
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Doctoral Dissertations Student Scholarship 

Spring 2019 

ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL 

CROPLAND PRODUCTS CROPLAND PRODUCTS 

Kamini Yadav 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/dissertation 

Recommended Citation Recommended Citation 

Yadav, Kamini, "ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL CROPLAND PRODUCTS" 

(2019). Doctoral Dissertations. 2465. 

https://scholars.unh.edu/dissertation/2465 

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New 
Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/dissertation
https://scholars.unh.edu/student
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2465?utm_source=scholars.unh.edu%2Fdissertation%2F2465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


 

 

ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL CROPLAND 

PRODUCTS 

 

BY 

 

KAMINI YADAV 

B.S., University of Delhi, 2008 

M.S., TERI University, 2010 

 

 

DISSERTATION 

 

 

Submitted to the University of New Hampshire 

in Partial Fulfillment of 

the Requirements for the Degree of 

 

 

Doctor of Philosophy 

in 

Natural Resources and Environmental Studies 

 

 

May 2019 

 



 

 

This dissertation was examined and approved in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in Natural Resources and Environmental Studies by: 

 

Dissertation Director, Dr. Russell G. Congalton, 
Professor of Remote Sensing and Geographic Information 
Systems, Natural Resources and the Environment 

 
Dr. Mark J. Ducey, Professor of Forest Biometrics and 
Management, Natural Resources and the Environment 

 

Dr. Richard Smith, Associate Professor, Natural Resources 
and the Environment 

 

Dr. Meghan Graham MacLean, PhD, Research Associate, 
Harvard Forest, Harvard University 

 

Dr. Barrett N. Rock, Professor Emeritus, Natural Resources 
and the Environment 

 

On January 10, 2019 

 

Approval signatures are on file with the University of New Hampshire Graduate School. 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALL RIGHTS RESERVED 

©2019 

Kamini Yadav



iv 

 

ACKNOWLEDGEMENTS 

I would like to thank my advisor, Dr. Russell G. Congalton, for providing a continuous support 

and guidance during my exploration and research in the field of science of where and through the 

process of defining my thoughts and hard work. Also, I want to thank my committee: Dr. Mark 

Ducey, Dr. Richard Smith, Dr. Meghan G. Maclean, and Dr. Barry Rock, for offering me their 

expertise knowledge and motivation throughout this process. 

I would like to thank the entire team of the Global Food Security Data Analysis project led by 

Dr. Prasad Thenkabail. Working with this group of scientists on this project has been a great 

learning experience and I appreciate all the work we did together. The team includes Pardhasaradhi 

Teluguntla, Jun Xiong, Adam Oliphant, Corryn Hola, Justin Poehnelt, Ying Zhong, Aparna 

Phalke, Richard Massey, Temmulen Sankey, James Charles Tilton, Murali Krishan Gumma, 

Mutlu Ozdogan, Varsha Vijay, Chandra Giri, and Itiya Aneece. I would like to thank Dr. Prasad 

Thenkabail for giving me the opportunity to be a part of this project and learn from the people 

expertise in the field of remote sensing and agriculture. I would like to thank Dr. James Charles 

Tilton for requesting and ordering the high spatial resolution imagery from the Digital Globe. 

Thank you to all the BASAL Lab students (Heather Grybas, Ben Fraser, Lindsay Melendey, Jianyu 

Gu, Christine Healy, Linnea Dwyer, and Peijun Sun without whom I could not have done such a 

wonderful work by helping in writing, brain storming with ideas, and putting all their efforts to 

achieve the task.  

I want to thank my friends and family for making my life cheerful as I completed my 

dissertation. The constant love and support from my family has made my time as PhD student that 

much more fun and rewarding. A special thanks to my mom and grandma for loving, caring, and 



v 

 

supporting me to accomplish the completion of this dissertation and of course my husband 

Munendra and daughter Navika for keeping me motivated and hopeful to get my dissertation done. 

This research was supported in part by the Global Food Security Analysis Project, NASA 

MEaSUREs grant number: NNH13AV82I and the USGS Sales Order number is 29039. 

Additionally, this project was supported in part by Grant/Cooperative Agreement Number 

G14AP00002 from the United States Geological Survey via a sub award from AmericaView. Its 

contents are solely the responsibility of the authors and do not necessarily represent the official 

views of the USGS. Thank you to the NRESS tuition waiver (2018) for making my research 

possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS……………………………………………………………………... iv 

TABLE OF CONTENTS………………………………………………………………………....vi 

LIST OF TABLES……………………………………………………………………………...viii 

LIST OF FIGURES…………………………………………………………………………....... xi 

ABSTRACT……………………………………………………………………………………. xv 

CHAPTER                                                                                                                              PAGE 

I. INTRODUCTION………………………………………………………………………….... 1 
II. BACKGROUND AND LITERATURE REVIEW………………………………………….. 8 

Global Cropland Extent Products……………………………………………………………. 8 
Accuracy Assessment of Global Cropland Extent Maps…………………………………….11 
Uncertainty Analysis of Global Cropland Extent Maps…………………………...…….…. 14 
Sampling Strategies for Collecting Reference Data……………………………………...….17 
Object-Based Image Analysis (OBIA) of High-spatial Resolution Imagery (HRI) ….……. 20 

III. ISSUES WITH LARGE AREA THEMATIC ACCURACY ASSESSMENT FOR 
MAPPING CROPLAND EXTENT: A TALE OF THREE CONTINENTS………………. 25 
Abstract……………………………………………………………………………………... 25 
Introduction…………………………………………………………………………………. 26 
Study Area………………………………………………………………………………….. 30 
Methods……………………………………………………………………………………....33 

Stratification………………………………………………………………………………. 34 
Collecting Reference Data…………………………………………………………………36 
Sampling…………………………………………………………………………………...37 
Computing Descriptive Statistics…………………………………………………………. 39 

Results………………………………………………………………………………………. 41 
Discussion……………………………………………………………………………………60 
Lessons Learned……………………………………………………………………………...65 
Conclusions…………………………………………………………………………………. 67 

IV. ACCURACY ASSESSMENT OF GLOBAL FOOD SECURITY-SUPPORT ANALYSIS 
DATA (GFSAD) CROPLAND EXTENT MAPS PRODUCED AT THREE DIFFERENT 
SPATIAL RESOLUTIONS………………………………………………………………….69 
Abstract………………………………………………………………………………………69 
Introduction…………………………………………………………………………………. 70 
Study Area…………………………………………………………………………………...77 



vii 

 

Datasets………………………………………………………………………………………78 
Methods………………………………………………………………………………………85 

Assessment…………………………………………………………………………………86 
Comparison……………………………………………………………………………….. 89 

Results………………………………………………………………………………………. 93 
Discussion…………………………………………………………………………………. 111 
Conclusions………………………………………………………………………………....116 

V. EVALUATING SAMPLING DESIGNS FOR ASSESSING THE ACCURACY OF 
CROPLAND EXTENT MAPS IN DIFFERENT CROPLAND PROPORTION 
REGIONS…………………………………………………………………………………. 119 
Abstract……………………………………………………………………………………. 119 
Introduction…………………………………………………………………………………120 
Study Area………………………………………………………………………………….123 
Datasets……………………………………………………………………………………. 124 
Methods…....………………………………………………………………………………. 125 

Selecting Probability-based Sampling……………………………………………………126 
Choosing an Optimum Sample Size……………………………………………………...127 
Comparison of sampling designs for different crop proportion regions…….………...… 128 

Results………………………………………………………………………………………129 
Discussion…………………………………………………………………………………. 141 
Conclusions………………………………………………………………………………....146 

VI. AUGMENTING AND EXTENDING LIMITED CROP TYPE REFERENCE DATA USING 
AN INTERPRETATION AND PHENOLOGY-BASED APPROACH…………………...148 
Abstract……………………………………………………………………………………. 148 
Introduction…………………………………………………………………………………149 
Study Area………………………………………………………………………………….154 
Datasets……………………………………………………………………………………. 156 
Methods……………………………………………………………………………………. 161 

Augmentation………………………………………………………………………..........162 
Extension………………………………………………………………………………….163 
Accuracy Assessment of Augmentation and Extension………………………………….166 

Results………………………………………………………………………………………167 
Discussion…………………………………………………………………………………. 181 
Conclusions…………………………………………………………………………………190 

VII. OVERALL CONCLUSIONS………………………………………………………………192 

LITERATURE CITED 



viii 

 

LIST OF TABLES 

Table 1. Zone-wise accuracy estimates listed for all the AEZ’s of the United States…………...46 

Table 2. An overall accuracy matrix for the cropland extent map of US………………………. 47 

Table 3. Zone-wise accuracy estimates listed for all the AEZ’s in Africa……………………... 52 

Table 4. An overall accuracy matrix for the cropland extent map of Africa…………………….53 

Table 5. The error matrix generated using unbalanced ground collected reference samples……59 

Table 6. The error matrix generated using balanced ground collected reference samples augmented 
with HRI interpreted samples………………………………………………....………………... 59 

Table 7. The error matrix generated using balanced reference samples generated in crop buffer 
zone 1…………………………………………………………………………………………….59 

Table 8. The error matrix generated using balanced reference samples generated in crop buffer 
zone 2…………………………………………………………………………………………….59 

Table 9. Distribution of random study sites in different agriculture field sizes of different 
continents………………………………………………………………………………………...78 

Table 10. Description of the three different GFSAD cropland extent maps……………….……80 

Table 11. Different sources of reference data used to assess the three different GFSAD cropland 
extent maps……………………………………………………………………………………....83 

Table 12. The list of regions used in the assessment of the three different GFSAD cropland extent 
maps……………………………………………………………………………….……..............88 

Table 13. An example of a similarity matrix………………………………………………….... 90 

Table 14. Regions, their area, and number of samples that were used to assess the GFSAD1km 
Cropland extent map……………………………………………………………………...…...... 95 

Table 15. The accuracy measures of GFSAD1km map in eight regions……………………...... 95 

Table 16. The error matrix showing the overall accuracy of the GFSAD1km cropland extent 
map…………………………………………………………………………………………….... 96 

Table 17. The accuracy measures of the GFSAD250m cropland extent map……………………97 

Table 18. The error matrix showing the overall accuracy of the GFSAD250m cropland extent 
map……………………………………………………………………………………………….98 



ix 

 

Table 19. Regions and number of reference samples used to assess the GFSAD30m cropland extent 
map……………………………………………………………………………………………...100 

Table 20. The accuracy measures of GFSAD30m GFSAD cropland extent map……………...100 

Table 21. The error matrix showing the overall accuracy of the GFSAD30m cropland extent 
map……………………………………………………………………………………………...101 

Table 22. Overall similarity between cropland extent maps with different resolutions…….… 105 

Table 23. Omission Error (OE) and Commission Error (CE) of crop in the coarser-resolution maps 
as compared to fine resolution for nine different study sites…………………………………... 107 

Table 24. Landscape parameters in different resolution maps for all study sites……………… 108 

Table 25. The specific recommendations for when to apply the three spatial resolutions of GFSAD 
cropland extent map with respect to different agriculture field sizes………………………….... 116 

Table 26. The calculations of cropland and non-cropland sample sizes…………….…………. 128 

Table 27. Cropland and non-cropland area proportion and probability class of the various cropland 
regions…………………………………………………………………………………………. 129 

Table 28. The allocation of cropland and non-cropland reference samples using SRS and SMPS 
designs…………………………………………………………………………………………. 131 

Table 29. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in 
the very low cropland proportion regions. ……………………………………………...…........133 

Table 30. Error matrices showing the accuracy measures achieved with SRS and SMPS sampling 
designs in the low crop proportion regions……………………………………………………. 135 

Table 31. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in 
the medium cropland proportion regions………………………………………………………. 137 

Table 32. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in 
high cropland proportion regions…………………………………………...………………. ….138 

Table 33. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in 
the very high cropland proportion regions………………………………………….………….  140 

Table 34. The comparison of sampling designs in different crop probability classes….………145 

Table 35. The description of the six regions selected in three AEZs for different field sizes….154 

Table 36. The cropping calendar of the crop types for three agriculture field sizes…………... 155 



x 

 

Table 37. List of vegetation indices that were explored and used in the classification of crop 
types…………………………………………………………………………….………….….. 157 

Table 38. The training data collected from the 2015 CDL of the TR regions to classify the crop 
type maps of the TR and TE regions………………………………………………………….. 173 

Table 39. The reference data used to assess the crop/no-crop and crop type maps of the three TR 
and three TE regions……………………………………………………………………………176 

Table 40. The evaluation of the augmented crop type reference data collected from GSV……177 

Table 41. The error matrices of crop and no-crop maps of TR and TE regions for the large, medium, 
and small field sizes…………………………………………………………………...………. 178 

Table 42. The overall accuracy of the crop type maps of the three TR regions developed from one, 
two, and three dates of satellite imagery………………………………………………………. 178 

Table 43. The error matrix of crop type map generated from multi-dates of World View-2 imagery 
for the TE region in the large agriculture field size………………………….…………………. 179 

Table 44. The error matrix of crop type map generated from multi-dates of World View-2 imagery 
for the TE region in the medium agriculture field size…………………………………………. 179 

Table 45. The error matrix of crop type map generated from multi-dates of World-View 2 imagery 
for the TE region in the small agriculture field size……………………………………………. 180 

 

 

 

 

 

 

 

 

 

 



xi 

 

LIST OF FIGURES 

Figure 1. Map showing the location of three selected continents and their respective homogeneous 
regions such as Agro-ecological zones (AEZs) and crop buffer………………………………….32 

Figure 2. Flowchart of the process used to conduct the continent-based accuracy assessment of the 
GFSAD mapping products………………………………………………………………….........34 

Figure 3. The distribution of Agro-ecological zones in the United States. ………………...........42 

Figure 4. The graphical representation of sample size simulation in AEZ’s of the US………….44 

Figure 5. The distribution of randomly generated reference samples within each of the AEZ’s of 
the US. ………………………………………………………………………………………….. 44 

Figure 6. The difference image derived using reference data and cropland map of the US showing 
2% Omission and 0% commission error (Massey et al., 2017a).……………………................... 46 

Figure 7. Agro-Ecological Zones (AEZ’s) of Africa………………………………………….... 49 

Figure 8. The graph showing the sample simulation in AEZ’s of Africa………………………. 50 

Figure 9. The distribution of Cropland and Reference Samples in Africa…………………….... 51 

Figure 10. Crop buffer zones delineated using Euclidean Distance buffering approach……….. 54 

Figure 11. The distribution of ground collected samples used in the accuracy assessment of 
cropland map of Australia………………………………………………………………………. 56 

Figure 12. The distribution of ground collected and augmented no-crop samples in Australia…56 

Figure 13. The distribution of reference samples in buffer zones of Australia……………….... 57 

Figure 14. The location of the nine randomly selected study sites for the world………………... 78 

Figure 15. The GFSAD 1 km, 250 m, and 30 m cropland extent maps generated by multiple 
producers…………………………………………………………………………………………82 

Figure 16. The overall flowchart showing the methods step followed to assess and compare 
different resolution GFSAD cropland extent maps……………………………………………...86 

Figure 17. The implementation scheme of similarity matrix to compare the area of cropland on 
different resolution maps………………………………………………………………………...92 

Figure 18. The distribution of eight regions along with the entire reference data of 1800 samples 
(Source: Geo-Wiki) used in the assessment of GFSAD1km cropland extent map...…………... 94 



xii 

 

Figure 19. The distribution of reference samples distributed in the four regions (Source: 
Independent datasets generated by assessment team and field data collected for Australia 
(Teluguntla et al., 2017a) used to assess GFSAD250m cropland extent map…………………... 97 

Figure 20. The distribution of regions and reference samples (Source: Independent reference 
datasets generated by assessment team from CDL and high-resolution imagery and field data 
collected for Australia (Teluguntla et al., 2017a) used to assess the GFSAD30m cropland extent 
map…………………………………………………………………………………………....... 99 

Figure 21. Difference images representing the disagreement in the GFSAD250m (A) and 
GFSAD30m (B) cropland extent map of the US as compared to the reference map…………. 102 

Figure 22. Visual comparison of the three different GFSAD cropland extent maps with high-
resolution images acquired for small, medium, and large field sizes at random study sites around 
the entire world. The gray area represents the crops………………………………………….. 104 

Figure 23. The similarity in the cropland areas mapped at the three different spatial resolutions in 
different agriculture landscapes………………………………………………………………... 105 

Figure 24. The differences in the percentage of cropland areas in different field size 
landscapes………………………………………………………………………………………109 

Figure 25. PPU Landscape heterogeneity of different-resolution maps in landscapes with different 
field sizes…………………………………………………………………………….…………109 

Figure 26. The comparison of landscape heterogeneity and area proportions in small, medium, and 
large field sizes………………………………………………………………………………… 110 

Figure 27. The location of various cropland regions around the world and the GFSAD30m 
cropland extent map…………………………………………………………………………….124 

Figure 28. The flow chart showing the steps involved to perform the assessment of cropland extent 
maps of the various cropland regions………………………………………………….............. 126 

Figure 29. The distribution of 250 reference samples using SRS and SMPS designs in the Canada 
Zone 3…………………………………………………………………………………….......... 130 

Figure 30. Graphical representation of the overall accuracy achieved with SMPS design using the 
sample sizes from 50 to 300…………………………………………………………………….132 

Figure 31. Graphical representation of the accuracy measures achieved with SRS and SMPS 
designs in the very low crop proportion regions………………………………………………. 133 

Figure 32. Graphical representation of the accuracy measures achieved with SRS and SMPS 
designs in the low crop proportion regions……………………………………………………. 134 



xiii 

 

Figure 33. Graphical representation of the accuracy measures achieved with SRS and SMPS 
designs in the medium cropland proportion regions……………………………………………136 

Figure 34. Graphical representation of the accuracy measures achieved with SRS and SMPS 
designs in the high cropland proportion regions………………………………………………. 138 

Figure 35. Graphical representation of the accuracy measures achieved with SRS and SMPS 
designs in the very high cropland proportion regions…………………………………………. 139 

Figure 36A and 36B. The location of three pairs of Training (TR) and TEst (TE) regions selected 
each in three AEZs and three agriculture field sizes……………………………………………154 

Figure 37. The World View-2 images used to investigate the use of multi-dates of imagery for 
extending the crop type reference data from the Training (TR) (left panel) to Test (TE) regions 
(right panel) in large (L), medium (M), and small (S) field sizes…………………………....... 156 

Figure 38. Cropland Database Layer (CDL) of TR (first row) and TE (second row) regions used 
as reference data to evaluate the results of augmentation and extension approaches………......158 

Figure 39. The hierarchical classification scheme followed to classify the agriculture crops of the 
six regions………………………………………………………………………………………159 

Figure 40. The overall methodology flow chart showing the augmentation and extension of the 
limited crop type reference data for the six regions…………………………………………….161 

Figure 41. Augmented crop type reference data of three TR regions collected from GSV for large 
(L), medium (M), and small (S) field sizes…………………………………………………......167 

Figure 42. The crop/no-crop maps of the three TR and three TE regions in large (L), medium (M), 
and small (S) field sizes…………………………………………………………………...........168 

Figure 43. The Decision Trees (DTs) built from the 2015 CDL reference data of the three TR 
regions for large (L), medium (M), and small (S) field sizes…………………………………. 170 

Figure 44. The relationship between Vegetation Indices (MSR, DVI, NDVI, and GNDVI) in 
different growing seasons in the large agriculture field size TR region……. …………………171 

Figure 45. The relationship between Vegetation Indices (MSR, DVI, and SARVI) in different 
growing seasons in the medium agriculture field size TR region.……………………………... 172 

Figure 46. The relationship between Vegetation Indices (GNDVI, EVI, and MCARI) in different 
growing seasons in the small agriculture field size TR region………………………………... 172 

Figure 47. Crop type maps of three TR regions produced from one, two, and three dates of satellite 
imagery in the large, medium, and small field sizes…………………………………………… 174 



xiv 

 

Figure 48. The crop type maps of the three TE regions produced from the classification of multi-
dates of satellite imagery in large, medium, and small field sizes……………………………...175 

Figure 49. The World View-2 images of the medium field size TR region showing the unique 
spectral characteristics of the fallow land……………………………………………………....183 

Figure 50. The comparison of CDL reference data of the small field size TR region with the 
satellite imagery………………………………………………………………………………...184 

 



xv 

 

ABSTRACT 

 

ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL CROPLAND 

PRODUCTS 

By 

Kamini Yadav 

University of New Hampshire, May 2019 

 

Global cropland products are continuously being produced at different spatial resolutions using 

remotely sensed satellite imagery. Recently, with our increased accessibility to higher computing 

processing, three different cropland extent maps have been developed as a part of Global Food 

Security-Support Analysis Data (GFSAD) project at three spatial resolutions (i.e., GFSAD1km, 

GFSAD250m, and GFSAD30m). All cropland maps should be assessed for their accuracy, errors, 

and uncertainty for various agriculture monitoring applications. However, in previous assessment 

efforts appropriate assessment strategies have not always been applied and many have reported 

only a single accuracy measure for the entire world. This research was divided into four 

components to provide more attention and focus on the accuracy assessment of large area cropland 

products.  

First, a valid assessment of cropland extent maps was performed addressing different 

strategies, issues, and constraints depending upon various conditions related to the cropland 

distribution, proportion, and pattern present in each continent. This research focused on dealing 
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with some specific issues encountered when assessing the cropland extent of North America 

(confined to the United States), Africa and Australia. Continent-specific sampling strategies and 

accuracy assessments were performed within homogenous regions (i.e., strata) of different 

continents to ensure that an appropriate reference data set was collected to generate rigorous and 

valid accuracy results indicative of the actual cropland proportion.  

Second, all the three different GFSAD cropland extent maps were assessed using appropriate 

sampling and collection of a cropland reference data based on the cropland distribution and 

proportion for different regions in the entire world. In addition to the accuracy assessment, the 

cropland extent maps developed at the three spatial resolutions were compared to investigate the 

differences among them and provide guidance for users to select the appropriate resolution given 

different agriculture field sizes. The comparison of three different GFSAD cropland extent maps 

was performed based on the similarity of the cropland area proportion (CAP) and landscape 

clumping at different spatial resolutions to provide specific recommendations for when to apply 

these maps in different agriculture field sizes.  

Third, an issue was discovered with the accuracy assessment of 30m global cropland extent 

map (i.e., GFSAD30m) in that insufficient samples were collected resulting in an ineffective 

assessment when the cropland map class was rare as occurred in some regions around the world. 

This research evaluated the sampling designs for different cropland regions to achieve sufficient 

samples and effective accuracy of rare cropland map class by comparing the distribution, 

allocation of samples and accuracy measures. The evaluation of sampling designs demonstrated 

that the cropland regions of <15% CAP must be sampled with an appropriate stratified sampling 

combined with a predetermined minimum sample size for each map class.  
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Finally, the accuracy assessment of all thematic maps (e.g., crop type maps) needs sufficient 

reference data to conduct a valid assessment. The availability of reference data is a severely 

limiting factor over large geographic region because of the time, effort, cost, and accessibility in 

different parts of the world. The objectives of this research were to augment and extend the limited 

availability of crop type reference data using non-ground-based sources of crop type information 

for creating and assessing large area crop type maps. There is the potential to either interpret the 

photographs available from Google Street View (GSV) or classify High Resolution Imagery (HRI) 

using a phenology-based classification approach to generate additional reference data within 

similar agriculture ecological zones (AEZs) based on the crop characteristics, their types, and 

growing season. These two methods of augmenting and extending crop type reference data were 

developed for the United States (US) where high-quality crop type reference data already exist so 

that the methods could be effectively and efficiently tested. 

This research described a tale of three continents providing recommendations to adapt 

accuracy assessment strategies and methodologies for assessing global cropland extent maps. 

Based on these results, the assessment and comparison of different resolution GFSAD cropland 

extent maps were performed to provide specific recommendations for when to apply each of the 

maps for agriculture monitoring based on the agriculture field sizes. When assessing the cropland 

extent maps, different sampling strategies perform differently in the various cropland proportion 

regions and therefore, must be selected according to the cropland extent maps to be assessed. 

Finally, this research concluded that the limited crop type reference data can be effectively 

extended using a phenology-based classification approach and is more efficient than the 

interpretation of photographs collected from GSV. 
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CHAPTER I 

INTRODUCTION 

Food security is one of the major challenges that human beings are facing (Pena-Barragan et al., 

2011; Yang et al., 2011; Zhong et al., 2014). The global population, which is expected to reach a 

9.8 billion mark by 2050, will demand 70% more food than they are consuming today 

(Alexandratos and Bruinsma, 2012). Cropland areas have expanded considerably to provide more 

production for closing this yield gap (Lobell et al., 2009; Foley et al., 2011; Tollefson, 2011). This 

expansion causes the increase in greenhouse gas (GHG) emissions and environment degradation 

and conflicts with the global need for sustainable agriculture (Adams and Eswaran, 2000; Beach 

et al., 2008). The essential inputs to improve agriculture practices and predict GHG emissions 

includes the mapping of cropland extent, distribution, and their specific characteristics (i.e., crop 

types) (Ramankutty et al., 2008; Pena-Barragan et al., 2011; Gong et al., 2013; Atzberger et al., 

2015; See et al., 2015). Therefore, cropland mapping has a significant role to ensure food security, 

environment stability, and provide help to farmers on crop yield predictions and decision makers 

for policy and planning actions on large geographic areas (Yang et al., 2011; Foerster et al., 2012). 

Remote sensing technology provides reliable and cost-effective methodologies for cropland 

mapping over space and time, repeatedly, and consistently at various spatial and temporal domains 

(Ustuner et al., 2014; Zhou et al., 2014). Remotely sensed satellite imagery provides multiple 

spectral, spatial, and temporal resolution characteristics that can be effectively utilized to map the 

cropland extent and crop type characteristics of the earth’s surface (Ulabay et al., 1982; Congalton 

et al., 1998; Oetter et al., 2000). 
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Various global cropland extent products such as the Global Map of Irrigation Areas (GMIA), 

the Global Map of Rain-fed Areas (GMRCA), the Global Monthly Irrigated and Rain-fed Crop 

Areas (MIRCA2000), the Global Rain-fed, Irrigated, and Paddy Croplands (GRIPC), and the 

Moderate Resolution Imaging Spectroradiometer-Cropland (MODIS) have been developed at 

multiple spatial resolutions from 10km to 250m (Biradar et al., 2009; Thenkabail et al., 2009; 

Pittman et al., 2010; Portmann et al., 2010; Salmon et al., 2015). Recently, with our increased 

accessibility to advanced computing platforms for processing large datasets, an improved spatial 

and thematic dataset compared to previous cropland mapping efforts called the GFSAD Project 

(Global Food Security Support-Analysis Data) was completed. These three new GFSAD cropland 

extent maps were created separately at three different spatial resolutions (1km, 250m, and 30m) 

using Landsat and MODIS imagery along with other existing cropland data (Teluguntla et al., 

2016; Massey et al., 2017a and b; Xiong et al., 2017a, b, and c; Teluguntla et al., 2017a and b; 

Gumma et al., 2017; Phalke et al., 2017; Oliphant et al., 2017; Zhong et al., 2017; Teluguntla et 

al., 2018; Massey et al., 2018).  

However, the cropland mapping at different spatial resolutions cause large uncertainty and 

differences in the estimates of cropland area and their spatial extent (Chen et al., 2017; Pérez-

Hoyos et al., 2017). The cropland maps either have ineffective accuracies generated from 

insufficient reference data or their resolution is too coarse for use in other than global applications 

(Fritz et al., 2013). The quality and reliability of the cropland extent maps are required to be 

established as the base map for generating higher level cropland products such as crop type and 

crop intensity maps (Thenkabail et al., 2010). Therefore, the newly developed three GFSAD 

cropland extent maps must be assessed with a large area accuracy assessment strategy involving 
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an appropriate sampling of collecting sufficient cropland reference data over large areas to provide 

meaningful and effective map accuracy. 

Previous attempts at rigorous accuracy assessment of large area cropland extent maps has been 

very limited. Considerable ambiguity exists in the implementation and interpretation of large area 

thematic map accuracy assessment (Congalton, 2016). Individual measures and guidelines for 

assessing thematic map accuracy established by many researchers are not often followed due to 

various limitations in the assessment process (e.g., thematic resolution, geo-location accuracy and 

availability of reference data) (Congalton, 1991; Stehman, 1997; Stehman and Czaplewski, 1998; 

Congalton and Green, 1999; Olofsson et al., 2013). As such, large area assessment and crop type 

mapping efforts have mostly relied on insufficient, sparsely distributed reference data (Bicheron 

et al., 2008; Fritz et al., 2009a; Foody, 2010; Gong et al., 2013; Yu et al., 2013). The assessments 

performed with limited and insufficient reference dataset reported overall accuracies ranging from 

66% to 78% with considerably lower accuracies from 10% to 50% for the cropland class (Sedano 

et al., 2005; Frey and Smith, 2007). Therefore, more work must be done to create additional global 

cropland reference datasets to effectively assess large area cropland extent maps. 

In the past, different sampling approaches have been used for collecting reference data to 

achieve appropriate accuracy results for different landscapes. Many researchers have expressed 

opinions on using different sampling strategies (e.g., simple random and systematic selection 

protocols, and structures imposed on the population such as strata clusters) for assessing the 

thematic maps (Hord and Brooner, 1976; Ginevan, 1979; Rhode, 1978; Congalton, 1991; Stehman 

and Czaplewski, 1998; Stehman, 1999; Stehman, 2009; Congalton and Green, 2009). While 

assessing the global cropland extent maps, different sampling approaches might result in 
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insufficient samples and ineffective assessments of the rare cropland map class due to the equal 

probability of selecting a sample area in areas that have a low proportion and distribution of 

cropland (Foody, 2002; Gallego, 2004; Foody and Boyd, 2013; Waldner et al., 2015). The effective 

use of statistically valid and probability-based sampling designs still needs to be established for 

various cropland regions around the world (Bayas et al., 2017). Therefore, an alternate probability-

based sampling design imposed within strata defined by the map classes combined with minimum 

sample size is one method to provide sufficient samples and useful accuracy measures for the rare 

cropland map class (Stehman, 1999; Olofsson et al., 2014).  

Bayas et al., (2017) has suggested that a larger sample size be implemented for assessing the 

cropland maps that have between 25-75% cropland and that a smaller sample size would be enough 

to efficiently assess the cropland maps in areas with very high or very low cropland proportion. 

However, in most cropland assessments, mostly small samples sizes that are sparsely distributed 

have been used resulting in an ineffective assessment of the cropland extent maps of various 

cropland regions (e.g., Fritz et al., 2009a; Gong et al., 2013). A larger sample size can achieve 

more appropriate and useful accuracy of the cropland extent maps (Tsendbazar et al., 2015). 

However, even a larger total sample size can result in insufficient samples and ineffective 

accuracies of the rare cropland map class if the samples are not distributed effectively. Rather than 

selecting sample size and strategy by the map complexity, the cropland distribution and proportion 

of each cropland region must be carefully considered to choose an optimum sample size to 

efficiently assess the cropland extent maps. Therefore, an optimum sample size must be chosen 

using a sample simulation analysis based on a Monte Carlo method for an effective and useful 
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assessment of the cropland extent maps of the various cropland regions (Hay, 1979; Congalton, 

1988; Yadav and Congalton, 2018a and b).  

Once the global cropland maps are assessed with appropriate strategy, sufficient sample size, 

and meaningful accuracy results, they can be effectively used to generate high order cropland 

products (e.g., crop type maps). Crop type mapping at high spatial resolution requires sufficient 

high-quality crop type reference data which is limited over large geographic regions from ground-

based surveys because of the time, effort, cost, and accessibility in different parts of the world. 

However, sufficient cropland and crop type reference data are difficult to be collected from 

ground-based surveys because of their limited time, effort, cost, and accessibility to different parts 

of the world. The collection of sufficient crop type reference data can be challenging for different 

field size regions. Therefore, limited crop type reference data needs to be augmented or extended 

at multiple place using non-ground-based sources for collecting additional crop type reference data 

to create and assess large area crop type maps.  

Possible non-ground-based sources to augment and extend the limited crop type reference data 

to every region are: (1) the interpretation of photographs that are readily available from sources 

such as Google Street View (GSV) and (2) the classification of High-spatial Resolution Imagery 

(HRI). The interpretation of photographs available from GSV has the potential to augment the 

limited availability of crop type reference data. The classification of HRI has been used to extend 

the crop type information to multiple years to develop year by year crop type maps without 

considering region to region re-training of the satellite imagery (Zhong et al., 2014). The Object-

Based Image Analysis (OBIA) of the multi-dates of HRI has replaced the conventional pixel-based 

classification approach to achieve the improved accuracy of the crop type maps (Castillejo-
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González et al., 2009; Yang et al., 2011; Conrad et al., 2014). It may be possible to use such OBIA 

approach along with different phenology-based classification algorithms to extend the limited crop 

type reference data within a single year to similar regions. These methods of augmentation and 

extension could save the labor, cost, and time of field surveys required to collect the crop type 

reference data over large regions (Tatsumi et al., 2015).  

In summary, the focus of my dissertation was to assess the large area GFSAD cropland extent 

maps developed at three different spatial resolutions to estimate the uncertainty, errors, and 

accuracy of cropland areas and their spatial extent at global and regional scales. Throughout the 

process, many related issues involving the cropland proportion and reference data availability in 

different continents, appropriate sampling approaches for collecting valid cropland reference data, 

and crop type reference data extension to multiple regions were addressed. The specific objectives 

were to: 

1. Determine an appropriate assessment strategy for large area cropland maps based on the 

cropland distribution and pattern in different regions. 

2. Assess and compare the three different GFSAD cropland extent maps to establish their 

suitability and provide specific recommendations for agriculture monitoring in different 

agriculture field sizes. 

3. To evaluate sampling strategy for assessing the cropland extent maps of different crop 

proportion regions. 

4. To generate additional crop type reference data with augmentation and extension 

approaches from non-ground-based sources using the visual interpretation of 

photographs and classification of multi dates of satellite imagery. 
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The results of this dissertation are valuable to provide effective and meaningful accuracy 

results for large area cropland extent maps (i.e., GFSAD1km, GFSAD250m, and GFSAD30m). 

The assessment strategy employed for specific spatial resolutions allow the users to make a choice 

of an appropriate cropland extent map from the three different GFSAD cropland maps for their 

specific use. More specifically, the assessment strategy provides suitable recommendations for 

when to apply the three different resolution maps for different field sizes. Since, the low cropland 

proportion regions had insufficient samples and ineffective accuracy of rare cropland map class, 

an alternate sampling design was evaluated to assess the cropland extent maps of different cropland 

regions. Finally, the limited crop type reference data was augmented and extended to every region 

using non-ground-based sources to create sufficient reference data for large area crop type 

mapping.  

 

 

 

 

 

 

 

 

 

 

 



8 

 

CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

Multiple independent efforts have incorporated detailed agriculture statistical surveys with the 

spatial information derived from satellite imagery to produce global cropland extent maps at 

different spatial resolutions (e.g. Leff et al., 2004; Monfreda et al., 2008; Portmann et al., 2010). 

The accuracy assessment and comparison of existing cropland maps have identified uncertainties, 

errors, and discrepancies in the estimated cropland area and ineffective accuracy of the cropland 

class. To understand the previous work on the uncertainty analysis and accuracy assessment of 

global cropland products developed using satellite imagery that serves as the basis and motivation 

for this dissertation, five major components should be reviewed. They are: (1) Global cropland 

extent maps; (2) Accuracy assessment of global cropland extent maps; (3) Uncertainty analysis by 

comparing global cropland extent maps; (4) Sampling for collecting cropland reference data; (5) 

Object-based image analysis of multi dates of High Spatial Resolution Imagery (HRI) for mapping 

cropland products. 

 

Global Cropland Extent Maps 

A wide range of approaches have been investigated and evaluated to collect cropland information 

(e.g. ground-based field surveys, satellite based cropland classification maps, blending of field-

based and satellite data, crowd sourced data and blending of crowd sourced data and satellite data). 

Ramankutty, (2008) and Monfreda et al., (2008) have compiled census and survey-based 

agriculture information reported by the Food and Agriculture Organization (FAO). Independent 
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evaluation by the World Bank (e.g., The World Bank, 2010) has recognized that there are both 

quality and quantity related problems in agriculture information provided by different countries. 

Alternatively, remote sensing technology provides effective tools and the necessary imagery to 

generate frequent and consistent cropland information at different spatial resolutions over large 

areas (See et al., 2014).  

The use of remote sensing in agriculture began four decades ago through a series a large area 

field experiments: The Corn Blight Watch Experiment (MacDonald et al., 1971), the Large Area 

Crop Inventory Experiment (LACIE) (MacDonald et al., 1975), and the Agriculture and Resources 

Inventory Surveys Through Aerospace Remote Sensing experiment (AgRISTARS, 1981). 

Remotely sensed satellite imagery has multiple spectral, spatial, radiometric, and temporal 

resolution characteristics that can be effectively utilized for mapping cropland areas and crop type 

identification (Congalton et al., 1998; Yang et al., 2011). Therefore, remotely sensed satellite 

imagery is increasingly used for cropland and crop type mapping at different spatial resolutions 

because of its high temporal and spectral characteristics even at moderate and coarse spatial 

resolutions (e.g. Chang et al., 2007; Wardlow and Egbert 2008; and Vintrou et al., 2012). 

Operational global cropland products that are available at spatial resolutions from 10 km to 

250 m at best, such as MODIS based products, have limited ability to capture land use patterns in 

complex landscapes (Ozdogan and Woodcock, 2006). Examples of these products include: the 

Global Map of Irrigation Areas (GMIA), the Global Map of Rain-fed Areas (GMRCA), the Global 

Monthly Irrigated and Rain-fed Crop Areas (MIRCA2000), the Global Rain-fed, Irrigated, and 

Paddy Croplands (GRIPC), and the Moderate Resolution Imaging Spectroradiometer-Cropland 

(MODIS) (Thenkabail et al., 2009; Pittman et al., 2010). These products are poor at detecting 
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croplands in low agricultural intensification areas because of the inter-mixing of the spectral and 

temporal responses of croplands with grasslands and the mixing of different crop types within a 

single pixel at these coarse resolutions (Pittman et al., 2010). The estimates from these cropland 

maps are highly divergent due to the lack of details and incompatible legend definitions (i.e., 

different classification schemes).  

It was not until the release of the Landsat archive in 2008 (Wuldner et al., 2012), that higher 

spatial resolution global products at 30m resolution were possible. With our increased accessibility 

to advanced computing platforms for processing large datasets, a refined spatial and thematic 

dataset compared to previous cropland mapping efforts called the GFSAD Project (Global Food 

Security Support-Analysis Data) has been produced. The GFSAD project created cropland extent 

maps at three different spatial resolutions (1km, 250m, and 30m) using Landsat, MODIS, and other 

existing cropland data (Teluguntla et al., 2016; Massey et al., 2017a and b; Teluguntla et al., 2017a 

and b; Xiong et al., 2017a, b, and c; Phalke et al., 2017; Oliphant et al., 2017; Zhong et al., 2017; 

Gumma et al., 2017; Massey et al., 2018; Teluguntla et al., 2018). Mapping from a variety of 

spatial resolutions raises many inconsistencies, differences, and uncertainties among the estimated 

cropland areas, visualizations of the map, and spatial distributions of cropland patches in different 

cropping patterns (Giri and Long, 2014; Bai et al., 2015). Mapping of cropland areas at different 

spatial resolutions causes large differences in the estimates of cropland area and spatial extent 

(Chen et al., 2017; Bayas et al., 2017; Pérez-Hoyos et al., 2017). Therefore, the cropland extent 

maps developed at these varying spatial resolutions must be compared and assessed both at the 

global and regional scales to establish their accuracy and uncertainty for using them as base maps 

for generating higher level cropland products such as crop type maps (Thenkabail et al., 2010).  
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Accuracy Assessment of Global Cropland Extent Maps 

Accuracy assessment is an essential step in creating a thematic map from remotely sensed imagery. 

However, previous attempts at rigorous accuracy assessment of large area cropland extent maps 

developed at various spatial resolutions has been very limited. It has been observed that 

considerable ambiguity exists in the implementation and interpretation of large area thematic map 

accuracy assessment (Congalton, 2016). In the literature, individual measures and guidelines of 

accuracy assessment are well established by many researchers (Congalton, 1991; Stehman, 1997; 

Stehman and Czaplewski, 1998; Congalton and Green, 1999). However, these guidelines are not 

often followed due to different constraints of uncertainty components in the assessment process 

(Olofsson et al., 2013). The most important uncertainty components in the large area accuracy 

assessment process includes inconsistent availability of valid reference data, inappropriate 

sampling designs for collecting reference data, and invalid reporting of accuracy results for 

different crop proportions regions or continents. Therefore, the issues and constraints observed in 

the cropland maps of different continents must be addressed with an appropriate assessment 

strategy involving a valid and high-quality independent reference dataset, logistically feasible and 

statistically valid sampling strategies, and meaningful and informative accuracy measures 

(Franklin and Wulder, 2002). 

Historically, large area assessment efforts have relied mostly on relatively sparsely distributed 

reference data (Fritz et al., 2009a; Foody, 2010; Gong et al., 2013b; Yu et al., 2013b). Insufficient 

availability of reference data limits the value of the land cover maps for informed decision making 

and usefulness for different studies. For example, 39 international experts have interpreted 379 

confidence sites during a two-week workshop for the IGBP-DIS dataset (Scepan et al., 1999); 253 
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Landsat images were pre-processed, and international experts interpreted 1265 sample sites for the 

GLC2000 dataset (Mayaux et al., 2006); and 16 international experts have completed an on-screen 

collection of reference data for 4258 sample sites for the GlobCover validation dataset (Defourny 

et al., 2011b). All the reference samples collected from different sources were used to validate 

various land cover classes including forest, water, and cropland and vary in their classification 

schemes. Consequently, very limited number of samples were collected to assess the cropland 

class in different region. When large area cropland maps are assessed with extremely limited 

reference data, inconsistent accuracy measures were observed for different cropland regions 

(Foody, 2002; Foody and Boyd, 2013; Waldner et al., 2015).  

However, a few large global reference datasets (e.g., FAO-GFRA (Food and Agriculture 

Organization Global Forest Resources Assessment), GOFC-GOLD (Global Observation for Forest 

Cover and Land Dynamics), and Geo-wiki) have been developed to perform the assessment of 

global land cover maps (Fritz et al., 2009b; Olofsson et al., 2012). These datasets were collected 

over large areas with the expectation that they would continue to be augmented and used for a 

variety of global map assessments (Olofsson et al., 2012; Stehman et al., 2012). Despite the efforts 

put into generating these reference datasets and the scarcity of other reference data, their use has 

been mainly limited to the original intended use and only a few studies reported re-using these 

datasets for other uses (Göhmann et al., 2009). Currently, there is no assessment providing 

information on how these datasets can be used beyond their original scope and what the 

implications would be for specific user applications having different requirements for a land cover 

map and its assessment. Consequently, the efficient use of these few global datasets remains 
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questionable for assessing the current and future cropland maps developed at different spatial 

resolutions. More work must be done to create additional global cropland reference datasets.  

Any future cropland reference dataset can be collected either from the ground-based field visits 

or non-ground-based sources using augmentation and extension approaches. Ground collected 

information is considered as the best quality reference data compared to other sources. However, 

ground reference data is expensive, labor and time consuming, and unable to be collected in some 

parts of the globe due to inaccessible terrain conditions. In this situation, volunteer-based Geo-

Wiki, Virtual interpretation of earth web-interface tool (View-IT), degree confluence points, 

existing cropland maps, and Google Street View may provide an effective and inexpensive way of 

collecting potentially useful cropland reference data (Fritz et al., 2009b; Clark and Aide, 2011). In 

addition, the interpretation and classification of HRI with an adequate temporal resolution might 

serve as high quality reference data to classify and assess the cropland extent and crop type maps 

(Congalton and Green, 2009). However, the suitability of the reference data collected from 

different sources varies in their quality and accessibility. Therefore, non-ground-based sources 

(e.g., classification of HRI, Google street view) must be evaluated for their potential use of 

collecting sufficient cropland reference data for creating and assessing global cropland products.  

Finally, the assessment of the thematic maps is required to be reported in the form of an error 

matrix which is the most common way of expressing meaningful and informative accuracy 

measures (Congalton and Green, 2009; Comber et al., 2012). A global summary of the accuracy 

measures including kappa, total accuracy, user’s accuracy and producer’s accuracy can be 

calculated from this error matrix (Story and Congalton, 1986; Congalton, 1991). While the 

standard individual accuracy measures are reported in the error matrix, there are few related 
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limitations associated with the error summary represented in the error matrix: invalid and 

inappropriate accuracy measures for low cropland proportion regions where regional errors may 

be much larger or smaller than the overall omission and commission errors and no description on 

the regional differences in the overall accuracy measures (Foody, 2002). Therefore, region specific 

accuracy measures are required to be generated for different cropland proportion regions to provide 

more detailed user’s and producer’s accuracy. 

 

Uncertainty Analysis of Global Cropland Extent Maps 

Many studies have compared existing cropland maps of different spatial resolutions with each 

other and/or with statistical survey information to analyze their uncertainty for choosing an 

appropriate one for specific user requirements (Latifovic et al., 2004; Giri et al., 2005; Fritz and 

See, 2005;  Neumann et al., 2007; Herold et al., 2008; Fritz et al., 2010; Ran et al., 2010; Kaptué 

Tchuenté et al., 2011; Pérez-Hoyos et al., 2012; Vancutsem et al., 2013; and Kuenzer et al., 2014). 

These comparative studies have identified discrepancies and inconsistencies in the crop area 

estimates and disagreement in their spatial extent when compared with each other and the reference 

data. The differences in these maps could be a function of many different factors including 

differences in classification methodology, the imagery used, the date of the imagery, and the 

classification scheme used. It is, therefore, not possible to conclusively determine if the 

disagreement and uncertainty in cropland maps is real or just a result of one or more of these many 

other factors. Despite identifying spatial discrepancies and inconsistencies, particularly in the 

cropland class over large geographic regions, these comparison studies have not focused on the 

adequacy of different spatial resolutions for mapping agriculture fields of varying sizes (See et al., 

http://www.sciencedirect.com/science/article/pii/S0303243405001212#bib9
http://www.sciencedirect.com/science/article/pii/S0303243405001212#bib9
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2013). The uncertainties in the cropland map class for different spatial resolution maps could be 

due to: (1) errors in the precise spatial location of the cropped areas, (2) the coarse resolution of 

the map products with significant uncertainties in areas, locations, and detail, and (3) invalid 

assessments of these cropland extent maps. However, with recent high spatial resolution cropland 

mapping efforts, the uncertainties in cropland areas have been reduced and therefore should be 

analyzed from comparison with these other coarser resolution maps.  

The uncertainty of different resolution cropland maps is usually performed by comparing the 

cropland definitions and areas using an overlap comparison method. The overlap (i.e., pixel-by-

pixel) comparison method accounts for the differences in class definitions between the cropland 

maps by using a legend translation or cross-walk between the map classes to establish a one-to-

one relationship for an error analysis of the cropland areas (Fritz and See, 2008). Two different 

approaches have been considered in the past for legend translation: (1) a Boolean approach and 

(2) a fuzzy set theory approach in which the Land Cover Classification System (LCCS) acts as a 

general bridging system (Fritz and See, 2005). The Boolean or crisp approach has been used to 

match the legend categories in different maps using an overlap method based on pixel by pixel 

basis. The fuzzy approach served to highlight the consistency of the land cover maps under 

consideration, especially for datasets that showed higher divergences. However, a Boolean 

approach minimizes part of the uncertainty introduced by ambiguity of legends and results in an 

overall increase of agreement of around 10% in absolute terms while comparing different pixel-

based cropland maps developed at different spatial resolution with each other. Therefore, different 

resolution cropland maps must be cross-walked and resampled to bring them to a comparable 

resolution and map classes for implying a Boolean-based comparison. 
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Once the cropland maps are resampled to a comparable resolution and the map classes 

reconciled, three measures of comparison based on the class labels can be implemented as: (1) 

agreement and disagreement, (2) area similarities between map classes as similarity in area 

proportions, and (3) clumping of the cropland patches as similarity of landscape metrics. The 

pixels with the same map class in both maps retain their class values as agreement, whereas pixels 

with different map class were labeled as areas of disagreement. These agreement and disagreement 

maps show the areas of commission and omission error in one cropland map as compared to the 

other. In addition, the similarities in the characteristics of agriculture landscapes (e.g., crop area 

proportions and landscape metrics) observed at different resolutions can also be used to predict the 

suitability of cropland extent maps in different agriculture field sizes for different continents 

(Frohn, 1997). This area-based comparative analysis can be effectively implemented by using a 

similarity matrix. This approach is based on a contingency table or error matrix and categorizes 

the landscape metrics such as landscape proportion for different agriculture field sizes (Sun et al., 

2018). The percent of cropland areas omitted and committed to the coarse-resolution cropland 

extent maps due to the change in the pixel size can be estimated as omission and commission errors 

in the cropland map of different regions. The spatial distribution of classification errors is related 

to some of the explanatory variables associated with landscape characteristics. Stehman et al., 

(2003) used a logistic regression model to assess the impact of patch size and local heterogeneity 

on per pixel classification accuracy. The clumping of the cropland patches (i.e., Per Patch Unit) 

characteristic of the cropland landscape experiences changes at different spatial resolutions and 

field sizes due to fragmentation of the large cropland patches at a smaller pixel size. The clumping 

of the cropland areas decreases with increasing spatial resolution, as the landscape becomes more 
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generalized and aggregated from high-resolution to low-resolution cropland extent maps (Frohn, 

1997). Therefore, the variations observed in the area proportion and clumping of the cropland 

landscape are very crucial for determining the similarity among the three crop extent maps in 

different agriculture field sizes. Based on the similarities and differences of cropland areas and 

extent within small regions distributed within different field sizes, specific recommendations can 

be established for when to apply the three different cropland extent maps in different agriculture 

landscapes of different continents. 

 

Sampling Strategies for Collecting Reference Data 

Limited and sparsely distributed cropland extent and crop type reference data have been used to 

generate cropland extent and crop type maps for large geographic regions. Any large area cropland 

reference data are required to be collected from ground-based or non-ground-based sources of 

cropland information. The cropland information collected from field surveys are limited due to 

time, cost, and accessibility in different parts of the world. Additional non-ground-based sources 

must be effectively used to collect cropland reference data and augment or extend the crop type 

reference data to every region for large area mapping. To collect valid reference data for the 

accuracy assessment of cropland maps, a sampling protocol must be designed to select a sample 

of reference locations at which the reference classification can be compared with the map 

classification (Congalton, 1991; Stehman,1999, Congalton and Green, 2009). The sampling 

protocol depends on the sampling unit, sample size, and sampling strategy that must be defined to 

collect reference samples for classification and assessment. The sampling unit is the fundamental 

unit on which the accuracy assessment is based; it is the link between a spatial location on the map 
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and the corresponding spatial location on the earth (Stehman and Czaplewski,1998). A sampling 

unit can be a pixel, a group of pixels, or a polygon. The choice of sampling units must be based on 

the classification approach. When the reference units are collected for assessing a pixel based 

coarse or moderate spatial resolution map, a 3x3 grouping of pixels must be used for collecting 

the reference classification in order to compensate for positional accuracy. Various sized polygons 

can be used as reference units to assess the cropland map developed with polygons depending on 

the project objectives and the spatial resolution of the imagery.  

The approach to assess the cropland maps of different continents must include an appropriate 

sampling design and sample size. Many researchers have expressed opinions on using different 

sampling designs (e.g., simple random sampling, stratified, and systematic unaligned sampling) to 

be used for assessing thematic map accuracy (Congalton, 1991; Stehman, 1999; Congalton and 

Green, 2009). While different sampling approaches have been studied for achieving appropriate 

accuracy results in different landscapes, their effective use still needs to be established for various 

cropland regions around the world (Bayas et al., 2017). The probability-based, simple random 

sampling (SRS) design, while statistically valid and easy to implement for large area assessments, 

could result in insufficient sample sizes for the rare cropland map class because each sample area 

has equal probability of selection. Therefore, an alternate probability-based sampling design 

imposed within strata defined by the map classes combined with a predetermined minimum sample 

size is one method to provide sufficient samples and useful accuracy measures of these rare 

cropland maps (Stehman, 1999; Olofsson et al., 2014). 

Bayas et al., (2017) has suggested that a larger sample size be implemented for assessing 

cropland regions that have between 25-75% cropland and that a smaller sample size would be 
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enough to efficiently assess the cropland maps in areas with very high or very low cropland 

proportion. However, in most cropland assessments, mostly small samples sizes that are sparsely 

distributed have been used for the entire map resulting in an ineffective assessment of the cropland 

extent maps of various cropland regions (e.g., Fritz et al., 2009a; Gong et al., 2013). A larger 

sample size is necessary to achieve more appropriate and valid assessments of the cropland extent 

maps (Tsendbazar et al., 2015). However, even a larger total sample size can result in insufficient 

samples and ineffective accuracies of the rare cropland map class if the samples are not distributed 

effectively. Rather than selecting sample size and strategy by the map complexity, the cropland 

distribution and proportion of each cropland region must be carefully considered to choose an 

optimum sample size to efficiently assess the cropland extent maps. The optimum sample size is 

the one where the accuracy reaches plateau and do not increase with addition of more samples. 

Therefore, an optimum sample size must be chosen using a sample simulation analysis based on a 

Monte Carlo method for an effective and useful assessment of the cropland extent maps of various 

cropland regions (Hay, 1979; Congalton, 1988; Yadav and Congalton, 2018a). 

 

Object-Based Image Analysis (OBIA) of High-spatial Resolution Imagery (HRI) 

With an increasing demand of spatially detailed crop type maps, many researchers have recognized 

the potential of high-resolution imagery (HRI) such as Ikonos, Quick Bird, World-View, and 

Rapid Eye in mapping cropland products (e.g., crop types) (Castillezo-Gonzalez et al., 2009; 

Conrad et al., 2014). Crop type identification has become more detailed and accurate at a smaller 

pixel size which acts to remove the spectral mixing that is common for moderate and coarse 

resolution pixels (De Wit and Clevers, 2004; Palchowdhuri et al., 2018). Single date multi-spectral 
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imagery is often used for crop type mapping, but many researchers have recognized the benefits 

of using multi-date imagery within a given year to map agriculture crops (Ehrlich et al., 1994; 

Panigrahy and Sharma, 1997; Simonneaux et al., 2008). Huang et al., (2014) emphasized the 

importance of exploring temporal information, as some crops (e.g., corn) are often grown in 

rotation with other crops (e.g., winter wheat and paddy rice). Zhong et al., (2014) and Li et al., 

(2014) observed that interannual differences in image quality and crop growing stages often lead 

to error when only spectral features are used, remarking that error rates can be significantly reduced 

by also using phenological parameters. The inclusion of phenological information of crops may 

guarantee the separaibility of different crop type classes grown in different growing seasons of the 

same year. Consequently, the cropland mapping methods applied to multi-date HRI have proven 

to perform better than single-date mapping methods (Long et al., 2013; Gómez et al., 2016) and 

offers more opportunities to generate crop type maps of different cropland regions (Castillejo-

González et al., 2009; Conrad et al., 2014). The high spatial, spectral, and temporal resolution 

satellite images taken over the growing season provide additional details to capture crop 

characteristics even in complex cropping patterns. Therefore, the classification of HRI could 

possibly be used as non-ground-based sources for collecting an efficient, high-quality, consistent, 

and sufficient crop type reference data required to generate and assess large area crop type maps.  

The classification of satellite images began with the visual interpretation and has progressed 

to the current digital, computer-based processing. In computer-based classification, there are 

generally two ways to classify an image: the traditional pixel-based approach and the Object based 

Image Analysis (OBIA) approach. Pixel-based methods have been dominating the analysis of 

remote sensing images since its beginning. There are various studies dedicated to cropland 
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mapping at pixel level using supervised or unsupervised algorithms focused on the classification 

of multi-date high resolution images (e.g., Arvor et al., 2011; Petitjean et al., 2012b; Yan and Roy, 

2015). Petitjean et al., (2012b) argue that the increasing spatial resolution of satellite imagery, 

creates the possibility of applying object-based image analysis (OBIA) to extract crop types from 

multi-date images. Object-based approaches tend to be advantageous with high resolution images 

because these significantly increase the within-class spectral variability and, therefore, decrease 

the statistical separability between classes with traditional pixel-based classification approaches 

(Blaschke et al., 2014).  

Laliberte et al., (2004) mentioned that much information is contained in the relationship 

between adjacent pixels, including texture and shape information, which allows for identification 

of individual objects as opposed to single pixels, coming closer to the way humans interpret 

information. OBIA is a new approach which coincides well with the human perception and the 

way we extract information from visual impression (Blaschke et al., 2007; Blaschke and Strobl, 

2001; Congalton and Green, 2009). The pixel-based approach classifies each pixel individually 

without considering other spatial information. The OBIA approach groups contiguous pixels with 

similar spectral response into segments or polygons (Baatz et al., 2001; Desclee et al., 2006). This 

process mimics human perception of an image’s content which is mainly based on objects and is 

considered to provide potentially more accuracy than the traditional pixel-based approaches 

(Warner et al., 1998; Blaschke and Strobl, 2001; Desclee et al., 2006; Congalton and Green, 2009; 

Vieira et al., 2012; Toscani et al., 2013). In addition to spectral and textual features, image objects 

allow us to make use of shape features which are not considered in pixel-based approach of 

classification (Hay et al., 2008; Blaschke, 2010). Consequently, object-based classification 
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approach is more effectively used than pixel-based for delineating agriculture fields and mapping 

different crop types using HRI (Castillejo-González et al., 2009; Song et al., 2017; Lebourgeois et 

al., 2017; Belgiu and Csilik, 2018).  

OBIA is an iterative method that starts with the segmentation of satellite imagery into 

homogeneous and contiguous image segments (also called image objects) (Blaschke, 2010). The 

resulting image objects are then assigned to the target classes using supervised or unsupervised 

classification algorithms. The OBIA approach groups contiguous pixels with similar spectral 

response into segments or polygons (Baatz et al., 2001; Desclee et al., 2006). Regarding suitable 

segmentation algorithms, a variety of alternatives exist (Dey et al., 2010). All algorithms have 

advantages and disadvantages, and there is no perfect segmentation algorithm for defining object 

boundaries (Munoz et al., 2003; Forster et al., 2010; Yan et al., 2014). Many scientific studies rely 

on the Multiresolution Segmentation algorithm (Baatz and Schäpe, 2000; Blaschke, 2010; Liu and 

Xia, 2010; Stumpf and Kerle, 2011; Dronova et al., 2011; Myint et al., 2011; Peña-Barragán et al., 

2011; Vieira et al., 2012; Taşdemir et al., 2012; Long et al., 2013; Pena et al., 2014). This algorithm 

starts with one-pixel image segments, and merges neighboring segments together until a 

heterogeneity threshold is reached (Benz et al., 2004). Using OBIA, the main problem relates to 

the fine-tuning of segmentation parameters (Peña-Barragán et al., 2011; Vieira et al., 2012; Duro 

et al., 2012). Only well-chosen segmentation parameters ensure good segmentation results. 

Manually defining the suitable segmentation parameters can be a time-consuming approach, 

necessarily leads to optimum results for the classification of different crop types in different 

agriculture field size regions. 
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Object-based image classification approach integrates textural features, which describe spatial 

and structural attributes of crops at image object level. However, conventional supervised 

classifiers (e.g., maximum likelihood method) are inefficient for determining the separability of a 

large volume of features (such as spectral, temporal, texture and vegetation indices) at an object-

level under complex cropping conditions. Recently developed nonparametric machine learning 

algorithms (e.g., Decision Tree (DT) (Friedl and Brodley, 1997; Shao and Lunetta, 2012), Random 

Forest (RF) (e.g. Akar and Gungor, 2018; Song et al., 2017; Tatsumi et al., 2015), and Rule-Based 

Classification (RBC) (e.g. Schlager et al., 2013)) provide effective tools to identify different crop 

type classes, as they are not constrained by the assumption that the input parameters are normally 

distributed (Breiman, 2001; Mathur and Foody, 2008; Tatsumi et al., 2015). The non-parametric 

phenology-based classifier (e.g., decision tree and random forest) can handle an information class 

(e.g., crop) with multiple sub-classes (e.g., crop types) to accommodate the intra-class variability 

at multiple places. The classification algorithms based on multi-dates spectral characteristics (i.e., 

phenology-based) combined with the OBIA are very effective for mapping cropland products 

using high spatial resolution imagery (Arvor et al., 2011; Long et al., 2013; Muller et al., 2015; 

Gómez et al., 2016; Palchowdhuri et al., 2018). 

Random Forest classifier has been given increasing attention with regards to crop mapping (Ok 

et al., 2012; Sonobe et al., 2012; Fletcher et al., 2016). The random forest algorithm has the 

potential to incorporate multiple spectral and texture variables to discriminate different crop types 

and improve the classification performance (Lawrence et al., 2006; Oliveira et al., 2012). The RF 

classifier has been proven to be stable and relatively efficient to yield overall accuracy levels that 

are either comparable to or better than other classifiers such as decision trees, neural networks and 
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SVM (Duro et al., 2012). Additionally, RF can not only deal with a large volume of spectral, 

temporal and texture features (even those that are highly correlated), but it can also measure feature 

importance and enable automatic generation of a structured knowledge, which may be a promising 

method for crop classification when using high spatial resolution images. Therefore, the 

performance of a combination of RF approaches with object-based image analysis for crop 

mapping has garnered much attention (Duro et al., 2012, Vieira et al., 2012, Lebourgeois et al., 

2017). 

The rule-based classification algorithm is another example that uses a spectral or texture 

condition to assign the crop and no-crop class. This algorithm allows the analyst to combine 

different features of objects to assign a class membership degree (between 0 and 1) to each object 

based on a fuzzy membership function or strict thresholds (Walker et al., 2008; Benz et al., 2004). 

It has a hierarchical capability to classify the entire scene into general classes (e.g., vegetation and 

non-vegetation areas). These general classes are called parent classes. Then, each parent class is 

divided to sub classes (child class) containing more detailed land cover types (e.g., crop types). 

This hierarchical capability allows the developer to incorporate objects in different levels of 

segmentation for individual levels of class hierarchy. Therefore, phenology-based classification 

algorithms (e.g., RBC, DT, RF) can be effectively used to generate crop reference data based on 

the spectral characteristics of different crop types derived from multi dates of HRI. 
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CHAPTER III 

ISSUES WITH LARGE AREA THEMATIC ACCURACY ASSESSMENT FOR 

MAPPING CROPLAND EXTENT: A TALE OF THREE CONTINENTS 

Abstract 

Accurate, consistent and timely cropland information over large areas is critical to solve food 

security issues. To predict and respond to food insecurity, global cropland products are readily 

available from coarse and medium spatial resolution earth observation data. However, while the 

use of satellite imagery has great potential to identify cropland areas and their specific types, the 

full potential of this imagery has yet to be realized due to variability of croplands in different 

regions. Despite recent calls for statistically robust and transparent accuracy assessment, more 

attention regarding the accuracy assessment of large area cropland maps is still needed. To conduct 

a valid assessment of cropland maps, different strategies, issues and constraints need to be 

addressed depending upon various conditions present in each continent. This study specifically 

focused on dealing with some specific issues encountered when assessing the cropland extent of 

North America (confined to the United States), Africa and Australia. The process of accuracy 

assessment was performed using a simple random sampling design employed within defined strata 

(i.e., Agro-Ecological Zones (AEZ’s) for the US and Africa and a buffer zone approach around 

the cropland areas of Australia. Continent-specific sample analysis was performed to ensure that 

an appropriate reference data set was used to generate a valid error matrix indicative of the actual 

cropland proportion. Each accuracy assessment was performed within the homogenous regions 

(i.e., strata) of different continents using different sources of reference data to produce rigorous 
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and valid accuracy results. The results indicate that continent-specific modified assessments 

performed for the three selected continents demonstrate that the accuracy assessment can be easily 

accomplished for a large area such as the US that has extensive availability of reference data while 

more modifications were needed in the sampling design for other continents that had little to no 

reference data and other constraints. Each continent provided its own unique challenges and 

opportunities. Therefore, this paper describes a tale of these three continents providing 

recommendations to adapt accuracy assessment strategies and methodologies for validating global 

cropland extent maps. 

 

Introduction 

Accurate and consistent cropland information is crucial to answer the issues of global food security 

to make future policy, investment and logistical decisions (Fritz and See, 2008; Husak et al., 2008; 

Pflugmacher et al., 2011; Olofsson et al. 2012; Thenkabail and Wu, 2012; Giri et al., 2013). Global 

cropland mapping provides baseline cropland information to accurately assess the drivers and 

implications of cropland dynamics both at regional and global scale (Fritz et al., 2013; Grekousis, 

et al., 2015; Foody, 2015). To predict and respond to food insecurity, global cropland products are 

readily available from coarse and medium spatial resolution earth observation data. Therefore, 

remote sensing has been recognized as an extremely effective, economical and feasible approach 

to create cropland thematic maps over a range of spatial and temporal scales (Barrett and Curtis, 

1992; Wu et al., 2008; Gallego et al., 2014).  

Cropland maps such as Global Map of Irrigation Areas (GMIA), Global Map of Rain-fed Areas 

(GMRCA) (Thenkabail et al., 2009), Global Monthly Irrigated and Rain-fed Crop Areas 
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(MIRCA2000) (Portmann et al., 2010), Global Rain-fed, Irrigated and Paddy Croplands (GRIPC) 

(Salmon et al., 2015) and MODIS-Cropland (Pittman et al., 2010) derived from coarse-resolution 

satellite data are currently some of the main sources of cropland information on a global scale. 

However, these types of products either have insufficient accuracy or their resolution is too coarse 

for use in other than global applications (Fritz et al., 2013). More recently, with advances in 

remotely sensed imagery and classification algorithms implemented on cloud computing platforms 

such as Google Earth Engine, cropland products are available at higher spatial resolutions. For 

example, global cropland products were generated at 250 m spatial resolution by the NASA 

MEaSURES (Making Earth System Data Records for Use in Research Environments) GFSAD 

(Global Food Security Data Analysis) project (Massey et al., 2017a; Xiong et al., 2017a; 

Teluguntla et al., 2017a). 

Previously, accuracy assessments performed on most global cropland extent maps were 

conducted to produce a single global accuracy measure (i.e., overall accuracy) without regard to 

continental or regional differences (Foody, 2002; Tsendbazar et al., 2015). These measures could 

then be used to make a statement about the overall accuracy of the global map, but not about 

specific continents or regions (Congalton and Green, 2009). The accuracy of a specific continent 

or region could only be determined if an assessment was done for that area. Insufficient availability 

of reference data in most regions of the world along with significant variations in agricultural 

landscape patterns offers unique challenges to conduct a more detailed accuracy assessment of any 

global mapping product. The reference data required to perform the assessment over large area 

cropland maps are not uniformly available for all the continents. For instance, some of the 

continents have extensive reference data available for assessment (such as US and Canada) while 
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other continents (such as Africa) have very little to none. Additionally, mapping in some continents 

exhibits larger errors than others simply depending on the complexity of the agriculture landscapes 

(DeGloria et al., 2000; Ung et al., 2000). For example, it has been reported that an accurate map 

is difficult to achieve in developing countries with small holder agricultural landscape by the 

International Food Policy Research Institute (IFPRI) (Fritz et al., 2015). Therefore, most of the 

global assessments have not attempted to provide a more regionalized measure of accuracy 

encompassing continents/regions or different agriculture landscapes (Strahler et al., 2006).  

Clearly, a single accuracy estimate will not provide a holistic view of the ability to map 

variation within the agriculture landscapes of different continents. However, these continental 

variations could be reported by assessing the map accuracy in response to different issues observed 

in the cropland maps of different continents (Congalton, 1991; Congalton and Green, 1999; Foody, 

2002; Foody, 2005). Therefore, a continent-based assessment strategy will provide more intensive 

evaluation of the cropland maps in agriculture landscapes for different continents. This kind of 

intense and efficient assessment strategy for different continents will also help to understand the 

efficacy, quality and variations of large area cropland maps (Wardlow and Egbert, 2008). 

Therefore, the question is how to implement such a continent-based assessment strategy effectively 

for each continent while also considering the different kinds of issues and constraints related to 

both reference data availability and complexity of agriculture landscapes.  

While individual measures of accuracy are well established in literature (e.g., Congalton, 1991; 

Stehman, 1997; Congalton and Green, 1999), considerable ambiguity remains about the 

implementation and interpretation of accuracy assessment for large areas. The most widely 

accepted approach to perform an accuracy assessment is through the use of an error matrix 
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(Congalton, 1991). The error matrix is a cross tabulation of the class labels predicted by the image 

classification against that observed from the reference dataset. The key issue in generating a valid 

error matrix is the collection of sufficient and appropriate reference data. The collection of such 

data must be conducted using an appropriate sampling scheme with sufficient samples in 

consideration of the complexities of the area being mapped (Congalton and Green, 2009). 

In order to conduct a detailed continent-based assessment of cropland extent maps generated 

in the GFSAD project, it was important to consider how the mapping was performed in each 

continent. The cropland extent maps for each continent were created by dividing the area into 

homogeneous regions (i.e., stratification) rather than just producing a single map of the entire 

continent. As a result, the accuracy assessment was also performed within these homogeneous 

areas using traditional assessment methods with modified sampling designs for collecting 

reference data depending on the agriculture landscapes in each continent (Congalton and Green, 

1999; Foody, 2002). Such modified sampling designs for collecting reference data ensured an 

optimum sampling approach considering different agriculture landscapes in each continent. 

Therefore, continent-based accuracy assessment of the cropland maps generated in GFSAD project 

was conducted by continent in response to different issues and constraints observed in the cropland 

extent maps.  

The goal of this research is to provide specific approaches and recommendations for modifying 

existing accuracy assessment strategies and methodologies to validate global cropland extent maps 

considering the issues and constraints unique to each continent. Meaningful and statistically valid 

assessment results demonstrate that these methods and approaches contribute a better 

understanding of global cropland distribution by continent. This work is specifically focused on 
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dealing with unique issues encountered when assessing cropland extent for North America 

(confined to the USA), Africa and Australia. These three continents were selected as a 

representative of different cropping patterns with variable size agriculture fields and availability 

of reference data. Lessons learned from this work can be further extended to other continents to 

provide appropriate methods of accuracy assessment where different scenarios of reference data 

availability and agriculture landscapes exist. The approach of stratifying the continents based on 

Agro-Ecological Zones (AEZ’s) for the US and Africa provided rigorous and valid accuracy 

results (Foody, 2005). The buffer-based stratification approach used in Australia also provides an 

alternative methodology for when crops are clustered only in certain areas of the continent and are 

not appropriately represented by AEZ’s. 

 

Study Area 

The study area for this paper includes three continents (i.e., North America (confined to United 

States), Africa and Australia) where a wide variety of climate, topography, moisture and crop 

growing periods prevail due to the large size, range of geographic features and non-contiguous 

arrangement of homogeneous agriculture landscapes (Ramankutty et al., 2008) (Figure 1). For 

North America, the United States (US) was chosen as a representative of the continent. This 

assumption is appropriate here as the issues and constraints found in the US also hold for Canada 

and Mexico. For the other two continents, the entire continent has been assessed. Food and 

Agriculture Organization (FAO) Agro-Ecological Zones (AEZ’s) that are defined by the length of 

the growing period days derived from temperature, precipitation and soil water holding capacity 

were used to stratify both the US and Africa (Fischer et al., 2012). Both the mapping and the 
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accuracy assessment were performed within these homogeneous areas (AEZ’s). However, this 

AEZ-based stratification method resulted in more fragmented zones when applied to Australia 

because of a single, large area in the center of the continent having low probability of cropland. 

Therefore, a different and more effective stratification method (i.e., buffering approach) was used 

instead to define an appropriate sampling area around the cropland patches for the Australian 

continent. 

The US is composed mostly of large, agriculturally homogeneous regions and large area 

farming is prevalent due to abundant land availability (Ramankutty et al., 2008). The cropland 

areas are roughly concentrated in the central regions of the US; pastures are in the more arid west; 

and forest land in the East, where the topography and precipitation patterns are conducive to 

growing trees (USDA, Economic Research, 2012). Dominant crops such as corn and soybeans are 

grown in large, homogeneous, agriculture fields. In contrast, there are some heterogeneous regions 

in the US that grow rare crops and have a high diversity of crop types. All of these crop areas along 

with their specific types have been regularly mapped by USDA-NASS (i.e., United States 

Department of Agriculture-National Agricultural Statistics Service) every year since 2009 for all 

48 conterminous states with a 30 m pixel resolution (Boryan et al., 2011). Before 2009, cropland 

was mapped at 56 m spatial resolution. All these data are readily available in a database called the 

Cropland Database Layer (CDL) and can be used as reference data for other mapping efforts 

including the GFSAD project. Therefore, in the US, assessing cropland maps is much easier than 

any other part of the world. 
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Figure 1. Map showing the location of three selected continents and their respective 

homogeneous regions such as Agro-ecological zones (AEZs) and crop buffer. 

 

Africa has more scattered cropland distribution than any other cropping region of the world. 

The variation between AEZ’s in Africa is large, ranging from the dry and barren desert, through 

the rich soil of the Rift, Nile and Niger River Valleys, to the southern extremes. However, unlike 

any other parts of the world, there are no large crop belts in Africa. Rather, there are agricultural 

regions within which different combinations of crops are cultivated (Ramankutty et al., 2008). 

Australia closely resembles other temperate regions of the world. Wheat is the dominant crop 

in Australia; it is interrupted only briefly by a combination of wheat and barley in the southern 

part of the continent. In the western portion of the Australian Wheat Belt, pulses are the most 

prominent secondary crop, while barley is the secondary crop in the eastern portions. Pulses are 

the third most dominant crop (about 11%) (Leff et al., 2004). However, the total cropland 
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distribution is restricted to a ring-like region around the edges of the continent. Therefore, to 

minimize cropland omission and commission errors and to avoid sampling where there was no 

possibility of finding a crop, the area surrounding the crop patches was chosen for sampling 

through the use of a buffering approach instead of using AEZ’s. 

 

Methods 

The typical approach to perform a statistically rigorous thematic accuracy assessment of any map 

generated from remotely sensed imagery includes collecting reference data and then computing 

descriptive statistics (Congalton, 1991). This chapter focuses on the accuracy assessment of large 

area cropland extent maps generated for the entire world. The methods to perform such an accuracy 

assessment must include the consideration of specific issues, concerns and characteristics for each 

continent including: (1) the appropriate stratification; (2) the effective and valid collection of 

reference data; (3) the appropriate sampling; and (4) the application of a descriptive analysis 

protocol (Figure 2). 
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Figure 2. Flowchart of the process used to conduct the continent-based accuracy assessment of 

the GFSAD mapping products. 

 

 

Stratification 

Continents with diverse cropping patterns are expected to have variations in classification accuracy 

due to a number of reasons including: these diverse cropping patterns, differences in the classifiers 

employed to create the maps and the different spatial resolutions of the satellite images used (Shao 

and Lunetta, 2012; Champagne et al., 2014). It is more likely that low accuracy and confidence 

levels are achieved in mapping rare classes due to their limited population size (Champagne et al., 

2014). When comparing the cropland maps of different continents, it has been shown that high 
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agreement and consistency in accuracy is associated with areas of no or almost fully covered 

agricultural classes (Vancutsem et al., 2013). However, the regions with scattered and sparse 

cropping patterns contained more uncertainty and inconsistency. The issue of variations in 

different agriculture landscapes must be considered and addressed by modifications to the 

accuracy assessment strategy. The assessment of cropland maps and reporting the accuracy 

estimates for homogeneous regions of similar cropping patterns using some type of stratification 

approach will result in more meaningful, representative and applicable mapping products 

(Champagne et al., 2014). 

There are two advantages of implementing a stratification method while mapping cropland 

areas and assessing their accuracy. First, implementing a stratification method of dividing a large 

mapping area into homogeneous regions reduces the extent of the area to be mapped and assessed. 

The stratification then results in more efficient performance of the classification algorithm in 

response to the variations of each region and allows for more effective validation (Vancutsem et 

al., 2012). Secondly, the stratification method also helps to optimize the efforts required to collect 

a valid and efficient reference dataset required for mapping and assessing the accuracy of the 

cropland areas (Waldner et al., 2015). The choice of an appropriate stratification method could be 

either based on the mapped classes or homogeneous zones of different cropping and climatic 

conditions such as Agro-Ecological Zones (AEZ’s) in any particular area of interest (i.e., a 

continent).  

AEZ-based stratification methods were used to divide the study area into more homogeneous 

regions in previous research such as simulating crop yield potentials (Van Wart et al., 2013), global 

change assessment (Vittorio et al., 2016) and climate change (Seo, 2014) projects. Therefore, 
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AEZ-based stratification method will also help to divide different continents into homogeneous 

regions to implement the assessment strategy required to assess the cropland extent maps (Stehman 

and Czaplewski, 1998). However, it is difficult to divide sparse cropland regions into 

homogeneous zones based on AEZ’s. In such sparse cropland regions, AEZ-based stratification 

methods result in more fragmented zones rather than homogeneous ones. Therefore, a more 

representative stratification method is required to define an appropriate sampling area around the 

sparse cropland patches (for example, Australia). Upon close examination of the cropland 

distribution in the three selected continents (i.e., US, Africa and Australia), two stratification 

methods (i.e., AEZ’s and Euclidean distance buffering) were used to divide the continents into 

zones before assessing the cropland maps. In US and Africa, the cropland extent was stratified 

using the AEZ approach based on the number of growing period days. In Australia, the cropland 

distribution is mostly concentrated in a narrow belt towards the edges of the continent leaving a 

large portion toward the center with a very low likelihood of crops. Therefore, a buffering approach 

rather that an AEZ approach was used for stratification in Australia. 

 

Collecting Reference Data 

The reference data can be sourced either from ground-collected data, or from any existing 

appropriate reference maps (e.g., USDA CDL), or from interpretation of high-resolution imagery 

(HRI). However, in many cases, a difference in the classification scheme between the existing 

reference data and the map to be assessed and/or the size of the sample unit (often too small) can 

limit the use of any existing reference data (Thenkabail, 2005; Congalton et al., 2014). Therefore, 

ground collected data are considered as the optimal, yet most expensive, reference data. The timing 
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of the reference data collection for assessing agricultural maps is also a very important factor. 

Significant errors can occur when not keeping the reference data collection to as near as possible 

to the image collection date (Congalton and Green, 2009). It is critical that the reference data be 

independent of any other data used for training and initial testing of the thematic mapping. Once 

the independency, timing and source of the reference data are achieved, it is important to choose 

the appropriate sampling design and sample size.  

Upon completion of a thorough search for any readily available reference data for the three 

continents, an independent source of reference data was generated using an appropriate sampling 

design in the homogeneous regions for each continent. For example, existing reference maps (e.g., 

CDL for the US with an accuracy range of 85–95% (Boryan et al., 2011) can be used as reference 

data to perform the assessment of cropland extent map while ground sampling or interpretation of 

high-resolution imagery (HRI) might be performed for continents such as Africa with little to no 

existing reference data. In addition, a field campaign (i.e., ground sampling) usually focuses on 

collecting the reference data for the map class of interest (in our case, crops). Therefore, to generate 

a proportionally balanced reference dataset, additional reference samples may need to be 

interpreted from HRI. In this study, a combination of the three different sources of reference data 

(i.e., existing reference maps, independent generated random samples and ground collected 

samples) were ultimately used to assess the cropland extent maps of the three selected continents. 

 

Sampling 

Many researchers have published suggestions regarding the proper sampling scheme to use for 

collecting reference data depending on different regions of interest (e.g., Hord and Brooner, 1976; 
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Ginevan, 1979). These suggestions vary from simple random sampling to stratified, systematic 

and other sampling approaches for assessing the accuracy of remotely sensed maps. There are both 

pros and cons associated with each of these types of sampling schemes. Another study (Stehman, 

2009) has proposed the relative strengths and weakness of these different sampling designs based 

on seven desirable criteria. These criteria are: (1) probability-based; (2) practical implications; (3) 

cost effectiveness, (4) spatially balanced; (5) precise estimates of class-specific accuracy; (6) 

ability to estimate standard errors; and (7) flexibility to change the sample size.  

Systematic and spatially stratified designs were generally rated as strong on the spatially 

balanced criterion, whereas the designs stratified by thematic map classes were strong for 

determining class-specific accuracy. Systematic sampling was usually rated as weak due to non-

availability of an unbiased variance estimator. A key issue in sampling is that of randomness such 

that each sample (in this case, crop and no-crop) has an equal and independent chance of being 

selected (Congalton and Green, 2009). Given that in this project there were only two map classes, 

simple random (probability-based) sampling with flexibility to modify the sample size for each 

continent is the best scheme. Therefore, a simple random sampling design was selected to 

distribute samples in different agriculture landscapes of the three selected continents to assess the 

accuracy of the cropland maps.  

Once the sampling scheme was selected, then the next question is to decide the size of the 

sample unit. In literature, a cluster of pixels has been suggested to be used as the sample unit when 

assessing the accuracy of cropland maps derived from medium resolution imagery. Selecting a 

homogeneous cluster of 3 × 3 pixels accounts for issues in positional accuracy for maps derived 

from 30 m or so satellite imagery to ensure that thematic accuracy is being analyzed and not 



39 

 

positional error (Congalton and Green, 2009). However, it is extremely difficult to find a 3 × 3 

homogeneous cluster of pixels for coarse resolution satellite imagery (250 m pixels). Therefore, a 

single pixel sample unit was used to collect reference samples to assess the accuracy of the 250 m 

cropland maps in the three selected continents. 

The most challenging component of assessing the accuracy of a thematic map is collecting 

enough samples to perform a valid assessment. Different equations and guidelines have been 

established by many researchers for choosing an appropriate sample size (Hord and Brooner, 1976; 

Genderen and Lock, 1977; Hay, 1979; Ginevan, 1979; Rosenfield et al., 1982; Congalton, 1988). 

In the literature, a method based on Monte Carlo simulation (Congalton, 1988) suggested that most 

thematic maps can be assessed using a sample size of 50 for each mapped class. However, given 

that the areas to be assessed here (AEZ or buffer zones) are quite large, a sample simulation using 

the Monte Carlo method was performed to determine the appropriate sample size. Based on the 

results of the sample simulation, an appropriate sample size was selected for each of the selected 

continent.  

 

Computing Descriptive Statistics 

The last step in an accuracy assessment is the descriptive analysis protocol to report accuracy 

measures in the form of an error matrix and, in some cases, spatial agreement and disagreement 

analysis using a difference image. Once an error matrix has been properly generated, it can be used 

as a starting point to calculate individual class accuracies (i.e., producer’s and user’s accuracies) 

in addition to an overall accuracy (Story and Congalton, 1986). The producer’s and user’s accuracy 

are often called commission and omission errors, respectively. A commission error is defined as 
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including an area into a thematic class when it does not belong to that class while an omission 

error is excluding that area from the thematic map when it belongs to the map. Omission errors 

can be calculated by dividing the total number of correctly classified sample units in a category by 

the total number of sample units in that category from the reference data (Story and Congalton, 

1986; Congalton, 1991). Commission errors, on the other hand, are calculated by dividing the 

number of correctly classified sample units for a category by the total number of sample units that 

were classified in that category (Story and Congalton, 1986; Congalton, 1991; Congalton and 

Green, 1999). 

In addition to these statistical measures, a difference image can also be created by comparing 

the map with an existing cropland map created by other researchers for each continent and spatially 

depicting the agreement and disagreement in the map classes. This image can only be generated 

when there is another thematic map available such as in the US, where reference data sets are 

available that cover the entire study area. In most areas of the world, these reference maps do not 

exist, and only limited reference data samples are available. 

When the reference map is assumed to be 100% correct, the difference image is used to depict 

the omission and commission errors that occurred between the two cropland maps. Unless the 

comparison is being conducted using a reference map, the different image demonstrates similarity 

between the two maps rather than an omission and commission error. Once the difference image 

is created, the results can also be shown in a similarity matrix, which is generated in the same way 

as an error matrix. 
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Results 

The results of the accuracy assessment process that was performed including specific issues and 

constraints observed in the cropland maps are presented in the following three major components 

for each of the three selected continents: (1) Stratification: dividing each continent into 

homogeneous regions; (2) Collecting reference data and sampling design: developing continent 

specific procedures for effective and valid collection of reference data using an appropriate 

sampling design; and (3) Accuracy measures: generating error matrices and difference image of 

spatial agreement using the collected reference data for different continents. The results are 

presented by continent beginning with the US, then Africa and finally Australia.  

 

United States (US) 

The cropland extent map of the US was created by Northern Arizona University (NAU) in NASA 

MEaSURES’s GFSAD project for the year 2008 at 250 m spatial resolution (Massey et al., 2017). 

An extensive and easily available high-quality reference data set (i.e., USDA CDL) is available at 

a spatial resolution of 56 m to perform the assessment of this cropland extent map. The availability 

of such an extensive reference data set (i.e., CDL) and the well-distributed cropland areas in the 

US make it extremely easy to perform an accuracy assessment. The following sections present the 

major components of AEZ-based assessment strategy with a modified sampling design that was 

used to assess the cropland map of the US. 

 

 

 



42 

 

Stratification 

The agriculture landscape of the US was stratified or divided into homogeneous regions using an 

AEZ-based stratification method. The entire US was divided into 13 zones based on the length of 

growing period days (from 0 to 365 days) using Global Agro-Ecological Zones (GAEZ) layer 

provided by FAO (Fischer et al., 2012) (Figure 3). AEZ 1 has no likelihood of cropland areas and 

therefore sampling was not employed in this zone while performing the assessment. 

 

 

Figure 3. The distribution of Agro-ecological zones in the United States. 
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Reference Data Collection and Sampling 

The reference data for US were samples selected from the CDL (Source: USDA, NASS) for the 

year 2008. The availability of such an extensive and easily accessible cropland reference dataset 

made the process of accuracy assessment in the US extremely easy. The samples selected for 

accuracy where independent of any samples used by the mapping team at NAU to create the 

cropland map. To perform the assessment of the 250 m cropland map, the CDL (available at 

https://nassgeodata.gmu.edu/CropScape) was resampled from 56 m to 250 m and the CDL 

classification scheme was simplified into crop and no-crop classes. 

Simple random sampling was implemented in all the AEZ’s of the US to perform the accuracy 

assessment of the cropland extent map. The samples were distributed randomly in each AEZ with 

a minimum distance of 10 km apart minimizing the spatial autocorrelation that could possibly 

occur in near-distant samples. An appropriate sample size was selected by sample simulation 

analysis performed in all the AEZ’s. An optimum sample size of 350 was selected when the 

proportion of crop samples reached a stable level (asymptote) and did not increase further with a 

further increase in sample size (Figure 4). Figure 4 shows the variability in the proportion of 

cropland samples as 4-8% increase and decrease from the sample size of 50 to 350 after which it 

is expected to remain stable in all the zones. Figure 5 shows the distribution of the 350 samples in 

each of the AEZ in the US. 
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Figure 4. The graphical representation of sample size simulation in AEZ’s of the US. 

 

Figure 5. The distribution of randomly generated reference samples within each of the AEZ’s of 

the US. 
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Computing Accuracy Statistics 

Both error matrices and a difference image were generated to report the accuracy measures and 

spatial distribution of agreement and disagreement respectively in the US. The error matrices were 

generated for each of the AEZ’s separately to present the statistical and quantitative assessment of 

the cropland map. The accuracy measures including an overall, producer’s and user’s accuracy of 

the individual class (i.e., crop and no-crop) have been listed for all the AEZ’s in Table 1. 

An overall accuracy was also calculated for the entire US in addition to accuracy estimates for 

each AEZ using the entire validation dataset. The error matrix in Table 2 shows an overall accuracy 

of 98.0%. There is no misclassification of No-Crop samples into the Crop class on the map. It 

indicates that there is no commission error in the cropland class on the map. There is only omission 

error in the cropland extent map (i.e., only some crop areas have been mapped as no-crop) (Table 

2). 

A difference image (i.e., the spatial map of agreement and disagreement in the crop and no-

crop classes) was created to show the spatial distribution of omission and commission errors in the 

cropland map. The results from the difference image can be presented as a similarity matrix, which 

is generated the same way as an error matrix. The difference image of the US cropland extent map 

with CDL showed only 2% omission errors in the map (Figure 6). The difference image in Figure 

6 showed a small area of 2% disagreement in the crop class that has been omitted or mapped as 

no-crop in the map. The agreement in the two maps was depicted by the class labeled as “No-

Difference” in Figure 6. 
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Figure 6. The difference image derived using reference data and cropland map of the US 

showing 2% Omission and 0% commission error (Massey et al., 2017a). 

 

Table 1. Zone-wise accuracy estimates listed for all the AEZ’s of the United States. 

Zone C/C C/NC NC/C NC/NC RCS RNCS MCS MNCS PAC PANC UAC UANC OA 

Zone 2 5 1 0 344 6  344 5 345 83.3% 100.0% 100.0% 99.7% 99.7% 

Zone 3 14 1 0 335 15 335 14 336 93.3% 100.0% 100.0% 99.7% 99.7% 

Zone 4 25 3 0 322 28 322 25 325 89.3% 100.0% 100.0% 99.1% 99.1% 

Zone 5 46 11 0 293 57 293 46 304 80.7% 100.0% 100.0% 96.4% 96.9% 

Zone 6 89 12 0 249 101 249 89 261 88.1% 100.0% 100.0% 95.4% 96.6% 

Zone 7 82 12 0 256 94 256 82 268 87.2% 100.0% 100.0% 95.5% 96.6% 

Zone 8 60 6 0 284 66 284 60 290 90.9% 100.0% 100.0% 97.9% 98.3% 

Zone 9 53 11 0 286 64 286 53 297 82.8% 100.0% 100.0% 96.3% 96.9% 

Zone 10 49 14 0 287 63 287 49 301 77.8% 100.0% 100.0% 95.4% 96.0% 

Zone 11 34 7 0 309 41 309 34 316 82.9% 100.0% 100.0% 97.8% 98.0% 

Zone 12 30 2 0 318 32 318 30 320 93.8% 100.0% 100.0% 99.4% 99.4% 

Zone 13 33 7 0 310 40 310 33 317 82.5% 100.0% 100.0% 97.8% 98.0% 
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C: Crop; NC: No-Crop; Symbol /: Classified as; RCS: Number of Reference Crop Samples; 

RNCS: Number of Reference No-Crop Samples; MCS: Number of Map Crop Samples; MNCS: 

Number of Map No-Crop Samples; PAC: Producer’s Accuracy of Crop; UAC: User’s Accuracy 

of Crop; PANC: Producer’s Accuracy of No-Crop; UANC: User’s Accuracy of No-Crop OA: 

Overall Accuracy. 

 

Table 2. An overall accuracy matrix for the cropland extent map of US. 

All Zones Combined       Reference Data 

 
Map  

Data 

  Crop No-Crop Total User’s Accuracy 

Crop 520 0 520 100.0% 

No-Crop 87 3593 3680 97.6% 

Total 607 3593 4200   

Producer’s Accuracy 85.7% 100.0%   98.0% 

 

 

Africa 

The cropland extent map of Africa was generated by the USGS team of the NASA MEaSURES’s 

GFSAD project for the year 2014 at 250 m spatial resolution (Xiong et al., 2017a). Upon close 

examination of the cropland distribution and reference data availability in Africa, some issues and 

constraints of concern were considered before choosing the stratification method and sampling 

analysis to assess the cropland maps. These were: (1) the lack of an extensive and easily accessible 

reference data and (2) the scattered distribution of cropland areas throughout the entire continent. 

Due to non-availability of easily accessible reference data and non-uniform cropland distribution 

of Africa continent, the basic traditional strategy of accuracy assessment was modified.  
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Stratification 

Like the US, the AEZ-based stratification method (Fischer et al., 2012) was used to divide Africa 

into 8 homogeneous cropping pattern regions or AEZ’s (Figure 7). According to the distribution 

of cropland area, different growing period days provided by FAO were combined together to create 

fewer and more reasonable zones. As a result, these combined eight AEZ’s were well structured 

based on the distribution of cropland areas in Africa continent. The AEZ’s with less number of 

growing period days had sparse distribution of cropland as compared to the ones with high number 

of growing period days. Therefore, the AEZ-based stratification method helped to understand and 

describe the cropland distribution to perform the assessment of the croplands of Africa. For 

example, AEZ 1 and 2 have a scattered and sparse cropland distribution and therefore, could be 

assessed with a lower sample size as compared to other AEZ’s with more cropland areas. The 

stratification method facilitates the process of collecting the reference data and performing the 

sampling analysis in each AEZ’s based on the distribution of cropland areas and results in a more 

detailed, meaningful and valid accuracy results. 
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Figure 7. Agro-Ecological Zones (AEZ’s) of Africa. 

 

 

Collecting Reference Data and Sampling Design 

Upon completion of a thorough search for reference data availability for the African continent, it 

was determined that there is a lack of any extensive reference data required to perform the 

assessment of the cropland map. In addition, ground collected reference data were also limited due 

to the high costs and effort required to obtain them (Strahler et al., 2006). Therefore, the reference 

data to perform the accuracy assessment of the cropland map of Africa was obtained from visual 

interpretation of HRI.  
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To collect the reference data from HRI, it was necessary to decide on an appropriate sampling 

design and an optimum sample size for the continent. Samples were distributed randomly using a 

simple random sampling design to account for the variability in the cropping pattern in all the 8 

AEZ’s of Africa. The sample size for each AEZ was selected based on a sample simulation analysis 

performed ranging from a sample size of 50 to 250. A small sample size of 50 was enough for the 

sparse cropland regions (i.e., AEZ 1 and 2) as compared to other zones where the proportion of 

crop samples was not stable until a sample size of 250 was obtained (Figure 8). The choice of a 

less intensive sample size for scarce cropland regions allowed for more sampling effort to be 

dedicated to areas with more croplands. 

 

 

Figure 8. The graph showing the sample simulation in AEZ’s of Africa. 

 

Randomly generated reference samples were interpreted using high-resolution imagery by two 

independent interpreters. The crop and no-crop samples were labeled by interpreting a 250 m × 
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250 m homogeneous sample unit on HRI. A sample size of 1600 was used for the overall zone-

wise assessment of cropland map of Africa. Only when both interpreters independently agreed on 

the same map classes were the samples used for assessment. Figure 9 shows the distribution of the 

1600 reference samples (2 zones at 50 samples and 6 zones at 250 samples) along with the cropland 

distribution in all the AEZ’s of Africa. 

 

Figure 9. The distribution of Cropland and Reference Samples in Africa. 
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Computing Accuracy Statistics 

Only the error matrices were generated to report the accuracy measures of the cropland extent map 

of Africa due to non-availability of a reference thematic map required to conduct the spatial 

comparison of the two maps. An overall accuracy along with user’s and producer’s accuracy was 

computed for each AEZ from the error matrices. The comparison of accuracy estimates in all the 

zones provides knowledge of how much effort, time and costs are required to collect appropriate 

reference data to perform the accuracy assessment.  

Table 3 shows the comparison of the accuracies in all 8 AEZ’s. An overall accuracy of 100.0% 

was achieved using a sample size of 50 in AEZ 1 and 2. AEZ 3–8 used a sample size of 250. The 

overall accuracies for these six zones (i.e., from AEZ 3–8) ranged from 90.4% to 96.4%. The 

samples from all the AEZ’s were combined to generate an overall accuracy for the entire Africa 

continent (Table 4). 

 

 Table 3. Zone-wise accuracy estimates listed for all the AEZ’s in Africa. 

Zone C/C C/NC  NC/C NC/NC RCS  RNCS MCS MNCS PAC PANC UAC UANC OA 

Zone 1 1 0 0 49 1 49 1 49 100.0% 100.0% 100.0% 100.0% 100.0% 

Zone 2 2 0 0 48 2 48 2 48 100.0% 100.0% 100.0% 100.0% 100.0% 

Zone 3 24 13 11 202 37 213 35 215 64.9% 94.8% 68.60% 94.0% 90.4% 

Zone 4 29 12 8 201 41 209 37 213 70.7% 96.2% 78.4% 94.4% 92.0% 

Zone 5 14 8 14 214 22 228 28 222 63.6% 93.9% 50.0% 96.4% 91.2% 

Zone 6 5 10 7 228 15 235 12 238 33.3% 97.0% 41.7% 95.8% 93.2% 

Zone 7 3 4 5 238 7 243 8 242 42.9% 97.9% 37.5% 98.4% 96.4% 

Zone 8 4 12 0 234 16 234 4 246 25.0% 100.0% 100.0% 95.1% 95.2% 

C: Crop; NC: No-Crop; Symbol /: Classified as; RCS: Number of Reference Crop Samples; 

RNCS: Number of Reference No-Crop Samples; MCS: Number of Map Crop Samples; MNCS: 

Number of Map No-Crop Samples; PAC: Producer’s Accuracy of Crop; UAC: User’s Accuracy 
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of Crop; PANC: Producer’s Accuracy of No-Crop; UANC: User’s Accuracy of No-Crop OA: 

Overall Accuracy. 

 

Table 4. An overall accuracy matrix for the cropland extent map of Africa. 

All Zones Combined    Reference Data 

 
Map  

Data 

 Crop No-Crop Total User’s Accuracy 
Crop 82 45 127 64.6% 

No-Crop 59 1414 1473 96.0% 
Total 141 1459 1600  
Producer’s Accuracy 58.2% 96.9%  93.5% 

 

Australia 

The cropland extent map of Australia was created by the USGS team of the NASA MEaSURES’s 

GFSAD project for the year 2014 at 250 m spatial resolution (Teluguntla et al., 2017a). The 

assessment strategy to assess the cropland map of Australia was modified in response to the 

cropland diversity, which is different from the pattern observed in the other selected continents. 

The cropland area in Australia is mostly concentrated in a narrow belt towards the edges of the 

continent leaving a large, single portion towards the center with very low probability of cropland 

areas. Sampling in the area with a very low probability of cropland would not be indicative of the 

ability to accurately map cropland. Therefore, the continent was divided into a homogeneous 

region where the crops occurred using a buffering approach rather than the AEZ-based 

stratification method. Consequently, this method provided a more appropriate sampling design 

creating a sampling frame around the cropland patches and excluding the areas with no chance of 

cropland. 
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Stratification 

The stratification method for Australia was performed using a buffering strategy instead of AEZ’s. 

The buffer zones (Figure 10) were generated using the Euclidean distance method. This method 

calculates the distance between crop and no-crop pixels from a raster layer of the cropland map 

and results in a buffer around the crop areas. Using this method, two crop buffers were generated 

around the cropland patches with a Euclidean Distance (ED) of 1 (~100 km) and 2 (~200 km). 

These buffer zones represent the reduced regions where a reasonable occurrence of cropland areas 

can be expected. No sampling was performed in areas outside the buffer zones. 

  

 

 

 

 

 

 

 

 

 

Figure 10. Crop buffer zones delineated using Euclidean Distance buffering approach. 
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Collecting Reference Data and Sampling Design 

To perform the assessment of the cropland extent map of Australia, reference data were collected 

both from ground-based samples and from HRI for the year 2014. A field campaign was initially 

conducted in which 3343 samples were collected (3234 crop samples and 109 no-crop samples) 

for the southern region of Australia where croplands are prevalent (Teluguntla et al., 2017a). One-

third (1118 samples with 1082 crop and 36 no-crop samples) of these ground collected reference 

data were set aside and used to assess the cropland map of Australia independently from the 

samples that were used as training data for making the cropland map (Figure 11). Most of the 

ground samples were collected in the cropland areas of southern Australia with few no-crop 

samples being collected. Therefore, it was necessary to supplement the ground-collected samples 

with more no-crop samples in order to achieve a balanced, valid and effective reference dataset. 

More no-crop samples were collected from visual interpretation of HRI in a sampling frame around 

the cropland patches making sure to exclude areas with no chance of cropland (Figure 12). The 36 

no-crop ground collected samples were augmented with an additional 787 no-crop samples 

interpreted using HRI. Given that the proportion of cropland across Australia was approximately 

12%, it is necessary to sample the reference data such that it represents this proportion. Therefore, 

since there were 823 (787 + 36) no-crop samples, we randomly selected 106 crop samples (about 

12%) from the 1082 ground collected crop samples to achieve a balanced reference data set for 

generating the error matrix.  
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Figure 11. The distribution of ground collected samples (Teluguntla et al., 2017a) used in the 

accuracy assessment of cropland map of Australia. 

 

Figure 12. The distribution of ground collected and augmented no-crop samples in Australia. 
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As a result of this initial analysis, it was clear that only portions of Australia (mostly around 

the coastal area) grow crops. The center of Australia has very little chance of cropland because of 

extremely dry conditions. Therefore, in order to effectively validate the cropland areas a buffering 

approach was employed instead of AEZs that would have included the entire continent. This 

approach resulted in the collection of 700 and 800 reference samples independently for the two 

buffer zones, respectively using visual interpretation of HRI (Figure 13). The final analysis then 

resulting in having four sets of reference data with different sample sizes (i.e., 1118, 929, 700 and 

800) with the first two based on the ground reference data collection (initial and balanced 

assessments) and the last two based on the buffering approach (buffer 1 and buffer 2) that were 

used to assess the cropland map of Australia. 

 

 

Figure 13. The distribution of reference samples in buffer zones of Australia. 
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A simple random sampling design was used to distribute all the reference samples to perform 

the accuracy assessment of the cropland map of Australia. Figures 11–13 show the distribution of 

these reference samples used in the accuracy assessment process. Figure 11 shows the original and 

complete ground-based field campaign reference data. Figure 12 shows the augmentation of the 

ground-based data with HRI interpreted no-cropland samples to achieve a balanced data set. 

Finally, Figure 13 shows the results of the buffering approach (buffers 1 and 2) to extend the crop 

sampling across the entire continent minus the area in the center where there was no chance of 

cropland existing. 

 

Computing Accuracy Statistics 

The accuracy assessment of cropland extent map of Australia was performed using a combination 

of ground collected and HRI interpreted samples generated with the stratification (buffer zones) 

of Australia. Error matrices were generated from the ground collected samples from the initial 

field campaign resulting in an unbalanced sampling approach (Table 5), a combination of ground 

and HRI samples to create a balanced (proportional) sampling approach (Table 6) and then within 

the buffer zones 1 and 2 (Tables 7 and 8) for Australia. The error matrix in Tables 5 and 6 depicts 

the accuracy estimates when the cropland map of Australia was assessed separately with ground 

collected samples only and with the ground samples augmented with HRI respectively to augment 

the non-cropland samples to produce a proportional sample. The error matrix in Tables 7 and 8 are 

generated for the buffer zones 1 and 2 respectively using reference samples interpreted from HRI.  
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Table 5. The error matrix generated using unbalanced ground collected reference samples. 

  
Reference Data 

  Crop No-Crop Total User’s Accuracy 
Map  

Data 
Crop 1040 13 1053 98.77% 

No-Crop 42 23 65 35.38% 
Total 1082 36 1118  
Producer’s Accuracy 96.12% 63.89%  95.08% 

 

Table 6. The error matrix generated using balanced ground collected reference samples 

augmented with HRI interpreted samples. 

  Reference Data  
  Crop No-Crop Total User’s Accuracy 

Map  

Data 
Crop 102 13 115 88.70% 

No-Crop 4 810 814 99.51% 
Total 106 823 929  

Producer’s Accuracy 96.23% 98.42%  98.17% 

 

Table 7. The error matrix generated using balanced reference samples generated in crop buffer 

zone 1. 

  Reference Data  
  Crop No-Crop Total User’s Accuracy 

Map  

Data 
Crop 55 15 70 78.57% 

No-Crop 48 582 630 92.38% 
Total 103 597 700  
Producer’s Accuracy  53.40% 97.49%  91.00% 

 

Table 8. The error matrix generated using balanced reference samples generated in crop buffer 

zone 2. 

  Reference Data  
  Crop No-Crop Total User’s Accuracy 

Map 

Data 

Crop 58 31 89 65.17% 
No-Crop 24 687  711 96.62% 

Total 82 718 800  
Producer’s Accuracy  70.73% 95.68%  93.13% 
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Discussion 

The accuracy assessment of large area cropland extent maps was performed in response to specific 

issues, constraints of concern, limitations and a few advantages observed in different continents 

throughout this project. The assessment strategy was adapted for the selected continent in order to 

determine measures in homogeneous regions and provide more information for the large area 

cropland maps. It is important to note how the assessment strategies were modified from one 

continent to another globally in response to the cropping patterns in different agriculture 

landscapes. The heterogeneity in the agriculture landscapes of different continents was minimized 

by dividing each continent into homogeneous Agro-Ecological Zones (i.e., AEZ’s), which were 

then used to perform the accuracy assessment. Indeed, there is no single sampling design for 

collecting global reference data that can serve as a universally appropriate everywhere (Strahler et 

al., 2006). Therefore, modified sampling designs were employed in the AEZ-based assessment 

strategies for the different continents. Where the use of an AEZ-based stratification failed to 

produce more homogeneous regions (e.g., Australia), a buffering approach was selected instead. 

The following is a discussion of the results for each of the selected continents. 

 

United States 

The US has dynamic cropping patterns where dominant crop types are well distributed in large 

homogeneous agriculture field sizes and rare crop types are scattered across heterogeneous 

agricultural landscapes. Therefore, these variations in agriculture landscape need to be considered 

while performing an assessment of the cropland maps. The issues and constraints of cropland 

diversity were incorporated by dividing the US into homogeneous regions using a stratification 
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method based on AEZ’s. The accuracy results for homogeneous regions of a continent can be more 

meaningful for the users to implement various region-based cropland models for planning and 

decision-making. 

There is a great advantage in the US of having an extensive and easily accessible reference 

data set (i.e., USDA CDL). Due to the availability of such a high-quality reference data (i.e., 

accuracy ranges from 85–95%) (Boryan et al., 2011), it was easy to perform an accuracy 

assessment of cropland maps in the US as compared to other continents. AEZ-based assessment 

strategy was employed with only a few modifications in the sampling design to choose an 

appropriate sample scheme and size. The task of achieving an appropriate sample size was 

determined by a sample simulation analysis that provided insight into how many samples were 

required to perform a continent specific accuracy assessment. Therefore, AEZ-based assessment 

strategy using high-quality reference data with some modifications in the sampling design was 

employed to report the accuracy measures in all the AEZ’s. 

The accuracy assessment of cropland extent map in the US provided both accuracy measures 

in the form of error matrices and spatial distribution of agreement and disagreement in the form of 

a difference image. The compiled accuracy estimates generated for all the AEZ’s showed high 

overall accuracies for the crop and no-crop classes with no commission errors in the cropland areas 

(Table 1). These results were also confirmed with a difference image that showed spatial 

agreement and disagreement between the reference data and the map (Figure 6). The cropland 

class on the map has no-commission error and only 2% omission error. Overall, there were no 

complications in performing the accuracy assessment of the cropland maps of the US. The results 

show that performing an accuracy assessment of the cropland extent map for a continent with an 
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extensive reference data set can easily be done, but that care still must be taken to determine 

homogeneous cropping regions which result in more meaningful, representative and valid mapping 

products. 

 

Africa 

In Africa, different issues and constraints were observed when compared to the other selected 

continents due to: (1) the heterogeneous and scattered cropland distribution across the AEZ’s; and 

(2) the lack of effective and valid reference data. In Africa, AEZ’s were quite diverse from each 

other with a few zones having very sparse cropland distribution as compared to others where the 

cropland areas were more uniformly distributed. These issues and concerns were considered and 

planned for well before assessing the cropland maps using the AEZ-based accuracy assessment 

strategy with a modified sampling design. The AEZ-based strategy was different from the one 

employed in the US as it was specific to each AEZ according to each zone’s cropping pattern 

variability. In response to these cropping patterns and the lack of availability of valid reference 

data, the traditional method of accuracy assessment was conducted using a modified sampling 

design.  

To perform the accuracy assessment of the cropland extent map of Africa, the reference data 

had to be collected from interpretation of HRI for the year 2014 because no other data existed. 

Before collecting this reference data, it was necessary to determine where and how many samples 

were required. Another sampling simulation was performed to determine appropriate sample sizes 

for the various AEZs. Because of the large variability in the cropland distribution of the AEZ’s in 

Africa, zones with low crop diversity (i.e., AEZ 1 and 2) were sampled with a minimum number 
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of samples (50) as compared to the other zones (250). Such modified sampling in Africa 

demonstrates the power of being able to selectively devote effort and time in collecting reference 

data based on the variability in the cropland distribution.  

The results in Table 3 show that there is a high overall accuracy in all the zones. It is very 

important to note the producer’s and user’s accuracy of the crop class in each AEZ. In Zone 5, 6 

and 7, the producer’s and user’s accuracy of the crop class are low due to low crop intensity and 

spatial structure of cropland areas. However, Zone 1 and 2 also has low crop proportion but the 

spatial structure of crop patches is different in these zones as compared to zone 5, 6 and 7. 

Therefore, different users’ and producers’ accuracies were observed in each zone due to spatial 

fragmentation of cropland areas in specific zones. These accuracies provide a more detailed view 

for each mapped class beyond just the overall accuracy and are indicative of the AEZ-based 

assessment strategy. Specific to Africa, it is very important to observe the cropping pattern in each 

AEZ and how much effort is required to generate the reference data necessary to perform the AEZ-

based assessment strategy. These results show that the AEZ’s with low crop proportions do not 

require large sampling efforts as these zones have smaller geographic extent and less cropland area 

to assess. It is, therefore, reasonable to assume that if the sample size was increased for these zones; 

neither the number of crop samples nor the map accuracy would increase. Throughout this process 

of assessing the cropland map of Africa, the AEZ-based assessment strategy helped to provide a 

more detailed view of the accuracies of homogeneous regions within the continent.  

 

Australia 
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The accuracy assessment process to validate the cropland extent map of Australia was modified 

differently than the process used in the US and Africa. In Australia, the cropland distribution is 

concentrated only along a narrow belt towards the edges of the continent. There is a very low 

chance of cropland areas towards the center region of Australia because of the very dry conditions 

there. This concentrated cropping pattern was considered in the assessment strategy by choosing 

a reduced region around these cropland patches. AEZ’s in Australia do not exhibit much diversity 

due to low crop variability in the continent and therefore, were not appropriate to stratify the 

continent. Rather than an AEZ-based assessment strategy, a buffering approach was used to divide 

the continent into homogeneous regions to perform a valid assessment of the cropland map of 

Australia.  

In addition to a different method of stratification, two different sources of reference data were 

used in Australia. The first were ground collected samples and the second were collected from 

interpretation of HRI. As a result of the ground-collected reference data, a new set of issues needed 

to be considered. This ground data was collected during a field campaign that emphasized 

identifying cropland areas. As a result, very little non-cropland samples were recorded. Therefore, 

creating an error matrix from the reference data resulted in an error matrix in which there were 

many cropland samples and few non-cropland samples (Table 5). However, given that only 

approximately 12% of Australia is cropland, this error matrix was highly imbalanced and not 

representative of the map accuracy. The non-cropland samples were augmented appropriately 

using interpretation of HRI to obtain sufficient samples to generate a balanced error matrix 

indicative of the actual cropland/non-cropland proportion (Table 6). 
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While the balanced error matrix generated from the ground reference data augmented with 

interpretation of HRI demonstrates good overall cropland mapping, it is not representative of the 

entire continent since the ground data were collected all in the southern region. To solve this 

problem, a stratification approach using buffer analysis was adopted. This method provides a 

buffer around the cropland areas of Australia at two distances and eliminates sample collection 

from the center of the continent where there was very low chance of finding crops.  

The error matrices generated for the buffer zones (Tables 7 and 8) have high accuracies but are 

lower than the error matrix in Table 6. However, these error matrices from the buffering approach 

should be viewed as more representative and meaningful than the matrix that used reference data 

from only part of the continent. As demonstrated in Australia, the entire continent might not be 

considered as an appropriate sampling area for assessing the accuracy of the cropland maps. In 

such places, therefore, the sampling area needs to be modified to accommodate sparse and 

concentrated cropping pattern to provide meaningful and representative accuracy results.  

 

Lessons Learned 

Accuracy assessment is an expensive, yet essential, component of the mapping projects. Maps 

without their associated accuracy estimates will not be valuable to the users (Thenkabail, 2005; 

Strahler et al., 2006). While there is a well-established traditional method to perform the accuracy 

assessment of thematic maps (Congalton, 1991), there remains considerable need for future 

research and development to perform the accuracy assessment of large area thematic maps. There 

are few important lessons that were learned from a modified assessment strategy conducted for 

three different continents while assessing large area cropland extent maps: 
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1. Before assessing the cropland extent maps of different continents, some sort of stratification 

must be employed to divide the area into homogeneous regions. The stratification approach must 

be considered and recommended to address the issues of variation in different agricultural 

landscapes within each continent. 

2. It is important to ensure that the accuracy assessment of large area cropland extent maps is 

performed in accordance with how the map was created. Failure to consider the methodologies 

used including any stratification that was performed will result in unresolved issues.  

3. In order to conduct a modified accuracy assessment for the homogeneous regions within the 

continent, different issues, constraints and characteristics observed in the cropland maps for 

different continents must be considered carefully. These issues can be either related to complex 

agricultural landscapes or the availability of reference data for different continents. 

4. Performing an accuracy assessment for a continent with an extensive reference data can be 

easily done, but still the sampling scheme and size must be modified carefully to determine enough 

samples for the homogeneous cropping regions to result in meaningful, representative and valid 

mapping products. 

5. A modified sampling scheme and size must be chosen using a sample analysis approach for 

each homogeneous region in response to their cropping pattern variability. Such modified 

sampling can demonstrate the power of being able to selectively devote effort and time in 

collecting reference data based on the cropping pattern variability. 

6. Any ground collected samples especially if only certain map classes (i.e., crops) area collected 

must be augmented to create a balanced and effective reference data set. However, this balanced 
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error still might be representative of the entire continent if the ground data were collected in only 

one region.  

7. When the entire continent cannot be considered as an appropriate sampling area for assessing 

the accuracy of cropland maps, the sampling area should be modified to accommodate the sparse 

and concentrated cropping pattern using stratification method. 

 

Conclusions 

This paper presents modified accuracy assessment strategies used to assess the accuracy of large 

area cropland extent maps in response to different issues such as variations of cropping pattern and 

reference data availability in different continents. Considering and addressing these issues, the 

modified assessment strategies helped to understand the efficacy and quality of cropland extent 

maps for different agricultural landscapes to implement economic planning and policymaking. The 

information derived from large area cropland maps with agricultural landscapes of different 

continents can be enriched, improved and analyzed with modified assessment strategies. Such 

modified assessment strategies promise to achieve more meaningful, representative and applicable 

mapping products for each continent. Therefore, the need for a continent-specific assessment 

strategy developed by modifying the sampling design for collecting reference data and computing 

accuracy measures was demonstrated to be valuable. However, different sampling methods can be 

employed and compared in the future to analyze the accuracy results for different cropping 

scenarios. 

A modified assessment strategy was employed to assess the accuracy of the cropland extent 

maps of three selected continents developed as a part of GFSAD project. The variability of 



68 

 

cropping pattern in the agricultural landscapes and reference data availability were considered and 

addressed to provide meaningful and valid accuracy results for mapping products within these 

selected continents. The stratification approach based on AEZ’s or buffer zones used to divide the 

continent into homogeneous cropping regions: (1) minimized the heterogeneity of different 

cropping patterns and (2) helped to rationalize the validation efforts for different continents. 

Finally, the sampling scheme and size were modified for the homogeneous regions using a sample 

analysis approach based on the variations of cropping pattern within the continent.  

In summary, continent-specific modified assessments performed for three selected continents 

demonstrate that the accuracy assessment can be easily done for a continent such as the US with 

extensive availability of a reference dataset while more modifications were needed in the sampling 

scheme for the continents with little to no reference datasets. The result of the modified sampling 

performed in the AEZ’s of Africa show that the effort and time in collecting reference data can be 

selectively devoted based on the variability in the cropland distribution. Finally, a modified 

sampling was employed in the buffer zones of Australia using two different sources of reference 

data. An unbalanced number of ground samples collected during a field campaign that emphasized 

identifying cropland areas were augmented and balanced to be indicative of the crop/no crop area 

proportion of the map to generate a balanced and valid error matrix for Australia. The analysis 

performed with this modified strategy shows that the entire continent might not be considered as 

an appropriate sampling area for assessing the cropland maps due to little chance of cropland in 

center of Australia because of extremely dry conditions. 
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CHAPTER IV 

Accuracy Assessment of Global Food Security-support Analysis Data (GFSAD) Cropland 

Extent Maps Produced at Three Different Spatial Resolutions  

Abstract 

Monitoring global agriculture systems relies on accurate and timely cropland information acquired 

worldwide. Recently, the NASA Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) Program has produced Global Food Security-support Analysis Data 

(GFSAD) cropland extent maps at three different spatial resolutions, i.e., GFSAD1km, 

GFSAD250m, and GFSAD30m. An accuracy assessment and comparison of these three GFSAD 

cropland extent maps produced and published by different researchers was performed to 

establish their quality and reliability for monitoring croplands both at global and regional scales. 

Large area (i.e., global) assessment of GFSAD cropland extent maps was performed by dividing 

the entire world into regions using a stratification approach and collecting a reference dataset using 

a simple random sampling design. All three global cropland extent maps were assessed using a 

total reference dataset of 28,733 samples. The assessment results showed an overall accuracy of 

72.3%, 80-98%, and 91.7% for GFSAD1km, 250m (only for four continents), and 30m maps, 

respectively. Additionally, a regional comparison of the three GFSAD cropland extent maps was 

analyzed for nine randomly selected study sites of different agriculture field sizes (i.e., small, 

medium, and large). The similarity among the three GFSAD cropland extent maps in these nine 

study sites was represented using a similarity matrix approach and two landscape metrics (i.e., 

Proportion of Landscape (PLAND) and Per Patch Unit (PPU)) which categorized the crop 
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proportion and the crop pattern. A comparison of the results showed the similarities and differences 

in the cropland areas and their spatial extent when mapped at the three spatial resolutions and 

considering the different agriculture field sizes. Finally, specific recommendations were suggested 

for when to apply each of the three different GFSAD cropland extent maps for agriculture 

monitoring based on these agriculture field sizes. 

 

Introduction 

Agriculture monitoring plays a significant role for ensuring food security, social stability, and for 

providing information to farmers on crop yield predictions and decision makers for policy and 

planning purposes (Liang and Gong, 2013). These global monitoring systems require large area 

cropland information as a key input source to estimate crop yield and identify cropping patterns 

(Atzberger et al., 2015; See et al., 2015). The acquisition of consistent cropland information over 

large areas relies heavily on the use of earth observation data to describe their precise location on 

the earth’s surface. Since the early 1990’s, satellite imagery has been used to produce cropland 

maps because of its consistent, timely, and systematic observations. Some examples of previous 

cropland datasets are: the Global Map of Irrigation Areas (GMIA) (Thenkabail et al., 2009), the 

Global Map of Rain-fed Areas (GMRCA) (Biradar et al., 2009), the Global Monthly Irrigated and 

Rain-fed Crop Areas (MIRCA2000) (Portmann et al., 2010), the Global Rain-fed, Irrigated, and 

Paddy Croplands (GRIPC) (Salmon et al., 2015), and the Moderate Resolution Imaging 

Spectroradiometer-Cropland (MODIS) (Pittman et al., 2010).  
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Recently, with our increased accessibility to advanced computing platforms for processing 

large datasets, an improved spatial and thematic dataset compared to previous cropland mapping 

efforts called the GFSAD Project (Global Food Security Support-Analysis Data) was completed. 

Three new GFSAD cropland extent maps were created separately at three different spatial 

resolutions (1km, 250m, and 30m) using Landsat and MODIS imagery along with other existing 

cropland data (Teluguntla et al., 2016; Massey et al., 2017a; Massey et al., 2017b; Teluguntla et 

al., 2017a; Teluguntla et al., 2017b; Xiong et al., 2017a; Xiong et al., 2017b; Xiong et al., 2017c; 

Phalke et al., 2017; Oliphant et al., 2017; Gumma et al., 2017; Zhong et al., 2017; Teluguntla et 

al., 2018; Massey et al., 2018). It is well known that mapping of cropland areas at different spatial 

resolutions can result in large differences in the estimates of cropland area and spatial extent (Chen 

et al., 2017; Pérez-Hoyos et al., 2017). Therefore, these three GFSAD cropland extent maps must 

be assessed and compared both at the global and regional scale to establish their quality and 

reliability as the base map for generating higher level cropland products such as crop type and crop 

intensity maps (Thenkabail et al., 2010). These maps provide for both large area (i.e., global) 

comparisons between the different spatial resolutions including the identification of similarities 

and differences and for determining their suitability for more regional analysis, especially when 

considering different agriculture field sizes (Chen et al., 2017). Therefore, the main objectives of 

this paper are to (1) perform a large area accuracy assessment of the three GFSAD cropland extent 

maps and (2) conduct a regional comparison of nine representative study sites selected randomly 

to explore the impact of different agriculture field sizes. 

Previous attempts at rigorous accuracy assessment of large area cropland extent maps has been 

very limited. Considerable ambiguity exists in the implementation and interpretation of large area 
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thematic map accuracy assessment (Congalton, 2016). In the literature, individual measures and 

guidelines for assessing thematic map accuracy have been well established by many researchers 

(Congalton, 1991; Stehman, 1997; Stehman and Czaplewski, 1998; Congalton and Green, 1999). 

However, these guidelines are not often followed due to various limitations in the assessment 

process (e.g., thematic resolution, geo-location accuracy and availability of reference data) 

(Olofsson et al., 2013). The biggest limitation in the large area accuracy assessment process is the 

availability of valid reference data. As such, large area assessment efforts have mostly relied on 

insufficient, sparsely distributed reference data (Bicheron et al., 2008; Fritz et al., 2009a; Foody, 

2010; Gong et al., 2013; Yu et al., 2013b). The assessments performed with limited and insufficient 

reference dataset reported overall accuracies ranging from 66% to 78% with considerably lower 

accuracies from 10% to 50% for the cropland class (Sedano et al., 2005; Frey and Smith, 2007). 

Cropland reference data are extremely limited in most parts of the world resulting in 

insufficient sample sizes and thus, an inability for assessing the accuracy of large area thematic 

maps (Foody, 2002; Gallego, 2004; Foody and Boyd, 2013; Waldner et al., 2015). Recently, a few 

global reference datasets (e.g., FAO-GFRA (Food and Agriculture Organization Global Forest 

Resources Assessments) (Kooistra et al., 2010; Potapov et al., 2011) and the Geo-wiki sample set 

(Fritz et al., 2009b; Fritz et al., 2011a)) have been developed to perform the assessment of global 

land cover maps. Despite the increasing number of initiatives to collect reference datasets freely 

in the public domain such as Geo-wiki (Fritz et al., 2009b; Fritz et al., 2011a) and GOFC-GOLD 

(Global Observation of Forest and Land Cover Dynamics) (Olofsson et al., 2012), cropland 

reference datasets are still lacking. More work must be done to create additional global cropland 

reference datasets. Any new cropland reference dataset must be generated using an appropriate 
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sampling design based on the inclusion probability of occurrence of crop and no-crop areas to 

assess these cropland extent maps (Strahler et al., 2006). If the inclusion probabilities of crop and 

no-crop areas are ignored, a significant bias is likely to occur resulting in a non-proportional and 

insufficient number of samples. Unless the reference data represents the entire cropland 

distribution, accuracy results will not be statistically valid and meaningful. 

Basic probability-based sampling designs can be constructed from simple random and 

systematic selection protocols, and structures imposed on the population such as strata or clusters 

(Stehman and Czaplewski, 1998; Stehman, 2009). The sampling design needs to be easy to 

implement and capable of accounting for the proportions of high and low map categories such as 

crop and no-crop distribution in different continents to perform the assessment on a global scale 

(Card, 1982). In simple random sampling, each sample of crop and no-crop class has an equal and 

independent chance of being selected (Congalton and Green, 2009). However, such sampling 

designs might result in insufficient number of samples in the low crop proportion regions of 

different continents. The sufficient number of samples must be allocated using an appropriate 

sampling design. Where possible (e.g., Landsat or Sentinel imagery), a homogeneous cluster of 3 

× 3 pixels should be used as the sampling unit to account for the positional error at each location 

(Congalton and Green, 2009). For coarser resolution imagery (e.g., MODIS), it is difficult to find 

large homogeneous regions and therefore, a single coarse resolution pixel is used as the sample 

unit in these situations. The goal is to select the best sampling unit to ensure that only thematic 

error is considered in the accuracy measures and not error due to mis-registration or positional 

accuracy. 
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Another issue or limitation when conducting large area assessments is that most have reported 

just a single accuracy value for the entire world. This approach does not provide any details or 

information about the accuracy results for different continents or regions. Given the differences in 

crop growing strategies and patterns between continents, a more appropriate assessment strategy 

must be used. Such an assessment strategy has been recently used to assess the cropland extent 

maps of three different continents (i.e., the United States, Africa, and Australia) (Yadav and 

Congalton, 2018a). This paper described an appropriate assessment strategy for these continents 

based on their cropland distribution and reference data availability. This strategy employed a 

stratification approach to divide the entire world into homogeneous regions and a sample 

simulation analysis was conducted to determine the appropriate sample size. Implementing a 

stratification approach prior to the actual assessment provided an effective means of evaluating the 

cropland extent maps by considering the diverse cropping patterns of different continents (Waldner 

et al., 2015). 

The most widely accepted approach for reporting thematic map accuracy results is using an 

error matrix (Congalton, 1991; Congalton and Green, 2009). The error matrix is a cross tabulation 

of the map classes determined by the image classification against that observed from a reference 

dataset. The error matrix presents the comparison of reference samples with the map and allows 

computation of overall, producer’s, and user’s accuracy (Story and Congalton, 1986). This 

assessment technique can be used to report these accuracy measures for different regions. In 

addition, there are some regions such as the United States and Canada, where a reference cropland 

data layer (e.g., CDL in the US) exists for comparing the entire map on a pixel by pixel basis. Such 

comparison results can then also be presented in the form of a similarity analysis which represents 
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the spatial distribution of agreement and disagreement that occurred in the map as compared to the 

reference map. 

Finally, in addition to evaluating each of the three different GFSAD cropland extent maps 

separately, it is useful to perform a comparison between the maps to evaluate the effectiveness of 

each spatial resolution for specific user requirements (Kaptué Tchuenté et al., 2011; Kuenzer et 

al., 2014). Mapping at a variety of spatial resolutions raises many inconsistencies, differences, and 

uncertainties among the estimated cropland areas that can be visualized on the map and are the 

result of the spatial distribution of cropland patches in different cropping patterns (Giri and Long, 

2014; Bai et al., 2015). Therefore, existing and newly developed cropland extent maps must be 

compared with each other to investigate, determine, and recommend the appropriate spatial 

resolution for agriculture monitoring given different agriculture field sizes and patterns. Many 

comparative studies have been performed for existing datasets such as GLC2000, MODIS, 

International Geosphere-Biosphere Program (IGBP), and National Land Cover Dataset (NLCD) 

(Giri et al., 2005; Fritz et al., 2011b). Despite identifying spatial discrepancies and inconsistencies, 

particularly in the cropland class at a global scale, these comparison studies have not focused on 

the adequacy of different spatial resolutions given different agriculture field sizes (See et al., 2013, 

Liang and Gong, 2013). The uncertainties in the cropland class of these existing maps could be 

due to: (1) absence of precise spatial location of the cropped areas, (2) coarse resolution of the map 

products with significant uncertainties in areas, locations, and detail, and (3) invalid assessments 

of these cropland extent maps.  

The recent production of the three different GFSAD cropland maps promises to provide more 

detailed and accurate cropland information with a high amount of certainty in the geographic 
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location of the cropland areas. Therefore, these three different resolution cropland maps must be 

assessed with an appropriate large area accuracy assessment strategy describing their use, 

reliability, and quality for different continents. However, cropland mapping in different agriculture 

fields sizes can be inconsistent at different spatial resolutions because of the spectral similarity of 

different fields and differences in similar agriculture fields (Bayas et al., 2017). The similarities 

and differences in the characteristics of agriculture landscapes (i.e., crop area proportions and 

landscape metrics) must also be explored to provide specific recommendations for when to apply 

the three different cropland extent maps with respect to different field sizes (Frohn, 1997). This 

kind of regional comparison can be effectively implemented by using a similarity matrix based on 

a contingency table approach like an error matrix and by categorizing the landscape metrics such 

as landscape proportion for different agriculture field sizes.  

Therefore, the two primary objectives of this study are to perform an accuracy assessment of 

the three different GFSAD cropland extent maps of the world and then evaluate the impact of 

different agriculture field sizes on global and regional agriculture monitoring. To accomplish the 

first objective, a large area accuracy assessment was conducted separately for each spatial 

resolution GFSAD cropland extent map. Three different assessments were performed using a 

valid, large reference data set collected from different sources and sampling simulations to choose 

the appropriate sample size for each region (Congalton and Green, 2009; Yadav and Congalton, 

2018a). Second, regional comparisons of the three GFSAD cropland extent maps were performed 

by calculating similarity in crop area proportions and landscape heterogeneity in nine random 10 

km by 10 km study sites or regions selected in each of three agriculture field sizes (i.e., small, 

medium, and large). The specific goal of this paper is to provide an appropriate assessment and 
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comparison of three different GFSAD cropland extent maps to resolve many of the short-comings 

and uncertainties of other cropland mapping efforts. Finally, the results of this analysis are used to 

recommend when it is appropriate to apply each map given the different agriculture field sizes for 

each continent of the world. 

 

Study Area 

Two different study areas were used in this investigation. These are: (1) the entire world divided 

into eight, four, and 15 zones to perform the assessment of GFSAD1km, 250m, and 30m cropland 

datasets, respectively and (2) nine random 10km by 10km analysis areas used to perform the 

comparison of GFSAD maps by field size.  

To perform the comparison, the agriculture field sizes of the entire world were grouped into 

three classes using a global field size map from International Institute for Applied Systems 

Analysis and International Food Policy Research Institute (IIASA-IFPRI). This map classified 

global field sizes ranging from 10 to 40 hectares (ha) at 1km spatial resolution based on data 

collected via a Geo-Wiki crowdsourcing campaign (Fritz et al., 2015). The three classes of 

agriculture field size used in the study were: 10-20 ha (small), 20-30 ha (medium), and 30-40 ha 

(large). Nine study sites were randomly selected with three in each agriculture field size across the 

entire world (Figure 14). Table 9 shows the distribution of selected study sites in different 

continents and agriculture field sizes.  
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Figure 14. The location of the nine randomly selected study sites for the world. 

 

 

Table 9. Distribution of random study sites in different agriculture field sizes of different 
continents. 

 
 
 
 
 

 

Datasets 

Four datasets were necessary to conduct the accuracy assessment of the GFSAD cropland 

extent maps. The first three datasets were the maps themselves at the three spatial resolutions 

(Figure 2) and the fourth was the reference data set used for comparison. The basic requirements 

and techniques to perform the thematic map assessment have been reviewed by many researchers 

Field Size US Africa South-Asia Australia 

Small (10-20ha) - 2 1 - 
Medium (20-30ha) 3 - - - 
Large (30-40ha) 2 - - 1 
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in the past (Congalton, 1991; Stehman and Czaplewski, 1998; Congalton and Green, 2009). One 

of the key elements of the assessment is to ensure that the same appropriate classification scheme 

was used for collecting both the training data and the reference data. A well-defined classification 

scheme helps to reduce the risk of misunderstanding and inconsistencies while comparing and 

assessing the mapping products (Congalton and Green, 2009; Congalton et al., 2014). Therefore, 

a common GFSAD classification scheme was used to generate the three GFSAD cropland extent 

maps at different spatial resolutions and to collect the reference dataset used to validate these 

cropland extent maps. This classification scheme defines the cropland class as “lands cultivated 

with plants, harvested for food, feed, and fiber, including both seasonal crops (e.g., wheat, rice, 

corn, soybeans, and cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, and oil 

palms)”. While fallow croplands are defined as “lands uncultivated during a season or a year but 

are farmlands and are equipped for cultivation, including plantations (e.g., orchards, vineyards, 

coffee, tea, rubber”). The cropland extent maps include all the planted crops and fallow lands. 

Non-croplands include all other land cover classes other than croplands and cropland fallow. 

 Accuracy assessment was conducted on the three cropland extent maps (GFSAD1km, 

GFSAD250m, and GFSAD30m). These maps were produced for the entire world with the 

exception of the GFSAD250m cropland map which is only available for four of the continents. 

These cropland extent maps are listed in Table 10 describing their mapping year, spatial resolution, 

input data, assessment regions, and classification scheme. 

The GFSAD1km cropland extent map was derived as a disaggregated five class global 

cropland extent map at nominal 1 km resolution using four existing multi-study crop mask layers 

(Thenkabail et al., 2009; Pittman et al., 2010; Yu et al., 2013). Two of the five classes are 
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dominated by irrigated and rain-fed agriculture. The other three classes have minor/very minor 

fractions of croplands. The irrigation minor class represents the areas irrigated by small reservoirs, 

irrigation tanks, open wells, and other minor irrigation. The GFSAD1km cropland map is available 

online with these five irrigated and rainfed classes, was downloaded, and a cross-walk was 

developed to simplify the five classes into a crop/no-crop class map for assessment and comparison 

with other GFSAD cropland extent maps (Figure 15).  

 

Table 10. Description of the three different GFSAD cropland extent maps. 

Datasets Year 
Spatial 
Resolu

tion 

Input 
Data 

Assessment 
Regions 

Classific
ation 

Scheme 
Source References 

GFSAD
1km 

2010 1km 

Existin
g 

croplan
d maps 

Entire world 
(8 Regions) 

Irrigated 
and 

Rain-fed 
cropland 
classes 

https://lpdaac.usgs.gov/dataset_discover
y/measures/measures_products_table/gf

sad1kcm_v001 
Teluguntla 
et al., 2016 

GFSAD
250m 

2008, 
2014 

250m MODIS 

4 Continents 
(US, Africa, 

Australia, 
and South-

Asia) 

Cropland 
and Non-
Cropland 

 Teluguntla 
et al., 2017a; 
Xiong et al., 

2017a; 
Massey et 
al., 2017a 

GFSAD
30m 

2014 30m Landsat 
Entire world 
(15 regions) 

Cropland 
and Non-
Cropland 

Africa: 
https://lpdaac.usgs.gov/node/1276 

North-America: 
https://lpdaac.usgs.gov/node/1277 

South-America: 
https://lpdaac.usgs.gov/node/1278 

Europe, Central Asia, Russia, Middle-
East: https://lpdaac.usgs.gov/node/1279 

South-Asia: 
https://lpdaac.usgs.gov/node/1280 

South-East Asia: 
https://lpdaac.usgs.gov/node/1281 

Australia, China, New Zealand, 
Mongolia: 

https://lpdaac.usgs.gov/node/1282 

Teluguntla 
et al., 

2017b; 
Massey et 
al., 2017b; 

Xiong et al., 
2017b and c; 
Gumma et 
al.,2017; 

Phalke et al., 
2017; 

Oliphant et 
al., 2017; 

Zhong et al., 
2017; 

Teluguntla 
et al., 2018; 
Massey et 
al., 2018 
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The GFSAD250m was developed at a spatial resolution of 250m using MODIS satellite data 

for only selected regions of the world (the United States (US), Australia, Africa, and South-Asia 

as shown in Figure 15). These cropland extent maps of each selected region were developed by 

different mapping teams as a part of the GFSAD project (Massey et al., 2017a; Teluguntla et al., 

2017a; Xiong et al., 2017a). 

The GFSAD30m cropland extent map was developed at a spatial resolution of 30m for 6 

continents using multi-temporal Landsat satellite imagery (Xiong et al., 2017b; Xiong et al., 2017c; 

Gumma et al., 2017; Phalke et al., 2017; Oliphant et al., 2017; Zhong et al., 2017; Teluguntla et 

al., 2018; Massey et al., 2018). This cropland extent map was generated for the nominal year 2014 

using an automated classification algorithm (i.e., random forest classifier) on the cloud-computing 

Google Earth Engine (GEE) platform. Figure 15 shows the cropland areas mapped in the 

GFSAD30m cropland map for the entire world. 

 

 

 

 

 

 

 



82 

 

 

Figure 15. The GFSAD 1 km, 250 m, and 30 m cropland extent maps generated by multiple 

producers (as listed in Table 10). 
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In addition to the three different GFSAD cropland extent maps, the fourth and final dataset 

used in this study is the global reference dataset collected at the same three spatial resolutions from 

various sources to perform the accuracy assessment. These different sources of reference data 

include existing reference samples and maps (e.g., crowd sourced Geo-wiki data and USDA 

Cropland Data Layer), ground collected data, high-resolution image (HRI) interpreted reference 

samples collected by a GFSAD team member stored on the cropland.org database, and an 

independently generated reference data by the accuracy assessment team (Table 11). 

 
Table 11. Different sources of reference data used to assess the three different GFSAD cropland 
extent maps. 

 
 
One of the existing reference data sources is IIASA’s Geo-wiki reference data which is a 

global, but sparsely distributed crowd sourced dataset usually collected by experts using high 

resolution images (Fritz et al., 2009b; Gong et al., 2013). Geo-wiki reference data consists of 

varying size polygons located across the entire world and a legend showing the percentage of 

cropland in each sample (Vancutsem et al., 2013). The reference samples were evaluated by IIASA 

experts using high resolution images through the Geo-wiki crowdsourcing land cover validation 

tool (Fritz et al., 2009b). This dataset has been proven to be valuable in accuracy assessment of 

1km mapping products (Fritz et al., 2009b; Tsendbazar et al., 2015). Both crop and no-crop 

Datasets FAO 
Geo-wiki 

Existing 
Cropland Maps 

Ground 
Reference Data 

Cropland.org 
Database 

Independent 
Reference Data 

GFSAD1km      
GFSAD250m      
GFSAD30m      
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reference samples selected in our work were 1km by 1km homogeneous polygons which were 

reviewed, re-interpreted, and used to assess the GFSAD1km cropland map for the year 2010.  

A second existing reference source is high-quality reference cropland maps such as the USDA 

Cropland Data Layer (CDL) and the Agriculture and Agri-Food Canada (AAFC) cropland layers. 

The National Agricultural Statistics Service (NASS) of the United States Department of 

Agriculture (USDA) developed the CDL product for the entire United States (Boryan et al., 2011). 

The CDL product is a comprehensive, raster-formatted, geo-referenced, and crop-specific land 

cover map that utilizes ortho-rectified imagery to identify field crop types accurately and 

geospatially. Similarly, the AAFC Annual Space-Based Crop Inventory for Canada provides 

information at 30m spatial resolution for the location, extent and changes in Canadian crops 

(Fisette et al., 2013). Since 2011, AAFC has consistently delivered an annual crop inventory for 

all the Canadian provinces. These existing data sources provide annual and continuous cropland 

information at a high spatial resolution. 

To supplement existing maps and sample datasets, new reference data on croplands were also 

generated from: (1) the field campaigns conducted by the GFSAD mapping teams and (2) the 

interpretation of high-resolution imagery (HRI) by the team members of GFSAD project. These 

field campaigns provided reference data not only on crop extent (cropland vs. no-cropland), but 

also on crop type, irrigated vs. rain-fed, and crop intensity (single, double crop per year). For 

example, campaigns were conducted for Australia and South-East Asia in the year 2014 and 2015, 

respectively.  

Most of the new reference data was obtained by interpretation of HRI. Two collection efforts 

were employed. First, one GFSAD project team member interpreted a great deal of HRI imagery 
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for use by the entire GFSAD team. These interpreted samples were split 60/40 with 60 percent of 

the data being used by the mapping teams for training and testing of their classification algorithms. 

Forty percent was set aside and hidden from the mapping teams and used in the process of accuracy 

assessment. The accuracy assessment team used this 40 percent of the reference data, but only 

after reviewing each sample and confirming the interpretation. If both interpreters agreed, then the 

sample was selected for use. Second, a supplemental independent set of reference samples was 

generated by visual interpretation of Google Earth imagery solely by the accuracy assessment 

team. Again here, two interpreters were used to insure high accuracy in the reference data. These 

samples were collected for many regions to either supplement for the low sample size or to achieve 

a proportional reference data size necessary to perform a valid accuracy assessment of the three 

different GFSAD cropland extent maps.  

 

Methods 

The objectives of this study were accomplished using two main methods: (1) thematic map 

accuracy assessment and (2) map comparison. First, to perform large area thematic accuracy 

assessment of the three GFSAD cropland extent maps, an assessment strategy was employed based 

on the availability of reference data, cropland distribution, and mapping strategies used for each 

continent (Yadav and Congalton, 2018a). Second, the comparison of GFSAD cropland extent 

maps was performed on randomly selected analysis areas of 10km by 10km in the three different 

agriculture field sizes. The overall methodology (Figure 16) that was followed to assess and 

compare the three different GFSAD cropland extent maps is described in the following two sub-

sections: 
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Figure 16. The overall flowchart showing the methods step followed to assess and compare 

different resolution GFSAD cropland extent maps. 

 

Assessment 

The accuracy assessment of the three GFSAD cropland extent maps was executed in the following 

steps: (1) Stratification, (2) Sampling, and (3) Assessment Technique. An appropriate assessment 

strategy employed a stratification approach to divide the entire world into homogeneous regions 

followed by a sampling design derived from the results of a sampling simulation analysis. 

First, the process of dividing an area into homogeneous regions based on some relevant factor 

is referred to as stratification. This relevant factor could be either an administrative or ecological 

parameter or a combination of both to provide a more meaningful and useful assessment. The 

stratification of the three different cropland extent maps into homogeneous regions in this study 
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was based on one of the following three different criteria: (1) Agro-Ecological Zones (AEZs) 

provided by FAO, (2) a buffer approach, or (3) AEZs combined with country boundaries. Agro-

Ecological Zones (AEZs) are created based on the length of the growing period days of crops in 

homogenous climatic and topographic conditions or regions (Fischer et al., 2012). Because it was 

difficult to stratify areas using the AEZ approach in some parts of the world due to the very low 

proportion of cropland, a more effective stratification method (i.e., buffering approach) was used 

to define an appropriate sampling area around these cropland patches instead (e.g., Australia, 

Alaska, Iceland, and Mongolia). Finally, in some areas, the AEZ approach was combined with 

country boundaries to stratify the area into a more reasonable number of regions.  

The three cropland extent maps were stratified specifically according to their mapping strategy, 

reference data availability, and the spatial resolution. For example, the GFSAD1km cropland map 

was assessed using 8 regions based on the availability of a proportional and optimum size of 

reference data available from IIASA’s Geo-wiki. Similarly, the GFSAD250m cropland map was 

assessed using 4 regions mapped simply as the four different continents. Finally, the GFSAD30m 

cropland map was assessed using 15 regions which were combined with country boundaries from 

the original 72 AEZ-based homogeneous regions (Table 12).  
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Table 12. The list of regions used in the assessment of the three different GFSAD cropland 
extent maps. 

 

Second, an appropriate sampling approach is comprised of a sampling scheme, a sample unit, 

and a sample size (i.e., appropriate number of samples) for collecting valid reference data. The 

sampling design needs to be easy to implement and capable of accounting for the proportion of 

high and low map categories such as crop and no-crop distribution in different continents in order 

to perform the assessment on a global scale (Card, 1982). A simple random sampling scheme was 

employed for each region to collect a sample proportional to the cropland and non-cropland map 

class distribution. A sample unit of 90m x 90m was used to collect reference samples to assess the 

GFSAD30m cropland map. In contrast, sample units of 250m x 250m and 1km x 1km were used 

to assess the GFSAD250m and GFSAD1km cropland extent maps, respectively. The most 

challenging component of sampling is the collection of a sufficient number of samples. The 

number of samples to assess the GFSAD1km cropland map was determined based on the 

availability of Geo-wiki samples and the proportional area of the different regions. After a 

thorough review of Geo-Wiki dataset, it was observed that all the eight regions could be sampled 

with a minimum sample size of 200. This minimum sample size was balanced with the area 

Datasets Regions 

GFSAD1km 
8 (Africa, North-America, South-America, Australia, Europe, South-
Asia, South-East Asia, and China/Mongolia) 

GFSAD250m 4 (South-Asia, North-America, Africa, and Australia) 

GFSAD30m 
15 (United States, Canada, Mexico, Central America, Car. Islands, 
Iceland, South-America, Africa, Europe, Russia, and Mid-East, South-
Asia, South East Asia, Australia, New Zealand, China, Mongolia) 
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proportions in each region. To assess the GFSAD250m and GFSAD30m cropland extent maps an 

optimum sample size of 250 was selected based on a Monte Carlo sampling simulation analysis. 

Third, the accuracy of the three different GFSAD cropland extent maps was evaluated using 

two different assessment techniques: (1) an error matrix and (2) a difference image. First, error 

matrices were generated using the following steps: (1) extract the map and reference labels for the 

random samples from the cropland extent map and reference map, respectively, (2) output an 

attribute table using ArcGIS that lists the map and reference labels, and (3) generate the error 

matrix by comparing these two labels using a program written in R. The error matrix was then 

used to calculate various measures of accuracy including overall, producer’s, and user’s accuracies 

(Story and Congalton, 1986; Congalton, 1991). Second, a difference image was generated by 

comparing the GFSAD250m and GFSAD30m cropland map for the United States with the 

resampled and cross-walked CDL reference map. This analysis was possible only for the US 

because of the availability of this CDL reference map. The two difference images generated at two 

different spatial resolutions clearly demonstrated the spatial distribution of agreement and 

disagreement between these two thematic maps.  

 

Comparison  

The three different resolution cropland maps were compared for the three different agriculture field 

sizes based on the following three characteristics observed at the three different spatial resolutions: 

(1) the look of the map, (2) cropland area similarity, and (3) heterogeneity or clumping in the 

cropland landscape. First, the look of the spatial extent of the cropland patches at three different 

spatial resolutions was compared with the expected cropland distribution from high resolution 
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reference images to show how the map looks at each resolution. This method is simply a qualitative 

comparison. Second, the similarity of cropland areas mapped at different spatial resolutions was 

determined based on a contingency table approach in the form of a similarity matrix (Sun and 

Congalton, 2018). The area of each mapped class of the fine resolution cropland map was 

presented in the rows while the area of each class on the coarse resolution map was presented in 

the columns of the similarity matrix (Table 13).  

 

Table 13. An example of a similarity matrix 

  Coarse map  

  Class 1 Class 2 Total 

Fine 

map 

Class 1 A11 A12 A1+ 

Class 2 A21 A22 A2+ 

 Total A+1 A+2 

 

In the Table 13, A11 and A22 denotes the area that is classified as Class 1 and Class 2, 

respectively both in the fine and coarse resolution cropland extent maps. The diagonal values 

represent the consistency or the similarity for each class between the fine and coarse resolution 

maps. The column totals A+1 and A+2 sums the area of class 1 and class 2 on the coarse resolution 

map, respectively. Likewise, A1+ and A2+ represent the row totals of class1 and class 2, respectively 

on fine resolution cropland map. The commission error (CE) for class i can be evaluated by 𝐴+𝑖 −𝐴𝑖𝑖 ∕ 𝐴+𝑖 , which represents the percentage of area for class i that is committed from the fine 

resolution map. The omission error (OE) for class i of the coarse map can be evaluated by 𝐴𝑖+ −𝐴𝑖𝑖 ∕ 𝐴𝑖+ which represents the percentage of area for class i that is omitted from the coarse map. 
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The overall similarity (OS) was evaluated by ∑ 𝐴𝑖𝑖𝑛𝑖=0 ∕ ∑ 𝐴𝑖+𝑛�̇�=0 = ∑ 𝐴𝑖𝑖𝑛𝑖=0 ∕ ∑ 𝐴+𝑖𝑛𝑖=0  , which 

represents the percentage of the area for all classes that are correctly represented in the coarse 

resolution map. The calculation of similarity matrix for crop and no-crop classes was performed 

in the following seven steps: 

1. The area comparison was initialized with a resampling of 250m to 240m map and 1km to 960m 

map respectively making all three cropland extent maps comparable with each other. This 

resampling was necessary to incorporate the 30 m spatial resolution map. 

2. Compute the total number of the square windows (NSW) of coarse resolution map required to 

cover the fine resolution map. 

3. Place square window over the fine resolution map. The value of square window corresponds 

to the class label of the coarse resolution map.  

4. Identification of class label of coarse and fine resolution map pixels within the square windows. 

5. Calculate the area of class 1 and class 2 of the fine resolution map within the coarse pixel.  

6. This comparison was performed by moving a 240m and 960m window over different 

resolution cropland extent maps (Figure 17). Within the moving window, the high-resolution 

cropland map area was calculated. In Figure 17, each moving coarse resolution square window 

represents the area of cropland calculated from high resolution cropland pixels.  

7. Finally, all the comparisons were reported is a tabular array i.e., a similarity matrix comparing 

the two pairs of cropland extent maps (Sun and Congalton, 2018).  
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All the above-mentioned comparison steps were implemented on three pairs of combinations 

(i.e., 960m-30m, 960m-240m, and 240m-30m) for calculating the cropland area mapped at fine 

spatial resolution within the coarse resolution pixels at nine study sites in different agriculture 

field sizes (Figure 17).  

 

Figure 17. The implementation scheme of similarity matrix to compare the area of cropland on 

different resolution maps. 

Third, two landscape metrics, Per-Patch-Unit (PPU) and the Percentage of LANDscape 

(PLAND), were calculated and compared for each study site to understand the heterogeneity and 

clumping in the cropland landscape at three different resolutions with respect to different 

agriculture field sizes (Frohn, 1997). The most common landscape clumping metric, contagion, 

was replaced with an alternative, more suitable landscape metric, PPU, because it is less sensitive 
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to spatial resolution and more sensitive to landscape pattern. The PPU values are expected to be 

low for less fragmented landscapes and increase with landscape fragmentation. The PPU metric 

was calculated by using 𝑃𝑃𝑈 = 𝑚 ∕ (𝑛𝑥𝜆) for each study site, where m is the total number of 

patches, n is the total number of pixels, λ is a scaling constant equal to the area of a pixel and 

expressed in sq. m. units. In addition to PPU, the PLAND metric was calculated in the Fragstats 

software for each study site for measuring landscape composition (i.e., how much of the landscape 

is comprised of a patch type (e.g., cropland)). The PPU (clumping or fragmentation levels) and 

PLAND (the percentage of landscape in cropland) were compared by plotting their values for 

different agriculture field sizes to understand and analyze the discrepancies and similarities among 

the three different cropland extent maps. Finally, based on the comparison results, more specific 

insights, suggestions, and recommendations were provided for when to apply the three different 

GFSAD cropland extent maps considering different agriculture field sizes. 

 

Results 

The accuracy assessment of the three different cropland extent maps follow an appropriate 

assessment strategy implemented in three main steps: (1) stratification, (2) sampling, and (3) 

accuracy. The first three sub-sections present the accuracy results for three different cropland 

extent maps performed in a similar fashion. The fourth subsection presents the comparison of the 

three cropland extent maps. 
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GFSAD1km Assessment 

The accuracy assessment of GFSAD1km cropland extent map was performed in eight regions 

using 1,800 crop and no-crop samples as shown in Figure 18. Table 14 presents the area of each 

region, the area proportion of each region, and the number of reference samples used for each. 

Table 15 reports the overall, producer’s and user’s accuracy of GFSAD1km map achieved by 

region while Table 16 is the summary error matrix for the entire world. The regional overall 

accuracies range from 73.3% to 85.2%. The overall accuracy of GFSAD1km cropland map is 

78.7% with a low (59.3%) user’s accuracy of crop. 

 

 

 
Figure 18. The distribution of eight regions along with the entire reference data of 1800 samples 

(Source: Geo-Wiki) used in the assessment of GFSAD1km cropland extent map. 
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Table 14. Regions, their area, and number of samples (Source: GeoWiki) that were used to 

assess the GFSAD1km Cropland extent map. 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

Table 15. The accuracy measures of GFSAD1km map in eight regions. 

 

 

 

 

 

 

OA: Overall Accuracy; UAC: User’s Accuracy Crop; UNAC: User’s Accuracy No-Crop; PAC: 

Producer’s Accuracy Crop; PANC: Producer’s Accuracy No-Crop 

 

 

 

Regions (1km) Area (sq. km.) Area Proportion Reference Samples 

China and Mongolia 10,950,070 8.72 217 

Africa 29,887,900 23.79 248 

Europe 31,546,600 25.11 250 

North America 15,248,925 12.14 224 

South East Asia 5,603,730 4.46 209 

South America 17,730,232 14.12 228 

South-Asia 6,684,930 5.32 211 

Australia and New Zealand 7,957,355 6.33 213 

Total 125,609,742 100 1,800 

Regions OA% UAC% UANC% PAC% PANC% 
China and Mongolia 73.3 41.4 94.6 83.7 70.7 
Africa 79.4 50.7 90.5 67.3 82.7 
Europe 73.6 59.7 96.8 96.9 59.1 
North America 81.7 70.4 93.6 92.1 75.0 
South East Asia 85.2 67.7 93.7 93.6 85.7 
South America 76.8 66.2 81.5 61.8 84.2 
South-Asia 75.4 45.1 98.3 95.4 70.2 
Australia and New Zealand 85.1 76.3 88.5 71.4 90.8 
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Table 16. The error matrix showing the overall accuracy of GFSAD1km cropland map. 

 

 

 
 
 
 

 

GFSAD250m Assessment 

The results of the accuracy assessment of GFSAD250m cropland map performed in four regions 

using a reference dataset of 7,762 samples includes overall, producer’s, and user’s accuracy 

reported in the form of an error matrix (Figure 19, Table 17). The user’s accuracy of crop in Africa 

is slightly less than other regions (64.6%) because of the cropland variability in this continent. The 

overall error matrix and the overall accuracy of the four regions combined (94.8%) are presented 

in Table 18.  

    Reference Data     

    Crop No-Crop Total User's Accuracy 

Map 
Data 

Crop 424 291 715 59.3% 
No-Crop 92 993 1,085 91.5% 

Total 516 1,284 1,800  
Producer's Accuracy 82.2% 77.3%  78.7% 
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Figure 19. The distribution of reference samples distributed in the four regions (Source: 

Independent datasets generated by assessment team and field data collected for Australia 

(Teluguntla et al., 2017a) used to assess GFSAD250m cropland extent map. 

 

Table 17. The accuracy measures of GFSAD250m cropland map. 

 
 
 
 

 
 

OA: Overall Accuracy; PAC: Producer’s Accuracy Crop; UAC: User’s Accuracy Crop; PANC: 

Producer’s Accuracy No-Crop; UANC: User’s Accuracy No-Crop. 

 

 

Regions OA% PAC% UAC% PANC% UANC% Samples 

United States 98.0 85.7 100 100 97.6 4,200 
Africa 93.5 58.2 64.6 96.9 96.0 1,600 
South-Asia 80.7 71.7 85.2 88.8 77.8 1,033 
Australia 98.2 96.2 88.7 98.4 99.5 9,29 
Total      7,762 
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Table 18. The error matrix showing the overall accuracy of GFSAD250m cropland map.  

 

 

 

 

 

 

GFSAD30m Assessment 

The accuracy assessment of GFSAD30m cropland was map performed in 15 regions using a 

reference dataset of 19,171 samples as shown in Figure 20. Table 19 shows the total number of 

regions, their area, and the reference samples selected for each of the 15 combined regions. The 

accuracy results of GFSAD30m cropland map are presented in an error matrix for the entire world 

and a difference image, just for the US. First, the overall, producer’s, and user’s accuracy were 

calculated for all the 15 regions and presented in Table 20 along with total number of samples. 

Most of the regions have high overall accuracy ranging from 84.5% for South-Asia to 98.3% for 

Mongolia. The overall error matrix and the overall accuracy of GFSAD30m cropland map for the 

entire world (91.7%) are presented in Table 21. 

    Reference Data     

    Crop No-Crop Total User's Accuracy 

Map 
Data 

Crop 1,054 119 1,173 89.9% 
No-Crop 288 6,301 6,589 95.6% 

Total 1,342 6,420 7,762  
Producer's Accuracy 78.5% 98.2%  94.8% 



99 

 

 

Figure 20. The distribution of regions and reference samples (Source: Independent reference 

datasets generated by assessment team from CDL and high-resolution imagery and field data 

collected for Australia (Teluguntla et al., 2017a) used to assess the GFSAD30m cropland extent 

map. 
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Table 19. Regions and number of reference samples used to assess GFSAD30m cropland map. 

 

 

Table 20. The accuracy measures of GFSAD30m GFSAD cropland map. 
 

Regions OA % PAC % UAC % PANC % UANC % 

Africa 93.7 85.9 98.5 94.8 98.1 
South America 94.7 82.6 76.7 96.4 97.5 
Europe/Mid-East, Russia 90.8 86.5 85.7 92.9 93.3 
South-Asia 84.5 74.8 82.0 90.2 85.8 
South-East Asia 88.6 81.6 76.7 91.2 93.3 
Mongolia 98.3 75.0 92.3 99.7 98.6 
China 94.0 80.0 84.2 96.9 95.9 
Australia 93.1 71.4 64.1 95.6 96.8 
New Zealand 93.4 91.7 82.7 94.0 97.3 
North America 92.8 87.2 75.8 94.0 97.1 
Iceland 97.6 68.4 100.0 100.0 97.5 

OA: Overall Accuracy; PAC: Producer’s Accuracy Crop; UAC: User’s Accuracy Crop; PANC: 

Producer’s Accuracy No-Crop; UANC: User’s Accuracy No-Crop 

Combined Regions Area (Mha) Original Regions Samples 

United States 13.35 9 2250 
Canada 10.86 3 750 
Mexico 2.36 6 1463 
Central-America 0.68 2 496 
Cuba, Car. Is., DR Haiti, Alaska, Hawaii 64.67 5 1240 
Iceland 0.17 1 250 
South-America 20.60 5 1250 
South-East Asia 6.21 7 1750 
Africa 33.31 7 1750 
Mongolia 2.28 3 300 
New Zealand 26.3 2 500 
China 14.86 3 1972 
Europe, Russia, and Mid-East 3,076 12 3000 
South-Asia 861.64 6 1500 
Australia  768.7 1 700 
Total 7,000.60 72 19,171 
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Table 21. The error matrix showing the overall accuracy of GFSAD30m cropland map. 

 

 

 

 

 

In addition to the error matrix, the disagreement in the cropland areas mapped in the 

GFSAD250m and GFSAD30m cropland extent maps are presented in the form of difference 

images for the US. Creation of the difference images is possible because of the availability of a 

complete reference map (i.e., CDL). Figures 21A and 21B show the spatial distribution of 

agreement and disagreement in the cropland areas mapped in the GFSAD250m and GFSAD30m 

as compared to the reference cropland map. The GFSAD250m cropland map has only 2% omission 

error and no commission error in the cropland areas as compared to resampled CDL 250m 

reference map. The GFSAD30m cropland map has 7% omission and 8% commission error in the 

cropland areas as compared to CDL 30m map. In other words, the GFSAD30m cropland map is 

85% similar to the CDL 30m reference map. 

    Reference Data     

    Crop No-Crop Total User's Accuracy 
Map 
Data 

Crop 3,339 924 4,263 78.3% 
No-Crop 666 14,242 14,908 95.5% 

Total 4,005 15,166 19,171  
Producer's Accuracy 83.4% 93.9%  91.7% 
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Figure 21A and 21B. Difference images representing the disagreement in the GFSAD250m (A) 

and GFSAD30m (B) cropland map of the US as compared to the reference map. 

 

Comparison of the three different GFSAD cropland extent maps 

Figure 22 presents a visual comparison of the GFSAD1km, GFSAD250m, and GFSAD30m 

cropland extent maps with the high spatial resolution imagery at nine random study sites for three 

different field sizes. All the three cropland maps look similar to each other in the large agriculture 

field sizes of the US and Australia. The GFSAD250m and GFSAD30m cropland maps look more 

similar to each other than the GFSAD1km cropland map in the medium field sizes of the US and 

the small agriculture field sizes of South-Asia and Africa. Finally, the visual comparison shows 

that the cropland areas mapped in GFSAD30m cropland map looks more similar to the spatial 

extent of the agriculture fields as seen on the high-resolution imagery (HRI) acquired for the same 

mapping year.  

Second, the area comparison performed using the similarity matrix approach shows the overall 

similarity between the three different cropland maps with respect to different agriculture field sizes 

A B 
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(Table 22, Figure 23). All three cropland maps (i.e., GFSAD30m, GFSAD250m, and GFSAD1km) 

have high similarity in their cropland areas with respect to the large agriculture field sizes of the 

US and Australia and small field sizes of South-Asia. However, the GFSAD1km cropland map 

has low similarity with the other two cropland maps (i.e., GFSAD30m and GFSAD250m) with 

respect to medium and small field sizes for each continent. 

 

 



104 

 

 

Figure 22. Visual comparison of the three different GFSAD cropland extent maps with high 

resolution images acquired in the small, medium, and large field sizes at random study sites in the 

entire world. The gray area represents the crops. 
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Table 22. Overall Similarity between different resolution cropland extent maps. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. The similarity in the cropland areas mapped at the three different spatial 

resolutions in different agriculture landscapes. 

Overall Similarity (%) between 30m, 250m, and 1km GFSAD maps in 
different field sizes 

Field Sizes 30m-250m 30m-1km 250m-1km 

Small Africa 1 77.9 51.1 51.5 

Small Africa 2 7.2 18.2 85.1 

Small South-Asia 3 82.9 72.5 84.3 

Medium USA 1 69.0 42.6 72.1 

Medium USA 2 93.6 91.4 95.4 

Medium USA 3 87.6 35.9 40.8 

Large USA 1 95.4 42.2 41.3 

Large Australia 2 91.4 91.0 99.3 

Large USA 3 80.1 82.4 72.2 
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In addition to the overall similarity, the similarity matrix approach provided omission and 

commission errors introduced in the cropland areas mapped at coarse spatial resolution when 

compared with the fine spatial resolution. The estimated errors of each study site are represented 

as the percent of cropland areas which were either omitted from or committed to the coarse 

resolution cropland maps (Table 23). For each study site, three different omission (OE) and 

commission errors (CE) were calculated, one for each of the three combinations of coarse and fine 

resolution cropland maps. For example, the omission error presented in the third column of the 

Table 23 (i.e., 58.0%) represents the percentage of cropland areas omitted from the 250m map as 

compared to the 30m map in the small agriculture fields of Africa. The additional rows in the third 

column (i.e., 82.3% and 82.7%) represents the omission in the cropland areas from the 1km map 

when compared to 30m and 250m cropland maps, respectively. 
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Table 23. Omission Error (OE) and Commission Error (CE) of crop in the coarser resolution 

maps as compared to fine resolution for nine different study sites. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resolution Study Site OE CE 

250m vs 30m 

Small Africa 1 

58.0 59.7 

1km vs 30m 82.3 57.5 

1km vs 240m 82.7 56.8 

240m vs 30m 

Small Africa 2 

0 98.2 

1km vs 30m 4.9 85.9 

1km vs 240m 100 100 

250m vs 30m 

Small South-Asia 3 

14.9 7.2 

1km vs 30m 27.4 0 

1km vs 250m 15.7 0 

250m vs 30m 

Medium USA 1 

42.0 1.8 

1km vs 30m 57.4 0 

1km vs 250m 27.9 0 

250m vs 30m 
Medium USA 2 

5.4 1.3 

1km vs 30m 8.5 0 

1km vs 250m  4.6 0 

250m vs 30m 

Medium USA 3 

67.4 51.4 

1km vs 30m 89.4 7.7 

1km vs 250m 84.5 19.8 

250m vs 30m 

Large USA 1 

3.3 1.4 

1km vs 30m 4.2 59.4 

1km vs 250m 3.0 59.7 

250m vs 30m 

Large Australia 2 

8.5 0.2 

1km vs 30m 8.9 0 

1km vs 250m 0.8 0 

250m vs 30m 

Large USA 3 

53.3 22.1 

1km vs 30m 47.2 82.4 

1km vs 250m 32.3 86.4 
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Third, the comparison of two landscape metrics (i.e., PLAND and PPU) calculated for each 

study site shows the similarity between the three different GFSAD cropland maps in for the three 

different agriculture field sizes and spatial resolutions (Table 24). Figure 24 and Figure 25 show 

the values of PLAND and PPU, respectively as calculated for the three different spatial resolution 

maps for the three different agriculture field sizes. Figure 26 presents the comparison of the two 

landscape metrics separately in each agriculture field size to clearly show the similarity among the 

three different cropland maps. 

Table 24. Landscape parameters in different resolution maps for all the nine study sites. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study Site Resolution TA(ha) NP PLAND PPU 

Small Africa 1 30m 10,072.1 120 19 1.19 
 250m 10,593.7 64 17.3 0.60 
 1km 11,000 7 46.4 0.06 
Small Africa 2 30m 10,029.6 61 97.2 0.60 
 250m 10,318.7 9 1.5 0.08 
 1km 11,000 3 12.7 0.02 
Small South-Asia 3 30m 13,951.8 83 57.5 0.59 
 250m 10,450 12 85.3 0.11 
 1km 10,200 1 100 0.01 
Medium USA 1 30m 10,030.1 67 8.5 0.66 

 250m 10,443.7 61 13 0.58 
 1km 11,900 5 77.3 0.04 
Medium USA 2 30m 10,059.9 69 96.2 0.68 
 250m 10,337.5 20 98.6 0.19 
 1km 11,500 1 100 0.01 
Medium USA 3 30m 10,133.9 37 43.6 0.36 

 250m 10,337.5 20 1.4 0.19 
 1km 11,700 2 99.1 0.02 

Large USA 1 30m 10,045.17 14 96.49 0.14 
 250m 10,076.85 13 98.1 0.13 
 1km 9,946.35 7 40 0.07 

Large Australia 2 30m 9,581 67 100 0.69 
 250m 10,437.5 5 99.76 0.05 

 1km 10,500 1 100 0.01 
Large USA 3 30m 10,054.8 40 17.2 0.39 
 250m 10,356.25 41 28.5 0.39 

 1km 112,000 4 5.4 0.00 
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TA: Total Area; NP: Number of Patches; PLAND: Percentage of Crop in the Landscape; PPU: 

Per-Patch Unit 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. The differences in the percentage of cropland areas in different field size landscapes.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 25. PPU Landscape heterogeneity of different resolution maps in different field size 
landscapes. 
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Figure 26. The comparison of landscape heterogeneity and area proportions in small, medium, 

and large field sizes. 
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Discussion 

With the release of three different resolution GFSAD cropland maps, it becomes crucial to know 

their individual accuracy and comparative similarity to make a choice on using either coarse or 

high-resolution map in different agriculture field sizes. This paper presented an appropriate 

accuracy assessment and detailed comparison of the three cropland maps at random study sites in 

different agriculture landscapes that are consistent with previous assessment and comparison 

studies (Vancutsem et al., 2013). Therefore, the results of an appropriate assessment methodology 

must be discussed to provide insight into the quality, reliability, (un)certainty, and similarity of 

cropland maps in different regions and spatial resolutions and how the specific recommendations 

were determined for their use in different agriculture field sizes (Olofsson et al., 2012; Stehman et 

al., 2012). 

Assessment of the three different GFSAD cropland extent maps  

The assessment of the three different cropland maps was performed using an accuracy assessment 

approach involving stratification and appropriate sampling resulting in accuracy measures for 

different regions of the entire world. The accuracy measures (e.g., overall, user’s, and producer’s 

accuracy) estimated for the entire world and different regions establish the quality of the three 

GFSAD cropland maps and how it varies with the distribution and size of the agriculture fields of 

each region. It has been well established in the past that the cropland mapping provides accurate 

results towards a high spatial resolution due to the detailed mapping of the agriculture fields of the 

heterogeneous cropland landscapes at a smaller pixel size (i.e., 30m) (Pérez-Hoyos et al., 2017). 

This assumption is also supported by the overall accuracy results of this paper showing high 



112 

 

accuracy of the GFSAD30m cropland extent map (91.7%) than the coarse resolution GFSAD1km 

map (78.7%) by removing the spectral mixing that is common at coarse resolution pixels of 250m 

and 1000m (Table 17 and Table 22). However, the overall accuracy of the GFSAD250m crop 

extent map (94.8%) was estimated from the reference data of the four continents and therefore, 

cannot be compared with the 30m and 1km map accuracies.  

The overall accuracy of the three different cropland maps were also estimated for each region 

in addition to a single overall accuracy of the entire world. The overall accuracy of the 

GFSAD1km, GFSAD250m, and GFSAD30m cropland map range from 73.3% to 85.2% in the 

eight regions, 80.7% to 98.2% in the four regions, and 84.5% to 94.7% in the fifteen regions, 

respectively (Table 16, 18, and 21). The range of overall accuracy of the three cropland maps in 

different regions are different due to differences in the distribution, proportion, and size of the 

agriculture fields in the homogeneous and heterogenous cropping patterns of each region. 

However, the overall accuracy of the GFSAD30m cropland map of each region are still higher 

than the coarse resolution GFSAD 250m and GSFAD1km maps. Therefore, the single overall 

accuracy of the three cropland maps of each region and the entire world indicates that the high 

resolution GFSAD30m cropland map is more accurate than the coarse resolution maps both at 

global and regional scale.  

In addition to a single overall accuracy of the cropland maps that has been typically reported 

in the literature, the assessment of each region provides an additional information including crop 

extent user’s and producer’s accuracies. It has been observed that the GFSAD1km crop extent 

user’s accuracy is low (50.7%) than the GFSAD250m (64.6%) and GFSAD30m cropland maps 

(98.5%) in some regions (e.g., Africa) (Table 16, 18, and 21) due to differences in the distribution, 
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proportion, and size of the agriculture fields of each region. In contrast, the GFSAD250m crop 

extent map user’s and producer’s accuracies of the US, South-Asia, and Australia are high 

compared to Africa. However, Australia also has a sparse distribution of cropland like Africa, but 

the cropland distribution is more compact and concentrated toward the edges of the continent. 

Therefore, the differences in the cropland distribution and field size of Australia and Africa achieve 

different user’s accuracy of the GFSAD250m and GFSAD1km crop extent maps.  

The accuracy measures estimated in Table 20 shows that the GFSAD30m crop extent user’s 

accuracy ranges from 64.1% (Australia) to 100.0% (Iceland). The GFSAD30m crop extent map 

user’s accuracy of Africa (98.5%) indicates that the small size of agriculture fields of Africa in a 

heterogeneous cropping pattern can be accurately mapped at high spatial resolution. However, the 

GFSAD30m user’s accuracy of Australia is low because of the sparse cropland distribution and 

large agriculture field sizes. It is commonly observed from the assessment results of this paper that 

the low user’s accuracies of crop were mostly reported in the low crop proportion regions of the 

entire world irrespective of the spatial resolution of the crop extent map. Therefore, this paper 

suggests a detailed analysis of the accuracy measures of low crop probability regions must be 

performed in future to achieve meaningful assessment results.  

In addition to the crop extent user’s and producer’s accuracy, the assessment results also 

present the difference image generated based on a pixel-by-pixel comparison of the reference and 

classified maps. The difference image shows the spatial distribution of the omission and 

commission errors introduced in the cropland maps of the US at different spatial resolutions. The 

high spatial resolution crop extent map (i.e., GFSAD30m) has more omission and commission 

errors in the cropland areas than the coarse resolution maps (Figure 21). The probability of errors 
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occurring for the high spatial resolution is increased due to identification of the edges of agriculture 

fields using an object-based classification and removal of spectral mixing caused by the natural 

vegetation that is common in a coarse resolution pixel.  

Comparison of the three different GFSAD cropland maps 

The comparison of the three different resolution cropland maps was performed highlighting the 

similarity in their look, crop area proportion, and clumping at nine random study sites in three 

different agriculture field sizes of different continents (e.g., Australia, United States (US), South-

Asia, and Africa) (Chen et al., 2017; Pérez-Hoyos et al., 2017). The results of the comparison of 

the three different GFSAD crop extent maps show that the looks, proportion, and clumping of the 

cropland areas mapped at different spatial resolutions vary with the size of the agriculture fields 

(Figure 22, 23, 24, and 25). The clumping of the cropland areas (PPU) also decrease with 

increasing spatial resolution as the landscape becomes more generalized and contagious from high 

resolution to low resolution cropland maps (Figure 25) (Frohn, 1997). However, these decreasing 

trends are not uniform in different agriculture field sizes of different continents. 

As the size of the agriculture fields becomes smaller, the characteristics of the cropland areas 

are mapped more accurately towards the higher spatial resolutions by minimizing the spectral 

mixing of agriculture fields caused by surrounding natural vegetation that is more common at 

coarse resolution pixel (Figure 22, 23, and 24) (Bayas et al., 2017). In the small field sizes of Africa 

and South-Asia, the spatial extent, proportion, and patches of the cropland areas of high spatial 

resolution crop extent map (GFSAD30m) more similar to the reference map than the coarse 

resolution GFSAD250m and 1km maps. However, in medium field sizes of the US, only 

GFSAD30m and GFSAD250m crop maps follow the decreasing trend to look similar as the 
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reference map compared to GFSAD1km map. In large field sizes of the US and Australia, the 

characteristics of all the three crop extent maps decrease from coarse spatial resolution to high 

resolution and look similar to the reference map. Therefore, the similarity in the characteristics of 

cropland areas mapped at different spatial resolutions provide an appropriate consideration and 

recommendations for using the three different crop extent maps in different agriculture field sizes 

(Figure 24 and 25). It can also be stated that the agriculture monitoring must be carefully executed 

even in the same field sizes of different continents (e.g., Africa, South-Asia, Australia, and the US) 

using an appropriate spatial resolution cropland map.  

Determining specific recommendations for when to apply the three GFSAD cropland maps 

The similarity in the characteristics of the cropland areas were used to determine the suitability 

recommendations for when to apply the three different cropland maps for agriculture monitoring 

in different agriculture field sizes (Figure 26). Table 25 indicates the similarity of the proportion 

and clumping of cropland areas among the three crop extent maps as low and high based on the 

PLAND and PPU estimates, respectively achieved in different field sizes. In the large agriculture 

fields of Australia and the US, the two cropland characteristics are highly similar among all the 

three different cropland maps. In the medium field sizes of the US, the cropland characteristics are 

similar in the GFSAD30m and GFSAD250m crop extent maps as compared to the GFSAD1km 

map. In small agriculture field sizes of Africa and South-Asia, only the GFSAD30m crop extent 

map presents highly similar and accurate characteristics of the cropland areas. Therefore, Table 24 

presents the suitable spatial resolution crop extent maps that could be recommended in different 

field sizes to perform the agriculture monitoring practices. 
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Table 25. The specific recommendations for when to apply three spatial resolution GFSAD 

cropland extent maps with respect to different agriculture field sizes. 

US: United States, CAP: Cropland Area Proportion 

 

Conclusions 

Over the last few years, the mapping of global cropland datasets has been rapidly increasing. With 

the recent release of the three different GFSAD cropland extent maps produced by different 

researchers, their quality and reliability must be evaluated at global and regional scales. To our 

knowledge, the accuracy assessment of the GFSAD cropland extent maps are the first 

investigations on large area accuracy assessment. Although assessments of global thematic maps 

were implemented with the same purpose, small size reference data were used to report one single 

global accuracy for the entire world. The large area accuracy assessment of three different GFSAD 

cropland maps provides an appropriate sampling strategy for collecting a large cropland reference 

data to achieve meaningful accuracy results for different continents. The assessment report of the 

Landscape/ 
Sites 

Continents 
Similarity in 
Proportion  

Similarity in 
Clumping 

Suitable Spatial Resolution 

Small, S1 Africa Low Low 30m 
Small, S2 Africa High High 30m, 250m 
Small, S3 South-Asia High High 30m, 250m 
Medium, M1 US High Low 30m, 250m 
Medium, M2 US High Low 30m, 250m 
Medium, M3 US Low High 30m 
Large, L1 US Low Low 30m 
Large, L2 Australia High Low 30m, 250m, and 1km 
Large, L3 US High Low 30m, 250m, and 1km 
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GFSAD30m cropland extent map is available online at https://lpdaac.usgs.gov (Congalton et al., 

2017, Yadav and Congalton, 2018b). The assessment results of the three different GFSAD 

cropland extent maps revealed that the high-resolution cropland extent map (i.e., GFSAD30m) is 

more accurate than the coarse resolution maps. The significant differences in the accuracy results 

at different spatial resolutions make the tendency of using high resolution datasets more frequently 

unless the coarse resolution maps are not required for any user’s specific interest. Despite 

differences in the accuracy measures among three cropland maps, the differences were also 

observed for a single cropland map in different regions due to the prevalent cropland distribution, 

proportion, and distribution of reference samples (i.e., sampling). Low producer’s and user’s 

accuracies along with an insufficient sample size were noticed for low crop proportion regions of 

different continents in the entire world due to the equal probability consideration of simple random 

sampling design. Therefore, this paper provides a future implication of performing more detailed 

error analysis for different crop proportion regions with respect to the sampling methods of 

accuracy assessment. 

The coarse resolution cropland maps cannot be discarded completely in the presence of more 

detailed high-resolution cropland products. They should be compared with each other to quantify 

the similarity among the cropland areas mapped at different spatial resolutions. Large area 

comparisons might not provide a clear holistic view on the similarity in the proportion and 

heterogeneity of cropland areas in different field size landscapes of different continents. However, 

the site-specific comparison of different resolution cropland maps could be more effective in 

intelligently selecting an appropriate map to help farmers, crop yield predictors, food market 

researchers, and policy or decision makers for agriculture monitoring. Therefore, this paper 
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concludes on the following three main recommendations that must be considered to apply the three 

different cropland maps in three agriculture field sizes: 

1. The cropland extent maps developed at 30m spatial resolution must be specifically 

recommended for their use in small agriculture field sizes of Africa. While, the cropland map 

developed at 30m and 250m spatial resolutions can be used for agriculture monitoring in small 

agriculture fields of South-Asia. 

2. The cropland extent maps developed at 30m and 250m spatial resolutions are recommended 

for using them in the medium field sizes of the United States for different agriculture 

monitoring purposes. 

3. The cropland extent maps developed at 30m, 250m, and 1km spatial resolutions (i.e., any of 

the different spatial resolution cropland maps) can be possibly used in the large agriculture 

field size of Australia and the United States. 
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CHAPTER V 

Evaluating Sampling Designs for Assessing the Accuracy of Cropland Extent Maps in 

Different Cropland Proportion Regions 

Abstract 

The GFSAD30m cropland extent map has been recently produced at a spatial resolution of 30m 

as a part of NASA MEaSUREs’ Program Global Food Security Data Analysis (GFSAD) project. 

Accuracy assessment of this GFSAD30m cropland extent map was initially performed using an 

assessment strategy involving a simple random sampling (SRS) design and an optimum sample 

size of 250 for each of 72 different regions around the world. However, while statistically valid, 

this sampling design was not effective in regions of low cropland proportion (LCP) of less than 

15% cropland area proportion (CAP). The SRS sampling resulted in an insufficient number of 

samples for the rare cropland class due to low cropland distribution, proportion, and pattern. 

Therefore, given our objective of effectively assessing the cropland extent map in these LCP 

regions, the use of an alternate sampling design was necessary. A stratified random sampling 

design was applied using a predetermined minimum number of samples followed by a proportional 

distribution (i.e., SMPS) for different cropland proportion regions to achieve sufficient sample size 

of the rare cropland map class and appropriate accuracy measures. The SRS and SMPS designs 

were compared at a common optimum sample size of 250 which was determined using a sample 

simulation analysis in ten different cropland proportion regions. The results demonstrate that the 

two sampling designs performed differently in the various cropland proportion regions and 

therefore, must be selected according to the cropland extent maps to be assessed. 
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Introduction 

The cropland regions of different continents distributed around the world exhibit different cropland 

proportions, cropping pattern, spatial extent, and heterogeneity due to their climatic, topography, 

and ecological conditions. The cropland maps of various cropland proportion regions are important 

for cropland monitoring and modeling, cropland change analysis, resolving food security issues, 

and improving crop productivity in different continents (Yu et al., 2017). To accomplish these 

objectives, cropland maps of various cropland regions have been generated continuously and 

effectively using remote sensing data at different spatial resolutions (Bartholome and Belward, 

2005; Thenkabail et al., 2009; Yu et al., 2013; Gong et al., 2013). The GFSAD30m cropland extent 

map is one of the three GFSAD (Global Food Security Data Analysis) cropland extent maps 

(produced at 30, 250, and 1000 meter resolutions) which has been generated for various cropland 

proportion regions distributed around the world from satellite imagery and effective classification 

algorithms (Teluguntla et al., 2016; Xiong et al., 2017a, b, and c; Teluguntla et al., 2017a and b; 

Massey et al., 2017a and b; Gumma et al., 2017; Phalke et al., 2017; Oliphant et al., 2017; Zhong 

et al., 2017; Teluguntla et al., 2018; Massey et al., 2018).  

The accuracy assessment of the GFSAD30m cropland extent map was initially performed 

using an assessment strategy involving a simple random sampling (SRS) design and an optimum 

sample size of 250 for 72 cropland regions around the world (Yadav and Congalton, 2018b). The 

results of this accuracy assessment reported accuracy measures in the form of error matrices for 

each region (e.g., overall, user’s, and producer’s accuracy) (Congalton, 1991). However, while 

statistically valid, this sampling design was ineffective in regions of low cropland proportion 

(LCP) of less than 15% cropland area proportion (CAP). The SRS design resulted in an insufficient 
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number of samples when the cropland class was rare due to low cropland distribution, proportion, 

and pattern (Stehman, 1999). As a result, the error matrices generated with such an insufficient 

distribution and allocation of samples for the rare cropland map class reported accuracy measures 

in the LCP regions that were not useful for our analysis (Pittman et al., 2010; Fritz et al., 2010; 

Fritz et al., 2011; Pérez-Hoyos et al., 2012; Waldner et al., 2015; Pérez-Hoyos et al., 2017). 

Therefore, given our objective of effectively assessing the cropland extent maps in these LCP 

regions, the use of an alternate sampling design was desirable and necessary.  

Many researchers have expressed opinions on using different sampling designs (e.g., simple 

random sampling, stratified, and systematic unaligned sampling) to be used for assessing thematic 

map accuracy (Hord and Brooner, 1976; Rhode, 1978; Ginevan, 1979; Fitzpatrick-Lins, 1981; 

Congalton, 1991; Stehman, 1999; Congalton and Green, 2009). While different sampling 

approaches have been studied for achieving appropriate accuracy results in different landscapes, 

their effective use still needs to be established for various cropland regions around the world 

(Bayas et al., 2017). Determination of the cropland area proportion (CAP) of various cropland 

regions aids in defining an effective sampling area for applying probability-based sampling 

designs characterized either by simple random or stratified protocols for selecting the samples 

(Stehman, 1999). The probability-based simple random sampling (SRS) design, while statistically 

valid, results in an insufficient sample size of the rare cropland map class because each sample 

area has equal probability of selection and there is not enough area covered by cropland in the LCP 

regions. Therefore, an alternate probability-based sampling design imposed within strata defined 

by the map classes combined with a predetermined minimum sample size is one method to provide 
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sufficient samples and useful accuracy measures of these rare cropland maps (Stehman, 1999; 

Olofsson et al., 2014).  

A minimum of 50 samples for each map category has been recommended as sufficient to 

generate statistically valid and meaningful accuracy measures (Congalton, 1991). This 

predetermined minimum sample size of 50 can be allocated to each stratum or map class with 

additional samples allocated proportionally to the cropland and non-cropland area depending on 

the total sample size and the cropland regions to be assessed (Olofsson et al., 2014). Bayas et al., 

(2017) has suggested that a larger sample size be implemented for assessing cropland regions that 

have between 25-75% cropland and that a smaller sample size would be enough to efficiently 

assess the cropland maps in areas with very high or very low cropland proportion. However, in 

most cropland assessments, mostly small samples sizes that are sparsely distributed have been used 

resulting in an ineffective assessment of the cropland extent maps of various cropland regions (e.g., 

Fritz et al., 2009; Gong et al., 2013). A larger sample size can achieve more appropriate and useful 

accuracy of the cropland extent maps (Tsendbazar et al., 2015). However, even a larger total 

sample size can result in insufficient samples and ineffective accuracies of the rare cropland map 

class if the samples are not distributed effectively. Rather than selecting sample size and strategy 

by the map complexity, the cropland distribution and proportion of each cropland region must be 

carefully considered to choose an optimum sample size to efficiently assess the cropland extent 

maps. Therefore, an optimum sample size must be chosen using a sample simulation analysis based 

on a Monte Carlo method for an effective and useful assessment of the cropland extent maps of 

various cropland regions (Hay, 1979; Congalton, 1988; Yadav and Congalton, 2018a).  
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This paper evaluates two sampling designs to perform an effective assessment of the 

GFSAD30m cropland extent maps of the various cropland proportion regions. The first is the 

simple random sampling (SRS) approach. The second is an alternate sampling design which is 

primarily a stratified design using a predetermined minimum of 50 samples per strata and a 

proportional allocation of the remaining total samples (SMPS). The SRS and SMPS designs were 

evaluated by comparing summary plots and detailed error matrices of the sample size and accuracy 

measures of the rare cropland map class. 

 

Study Area 

The study area comprises ten different cropland proportion regions selected from the 72 regions 

located around the world in which the GFSAD30m cropland extent map was initially assessed 

using the SRS design and an optimum sample size of 250 (Yadav and Congalton, 2018b; Fischer 

et al., 2012). Five of these study sites were purposely selected from the Low Cropland Proportion 

(LCP) regions and the other five were randomly selected from rest of the 72 regions. Figure 27 

depicts the location of the ten selected cropland proportion regions for this study. 
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Figure 27. The location of various cropland regions around the world and the GFSAD30m 

cropland extent map. 

Datasets 

The ten selected study regions of the GFSAD30m cropland extent map which has been recently 

produced as a part of NASA MEaSUREs’ (Making Earth System Data Records for Use in 

Research Environments) GFSAD project at 30m spatial resolution for the entire world were 
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evaluated using two different sampling designs. Separate reference datasets were necessary and 

were collected using the two different sampling designs from Google Earth imagery and existing 

cropland maps (e.g., Cropland Data Layer of the United States) to assess the ten regional 

GFSAD30m cropland extent maps. The first reference dataset was collected as a part of an initial 

assessment of the GFSAD30m cropland map using the SRS sampling design and an optimum 

sample size of 250 for the 72 cropland regions around the world (Yadav and Congalton, 2018b). 

The second reference dataset was collected using an alternate sampling design (i.e., SMPS) and 

simulated sample sizes from 50 to 300 only for the ten study cropland regions.  

 

Methods 

This section describes the methodology for evaluating the initial SRS and the alternate SMPS 

designs for assessing the GFSAD30m cropland extent maps in four steps: (1) estimating cropland 

area proportion (CAP), (2) applying the sampling designs, (3) choosing an optimum sample size 

for the SMPS approach, and (4) generating appropriate accuracy measures for the ten study 

cropland regions (Figure 28). 
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Figure 28. The flow chart showing the steps involved to perform the assessment of cropland extent 

maps of the various cropland regions. 

 

First, the Cropland Area Proportion (CAP) was estimated for each of the ten study regions 

using the GFSAD30m cropland extent map classes. The CAP of a region is defined as the percent 

of cropland area as compared to the total area of the region. The cropland regions with CAP from 

0.9% (China Zone 3) to 43.2% (South-East Asia Zone 5) were then grouped into five cropland 
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probability classes from Class 1 to Class 5 as: (1) very low (0-1%), (2) low (>1-2%), (3) medium 

(>2-6%), (4) high (>6-15%), and (5) very high (>15%). 

Second, the sampling designs were applied in each cropland region based on the following two 

protocols: (1) Simple Random Sampling (SRS) and (2) Stratified Minimum Proportional Sampling 

(SMPS) (Stehman and Czaplewski, 1998; Olofsson et al., 2014). The SRS design was applied 

initially to assess the GFSAD30 cropland extent map for all 72 cropland regions around the world 

(Yadav and Congalton, 2018b). This sampling design resulted in a random distribution of samples 

in the cropland and non-cropland map classes based on the equal probability characteristic of 

random sampling. The cropland map class was rare in low cropland proportion regions and 

achieved insufficient sample size and ineffective accuracy measures (i.e., producer’s and user’s 

accuracies) with this design. Therefore, a second alternative sampling design (i.e., SMPS) was 

applied to ten randomly selected cropland regions. The SMPS design approach used a 

predetermined minimum sample size of 50 randomly distributed in each map class (i.e., strata) 

followed by a proportional distribution of the remaining total samples. This approach was adopted 

to provide sufficient samples and useful accuracy measures (i.e., user’s and producer’s accuracy) 

for the rare cropland map class in the LCP regions. 

Third, a sample simulation analysis based on a Monte Carlo method was employed as in Yadav 

and Congalton, (2018a) with sample sizes ranging from 50 to 300 to determine the optimum 

sample size. Table 26 shows the allocation of samples tested between 50 and 300 in increments of 

50. Once the predetermined minimum sample size of 50 was reached (total samples more than 

100) then the additional samples were allocated to each map class proportionally to the cropland 

and non-cropland area (i.e., CAP and NCAP) (Olofsson et al., 2014).  
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Table 26. The calculations of crop and no-crop samples for each sample simulation. 

Sample Size Cropland Samples No-Cropland Samples 

50 25 25 

100 50 50 

150 50+ (CAP % of 50) 50+ (NCAP % of 50) 

200 50+ (CAP % of 100) 50+ (NCAP % of 100) 

250 50+ (CAP % of 150) 50+ (NCAP % of 150) 

300 50+ (CAP % of 200) 50+ (NCAP % of 200) 

CAP: Cropland Area Proportion; NCAP: Non-Cropland Area Proportion 

 

Finally, the accuracy measures of the cropland extent map classes were generated in each of 

the ten cropland regions at the determined optimum sample size for the two sampling designs. The 

accuracy measures (e.g., overall, producer’s, and user’s accuracy) were presented in the form of 

error matrices. The sample size and accuracy measures of the rare cropland map class achieved 

with different sampling designs at an optimum sample size were compared and evaluated for each 

cropland region (i.e., probability class from Class 1 to Class 5).  

 

Results 

The results of the assessment of the cropland maps of different crop proportion regions describe 

the comparison of the two different sampling designs with respect to the distribution and allocation 

of reference samples for each map class and the accuracy measures in the following two sections: 
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The evaluation of the two sampling designs was performed by comparing the distribution and 

allocation of reference samples and accuracy measures of the rare cropland map class in each of 

the ten cropland proportion regions. The results are divided into (1) the grouping of the ten 

cropland regions into five probability classes, (2) the distribution and allocation of the reference 

samples, (3) the determination of optimum sample size for the SMPS design, and (4) the accuracy 

measures of the cropland extent map classes using SRS and SMPS designs. 

Five cropland probability classes 

The grouping of cropland area proportion of the ten cropland regions resulted in five cropland 

probability classes in which the two sampling designs were applied, evaluated, and compared to 

achieve effective accuracy measures of the cropland map class. Table 27 presents the assigned 

cropland probability class of each region derived from the cropland and non-cropland area 

proportions (i.e., CAP and NCAP). 

 

Table 27. Cropland and non-cropland area proportion and probability class of the various cropland 

regions. 

 

 

 

 

 

 

Class 1: Very Low; Class 2: Low; Class 3: Medium; Class 4: High; Class 5: Very High 

 Zones CAP% NCAP% Probability Class 

1 South-America Zone 1 1.85 98.15 Class 2 (>1-2%) 
2 Canada Zone 1 0.99 99.01 Class 1 (0-1%) 
3 North-America Zone 13 4.19 95.81 Class 3 (>2-6%) 
4 Europe Zone 7 1.90 98.10 Class 2 (>1-2%) 
5 China Zone 3 0.90 99.10 Class 1 (0-1%) 
6 South-East Asia Zone 5 43.2 56.8 Class 5 (>15%) 
7 Africa Zone 7 5.65 94.35 Class 3 (>2-6%) 
8 North-America Zone 4 14.85 85.15 Class 4 (>6-15%) 
9 Canada Zone 3 4.8 95.2 Class 3 (>2-6%) 
10 North-America Zone 15 9.88 90.12 Class 4 (>6-15%) 
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Distribution and Allocation of Reference Samples using SRS and SMPS designs 

The SRS and SMPS sampling designs resulted in different distributions and allocation of reference 

samples of each map class in the ten cropland study regions. An example of the distribution of the 

250 reference samples selected using the SRS and SMPS designs are presented for Canada Zone 

3 (4.8% CAP) (Figure 29). In addition to the distribution, the allocation of reference samples in 

the cropland and non-cropland map classes using the two different sampling designs is also 

presented for the ten cropland regions (Table 28). For example, in Table 28, Canada Zone 3 shows 

an allocation of 11 and 57 cropland reference samples at a sample size of 250 using SRS and SMPS 

designs, respectively. 

 

Figure 29. The distribution of 250 reference samples using SRS and SMPS designs in the 

Canada Zone 3. 
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Table 28. The allocation of cropland and non-cropland reference samples using SRS and SMPS 
designs. 

SAm: South-America; NA: North-America; SE: South-East; SRS: Simple Random Sampling; 

SMPS: Stratified, Minimum, Proportional Sampling; C: Cropland; NC: Non-Cropland 

 

The optimum sample size for the SMPS design 

The determination of the optimal sample size for the SRS sampling was conducted using a 

sampling simulation analysis (Yadav and Congalton, 2018a). A sample size of 250 was selected. 

The optimal sample size for the SMPS design was determined by plotting the overall accuracy of 

the cropland extent maps at sample sizes from 50 to 300 for each of the ten cropland proportion 

regions (Figure 30). The graphical representation shows a plateau in the overall accuracy of eight 

of the cropland extent maps at a sample size of 250 using the SMPS design beyond which the 

accuracy did into increase with the addition of more samples. While two regions, Canada Zone 1 

and Africa Zone 7, do not show this plateau a sample size of 250 was selected as optimal. 

  CAP% SMPS 50 SMPS 100 SMPS 150 SMPS 200 SMPS 250 SMPS 300 SRS 250 

 Regions  Crop NC Crop NC Crop NC Crop NC Crop NC Crop NC Crop NC 

SAm 
Zone 1 

1.85 25 25 50 50 51 99 52 148 53 197 54 246 8 242 

Canada 
Zone 1 

0.99 25 25 50 50 50 100 51 149 51 199 52 248 5 245 

NA 
Zone 13 

4.19 25 25 50 50 52 98 54 146 56 194 58 242 11 238 

Europe 
Zone 7 

1.90 25 25 50 50 51 99 52 148 53 197 54 246 8 242 

China 
Zone 3 

0.90 25 25 50 50 50 100 51 149 51 199 52 248 4 345 

SE Asia 
Zone 5 

43.2 25 25 50 50 72 78 93 107 115 135 136 164 116 134 

Africa 
Zone 7 

5.65 25 25 50 50 53 97 56 144 58 192 61 239 17 233 

NA 
Zone 4 

14.85 25 25 50 50 57 93 65 135 72 178 80 220 11 238 

Canada 
Zone 3 

4.8 25 25 50 50 52 98 55 145 57 193 60 240 11 239 

NA 
Zone 15 

9.88 25 25 50 50 55 95 60 140 65 185 70 230 24 223 
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Figure 30. Graphical representation of the overall accuracy achieved with SMPS design using 

the sample sizes from 50 to 300. 

 

Accuracy measures of the cropland extent map in the ten cropland regions 

The SRS and SMPS designs resulted in different accuracy measures of the cropland map class of 

the GFSAD30m cropland extent map in the ten cropland proportion regions. These accuracies 

determined at a sample size of 250 are presented graphically and in error matrix form for each of 

the ten cropland proportion regions by five cropland probability classes. 

Very low cropland proportion regions of less than 1% CAP (Class 1) 

Canada Zone 1 and China Zone 3 are grouped as very low cropland proportion regions of <1% 

CAP determined from the GFSAD30m cropland extent map. The accuracy measures (i.e., user’s 

and producer’s accuracy) of the cropland map class of these regions achieved at a sample size of 
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250 using SRS and SMPS designs are presented graphically and in error matrix form for these 

regions (Figure 31 and Table 29). Large differences in the producer’s accuracy of the rare cropland 

map class were observed between the SRS and the SMPS sampling designs for China Zone 3 

(Figure 31). The user’s accuracy of the rare cropland map class for the SRS sampling design more 

closely agrees with the SMPS design for Canada Zone 1. Insufficient samples in the rare cropland 

map class using the SRS design for these two regions results in accuracy measures that are not 

indicative of the actual errors the SRS design for these two regions (Table 29). 

Figure 31. Graphical comparison of the accuracy measures achieved with SRS and SMPS 

designs in very low cropland proportion regions. 

 

Table 29. Error matrices showing the accuracy measures achieved with SRS and SMPS designs 

in the very low cropland proportion regions. 

 

 SMPS  Canada Zone 1 Reference Data 
    Crop No-

Crop 
Total User’s 

Accuracy 
Map 

Data 

Crop 6 45 51 11.7% 
No-Crop 0 199 199 100.0% 

Total 6 244 250   
Producer’s Accuracy 100.0% 81.5%   82.0% 

SRS  Canada Zone 1 Reference Data 
    Crop No-

Crop 
Total User’s 

Accuracy 
Map 

Data 

Crop 1 4 5 20.0% 
No-Crop 0 245 245 100.0% 

Total 1 249 250  
Producer’s Accuracy 100.0% 98.4%  98.4% 
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Low cropland proportion regions of >1-2% CAP (Class 2) 

South-America Zone 1 and Europe Zone 7 are grouped as low cropland proportion regions of >1-

2% CAP derived from the GFSAD30m cropland extent map. The accuracy measures (i.e., user’s 

and producer’s accuracy) of the cropland map class of these regions using the SRS and SMPS 

designs are presented graphically and in error matrix form for these low cropland proportion 

regions (Figure 32 and Table 30). Large differences in the user’s and producer’s accuracy of the 

rare cropland map class were observed between the SRS and the SMPS sampling designs for 

South-America Zone 1 (Figure 32). The user’s accuracy of the rare cropland map class for the SRS 

sampling design more closely agrees with the SMPS design for Europe Zone 7. Insufficient 

samples in the rare cropland map class using the SRS design for these two regions results in 

accuracy measures that are not indicative of the actual errors (Table 30). 

 

 SRS  China Zone 3 Reference Data 

    Crop No-
Crop 

Tota
l 

User’s 
Accuracy 

Map 

Data 

Crop 4 0 4 100.0% 
No-Crop 10 335 345 97.1% 

Total 14 193 349   
Producer’s Accuracy 28.6% 100.0%   97.1% 

SMPS  China Zone 3 Reference Data 

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 51 0 51 100.0% 
No-Crop 6 193 199 96.9% 

Total 57 193 250   
Producer’s Accuracy 89.5% 100.0%   97.6% 
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Figure 32. Graphical comparison of the accuracy measures achieved with SRS and SMPS 

designs in the low cropland proportion regions. 

 

Table 30. Error matrices showing the accuracy measures achieved with SRS and SMPS 

sampling designs in the low cropland proportion regions. 

 

 

Medium cropland proportion regions of >2-6% CAP (Class 3) 

Canada Zone 3, Africa Zone 7, and North-America Zone 13 are grouped as medium cropland 

proportion regions of >2-6% CAP determined from the GFSAD30m cropland extent map. The 

accuracy measures (i.e., user’s and producer’s accuracy) of the cropland map c lass of these regions 

using SRS and SMPS designs are presented graphically and in error matrix form for these medium 

cropland proportion regions (Figure 33 and Table 31). Large differences in the user’s accuracy of 

the rare cropland map class were observed between the SRS and the SMPS sampling designs for 

Canada Zone 3 and Africa Zone 7 (Figure 33). The user’s and producer’s accuracy of the rare 

cropland map class for the SRS sampling design more closely agrees with the SMPS design for 

North-America Zone 13. Insufficient samples in the rare cropland map class using the SRS design 

 SRS South-America Zone 1 Reference Data 

    Crop No-
Crop 

Total User’s 
Accuracy 

Map  

Data 

Crop 3 5 8 37.5% 
No-Crop 3 239 242 98.8 % 

Total 6 250 250   
Producer’s Accuracy  50.0% 98.0%   96.8% 

 SMPS  South-America Zone 1 Reference Data    

    Crop No-Crop Total User’s 
Accuracy 

Map  

Data 

Crop 44 9 53 83.0% 
No-Crop 12 185 197 93.9% 

Total 56 194 250   
Producer’s Accuracy 78.5% 95.3%   91.6% 

 SMPS  Europe Zone 7 Reference Data     

    Crop No-Crop Total User’s 
Accuracy 

Map 

Data 

Crop 43 10 53 81.13% 
No-Crop 5 192 197 97.46% 

Total 48 202 250   
Producer Accuracy’s 89.58% 95.05%   94.00% 

 SRS Europe Zone 7 Reference Data     

    Crop No-Crop Total User’s 
Accuracy 

Map  

Data 

Crop 8 0 8 100.0% 
No-Crop 1 241 242 99.6 % 

Total 9 241 250   
Producer’s Accuracy  88.9% 100.0%   99.6% 
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for these three regions results in accuracy measures that are not indicative of the actual errors 

(Table 31). 

 

Figure 33. Graphical comparison of the accuracy measures achieved with SRS and SMPS 

designs in the medium cropland proportion regions. 
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Table 31. Error matrices showing the accuracy measures achieved with SRS and SMPS designs 

in the medium cropland proportion regions. 

 

 

 

High cropland proportion regions of >6-15% CAP (Class 4) 

North-America Zone 15 and North-America Zone 4 are grouped as high cropland proportion 

regions of >6-15% CAP derived from the GFSAD30m cropland extent map. The accuracy 

measures (i.e., user’s and producer’s accuracy) of the cropland map class of these regions using 

SRS and SMPS designs are presented graphically and in error matrix form for these high cropland 

proportion regions (Figure 34 and Table 32). Large differences in the user’s and producer’s 

accuracy of the rare cropland map class were observed between the SRS and the SMPS sampling 

designs for North America-Zone 15 (Figure 34). The user’s and producer’s accuracy of the rare 

 SRS                    Canada Zone 3 Reference Data   

    Crop No-Crop Total User’s 
Accuracy 

Map 

Data 

Crop 10 1 11 90.9% 
No-Crop 0 239 239 100.0% 

Total 10 240 250   
Producer’s Accuracy  100.0% 99.7%   99.6% 

 SMPS               Canada Zone 3 Reference Data   

    Crop No-Crop Total User’s 
Accuracy 

Map 

Data 

Crop 43 14 57 75.4% 
No-Crop 0 193 193 100.0% 

Total 43 207 250   
Producer’s Accuracy  100.0% 93.2%   94.4% 

 SMPS                 Africa Zone 7 Reference Data   

    Crop No-Crop Total User’s 
Accuracy 

Map 

Data 

Crop 29 29 58 50.0% 

No-Crop 50 142 192 73.9% 

Total 79 171 250   
Producer’s Accuracy 36.7% 83.0%   68.4% 

 SRS                 Africa Zone 7 Reference Data   

    Crop No-Crop Total User’s 
Accuracy 

Map 

Data 

Crop 3 14 17 17.7% 
No-Crop 5 228 233 97.9% 

Total 8 242 250   
Producer’s Accuracy  37.5% 94.2%   92.4% 

 SMPS    North-America Zone 13 Reference Data   

    Crop No-Crop Total User’s 
Accuracy 

Map 

Data 

Crop 49 7 56 87.5% 
No-Crop 5 189 194 97.4% 

Total 54 196 250   
Producer’s Accuracy  90.7% 96.4%   95.2% 

SRS    North-America Zone 13 Reference Data    

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 10 2 12 83.3% 
No-Crop 2 236 238 99.2% 

Total 12 237 250   
Producer’s Accuracy  83.3% 99.6%   98.8% 
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cropland map class for the SRS sampling design more closely agrees with the SMPS design for 

North-America Zone 4. Insufficient samples in the rare cropland map class using the SRS design 

for these two regions results in accuracy measures that are not indicative of the actual errors (Table 

32).  

Figure 34. Graphical comparison of the accuracy measures achieved with SRS and SMPS 

designs in the high cropland proportions regions. 

Table 32. Error matrices showing the accuracy measures achieved with SRS and SMPS designs 

in the high cropland proportion regions. 

 

 SRS    North-America Zone 15 Reference Data   

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 14 10 24 58.3% 

No-Crop 6 217 223 97.3% 

Total 48 227 247   

Producer’s Accuracy 70.0% 95.6%   93.5% 

 SMPS    North-America Zone 15 Reference Data    

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 54 11 65 83.0% 

No-Crop 7 178 185 96.2% 

Total 61 189 250   

Producer’s Accuracy  88.5% 94.1%   92.8% 
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Very high cropland proportion regions of >15% CAP (Class 5) 

South-East Asia Zone 5 is grouped as very high cropland proportion region of >15% CAP derived 

from the GFSAD30m cropland map. The accuracy measures (i.e., user’s and producer’s accuracy) 

of the cropland map class of this region using SRS and SMPS designs are presented graphically 

and in error matrix form (Figure 35 and Table 33). The user’s and producer’s accuracy of the rare 

cropland map class for the SRS sampling design more closely agrees with the SMPS design for 

South-East Asia Zone 5 (Figure 35). Sufficient samples in the rare cropland map class using the 

SRS design results in accuracy measures that are indicative of an effective and meaningful 

assessment of the cropland map for this region (Table 33). 

 

Figure 35. The comparison of the accuracy measures achieved with SRS and SMPS designs in 

the very high cropland proportion regions. 

 SMPS    North-America Zone 4 Reference Data    

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 48 24 72 66.6% 

No-Crop 0 178 178 100.0% 

Total 48 202 250   

Producer’s Accuracy  100.0% 88.1%   90.4% 

 SRS    North-America Zone 4 Reference Data   

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 25 10 35 71.4% 

No-Crop 2 213 215 99.1% 

Total 27 223 250   

Producer’s Accuracy  92.6% 95.5%   95.2% 
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 Table 33. Error matrices showing the accuracy measures achieved with SRS and SMPS designs 

in the very high cropland proportion regions. 

 

 

Discussion 

The accuracy assessment of the GFSAD30m cropland extent map was initially performed using 

SRS design at a sample size of 250 for various cropland regions around the world (Yadav and 

Congalton, 2018b). This sampling design resulted in an insufficient sample and ineffective 

accuracy measures of the rare cropland map class in the low cropland proportion regions due to 

the cropland proportion, distribution, and pattern of the cropland extent map being assessed. Very 

limited research has been done so far to evaluate and choose an appropriate sampling design to 

perform an effective accuracy assessment of the cropland maps of different regions (Bayas et al., 

2017). After thorough research, it was found that there are no suggestions available for employing 

appropriate sampling approaches to assess the cropland maps of different cropland regions in the 

literature. To achieve sufficient samples and effective accuracy measures of the rare cropland map 

class, an alternate SMPS design was applied in ten selected cropland regions. The comparison of 

two different sampling designs presents novel results by providing recommendations on 

performing an appropriate sampling for different cropland regions. Therefore, the novel results of 

 SMPS    South-East Asia Zone 5 Reference Data    

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 92 23 115 80.0% 

No-Crop 12 123 135 91.1% 

Total 104 146 250   

Producer’s Accuracy  88.4% 84.2%   86.0% 

 SRS    South-East Asia Zone 5 Reference Data   

    Crop No-
Crop 

Total User’s 
Accuracy 

Map 

Data 

Crop 89 27 116 76.7% 

No-Crop 13 121 134 90.3% 

Total 102 148 250   

Producer’s Accuracy  87.3% 81.8%   84.0% 



141 

 

performing an appropriate sampling in different cropland proportion regions are discussed in the 

following sections with respect to number of samples and achieved accuracy measures. 

Assigning cropland probability classes 

The cropland area proportion (CAP) of the ten selected regions were estimated using the 

GFSAD30m cropland extent map to provide an effective sampling area for applying and 

evaluating the sampling designs. The ten cropland regions were grouped into five probability 

classes from very low to very high cropland probability based on their estimated percent of 

cropland area proportion from 0.9% to 43.2% (Table 27). The very high cropland probability class 

was assigned to the regions of >15% CAP while four probability classes (e.g., very low, low, 

medium, and high cropland probability) were assigned to the regions of <15% CAP. The cropland 

regions of <15% CAP were purposely grouped into four probability classes from Class 1 to 4 to 

evaluate the sampling designs in all the possible low cropland proportion regions. The grouping 

of the ten cropland regions into five cropland probability classes was necessary to determine the 

range of CAP of the low cropland proportion regions to be effectively assessed using an 

appropriate sampling design. 

Distribution and allocation of samples with SRS and SMPS designs  

The distribution and allocation of samples of the rare cropland map class at a sample size of 250 

using SRS and SMPS designs were compared spatially and in tabular form for the ten cropland 

regions. An example comparison of the distribution and allocation of samples of the rare cropland 

map class at a sample size of 250 using SRS and SMPS designs was presented for Canada Zone 3 

(Figure 29 and Table 28). This comparison shows an allocation of only 11 samples in the rare 
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cropland map class using the SRS design at a sample size 250 due to the equal probability of 

selecting a sample area in the low cropland class. As a result, computation of producer’s and user’s 

accuracy is problematic as even a small number of incorrect classifications can generate very low 

accuracies. Similar insufficient sample allocations for the rare cropland map class were also 

observed in other cropland regions of <15% CAP (Table 28). Therefore, an alternate SMPS design 

was developed and achieved appropriate distribution and allocation of samples of the rare cropland 

map class in the LCP regions (Table 28) (Stehman, 1999). The SMPS design resulted in an 

appropriate distribution and allocation of 57 samples of the rare cropland map class at a sample 

size of 250 for Canada Zone 3 (Figure 29). In contrast, the high cropland proportion regions of 

>15% CAP achieved appropriate distribution and sufficient number of samples at a sample size of 

250 both with SMPS and SRS designs due to more uniform and prevalent cropland distribution in 

these regions. These results demonstrate that the sampling designs achieve different distribution 

and allocation of samples of the rare cropland map class in the ten cropland regions and therefore, 

the appropriate design must be selected according to the proportion of cropland extent in the maps 

to be assessed. 

The optimum number of samples for SRS and SMPS designs 

The sample simulation analysis performed by Yadav and Congalton, (2018a) determined an 

optimum sample size of 250 for the SRS design in various cropland regions. Similarly, the optimal 

sample size for the SMPS design was also determined by plotting the overall accuracy of the 

cropland extent maps at sample sizes from 50 to 300 for each of the ten cropland proportion regions 

(Figure 30). The graphical representation shows a plateau in the overall accuracy of eight of the 

cropland extent maps at a sample size of 250 using the SMPS design beyond which the accuracy 
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did into increase with the addition of more samples. However, the overall accuracy of the cropland 

extent map of Africa Zone 7 decreased while that of Canada Zone 1 increased with the addition of 

more samples beyond the sample size of 250. Unlike the other low cropland proportion regions, 

these two regions did not reach a plateau in the overall accuracy at 250 samples due to errors (i.e., 

omission or commission) in the rare cropland map class of the cropland extent map.  

The rare cropland map class of the cropland extent map of Africa Zone 7 had serious omission 

errors when compared with the Google Earth imagery. The methodology used to accurately 

classify the cropland regions of the entire African continent do not seem to have worked as well 

to map the very small fields of Africa Zone 7 (Madagascar) given their unique cropland 

distribution and pattern. On the other hand, the rare cropland map class of the cropland extent map 

of Canada Zone 1 had a large number of commission errors. These errors are a result of missing 

cropland patches in the AAFC (Agriculture and Agri-Food Canada) reference cropland layer that 

was used for the assessment. Comparing this reference data with Google Earth imagery showed 

that for this region the reference data missed a large number of cropland patches. It is clear that 

the overall accuracy of the cropland extent map of Africa Zone 7 and Canada Zone 1 did not reach 

plateau at a sample size of 250 due to omission and commission errors of the rare cropland map 

class, respectively. Therefore, a sample size of 250 was selected as optimal for SMPS design based 

on the simulation analysis of eight of the cropland regions excluding Africa Zone 7 and Canada 

Zone 1. Finally, the results demonstrate that choosing an alternate design (i.e., distribution and 

allocation of samples) is more important than increasing the sample size to achieve sufficient 

samples and effective accuracy of the rare cropland map class in the ten cropland regions. 
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Accuracy measures with SRS and SMPS designs  

The SRS and SMPS designs resulted in different accuracy measures of the cropland map class of 

the GFSAD30m cropland extent map in the ten cropland proportion regions. The SRS design 

resulted in insufficient and ineffective accuracy measures of the rare cropland map class in the 

Low Cropland Proportion (LCP) regions around the world (Yadav and Congalton, 2018b). 

However, the alternate SMPS design achieved effective and useful accuracy measures of the rare 

cropland map class in the LCP regions of <15% CAP (e.g., China Zone 3, South-America Zone 1, 

Africa Zone 7, and North-America Zone 15) (Figure 31, 32, 33, and 34). The reasons for achieving 

different accuracy results with the two sampling designs can be explained by examining the 

cropland proportion, distribution, and pattern of the cropland extent maps of the different cropland 

regions to be assessed. It should be noted that not all the LCP regions produced the same result. In 

a few of the LCP regions of <15% CAP, the accuracy measures of the rare cropland map class 

were the same for the SRS and SMPS designs due to: (1) omission errors in the cropland class of 

the reference cropland extent map (e.g., Canada Zone 1) (Figure 31) and (2) the more evenly 

scattered and uniformly distributed cropland pattern (e.g., Europe Zone 7) (Figure 32).  

The evaluation of the SRS and SMPS designs in the regions of >15% CAP (e.g., South-East 

Asia Zone 6) did not show any change in the accuracy measures of the rare cropland map class 

(Figure 35). The high cropland proportion regions (>15% CAP) can be sampled using either of the 

sample designs at a sample size of 250. It is important to note that regions of more than 85% 

cropland proportion (i.e., <15% non-cropland area proportion (NCAP)) should be considered the 

same as the LCP regions. In this case, non-cropland becomes the rare map class and the sampling 

issues are the same. Therefore, the evaluation of SRS and SMPS designs demonstrates that the 
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regions of <15% CAP or NCAP need to be assessed using the SMPS design while the regions 

between 15-85% cropland proportion can be assessed using either of the sampling designs. 

 

Conclusions 

In this paper, we have evaluated two sampling designs to effectively assess the cropland extent 

maps of the ten selected cropland regions. The evaluation of the SRS and SMPS designs with 

respect to the sample allocation and accuracy of the rare cropland map class at a sample size of 

250 demonstrates their suitability for implementation given different cropland probability classes 

and cropping patterns (Table 34).  

Table 34. The comparison of sampling designs in different cropland probability classes. 

 

Cropland 
Probability Class 

Cropping Pattern Sampling Design Sample Allocation Accuracy 

0-1% No Pattern 
SMPS Sufficient 90-100% 
SRS Insufficient 20-30% 

1-2% 

Clustered and 
limited to small 

areas 

SMPS Sufficient  80-90% 

SRS Insufficient 40-50% 

Scattered, uniformly-
distributed 

SMPS Sufficient Remain same 

2-6% 

Limited to small 
areas 

SMPS Sufficient  70-90% 
SRS Insufficient 80-90% 

Uniformly 
distributed 

SMPS Sufficient  Remain same 

6-15% No Pattern 
SMPS Sufficient  85-90% 

SRS Insufficient 70-80% 

>15% No Pattern SRS/SMPS No Difference 70-90% 
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Based on the evaluation and comparison of the sampling designs (Table 9), the following 

conclusions can be used to perform an effective assessment of the cropland extent maps of various 

cropland regions: 

1. To perform an effective assessment of the cropland extent map in various cropland regions, 

the three P’s must be determined for each cropland region to be assessed: (1) Proportion of 

cropland, (2) Possibility of rare map class, and (3) Predetermined minimum sample size of the 

rare map class. 

2. While choosing a sampling strategy to effectively assess the rare cropland map class of various 

cropland regions, the distribution of samples is more important than increasing or decreasing 

the number of samples (once a sufficient number of samples is determined). 

3. The distribution of samples combined with the predetermined minimum number of samples 

must be chosen appropriately to achieve sufficient sampling and effective accuracy assessment 

of the rare cropland map class in the low cropland proportion (LCP) regions.  

4. The regions of <15% CAP that have clustered and limited to small areas cropping pattern can 

be effectively assessed using the SMPS design as compared to the scattered and uniform 

cropping pattern. However, the regions of >15% CAP (those maps that do not contain a rare 

cropland map class) can be effectively assessed using either of the sampling designs at a sample 

size of 250.  
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CHAPTER VI 

Augmenting and Extending Limited Crop Type Reference Data using an 

Interpretation and Phenology-based Approach 

Abstract 

The combination of high spatial resolution and multi-date satellite imagery offers new 

opportunities for mapping and monitoring crop types of different agricultural field sizes. However, 

mapping of crop types at high spatial resolution requires high-quality crop type reference data 

typically collected from the ground-based surveys to create the maps and/or to assess the map 

accuracy. The availability of sufficient crop type reference data is limited over large geographic 

regions because of the time, effort, cost, and accessibility in different parts of the world. To 

generate large area crop type maps, this limited reference data must be augmented and spatially 

extended to every region using appropriate and available non-ground-based sources of reference 

data. There is the potential to either interpret the photographs available from Google Street View 

(GSV) or classify High Resolution Imagery (HRI) using a phenology-based classification 

approach to generate additional reference data within similar agriculture ecological zones (AEZs) 

based on the crop characteristics, their types, and their growing season. Therefore, the objective of 

this study was to augment and extend the limited crop type reference data using this approach. 

First, the limited reference data within selected training regions was augmented using the 

interpretation of field photographs collected from GSV for three different field sizes. Then, multi-

date, high spatial resolution satellite images were used to spatially extend the limited crop type 

reference data from one region (called the training region (TR)) to another region (called the test 
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region (TE)) within the same AEZ using a phenology-based Decision Tree (DT) classifier for three 

different field sizes. These two methods of augmenting and extending crop type reference data 

were developed for the United States (US) where high-quality crop type reference data already 

exist so that the methods could be effectively and efficiently tested. The results demonstrate that 

the GSV shows promise to augment the limited reference data for the more common/dominant 

agriculture crops, while the phenology-based classification approach can efficiently extend the 

limited crop type reference data to every region in same AEZ for different field sizes.  

 

 

Introduction 

Food security is one of the major challenges that human beings are facing (Zhong et al., 2014). By 

2050, the global population of 9.8 billion will demand 70% more food than is consumed today 

(Alexandratos and Bruinsma, 2012; Schwab et al., 2014). To shape the future of food security and 

agriculture, new cropland areas are increasing under current agriculture practices causing 

greenhouse gas (GHG) emissions and environmental degradation (Adams and Eswaran, 2000; 

Beach et al., 2008). The essential inputs to improve the current agriculture practices and modeling 

GHG variability in different agriculture systems include the identification of different crop types 

(Ramankutty et al., 2008; Peña-Barragán et al., 2011; Gong et al., 2013). Therefore, acquiring crop 

type information over large geographic regions is extremely relevant for decision making and 

policy actions (Yang et al., 2011; Foerster et al., 2012). 

Remote sensing technology provides reliable and cost-effective satellite imagery and tools for 

crop type mapping over space and time, repeatedly, and consistently at different spatial and 
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temporal domains (Barrett and Curtis, 1992; Asner et al., 2002; Jakubauskas et al., 2003; 

Castillejo-González et al., 2009; Vinciková et al., 2010; Rodriguez-Galiano et al., 2012; 

Thenkabail and Wu, 2012; Ustuner et al., 2014; Zhou et al., 2014). Remotely sensed satellite 

imagery has multiple spectral, spatial, and temporal resolution characteristics that can be 

effectively utilized for crop type identification (Ulabay et al., 1982; Congalton et al., 1998; Oetter 

et al., 2000). Satellite imagery such as that available from Landsat (Ryerson et al., 1985; Williams 

et al., 1987; Oetter et al., 2000), SPOT (Büttner and Csillag, 1989; Murakami et al., 2001), Indian 

Remote Sensing satellite data (Dutta et al., 1994; Panigrahy and Sharma, 1997), ASTER (Peña-

Barragán et al., 2011), and MODIS (Gumma et al., 2014; Teluguntla et al., 2017a) have been used 

to identify different crop types in the past.  

With the development of high spatial resolution sensors such as Rapid Eye (2008), GeoEye-1 

(2008), World View-2 (2009), and Sentinel-2 (2015), crop type identification has become more 

detailed and accurate as a result of removing the spectral mixing that is common at moderate and 

coarse resolution pixels (De Wit and Clevers, 2004; Palchowdhuri et al., 2018). Multi-date High-

spatial Resolution Imagery (HRI) is being continuously used to generate crop type maps of 

different regions around the world (e.g., Castillejo-González et al., 2009; Conrad et al., 2014; 

Gumma et al., 2016). However, the potential use of a single, or two, or multi-dates of imagery are 

still yet to be evaluated to generate effective crop type maps especially for different agriculture 

field sizes. 

The mapping of crop types at high spatial resolution requires high-quality crop type reference 

data typically collected from ground-based surveys to create the maps and/or to assess the map 

accuracy. A well-distributed, consistent, and sufficient amount of crop type reference data over 
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large areas substantially reduces the mapping cost and improves the accuracy of the crop type 

maps. However, the availability of sufficient crop type reference data from ground-based methods 

is typically severely limited over large geographic regions because of the time, effort, cost, and 

accessibility in most parts of the world (South et al., 2004; Peña-Barragán et al., 2008). Therefore, 

whatever limited reference data that does exist must be augmented and spatially extended using 

non-ground-based sources of reference data in order to generate and/or assess large area crop type 

maps. 

Possible non-ground-based sources to augment and extend the limited crop type reference data 

to every region are: (1) the interpretation of photographs that are readily available from sources 

such as Google Street View (GSV) and (2) the classification of HRI. The interpretation of 

photographs available from GSV has the potential to augment the limited availability of crop type 

reference data. The classification of HRI has been used to extend the crop type information to 

multiple years to develop year by year crop type maps without considering region to region re-

training of the satellite imagery (Zhong et al., 2014). It may be possible to use such a classification 

approach to extend the limited crop type reference data within a single year to similar regions. 

These methods of augmentation and extension could save the labor, cost, and time of field surveys 

required to collect the crop type reference data over large regions (Tatsumi et al., 2015). 

Regional intra-class variation exists in a single agriculture crop type due to farmer’s decisions 

to plant crops at different dates in different regions (Wardlow et al., 2007). These variations remain 

consistent within similar agriculture ecological zones (AEZs) and field size landscapes (e.g., large, 

medium, and small) due to similar agriculture and ecological conditions (Serra and Pons, 2008; 

Simonneaux et al., 2008). Therefore, it is possible that the limited crop type reference data may be 
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effectively augmented and extended by identifying the crop types in similar regions based on their 

visual interpretation and spectral characteristics at specific growing stage/time (i.e., phenology).  

The identification of different agriculture crops based on their spectral characteristics is usually 

performed by classifying multi-date HRI (Castillejo-González et al., 2009; Yang et al., 2011; 

Conrad et al., 2014). Recently, the classification of HRI using conventional pixel-based 

classification methodology has been replaced with Object-Based Image Analysis (OBIA) 

approach to develop more accurate crop type maps (Castillejo-González et al., 2009). OBIA 

includes the classification of objects into different crop types based on their spectral, spatial, and 

texture features using different phenology-based classifier approaches such as Rule-Based 

Classifier (RBC), Decision Tree (DT) (Peña-Barragán et al., 2011), Random Forest (RF) (Tatsumi 

et al., 2015), and support vector machine (Peña et al., 2014). The RBC is the simplest classifier 

which uses a condition to determine whether an image object belongs to a class (e.g., crop) or not. 

The random forest algorithm has the potential to incorporate multiple spectral and texture variables 

to discriminate different crop types and improve the classification performance (Lawrence et al., 

2006; Oliveira et al., 2012). The non-parametric decision tree classifier is capable of handling the 

regional intra-class variation of a single agriculture crop type that exists at multiple places. 

Therefore, the phenology-based classifiers (e.g., RBC, RF, and, DT) could be used as effective 

algorithms to create crop/no-crop and crop type maps from multi-dates of satellite imagery and 

identify the agriculture crops of similar regions at multiple places. 

A well-distributed and consistent crop type reference data set must be collected either from 

ground-based or non-ground-based sources to create and assess crop type maps. The basic pre-

requisites for collecting crop type reference data that must be carefully considered include: (1) the 
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classification scheme and (2) the sampling strategy (Congalton, 1991). A mutually exclusive and 

totally exhaustive classification scheme is necessary to define and translate or cross-walk the 

reference crop type labels to classify the HRI and generate the augmented and extended crop type 

reference data. The choice of an appropriate sampling strategy is the other basic requirement 

needed to collect appropriate reference data for the classification and assessment of the crop type 

maps (Congalton, 1991; Congalton and Green, 2009). A stratified random sample combined with 

sufficient number of samples for each class has been effectively used by Yadav and Congalton 

(2018) to perform an assessment of crop extent maps with varying map class proportions. This 

stratified sampling approach with sufficient samples in each map class is appropriate to generate 

a valid crop type reference data set in order to conduct an effective accuracy assessment of crop 

type maps of dominant and rare agriculture crops.  

The augmentation and extension of crop type reference data methods proposed in this study 

could only be developed in the United States (US) where high-quality crop type reference data 

(e.g., Cropland Data Layer) already exist to compare and evaluate the results. After testing these 

methods and comparing their results with the CDL reference data in the US, they can be effectively 

employed in the future to generate consistent and large area crop type reference data for rest of the 

world. Therefore, the objectives of this study are: (1) to augment the crop type reference data using 

the photographs collected from Google Street View (GSV), (2) to spatially extend the crop type 

reference data from Training (TR) to TEst (TE) regions based on the investigation of the use of 

one, two, and three dates of high spatial resolution imagery (HRI) and (3) to evaluate the results 

of these augmentation and extension approaches using the CDL reference data of the US.  
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Study Area  

The study areas used in this research includes three pairs (i.e., total six) of approximately 6 km by 

6 km regions selected randomly within three different AEZs (Figure 36A) and agriculture field 

sizes (Figure 36B) in the United States (US). The AEZs were defined based on the length of 

growing period days of the agriculture crops using the GAEZ (Global Agro-Ecological Zones) 

layer (Fischer et al., 2012). Likewise, the agriculture field sizes were derived from the IIASA 

(International Institute for Applied System Analysis) field size layer by grouping the field sizes 

from 10-40 into three classes: (1) large (35-40 ha), (2) medium (22-35 ha), and (3) small (10-22 

ha) (Fritz et al., 2015). Each pair of study area includes a region used for TRaining (TR) and the 

other to TEst (TE).  

Figures 1A and 1B show the location of the three pairs of TR and TE regions (total six regions); 

one pair in each separate AEZ (e.g., AEZ 6, 10, and 11) and for one of the three field sizes (e.g., 

small, medium, and large). Table 35 describes the length of the AEZ growing periods in days, the 

agriculture field sizes, and the states of the US in which each pair of study areas are located. 
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Figure 36A and 36B. The location of three pairs of Training (TR) and TEst (TE) regions 

selected each in three AEZs and three agriculture field sizes. 

 

Table 35. The description of the six regions selected in three AEZs for different field sizes. 

Regions AEZ (LGP) Field Size States of the US 

1 TR, 1 TE AEZ 6 (120-149 days) Large (35-40ha) North-Dakota, South-Dakota 
1 TR, 1 TE AEZ 11 (270-299 days) Medium (22-35ha) North-Carolina, South-Carolina 
1 TR, 1 TE AEZ 10 (240-269 days) Small (10-22ha) New Jersey, Pennsylvania 

LGP: Length of Growing Period; TR: TRaining; TE: TEst  

 

The cropping schedule of different crop types was clearly defined to help with the selection of 

multi-dates of satellite imagery and identification of crop types for each of the six regions (Table 

36). The planting and harvesting events for the agriculture crops were described as: (1) begin, (2) 

active, and (3) end growing stages. The spring (sp), summer (su), fall (f), and winter (w) growing 

seasons of agriculture crops were divided into early (e), mid (m), and late (l) to represent the 

months of a year. 



155 

 

Table 36. The cropping calendar of different crop types from three agriculture field sizes. 

L: Large Field Size; M: Medium Field Size; S: Small Field Size; e: early; m: mid; l: late; sp: 

spring; su: summer; f: fall; w: winter 

 

Datasets 

Three different datasets were used to perform the augmentation, extension, and evaluation of the 

results. The first dataset was the Google Street View (GSV) technology featured in Google Maps 

and Google Earth that provides panoramic views from positions along many streets in the world 

since 2007. The agriculture field photos for 2017 were accessed on the Google Maps website 

(https://www.google.com/maps) to augment the crop type reference data for the three TR regions 

used in this research.  

The second dataset was World View-2 (WV-2) satellite imagery of the year 2015 and derived 

vegetation indices (Figure 37 and Table 37). The World View-2 satellite imagery has eight multi-
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spectral bands (i.e., coastal-blue, blue, green, yellow, red, red-edge, Near Infra-Red (NIR) 1, and 

NIR 2) at a spatial resolution of 0.6m. These multi-spectral bands were used to derive the 

vegetation indices for the classification of agriculture crops of the six regions. These indices are 

listed in Table 3 describing their name, spectral bands used to derive the indices, and the 

references.  

Figure 37. The World View-2 images used to investigate the use of multi-dates of imagery for 

extending the crop type reference data from the Training (TR) (left panel) to Test (TE) regions 

(right panel) in large (L), medium (M), and small (S) field sizes. 
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Table 37. List of vegetation indices that were explored and used in the classification of crop 
types. 

Vegetation Index (VI) VI Equations derived from WV-2 Spectral Bands Reference 

 

Difference Vegetation Index 

(DVI) 

 

NIR – Red 
(Erdas 

Imagine, 2015) 

 

Green Normalized Difference 

Vegetation Index (GNDVI) 

 

(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)/(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) 
 

(Gitelson and 
Merzlyak, 

1996) 

 

Improved Modified Chlorophyll 

Absorption Ratio Index (MCARI) 

 

(1.5 ∗ (2.5 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑) − 1.3 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)))𝑆𝑄𝑅𝑇((2 ∗ 𝑁𝐼𝑅 + 1)2−(6∗𝑁𝐼𝑅−5∗𝑆𝑄𝑅𝑇(𝑅𝑒𝑑)  
(Daughtry, 

2000) 

 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 

2 ∗ 𝑁𝐼𝑅 + 1 − 𝑆𝑄𝑅𝑇(2 ∗ 𝑁𝐼𝑅 + 1)2−(8∗𝑁𝐼𝑅−𝑅𝑒𝑑)))/2 
(Erdas 

Imagine, 2015) 

Modified Red Edge Simple Ratio 

Index (MSR) 

((𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 − 𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝐵𝑙𝑢𝑒))/((𝑅𝑒𝑑 𝐸𝑑𝑔𝑒+ 𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝐵𝑙𝑢𝑒)) 
(Chen, 1996) 

 

Normalized Difference Vegetation 

Index (NDVI)  

 

((𝑁𝐼𝑅 − 𝑅𝑒𝑑))/((𝑁𝐼𝑅 + 𝑅𝑒𝑑)) 
(Rouse et al., 

1973) 

Soil and Atmospherically 

Resistant Vegetation Index 

(SARVI) 

((𝑁𝐼𝑅 − 𝑅𝐵) ∗ (1 + 𝐿))/(𝑁𝐼𝑅 + 𝑅𝐵 + 𝐿) 
 RB: Red-Gamma*(Blue-Red); L (Vegetation Cover 
Correction Factor): 0.5; Gamma (Aerosol Content 

Stabilization Factor):1 

(Kaufman and 
Tanre, 1992) 

 

Soil Adjusted Vegetation Index 

(SAVI) 

 

((𝑁𝐼𝑅 − 𝑅𝑒𝑑) ∗ (1 + 𝐿))/((𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)) 
(Panda et al., 

2010) 

Enhanced Vegetation Index (EVI) 
2.5*(((𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 6(𝑅𝑒𝑑) − 7.5(𝐵𝑙𝑢𝑒) +1))) 

(Huete et al., 
1997) 

 

The third dataset was the Cropland Data Layer (CDL) (USDA, NASS) which was used as the 

reference data to evaluate the results achieved by the augmentation and extension approaches 

developed in this study for collecting crop type information from additional non-ground-based 

sources (Figure 38). CDL has been generated annually for all the states at 30m spatial resolution 
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beginning in 2009 (USDA-NASS and USDA, 2010) and is a reference crop type map developed 

for agriculture crops using Landsat imagery and ground-based information. The CDLs are 85–

95% accurate for major crops in large agricultural states (Boryan et al., 2011). Therefore, CDL 

could be used to evaluate the augmented crop type reference data (2017) for the three TR regions 

and extended crop type maps (2015) for the six TR and TE regions. The CDL reference labels 

were cross-walked (translated) into the same classification scheme used for the six regions in this 

study (Table 35). The 2015 CDL data were used to evaluate the crop type maps of the TR and TE 

regions while 2017 CDL was used to evaluate the augmented crop type reference data of the TR 

regions. Figure 38 shows the six CDL maps of the year 2015 for the three TR (first row) and three 

TE (second row) regions studied in this research.  

 

Figure 38. Cropland Database Layer (CDL) of TR (first row) and TE (second row) regions used 

as reference data to evaluate the results of augmentation and extension approaches. 
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One of the key elements of collecting additional crop type reference data and developing crop 

type maps from the classification of the satellite imagery is to use an appropriate classification 

scheme. A well-defined classification scheme helps to reduce the risk of misclassification of the 

cropland, fallow land, and different crop types from the satellite imagery. Therefore, a common 

hierarchical classification scheme was used to cross-walk or translate the reference labels into map 

labels for the classification of the satellite imagery and collecting reference data for creating and 

assessing the crop type maps. Figure 39 shows a hierarchical classification scheme which consists 

of three hierarchical levels to classify the crop, fallow, and non-crop at first level. The first level 

classes were re-grouped at second level into cropland including fallow and non-crop. At third level, 

only the cropland classes were classified into different crop types (e.g., Crop 1, 2, 3, and 4) for the 

six regions. 

 

Figure 39. The hierarchical classification scheme followed to classify the agriculture crops of 

the six regions. 



160 

 

Methods 

The objectives of augmenting and extending the limited crop type reference data were 

accomplished using three main methods. First, the augmentation of the limited crop type reference 

data was performed using the interpretation of photographs from GSV. Second, the extension of 

the crop type reference data was performed from the TR to TE region using an object-based image 

analysis (OBIA) of multi-dates of HRI to classify first as crop, no-crop, and then into agriculture 

crop types for the six regions. Third, accuracy assessment was performed to evaluate the 

augmentation and extension approaches by assessing the crop type reference data for the TR 

regions and crop/no-crop, crop type maps for the six regions, respectively. The following flow 

chart shows the overall methodology that was followed to augment the crop type reference data 

and spatially extend the CDL 2015 crop type reference data of the TR regions to TE regions within 

same AEZ and field by investigating the use of one, two, and three dates of satellite imagery 

(Figure 40). 
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Figure 40. The overall methodology flow chart showing the augmentation and extension of the 

limited crop type reference data for the six regions. 

Augmentation of crop type reference data for the three TR regions 

The limited crop type reference data was augmented by interpretation of the agricultural field 

photographs collected along the major roads from Google Street View (GSV) in the US. The 

interpretation of photographs was performed by one interpreter based on prior knowledge of the 

visual characteristics of the different crop types of the three TR regions. The three TR regions of 

large, medium, and small field sizes were located on the Google Maps of 2017 and the field 

photographs were interpreted and labeled by the analyst for the different crop types based on the 

latest cropping calendar and physical characteristics. These interpretations were then compared 

and evaluated by comparison with the reference data from CDL of the year 2017. 
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Extension of crop type reference data from the TR regions to the TE regions 

To extend the crop type reference data using the classification of satellite imagery from the TR to 

TE regions, the benefits of one, two, or three dates of satellite imagery were first investigated for 

the three TR regions. The multi-dates of satellite imagery for each of the six regions (3 TR and 3 

TE regions) were created by mosaicking nine 2km by 2km World View-2 scenes. Consequently, 

a single region was comprised of nine World View-2 scenes, two dates had 18 scenes, and three 

dates had 27 scenes. The first image date tested was selected using the cropping calendar for the 

major crop types to show where high spectral variation might exist between the crop, fallow, and 

no-crop fields to produce crop/no-crop maps for each of the six regions (Figure 37). This first date 

imagery was subsequently combined with second and third dates of imagery selected using the 

cropping calendar to further separate different crop types (described in Table 35) to produce crop 

type maps for the three TR regions for each of the three field sizes. The crop type maps of the three 

TE regions were then developed based on the results of this TR analysis using best multi-dates of 

satellite imagery.  

The extension of crop type reference data from the TR regions to TE regions was executed in 

the following five steps: 

First, the crop/no-crop maps of the six regions were produced using the hierarchical 

classification scheme (described in the section 2.2) and an Object-Based Image Analysis (OBIA) 

of the first date satellite imagery. The imagery of each region were segmented into homogeneous 

groups of pixels (i.e., objects) based on the spectral, spatial, and texture characteristics using the 

Multi-Resolution Segmentation (MRS) method in the Trimble eCognition 9.3 version software 

(Definiens, 2017). The segmentation was performed by defining the scale, color, and shape 
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parameters using a bottom-up merging approach. A scale of 100, 70, and 60 were used for large, 

medium, and small agriculture field sizes, respectively which provided an appropriate 

segmentation of the field boundaries. The color and shape parameters were defined as 0.5 and 0.3, 

respectively for the three different field sizes, providing more weight to the spectral features of the 

objects while merging them into homogeneous groups. The homogeneous objects were then 

classified into crop (cropland and fallow) and no-crop using the Rule-Based Classifier (RBC) 

based on their mean spectral response and texture values for each of the six regions.  

Second, the crop types of the three TR regions were classified within the crop class of the 

crop/no-crop maps at Level 3 of the hierarchical classification scheme (Figure 39). The crop type 

classification was performed using the Random Forest (RF) classification algorithm for one, two, 

and three dates of satellite imagery combined with their Vegetation Indices (VIs) described in 

Table 36. A total of 50 samples per map class was collected from the 2015 CDL of the TR regions 

for training the RF algorithm and assessing the crop type maps. These samples were divided into 

independent training and assessment samples based on a 40-60% split rule. A stratified random 

sample with 20 training samples for each crop type class was used in the RF classifier to create the 

crop type maps leaving 30 samples for each crop type to perform the accuracy assessment.  

Third, the results of the multi-date image analysis of the TR regions, as described above, was 

used to select the best imagery for each of the three TE regions. The same training samples used 

in the RF classification algorithm for the TR regions were used for training the DT algorithm and 

creating the crop type maps of the TE regions. However, since the training samples of the TR 

regions are spatially located on the TR imagery, the actual training sample locations could not be 

directly used for the TE regions. Instead, the statistics derived from the 20 training samples for 
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each class of the three TR regions were used to derive unique spectral and texture thresholds for 

the different crop types and applied to a DT algorithm to classify the TE regions. The RF algorithm 

could not be used to classify the TE regions as this, and many other algorithms, require spatially 

locating training areas on the imagery. However, a DT algorithm could be used with the training 

statistics acquired for the TE regions. 

Fourth, the thresholds of spectral and texture characteristics (i.e., training statistics for the TE 

regions) were derived for the different crop types using the following two steps: (1) Decision Tree 

(DT) modeling on the TR regions and (2) plotting the relationship of VIs for different crop types 

of the TR regions. The DT modeling created models from the pool of all the spectral and texture 

features acquired from each TR region using the recursive partitioning platform in the statistical 

software JMP 8 (SAS Institute Inc., Cary, NC, USA). This binary recursive algorithm splits the 

training data for each of the three TR regions and builds Decision Trees (DTs) by choosing the 

features and corresponding values that best fit the partial response in every split. The algorithm 

examined a very large number of possible splits and determined the most significant ones using 

the largest likelihood-ratio chi-square (χ2) statistic. A cross-validation method was applied to 

define and evaluate each of the models in which samples were randomly separated into 40% for 

model training and 60% for model validation. This procedure was repeated ten times to generate 

results using random combinations of training and validation sets (Friedl and Brodley, 1997). The 

best DTs were chosen for each of the three TR regions by selecting the optimal model which 

provided the smallest error rate when run on the independent dataset (Mingers, 1989). In addition, 

the relationship between the Vegetation Indices (VIs) (e.g., NDVI, MSR, DVI, GNDVI, MCARI, 

SARVI, and EVI) were also plotted to determine the most useful and important indices. 
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Consequently, the best DTs and plots of VIs were used to determine the threshold values of spectral 

and texture characteristics for the different crop types.  

Finally, the threshold values of spectral and texture characteristics derived from the training 

samples of the TR regions were used for training the DT classification algorithm to produce the 

crop type maps for the three TE regions. The crop type maps of the TE regions were assessed using 

30 assessment samples for each crop type collected from 2015 CDL of the TE regions. 

 

Accuracy assessment of augmentation and extension 

The results of augmentation and extension of the crop type reference data for the six regions were 

evaluated separately by comparing with the CDL reference data in the form of error matrices. The 

reference data for each assessment were always collected independently of the training data. The 

entire augmented reference data collected from the GSV were compared with the 2017 CDL 

reference data to create the error matrices for each of the three TR regions. The reference dataset 

consists of 30 samples collected from the 2015 CDL reference data for each crop type to assess 

the crop type maps of the three TR and three TE regions. In addition to the crop type maps, the 

crop/no-crop maps of the three TR and three TE regions were also assessed using the reference 

dataset collected from the 2015 CDL data. The crop/no-crop reference dataset consists of the crop 

samples which were subsequently derived by combining the crop type samples used in the 

assessment of crop type maps while the no-crop samples were collected proportional to their area 

for each of the TR and TE regions. 

Finally, the assessment reference data was used to assess the augmented crop type reference 

data of the three TR regions, the crop/no-crop maps, and the crop type maps of the three TR and 
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three TE regions in the form of object-based error matrices presenting the accuracy measures (i.e., 

overall, user’s, and producer’s accuracy). 

 

Results 

The results of this study are presented in the following three sub-sections: (1) augmented crop type 

reference data from the GSV for the TR regions, (2) the extension of crop type reference data from 

the TR regions to the TE regions, and (3) the assessment reference data used to generate the error 

matrices for all the crop/no-crop and crop type maps of the six regions. 

Augmented crop type reference data of the three TR regions 

The augmented crop type reference data for the three TR regions was generated by the 

interpretation of photographs collected from GSV. Figure 41 presents the augmented crop type 

reference data for the large, medium, and small agriculture field size TR regions. 
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Figure 41. Augmented crop type reference data of three TR regions collected from GSV for 

large, medium, and small field sizes. 
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Extension of crop type reference data from the TR regions to TE regions based on the 

investigation of one, two, and three dates of imagery for the TR regions 

The crop/no-crop maps of the six regions (3 TR and 3 TE regions) were first generated from the 

classification of most appropriate World View-2 satellite imagery using a rule-based classifier and 

an object-based image analysis. Figure 42 presents the crop/no-crop maps of 3 TR and 3 TE 

regions in large, medium, and small field sizes. 

 

Figure 42. The crop/no-crop maps of the three TR and three TE regions in large (L), medium 

(M), and small (S) field sizes. 
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The crop/no-crop maps of the six regions were subsequently classified into the crop types using 

the phenology-based classification algorithm and training data collected from the 2015 CDL of the 

TR regions. The crop type maps for the TR regions were produced from the investigation of one, 

two, and three dates of satellite imagery and reference data collected from the CDL of these 

regions. While the crop type maps of the TE regions were developed from the multi-dates of 

satellite imagery and training data derived from the Decision Trees (DT) and the relationship of 

Vegetation Indices (VIs) of the different crop types of the TR regions.  

Figure 43 presents the Decision Trees (DTs) that were used to derive the threshold of the 

spectral and textural features of different crop types of the TR regions using the hierarchical 

recursive partitioning algorithm in JMP software. Figure 44, 45, and 46 present the relationship 

plots of the Vegetation Indices (VI’s) for the different agriculture crops of the three TR regions, 

respectively.  

A total of 20 samples for each map class were collected for training the classification 

algorithms to create the crop type maps of the TR and, by extension, the training statistics used in 

the TE regions. Table 38 presents the entire training data collected from the 2015 CDL and their 

derived statistics of the TR regions to classify the crop types of the six regions for each of the field 

sizes and AEZs. 
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Figure 43. The Decision Trees (DTs) built from the 2015 CDL reference data of the three TR 

regions for large (L), medium (M), and small (S) field sizes.  

 

  

Figure 44. The relationship between Vegetation Indices (MSR, DVI, NDVI, and GNDVI) in 

different growing seasons in the large agriculture field size TR region. 
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Figure 45. The relationship between Vegetation Indices (MSR, DVI, and SARVI) in different 

growing seasons in the medium agriculture field size TR region.  

 

 

Figure 46. The relationship between Vegetation Indices (GNDVI, EVI, and MCARI) in different 

growing seasons in the small agriculture field size TR region. 
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Table 38. The training data collected from the 2015 CDL of the TR regions to classify the crop 

type maps of the TR and TE regions. 

 

The crop type maps of the six regions were produced using the training data described in Table 

38. Figure 47 presents the three crop type maps for the three TR regions in the large, medium, and 

small field sizes. Figure 48 presents the crop type maps for the three TE regions developed from 

the classification of multi-dates of satellite imagery using the DT algorithm and training samples 

derived from the DT and VIs of the TR regions. 

Crop Types Field Size AEZ Training Data (TR) Training Data (TE) 

Corn 

Large AEZ 6 
20 x 5=100  

 
85 (5 Crop Types) 

Soybean 
Spring Wheat 
Alfalfa 
Other Hay 
Cotton 

Medium AEZ 11 
20 x 4=80 

 
63 (4 Crop Types) 

Corn 
Soybean 
Double Crop  
Corn 

Small AEZ 10 
20 x 5=100 

 
120 (5 Crop Types) 

Soybean 
Other Hay 
Double Crop 
Fallow  
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Figure 47. Crop type maps of three TR regions produced from one, two, and three dates of 

satellite imagery in the large, medium, and small field sizes. 
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Figure 48. The crop type maps of the three TE regions produced from the classification of multi-

dates of satellite imagery in large, medium, and small field sizes. 

 

Accuracy Assessment 

The results of the accuracy assessment include the reference data collected to assess the crop/no-

crop and crop type maps of the six regions and the accuracy measures generated for the augmented 

crop type reference data and the crop/no-crop and crop type maps of the six regions. Table 39 

presents the assessment reference data collected from the CDL of the US to assess the augmented 

reference data, crop/no-crop, and crop type maps of the six regions. 
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Table 39. The reference data used to assess the crop/no-crop and crop type maps of the three TR 

and three TE regions. 

*minimum 30 sample size not achieved for rare crop types; the cropland and no-cropland area 

proportions are presented in percentages for each region; C: Crop; NC: No-Crop; TR: TRaining; 

TE: TEst 

 
 

The accuracy assessment was performed to assess the augmented crop type reference data of 

the three TR regions collected from the GSV for large, medium, and small field sizes. The error 

matrices were generated using the all the reference data available from the GSV and might have 

insufficient samples for some crop types (Table 39). Table 40 presents the user’s, producer’s, and 

overall accuracy of the crop type reference data collected from the GSV for the three TR regions 

Crop types 
Field 
Size 

AEZ 
Reference Data 

(TR Region) 

Reference 
Data (TE 
Region) 

Reference Data 
(Augmented TR 

Region) 
Corn 

Large AEZ 6 
C: 110* (46%) 
NC: 130 (54%) 

Total: 240 

C: 120* (38%) 
NC: 195 
(62%) 

Total: 315 

25 
(3 Crop Types) 

Soybean 
Spring Wheat 
Alfalfa 
Other Hay 
Cotton 

Medium AEZ 11 

C: (30x4) =120 
(39%) 

NC: 187 (61%) 
Total: 307 

C: 95* (36%) 
NC: 170 
(64%) 

Total: 265 

19  
(2 Crop Types) 

Corn 
Soybean 
Double Crop  
Corn 

Small AEZ 10 

C: (30x5) =150 
(45%) 

NC: 180 (55%) 
Total: 330 

C: (30x4) 
=120 (27%) 

NC: 325 
(73%) 

Total: 445 

227  
(2 Crop Types) 

Soybean 
Other Hay 
Double Crop 
Fallow  
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in the large, medium, and small field sizes. The overall accuracy indicates the percent of correctly 

labeled agriculture fields from the GSV. 

 

Table 40. The evaluation of the augmented crop type reference data collected from GSV. 
 

Field Sizes Crop types Samples collected 

from GSV 

User’s 
Accuracy 

Producer’s 
Accuracy 

Overall 

Accuracy 

Large 
Corn 15 33.3% 83.3% 

44.0% Other Hay 5 20.0% 100.0% 
Soybean 5 100.0% 33.3% 

Medium 
Cotton 8 50.0% 44.4% 

47.4% Soybean 11 45.4% 71.4% 

Small Corn 39 23.1% 23.7% 
74.0% Soybean 188 84.5% 86.0% 

 

 

Second, the accuracy assessment was performed to assess the crop/no-crop and crop type maps 

of the six regions resulting in the overall, user’s, and producer’s accuracy in the form of error 

matrices for large, medium, and small field sizes. Table 41 presents the error matrices of the 

crop/no-crop maps of the TR and TE regions for large, medium, and small field sizes. The overall 

accuracy of the crop/no-crop maps of the three TR regions in the large, medium, and small field 

sizes are 89.58%, 91.86%, and 94.2%, respectively. While the overall accuracy of the crop/no-

crop map of the three TE regions in the large, medium, and small field sizes are 97.78%, 96.23%, 

and 97.98%, respectively. Table 42 presents the overall accuracy of 73.75%, 90.23%, and 83.33%, 

respectively for the crop type maps of the three TR regions developed from one, two, and three 

dates of satellite imagery. 
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Table 41. The error matrices of crop and no-crop maps of TR and TE regions for the large, 

medium, and small field sizes. 

 

 

 

 

 

Table 42. The overall accuracy of the crop type maps of the three TR regions developed from 

one, two, and three dates of satellite imagery. 

 

 

 

 

Large TE Reference Data     

  
Crop No-Crop Total 

User’s 
Accuracy 

M
ap

 
D

at
a Crop 119 6 125 95.20% 

No-Crop 1 189 190 99.47% 
Total 120 195 315  
Producer’s Accuracy 99.17% 96.92%  97.78% 

Large TR  Reference Data     

    
Crop No-Crop Total 

User’s 
Accuracy 

M
ap

 
D

at
a Crop 109 24 133 81.95% 

No-Crop 1 106 107 99.07% 
Total 110 130 240  
Producer’s Accuracy 99.09% 81.54%  89.58% 

 Medium TR   Reference Data    

  
 

  
Crop No-Crop Total 

User’s 
Accuracy 

M
ap

 
D

at
a Crop 108 13 121 89.26% 

No-Crop 12 174 186 93.55% 
Total 120 187 307  
Producer Accuracy 90.00% 93.05%  91.86% 

Medium TE Reference Data     

    
Crop No-Crop Total 

User’s 
Accuracy 

M
ap

 
D

at
a Crop 95 10 105 90.48% 

No-Crop 0 160 160 100.00% 
Total 95 170 265  

Producer’s Accuracy 100.0% 94.12%  96.23% 

Small TR   Reference Data     

    
Crop No-Crop Total 

User’s 
Accuracy 

M
ap

 
D

at
a Crop 142 11 153 92.81% 

No-Crop 8 169 177 95.48% 
Total 150 180 330  
Producer’s Accuracy 94.67% 93.89%  94.24% 

 Small TE Reference Data     

    
Crop No-Crop Total 

User’s 
Accuracy 

M
ap

 
D

at
a Crop 113 0 113 100.00% 

No-Crop 9 323 332 97.29% 
Total 122 323 445  
Producer’s Accuracy 92.62% 100.00%   97.98% 

Regions  Accuracy 
(One date) 

Accuracy 

 (Two dates) 
Accuracy 

(Three dates) 
Large TR 67.1% 69.2% 73.8% 

Medium TR 88.6% 89.6% 90.2% 
Small TR 75.8% 80.0% 83.3% 
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Table 43, 44, and 45 present the evaluation of the crop type maps of the three TE regions 

developed from the extended 2015 CDL reference data of the TR regions and multi-dates of 

satellite imagery in large, medium, and small field sizes, respectively. The overall accuracy of 

the extended crop type maps for large, medium, and small fields sizes are 93.65%, 93.21%, and 

84.49%, respectively. 

 

Table 43. The error matrix of crop type map generated from multi-dates of World View-2 

imagery for the TE region in the large agriculture field size. 

 

 

Table 44. The error matrix of crop type map generated from multi-dates of World View-2 

imagery for the TE region in the medium agriculture field size. 

 

 Large TE Reference Data    

   Corn Alfalfa Other Hay Wheat No-Crop Total User’s Accuracy 

M
ap

 D
at

a 

Corn 28 0 0 0 0 28 100.00% 
Alfalfa 0 24 4 0 0 28 85.71% 

Other Hay 0 5 24 0 5 34 70.59% 
Wheat 2 1 1 30 1 35 85.71% 

No-Crop 0 0 1 0 189 190 99.47% 
Total 30 30 30 30 195 315  

Producer’s Accuracy 93.33% 80.00% 80.00% 100.00% 96.92%  93.65% 

 Medium TE Reference Data   
    Corn Soybean Double Crop Cotton No-Crop Total User’s Accuracy 

M
ap

 D
at

a 

Corn 28 0 0 1 2 31 90.32% 
Soybean 0 4 0 0 0 4 100.00% 

Double Crop 1 1 27 1 6 36 75.00% 
Cotton 1 0 3 28 2 34 82.35% 

No-Crop 0 0 0 0 160 160 100.00% 

Total 30 5 30 30 170 265  

Producer’s Accuracy 93.33% 80.00% 90.00% 93.33% 94.12%  93.21% 
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Table 45. The error matrix of crop type map generated from multi-dates of World-View 2 

imagery for the TE region in the small agriculture field size. 

 

 

Discussion 

The crop type mapping at large scales and with high resolution imagery is non-existent in the 

literature (Inglada et al., 2015). The mapping and accuracy assessment of large area crop type maps 

heavily depends on quality-assured reference data collected from different sources for generating 

accurate crop type information (Bayas et al., 2017). There have been numerous small area crop 

type mapping efforts for limited number of crop type classes where crop type reference data were 

easily collected from ground-based surveys (Badhwar, 1984; Murthy et al., 2003; Verbeiren et al., 

2008; Jain et al., 2016). However, such ground-based reference data might be insufficient to 

classify the crop types for large areas (e.g., any continent or the entire world) due to inability to 

access the limited regions of different continents. The limited availability of sufficient crop type 

reference data is required to be enriched using augmentation and extension approaches for large 

area crop type mapping and assessment from non-ground-based sources (e.g., Google Street View 

and High-Resolution Imagery). Therefore, the goals of this research were to evaluate our ability 

Small TE  Reference Data   
    Corn Soybean Other Crops Other Hay No-Crop Total User’s Accuracy 

M
ap

 D
at

a 

Corn 24 11 0 0 0 35 68.57% 
Soybean 5 15 1 0 0 21 71.43% 

Other Crops 1 4 14 2 0 21 66.67% 
Other Hay 0 0 13 23 0 36 63.89% 
No-Crop 2 0 2 5 323 332 97.29% 

Total 32 30 30 30 323 445  

Producer’s Accuracy 75.00% 50.00% 46.67% 76.67% 100.00%  84.49% 
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to augment and extend reference data used for assessing thematic map accuracy. The crop type 

reference data was extended using multi-date satellite imagery. To generate accurate crop type 

maps and sufficient reference data, the potential of augmentation, multi-date satellite imagery, and 

extension approaches must be evaluated and discussed for different field sizes. 

 

Identification of crops to augment the crop type reference data for different field size TR 

regions 

The augmentation of limited crop type reference data involves the identification of crop types 

based on their physical characteristics through the interpretation of photographs available from the 

GSV for the TR regions of large, medium, and small field sizes. The quality of such additional 

crop type reference data collected from the GSV depends on the interpreter’s skills and ability to 

discriminate different crop types. Figure 41 shows the distribution of interpreted crop type 

reference fields (data) along the major roads for each of the large, medium, and small field size 

TR regions. The major challenge for collecting augmented crop type reference data is the limited 

availability of Google Street View along the major roads in specific regions of the world. As a 

result, the augmentation results demonstrate unbalanced and insufficient sample size for each crop 

type and therefore, would not be appropriate to perform the classification and assessment of the 

crop type maps. 

 

Identification of crops to investigate the benefits of multi-dates of imagery for the extension 

of crop type reference data 
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The crop/no-crop maps of the six regions were developed from the most appropriate, single date 

imagery using a spectral and textural rule-based classification algorithm (Figure 42). The most 

appropriate date of satellite imagery was selected from the available images for each region to 

develop crop/no-crop maps. Using these crop/no-crop maps, the crop type maps were subsequently 

developed by selecting one, two, and three dates of imagery using the random forest classifier 

because of its robustness to the spectral variations of similar crop types (Figure 47). Figure 47 

presents nine crop type maps generated from the single, two, and three date satellite imagery for 

each of the three TR regions with different field sizes. The subsequent addition of two and three 

dates of satellite imagery provides more temporal variation in spectral responses for discriminating 

and mapping different crop types with improved accuracy. Consequently, the potential benefits of 

using multi-dates of satellite imagery for crop type mapping are investigated based on the 

improved accuracy of crop type maps achieved with classification using more than a single date 

of imagery. Figure 49 shows multi dates of satellite imagery and the crop type map developed 

from a combination of three dates of imagery for a medium field size TR region. The first single 

date of imagery acquired in the month of September provides unique spectral characteristics for 

discriminating different types of crops including both harvested and standing crops (e.g., corn and 

soybean) (Figure 49). However, the additional dates of satellite imagery acquired in the month of 

May and February provide more spectral and textural variations among the crop types (e.g., cotton 

and double crop). Consequently, the crop type map developed from the three dates of satellite 

imagery presents the benefits of using multi dates of imagery for effective crop type mapping in 

different field size regions.  
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Figure 49. The crop type map developed from the multi dates of World View-2 imagery showing 

the unique spectral characteristics for the different crop types of the medium field size TR region. 

 

In addition to providing additional spectral characteristics for mapping different crop types of 

a region, the multi-dates of satellite imagery help to identify the discrepancies and errors (e.g., 

omission or commission) that existed in crop type reference data. For example, the satellite 

imagery acquired in the month of November for the small fields size TR region shows unique 

spectral characteristics as dark red patches in the right lower corner (Figure 50). The agriculture 

fields with unique spectral characteristics were expected to be some seasonal crop (e.g. cranberry 

growing in the month of November) and labeled as fallow land on the CDL reference data of the 
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year 2015 (Figure 50). Comparing the CDL reference data of the year 2014 and 2017 showed that 

these fields were labeled as cranberry crop. Therefore, the crop type mapping using multi-date 

satellite imagery acquired in August, September, and November are effective for identifying the 

omission errors in the reference data existed due to limited field surveys conducted in different 

parts of the US. 

 

Figure 50. The comparison of CDL reference data of the small field size TR region with the 

satellite imagery. 

 

The use of three dates of satellite imagery demonstrated advantages over the single and two 

dates to perform effective crop type mapping for each of the field sizes for the TR regions due to: 
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(1) spectral and textural variations and (2) capability to identify the errors that existed in the 

reference data (Ehrlich et al., 1994; Panigrahy and Sharma, 1997; Simonneaux et al., 2008). Based 

on this multi-date analysis in the TR regions, the best three dates of satellite imagery were selected 

to perform the classification of crop types for two (large and medium field size) of the TE regions 

except the small field size TE region for which only two dates of imagery were available. 

The extension of limited crop type reference data involves the identification of crop types for 

collecting additional reference data from the classification of the best multi-dates of HRI for the 

TE regions. The identification of crop types becomes complex due to their diverse spectral 

characteristics in different regions. The decision trees (Figure 43) and the relationship of 

vegetation indices (VI’s) (Figure 44, 45, and 46) derived from each of the TR regions were used 

to identify the crop types for each of the large, medium, and small field sizes in the TE regions.  

The crop types of the large field size TR region (Alfalfa, Corn, Other Hay, Soybean, and 

Wheat) were discriminated by means of a sequence of four VIs (NDVI, DVI, MSR, and GNDVI) 

(Figure 44). Soybean was characterized by high green vegetation vigor in late summer and low in 

mid fall. Other Hay was characterized by high vegetation vigor in the late summer and early fall. 

Wheat was characterized by low vegetation vigor in early fall. Corn was characterized by high 

vegetation in mid spring. The positive slope in MSR and GNDVI distribution in Alfalfa can be 

interpreted as increase in the vegetation vigor in early and mid-fall. No texture feature offered a 

consistent solution for the discrimination between the crops, but several VIs based on NIR bands 

were useful in the identification of crops. The mid-spring and early fall were selected for this initial 

step to classify the wheat, other hay, and corn crops in the TE scenes of the large agriculture field 

sizes (Figure 44).  
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The crop types of the medium field size TR region (Corn, Cotton, Soybean, and Double Crop) 

were discriminated by means of a sequence of three VIs (DVI, MSR, and SARVI) (Figure 45). In 

early fall, the positive slope in DVI and MSR distribution in corn can be interpreted as an increase 

in the vegetation vigor. A negative slope in MSR and SARVI distribution can be interpreted as 

decrease in vegetation. Corn was characterized by low vegetation vigor in late spring and early 

fall. However, in all the acquired scenes, the corn was characterized by low vegetation vigor. 

Double crop including soybean and winter wheat was characterized by a positive slope in DVI 

distribution showing an increase in the vegetation vigor in late spring and early fall. Soybean was 

characterized by high vegetation vigor in early fall and a negative slope in DVI distribution was 

identified as a decrease from early fall to late spring. Cotton was characterized by high vegetation 

vigor in DVI, MSR, and SARVI distribution in early fall. 

The crop types of the small field size TR region (Corn, Other Hay, Soybean, Winter Wheat, 

and Double Crop) were discriminated by means of a sequence of three VIs (DVI, MSR, and EVI) 

(Figure 46). Corn was characterized by high green vegetation vigor in the distribution of GNDVI 

and EVI in late fall. Other Hay was identified in the zone enclosed by GNDVI values greater than 

0.3 in the late fall. Soybean was characterized by high vegetation vigor in GNDVI, EVI, and 

MCARI distribution in late summer and late fall. The positive slope in GNDVI distribution in 

soybean can be interpreted as an increase in the vegetation vigor in late fall. No texture feature 

offered a consistent solution for the discrimination between the crop types, but several VIs based 

on NIR bands were useful for the indentation of crops. 
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Potential benefits of augmentation, classification with multi-dates of satellite imagery, and 

extension of crop type reference data from the TR to TE regions 

The evaluation and assessment of the augmentation and extension approaches of collecting 

additional crop type reference data tested in the US are very crucial to effectively apply them for 

the rest of the world in the future. Accuracy assessment was performed separately to evaluate the 

results of augmentation, benefits of using multi-dates of satellite imagery, and extension. The 

augmented reference data were evaluated by comparing with the CDL reference data to determine 

the percent of correctly labeled reference data from the GSV. The results presented in Table 40 

demonstrate that the augmented crop type reference data collected from the GSV are insufficient 

to perform the classification and assessment of the crop type maps. Very few agriculture fields 

were interpreted in the large and medium field sizes along the major roads using the GSVs 

photographs as compared to the small field sizes, where three or four crop types were identified. 

Second, dominant and more common crops (e.g., Soybean) of small fields size regions were 

interpreted and augmented in large clusters due to which the spatial auto-correlation issues could 

possibly exist between the reference polygons (Figure 41). As a result, the augmentation approach 

could only be used to collect dominant and common crop types in specific regions due to limited 

availability of photographs along the major roads.  

The benefits of using multi-dates of satellite imagery were established by assessing the crop 

type maps of the TR region developed from one, two, and three dates of satellite imagery in the 

form of error matrices presenting the overall, producer’s, and user’s accuracy. Table 42 shows 

high overall accuracy of the crop type maps developed from multi-date satellite imagery for the 

large (73.8%), medium (90.2%), and small (83.3%) field size regions than one and two dates 
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imagery classification. The benefit of using multi-dates of satellite imagery was established for 

more accurate crop type mapping in different field size TR regions by improving the map accuracy. 

The accuracy of the crop types maps was improved when developed from the multi-dates of 

imagery as compared to one and two dates imagery by providing more spectral and texture features 

for the discrimination of the different crop types. The accuracy assessment of the crop type maps 

shows that the maps generated from three dates of imagery in medium field size regions are more 

accurate than large and small field sizes. The reason of high accuracy is the presence of variations 

in the non-cropland class of different field size regions. In the medium field size region, forest and 

agriculture are dominant land cover classes whose objects were easily discriminated based on the 

texture features. However, the large field size region has more variability in the non-cropland 

classes with the availability of developed and fallow lands. Therefore, the spectral and texture 

features of developed class was confused with the fallow land feature. 

The extension approach of collecting additional crop type reference data was evaluated by the 

assessment of crop type maps of three TE regions developed from multi-dates of satellite imagery 

using the crop type reference data extended from three TR regions representing each field size 

(Figure 48). These maps were assessed using the reference data collected from the CDL map of 

the year 2015 (Table 39). The error matrices generated for the crop type maps of the TE region in 

Table 43, 44, and 45 show that: (1) the crop type reference data of more common agriculture crops 

was extended with high quality and reliability for three field sizes, (2) rare crop types were spatially 

extended with high accuracy (80-90%) in the large and medium field sizes, and (3) the extended 

crop type reference data has lower accuracy (60-70%) and reliability in the small field sizes as 

compared to the large and medium field sizes for the same crops. Finally, it can be concluded that 
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the limited crop type reference data can be effectively extended using a phenology-based 

classification approach and is more efficient than the interpretation of photographs collected from 

GSV (Yadav and Congalton, 2019b). 

 

 

Conclusions 

In this research, we have presented an innovative and novel approaches of augmenting and 

extending the limited crop type reference data within similar regions representing different 

agriculture field sizes in the US where high-quality crop type reference data (e.g., CDL) already 

exist. The results demonstrate that the interpretation of panoramic views collected from GSV 

promise to augment more common/dominant agriculture crops while the phenology-based 

classification approach can efficiently extend the limited crop type reference data to every region 

within the same AEZ for different field sizes. The most attractive feature of augmentation and 

extension approaches are that they reduce the need to collect additional field reference data at 

multiple locations, greatly lowering the cost and time involved in the mapping of crop types for 

large areas. This is especially important for the regions where reference data are often too scarce 

to routinely apply the supervised classification methods to effectively map different agriculture 

crops. Variables related to phenology and spectral features at specific phenological stages were 

utilized as measurements that reflect the nature of crop types and remain stable over time and space 

within similar ecological conditions and cropping patterns. Therefore, a phenology-based 

classification algorithm was developed to identify the crop types based on the prior knowledge on 

their cropping calendar and spectral properties. Resultant crop type maps demonstrated the 
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potential and capability of augmenting and extending limited crop type reference data using 

interpretation and phenology-based algorithms of discriminating agriculture crops at multiple 

places in similar regions. 

The success of this initial application in the United States using the non-ground-based sources 

of crop type information is encouraging, given the potential of extending the algorithm to other 

crop types and other remotely sensed data. To identify more crop types in other areas, expert 

knowledge on local agricultural practices, crop growth modeling, and crop spectral monitoring 

and simulation (Jacquemoud et al., 2009) are the main factors to consider when defining 

classification rules. For regions with variable crop types growing throughout the year, the extended 

automated approach may improve the classification of all the available crop types from a single 

year by incorporating images from multiple dates. Because the automated algorithm is not image-

specific, it is scalable to utilize these datasets with minimal revisions. We are confident that the 

phenology-based classification approach has great potential in the applications as the technique of 

generating additional crop type reference data for creating and assessing the crop type maps. 
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CHAPTER VII 

OVERALL CONCLUSIONS 

The overall goal of this research was to evaluate and assess the large area cropland extent maps 

and generate sufficient reference data for creating other cropland products (e.g., crop type maps). 

Additionally, many of the issues and constraints related with the cropland distribution, pattern, 

proportion, and reference data availability were examined. Previous existing global cropland 

extent maps have not been assessed by individual continents to consider the prevalent cropland 

distribution, area, spatial extent, and pattern of each region. Consequently, meaningful accuracy 

measures for each individual continent have not been reported in the literature. The results of this 

research show that large area accuracy assessments of cropland extent maps must be performed 

using an appropriate sampling strategy with a large cropland reference dataset to achieve 

meaningful accuracy results not only for the entire world, but also by continent.  

The accuracy assessment of the three different cropland extent maps developed at three spatial 

resolutions shows that the cropland maps becomes more accurate at higher spatial resolutions. 

However, despite the differences in the overall accuracy of the three different cropland extent 

maps, each cropland extent map needs to be compared to provide recommendations as which 

spatial resolution should be applied given different agriculture field sizes. The comparison of the 

characteristics of the cropland landscape mapped at the three different spatial resolutions is a very 

effective way to establish the similarity among the cropland extent maps. Therefore, 

recommendations for using the cropland extent maps developed at different spatial resolution (i.e., 
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30m, 250m, and 1km) were made for monitoring cropland in different cropping pattern regions of 

the world. 

As valuable as it is to assess the large area cropland maps, it is just as valuable to report 

meaningful and appropriate accuracy measures for different cropland proportion regions. Since 

different regions have different cropland distributions and proportions, it is very important to 

achieve sufficient sample sizes and meaningful accuracy measures for regions with varying 

cropland proportions. This research evaluated SRS and SMPS designs for different regions to 

achieve sufficient sample sizes and appropriate accuracy measures for the rare cropland map class. 

This evaluation demonstrates that the distribution of samples is more important than increasing or 

decreasing the number of samples (once a sufficient number of samples is determined) to 

effectively assess the rare cropland map class of various cropland regions. The regions of <15% 

CAP that are clustered and limited to small areas cropping pattern can be effectively assessed using 

the SMPS design as compared to the scattered and uniform cropping pattern. However, the regions 

of >15% CAP (those maps that do not contain a rare cropland map class) can be effectively 

assessed using either of the sampling designs at a sample size of 250. 

One of the objectives of this research was to generate sufficient crop type reference data for 

creating large area crop type maps by collecting additional reference data from non-ground-based 

sources. This research presents an innovative approach to extend and augment crop type reference 

data for major crop types for three different agriculture field sizes of the US where high-quality 

crop type reference data (i.e., CDL) are available. After successful implementation of these 

methods in data rich regions, they can potentially be implemented to generate additional reference 

data for data limited regions. The most attractive feature of the automated approach is that it 



193 

 

reduces the need to collect additional reference data in multiple regions, greatly lowering the cost 

of large area crop type mapping. This is especially important for the regions where reference data 

are often too scarce to routinely apply the supervised classification method. The success of the 

initial application in the United States using the automated approach is encouraging, given the 

potential of extending the algorithm to other crop types and other remotely sensed data. For regions 

with variable crop types growing throughout the year, the extended automated approach may 

improve the classification of all the available crop types from a single year by incorporating images 

from multiple dates. We are confident that the phenology-based classifier extension method has 

more potential applications as the technique of generating additional reference data for the 

classification and accuracy assessment. 

The research conducted for this dissertation contributes to both the cropland monitoring and 

remote sensing communities in four distinct ways. First, an appropriate large area assessment 

strategy is suggested for assessing global cropland extent maps. Second, the suitability of different 

resolution cropland extent maps was recommended for their effective use in monitoring cropland 

regions of different field sizes. Third, an alternate sampling strategy is suggested to perform an 

effective assessment of the cropland maps of different cropland regions. Finally, the extension of 

limited crop type reference data is suggested to generate consistent reference data for creating large 

area crop type maps using a phenology-based classification of multi-date high spatial resolution 

imagery. 
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