-
ers. In the second data set, the mission statements,
using accumulative information maximization de-
tected only one important input variable: the words
”contribution to the society”. These two experimen-
tal results show that accumulative information max-
imization could produce intuitively and empirically
reasonable results.

The main merit of this method is that the fir-
ing probabilities or the importance of input neu-
rons is based on mutual information, more ex-
actly, normalized mutual information. When this
importance becomes stronger, mutual information
becomes larger. Information-theoretic competitive
learning has shown that mutual information be-
tween input patterns and output neurons realizes

the competitive processes of competitive learning.
Thus, higher importance means that competition
between neurons is highly realized. Because mu-
tual information can be interpreted as a measure of
the organization of a system, a neuron with higher
importance contributes highly to this organization.

Second, the present method tends to detect only
one important input neuron, completely ignoring
others. Thus, the method is very convenient for de-
tecting the main features of input patterns. When
several features are needed to represent input pat-
terns, obtained information content should only be
decreased. As mentioned, when mutual informa-
tion decreases, the number of active neurons tends
to increase as well.

4.2 Limitations of the Method

There are two major problems with the method,
namely, heavy computational procedures and poor
topological preservation. First, one of the main
problems of the method lies in the large amount
of complex computations involved. As explained
above, the information enhancement method is
based on mutual information between output neu-
rons and input patterns. In accumulating informa-
tion, mutual information must be computed at every
step of learning. Thus, it is necessary to simplify the
computational procedures as much as possible. It
should be noted, however, that in actual situations,
heavy computational procedures can be easily re-
duced. Though many iterations are needed to reach
the final informative state, in actual data analysis,
this kind of extreme maximization is not necessary.
Thus, reasonably small values of the parameter β
are enough for solving many practical problems.

Second, topological preservation may be vio-
lated. The SOM has been developed to preserve
topological consistency, which has received much
attention in determining the quality of maps. Thus,
it seems that the topological violation observed
in the present work may be a serious problem.
However, recent research on the quality of SOM
shows that some violation of topological consis-
tency is justified to a certain degree when dealing
with the visualization of highly complex data [42],
[43]. Thus, it is necessary to monitor topologi-
cal preservation when applying the method to ac-
tual data. Feature extraction by accumulative in-
formation maximization is accompanied by an in-
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crease in topological preservation. Thus, due at-
tention should be paid to topological preservation
when considering application to actual data.

4.3 Possibilities of the Method

The method introduced in this study can be con-
sidered as a new way to perform variable subset
selection for self-organizing maps [44], [45], [46].
Usually, the criteria to select important variables
are uncertain in unsupervised learning. However, in
the present model, there is only one criterion: mu-
tual information. When this mutual information be-
comes larger, the variable becomes more important.
Selected input variables thus have much informa-
tion content in input patterns.

The variable selection aspect of our method
has two important properties for the self-organizing
maps, namely, a new visualization method and the
interpretation of input neurons. First, the method
can be used to visualize SOM knowledge. As men-
tioned in the introduction section, it has been dif-
ficult to visualize and interpret SOM knowledge,
and there have been many attempts to improve vi-
sualization and interpretation performance of SOM.
Our method can improve the visualization of SOM
knowledge by focusing on a small number of infor-
mative input neurons.

Second, the method can provide us with a new
method for interpreting input neurons. In this pa-
per, we focused on the extraction of only a small
number of important input neurons. This is because
we considered it important to examine how much
information could be obtained by accumulating in-
formation content. However, when the information
is decreased from its maximum state, the number of
input neurons becomes larger.

5 Conclusion

The present paper improved information en-
hancement for detecting important input neurons by
accumulating information content obtained in each
leaning step. Accumulative information maximiza-
tion was used to store information content in in-
put patterns as much as possible at every step of
learning. This method was applied to two data sets,
namely, artificial data and the analysis of mission
statements. In both data sets, the experimental re-

sults confirmed that only a small number of impor-
tant input neurons (variables) were obtained. Thus,
the information enhancement method can be used to
extract a small number of input neurons (variables)
by accumulating information content in learning
processes.

One of the main problems is that the accu-
mulated information maximization method requires
heavy computational procedures, because it is nec-
essary to compute mutual information for each in-
put neuron. Thus, future work should focus on sim-
plifying these computational procedures as much
as possible. Though several problems should be
taken into consideration when applying the method
to more practical problems, it nevertheless shows
great potential for use in extracting a small number
of input neurons (variables) for complex and actual
data sets.
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the information enhancement method can be used to
extract a small number of input neurons (variables)
by accumulating information content in learning
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One of the main problems is that the accu-
mulated information maximization method requires
heavy computational procedures, because it is nec-
essary to compute mutual information for each in-
put neuron. Thus, future work should focus on sim-
plifying these computational procedures as much
as possible. Though several problems should be
taken into consideration when applying the method
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great potential for use in extracting a small number
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data sets.
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