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Abstract 

Background: Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for 

crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is 

necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this 

paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-

environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment 

model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model 

that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For 

these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-vali-

dation scheme with 10-repeat cycles to assess model prediction accuracies.

Results: In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations 

analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the 

ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE 

model.

Conclusions: We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. 

These models may be useful for other plant species.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Cassava (Manihot esculenta Crantz) [1] is a staple food 

for over 700 million people in Africa, South America and 

Asia [2]. Cassava also has immense industrial potential. 

White cassava starch is easy to extract and contains low 

levels of fat (~  1.5%), protein (~  0.6%) and phosphorus 

(~ 4%), which are desirable features for the food industry 

[3, 4]. Given the issues of climate change and fast-grow-

ing populations in countries that rely heavily on cassava, 

the need for rapid genetic improvement of cassava is crit-

ical. To enable this, genetic evaluation protocols based on 

best linear unbiased prediction (BLUP) analysis [5, 6] and 

selection on a merit index [7, 8] have been recommended 

to maximize gain from selection [9].

Genomic selection (GS) [10] offers crop species such as 

cassava a tremendous opportunity for accelerated genetic 

gains [11] by using whole-genome single nucleotide poly-

morphisms (SNPs) scored with methods such as geno-

typing-by-sequencing (GBS) [12]. �ese whole-genome 

SNPs could be sufficiently dense to be in linkage disequi-

librium with most quantitative trait loci (QTL) that affect 

traits of interest. Using GS, selection is imposed at these 

QTL without actually identifying the QTL or the func-

tional polymorphisms [10]. In addition, these SNPs will 

help to better track relatedness due to Mendelian sam-

pling [13], which leads to improved selection accuracies 

especially when pedigree records are not available [14].

GS models for plant genetic evaluation
Genetic evaluation [9] starts by accurately estimating the 

genetic value of an individual for a wide range of traits 

using its own performance records, progeny performance 

records, records from relatives, or a combination of the 

three [15]. Usually this estimation is carried out by using 
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the univariate single environment one-step (uT) BLUP 

model [16] to obtain estimated breeding values (EBV) for 

one trait at a time. In plant and animal breeding, breed-

ers usually select multiple traits at the same time that 

are often genetically correlated, with correlations that 

can range from weak to strong. �e uT model for traits 

that are measured in a single environment assumes zero 

genetic and residual covariances between these traits 

such that information from other traits is not used when 

obtaining EBV of the evaluated individuals for the traits 

in the analysis. However, the optimal estimation pro-

cedure is to combine information from multiple trait 

records and obtain EBV using the multi-trait single envi-

ronment one-step BLUP model (MT) [17, 18]. �e MT 

model does not assume zero genetic and residual covari-

ances but provides an estimate for these and also uses 

this information when obtaining individual EBV for the 

traits in the analysis. �e MT model has several advan-

tages over the uT model including:

1. Higher prediction accuracies for individual traits in 

the model because of more information (direct or 

indirect) and better connectedness of the data [19], 

especially when traits with varying heritabilities are 

analyzed jointly. �is is true if the genetic correla-

tions in the model are significant or substantial with 

low error correlations.

2. Simplified index selection because optimal weight 

factors for the total merit index are the economic 

weights [19].

3. Procedures for obtaining genetic and residual covari-

ances and incorporating these in EBV estimates for 

across-location, -country or -region evaluations [20–

22].

While MT models have clear advantages over uT mod-

els, they require the estimation of additional parameters 

(i.e., genetic and error covariances), which will affect 

accuracies of EBV. �e number of additional parameters 

increases as the number of traits increases. For large 

models, many additional parameters can lead to conver-

gence problems in the analysis. Lastly, an appreciable 

amount of data is required to get good estimates of these 

additional parameters.

In most plant breeding programs, genotypes are eval-

uated in multi-environment trials (MET) usually at 

advanced stages of breeding. �e goal is to sample the 

influence on selection candidates of the range of environ-

ments for which varieties will be targeted. Addressing the 

problem of the analysis of MET brings into focus another 

potential use for MT models [23]. Here, phenotypes of 

the same trait, but measured at different locations are 

parameterized as different traits in the MT model [24], 

producing what we call a multivariate single-trait multi-

environment BLUP (ME) model. Like the MT model, the 

ME model estimates genetic covariances of the same trait 

measured in multiple environments, which may lead to 

more accurate estimates of individual EBV for the trait 

in all the environments in which data are recorded. For 

the ME models used for modelling MET data, residual 

covariances are set to zero reflecting the assumption 

that no mechanism generates error covariances of a trait 

measured in different environments [20]. In contrast, the 

typical univariate BLUP model for modelling MET data, 

termed the univariate multi-environment one-step model 

(uE), fits a multi-kernel mixed model with the genotypic 

effect as one kernel and the genotype-by-environment 

(GxE) effect as the second kernel and maybe environment 

as the third kernel [25]. �is model yields a GxE variance 

for a MET and individuals can be ranked on their perfor-

mance in different locations. Different variants of the ME 

model have been used for modeling environment covari-

ance structures in plant [26–29] and in animal breeding 

[30, 31]. Genetic covariances from the ME model offer 

a convenient tool to assess the impact of GxE on a trait 

and relate directly to the extent of GxE at all locations in 

the analysis. A low genetic correlation between EBV for a 

trait at different locations from the ME model indicates a 

high GxE impact on that trait [9, 32–35].

To select the GS model for a practical cassava breeding 

program, it is necessary to compare models that will be 

efficient at various stages of cassava breeding with MET 

data. Finally, fitting multivariate BLUP models is not 

trivial. Even with software that, in principle, can fit these 

models, model convergence is not guaranteed and may 

require several attempts [36–38] and univariate models 

may be more practical if the benefits of the multivariate 

models are not substantial.

�e objectives of this paper are to (1) compare multi-

trait (MT) and single trait (uT) mixed models for single 

environment data using cross-validation, and (2) com-

pare the multivariate multi-environment (ME) model to 

a single-trait multi-environment (uE) model using cross-

validation and assessing the GxE impact on the traits 

analyzed via genetic covariances from the ME model fit.

Methods
Cassava phenotype data

We used historical phenotype data from different trials 

that were conducted for the cassava breeding program 

at the International Institute of Tropical Agriculture 

(IITA), Ibadan, Nigeria. �e genetic gain population rep-

resents a collection of clones selected from the 1970s to 

2007 within this program [39, 40]. Some of these clones 

are West African landraces and some are of East African 

origin. Clones in the genetic gain population have gone 
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through advanced stages of the cassava breeding process 

up to on-farm variety testing trials. �e data used in our 

analysis include data that were collected on clonal evalu-

ation trials (CET), which are augmented design trials 

with typically two known checks and unreplicated plots 

with five plants. �ese data were collected from three tar-

get locations in Nigeria: Ibadan (7.40°N, 3.90°E), Mokwa 

(9.3°N, 5.0°E), and Ubiaja (6.66°N, 6.38°E). �ese loca-

tions represent regions, which encompass about 35% of 

the cassava production in Nigeria. Datasets were col-

lected from 2000 to 2015 and included trials with most 

of the 739 clones of the genetic gain population. Six tar-

get agronomic traits were used in the analysis including 

seedling vigor (VIGOR), number of storage roots per 

plot at harvest (RTNO), fresh weight of harvested roots 

expressed in tons per hectare (T/ha) (FYLD), percent dry 

matter (DM) of storage roots, which measures root dry 

weight as the % of the root fresh weight, plot mean cas-

sava mosaic disease severity (MCMDS), which is rated on 

a scale from 1 (no symptoms) to 5 (extremely severe), and 

plot mean cassava green mite (MCGM) severity, which 

is rated on a scale from 1 (no symptoms) to 5 (extremely 

severe). Cassava mosaic disease is caused by a Begomo-

virus that belongs to the Geminiviridae family, and is 

carried and transmitted by the whitefly Bemisia tabaci. 

�e cassava green mite is Mononychellus tanajoa [41]. 

�ese traits are target traits used in the selection index 

for selection decisions in the IITA cassava breeding pro-

gram. Phenotype data metrics are in Table  1. All trait 

records were plot averages for both clonal accessions and 

checks. All checks were included in the analysis.

Cassava genotyping data

DNA from 739 clones from the 2013 genetic gain trial 

at IITA was extracted by using DNeasy Plant Mini kits 

(Qiagen) and was quantified using PicoGreen. Genotyp-

ing-by-sequencing (GBS) was used for genotyping [12] 

these clones. Six 95-plex and one 75-plex ApeKI librar-

ies were constructed and sequenced on Illumina HiSeq, 

one lane per library. SNPs were called from the sequence 

data using the TASSEL pipeline version 4.0 [42], using an 

alignment to the Manihot esculenta version 6 reference 

genome [43]. Average sequencing depth for polymorphic 

loci was 5×. Individuals with more than 80% and SNPs 

with more than 60% missing calls were removed. SNP 

genotyping data were converted to numeric genotypes (0, 

1, 2) and missing genotyping data were imputed using a 

LASSO regression method (Ariel Chan, personal com-

munication, 2014) that was implemented using the R 

glmnet package [44]. �e resulting dataset was rounded 

to obtain numerical genotypes (0, 1, 2) and consisted of 

183,201 SNPs scored in 739 clones.

Statistical analysis

We structured the cassava phenotype data described 

above into two types of data that are commonly used in 

most plant breeding programs. �e first set was achieved 

by pooling data from multiple years at specific locations 

(multi-year trials data). We termed this scenario the 

single-environment genetic evaluation (Scenario 1). �e 

resulting prediction accuracies from this dataset were 

assessed for the three locations. �e second scenario was 

achieved by using data from multiple locations and years 

(MET) but, in this case, location-specific information 

was extracted by modeling GxE interactions. We termed 

this scenario the multi-environment genetic evaluation 

(Scenario 2) and its goal was to assess the impact of GxE 

and determine the best way to fit it while also using infor-

mation from correlated environments.

Pseudo-true genetic values for prediction accuracy 

computations

To validate the models in this study, first we defined a 

univariate single-trait mixed model for each trait at each 

location separately (to preserve the variation embedded 

in each location) using an identity covariance matrix 

among clone effects, which assumes no relationship 

among the clones. �e univariate mixed model was as 

follows:

with u ∼ N
(

0, σ2uI
)

 and e ∼ N
(

0, σ2I
)

, where y is a vec-

tor of observations, b is a vector of fixed effects with the 

design matrix X (relating observations to fixed effects, 

in this case including grand mean and a nested effect 

of trial-within-year and the ratio of plants harvested to 

number planted); u is a vector of clonal genetic effects 

with the design matrix Z (relating observations to 

(1)y = Xb + Zu + e,

Table 1 Cassava phenotype means and standard devia-

tions (in brackets) at three locations: Ubiaja, Mokwa, 

and Ibadan

VIGOR seedling vigor, RTNO number of storage roots per plot at harvest, FYLD 

fresh weight of harvested roots in tons per hectare, DM percentage dry matter 

of storage roots, MCMDS plot mean cassava mosaic disease severity, and MCGM 

plot mean cassava green mites severity

Ubiaja Mokwa Ibadan

Number of records 7806 5345 5579

Number of clones 739 573 691

VIGOR (1–3) 6.51 (1.12) 6.52 (0.93) 6.11 (1.23)

RTNO (No./plot) 31.71 (17.30) 37.05 (21.76) 37.87 (23.91)

FYLD (T/ha) 12.61 (7.70) 16.51 (9.54) 15.84 (10.72)

DM (%) 31.95 (6.42) 29.01 (6.38) 30.8 (6.79)

MCMDS (1–5) 1.59 (0.93) 1.21 (0.57) 2.14 (1.01)

MCGM (1–5) 3.56 (0.97) 2.99 (0.67) 3.00 (0.85)



Page 4 of 10Okeke et al. Genet Sel Evol  (2017) 49:88 

clones). �is model was fit using the lmer function in 

the R lme4 package [45] and resulting BLUP values (û), 

which we refer to as estimated genotypic values (EGV), 

were used as pseudo-true genetic effects to compute pre-

diction accuracy, as commonly used in the plant breeding 

literature [41, 46, 47].

GS models for Scenario 1

We defined two mixed models that were fitted as follows.

The single-trait mixed model (uT)

with u ∼ N
(

0, σ2uK
)

 and e ∼ N
(

0, σ2I
)

, where y is the 

response vector of a trait for a given location, β is the vec-

tor of fixed effects with the design matrix X (with compo-

nents as in Model 1 above for each location and trait); u 

is the vector of random additive genomic effects with the 

design matrix Z (relating trait values to clones) and K is 

the additive genomic relationship matrix generated from 

SNPs as in method 1 of VanRaden [48] implemented in 

preGSf90 [49].

The multitrait mixed model

where y = (y′

1, y
′

2, y
′

3, . . . , y
′

d
)
′

, u = (u′

1,u
′

2, . . . ,u
′

d
)
′

 and 

e = (e′

1, e
′

2, e
′

3, . . . , e
′

d
)
′

, and y is the response vector of 

d traits (six core traits described above), X is a design 

matrix for fixed effects β (with components as in Model 1 

above for each location and trait) and Z is a design matrix 

for random genetic effects u. Following a multivariate 

normal distribution (Nm), the marginal density of y is:

and V = Z(G ⊗ K)ZT
+ R ⊗ I).

�e matrices G and R are d × d symmetric unstruc-

tured genomic and error covariance matrices respec-

tively, K remains the additive genomic relationship 

matrix for n clones generated from SNPs as above, I is an 

identity matrix.

Models (2) and (3) were fitted separately for each loca-

tion Ubiaja, Mokwa and Ibadan, respectively, allowing 

the error (co)variances associated with these locations 

to be distinct. Note also that, in these models, genotype-

by-location effects are confounded with the main geno-

type effects such that variance components may change 

between locations. �e effects of years and trials were 

fixed because emphasis was on location effects since 

these locations represented different production regions 

and we sought to capture consistent effects of these loca-

tions. In contrast, year effects are variable and by defini-

tion not consistent. Also following practice in cassava 

(2)y = Xβ + Zu + e,

(3)y = Xβ + Zu + e,

(4)(y|β,R,G) ∼ Nm(Xβ,V)

breeding [46, 47], multiple observations of one clone 

were not considered as repeated measures. Although 

these subjects were clones, data were collected from dis-

tinct individuals and thus they are independent. Hence, 

these measurements were treated as samples of clones 

and should lead to better precision in the prediction of 

breeding values.

GS models for Scenario 2

We also defined two mixed models with the aim of mod-

eling genotype-by-environment interaction effects as 

follows.

The compound symmetric multi-environment model (uE)

Here, we describe the uE model, first how it is fit and 

then we show its compound symmetry structure. �e 

model is as follows:

with y = (y′

a, y
′

b, y
′

c)
′

, e = (e′

a, e
′

b, e
′

c)
′

,

where y is the vector of a trait at locations a, b and c (cor-

responding to Ubiaja, Mokwa and Ibadan), β is the vector 

of fixed effects with the design matrix X (relating obser-

vations to fixed effects as in Model 1); u is the vector of 

random additive genomic effects with the design matrix 

Z1 (relating trait values to clones), w is the vector of ran-

dom clone-by-location interaction effects with the design 

matrix Z2, which is diag(Za,Zb,Zc) that relates records 

to clones in locations a, b and c, respectively. For the cth 

location, a column of Zc may be all 0s if the clone repre-

sented by the column was not evaluated in that location. 

σ
2
uK is the additive genomic relationship matrix gener-

ated from SNPs as above, I is an identity matrix and I3 is 

a 3 × 3 identity matrix. In this model, the genomic value 

of a clone for the cth location was estimated as û + ŵc. 

A more complete account of the error terms would have 

included clone-by-year and clone-by-location-by-year 

terms in the model. While such a model would have 

characterized the error in more detail, we believe that 

the obtained improvement of within-location estimation 

would have been marginal. Model 5 implies a compound 

symmetry structure [50] as described below.

The uE model defined as a compound symmetry (CS) 

covariance structure model

Using the same symbols as above, we defined the uE 

model with a CS covariance structure as:

with y = (y′

a, y
′

b, y
′

c)
′

 and e = (e′

a, e
′

b, e
′

c)
′

,

(5A)y = Xβ + Z1u + Z2w + e,

u ∼ N

(

0, σ
2
uK

)

, w ∼ N

(

0, σ
2
wI3 ⊗ K

)

, e ∼ N

(

0, σ
2
eI

)

(5B)y = Xβ + Z2w + e,



Page 5 of 10Okeke et al. Genet Sel Evol  (2017) 49:88 

 

�e genomic effect from this CS model for the cth 

location ŵc is equal to 
⌢

u + ŵc from the uE model. �e 

Z2 matrix is the same as in the uE model. Compared to 

the ME model described below, which replaces � with 

an unstructured covariance matrix with nine param-

eters (six for genetic and three for error (co)variances, 

respectively), the CS model has three parameters includ-

ing σ2u+w (equivalent to σ2u + σ
2
w in the uE model), σ2e and 

ρ. For any trait for which the CS covariance structure 

best fits the data, it is expected that model uE will pro-

vide more accurate GEBV than the ME model, which 

will overfit the data. Furthermore, the uE model defined 

here assumes a homogeneous variance across locations a , 

b and c. Although a CS model with heterogeneous vari-

ances can be fit, this was not the case for the uE model. 

�is assumption is incorrect if there are significant het-

erogeneous variances across these locations. In such a 

case, the ME model should provide more accurate breed-

ing values.

The multivariate multi-environment (ME) model

We fit the ME model in a single-step procedure using the 

following model:

with y = (y′

a, y
′

b, y
′

c)
′

, u = (u′

a,u
′

b,u
′

c)
′

 and 

e = (e′

a, e
′

b, e
′

c)
′

, where y is the vector of a trait in 

locations a, b and c (corresponding to Ubiaja, Mokwa 

and Ibadan) recorded for n clones, the X and Z design 

matrices are block diagonal matrices represented as 

diag(Xa,Xb,Xc) and diag(Za,Zb,Zc), respectively allow-

ing for missing clones and observations. X is a design 

matrix for fixed effects β (with components as in Model 

1) and Z is a design matrix for random genomic effects 

u . Following a multivariate normal distribution (Nm), the 

marginal density of y is:

and V = Z(G ⊗ K)ZT
+ R ⊗ I).

Given that d is the number of locations being ana-

lyzed, G is a d × d symmetric and unstructured genomic 

covariance matrix, while R is a d-dimensional diagonal 

error covariance matrix, K remains the additive genomic 

w ∼ N

(

0,

(

σ
2
u + σ

2
w

)

� ⊗ K

)

,

� =





1 ρ ρ

ρ 1 ρ

ρ ρ 1



 with ρ =
σ
2
u

σ
2
u + σ

2
w

,

V = (σ2u + σ
2

w)Z2(� ⊗ K)Z
′

2 + σ
2

eI.

(6)y = Xβ + Zu + e,

(7)(y|β,R,G) ∼ Nm(Xβ,V),

relationship matrix for n clones generated from SNPs as 

above, and I is an identity matrix. In this model, the error 

covariance matrix R is diagonal, thus allowing heteroge-

neous variances for a trait at different locations but the 

covariances are fixed to zero following the assumption 

that no mechanism generates error covariances of a trait 

measured in multiple environments.

Estimation of the parameters in Models (2), (3), (5) 

and (6) were performed using the average information 

(AI) REML procedure implemented in the airemlf90 

program [49] from which the best linear unbiased esti-

mator (BLUE) of fixed effects and the BLUP of random 

effects were obtained by solving the mixed model equa-

tions (MME) [5, 6]. Custom R-scripts were used for 

cross-validation.

Comparison of prediction accuracies

We used a fivefold cross-validation scheme with 10 

repeats for comparisons between the univariate and mul-

tivariate models. We used the same folds for the models 

in each scenario. Hereafter, we refer to predicted BLUP 

or genomic effects from these models as genomic EBV 

(GEBV). Prediction accuracies were calculated as a corre-

lation of the validation fold GEBV to their corresponding 

EGV.

Results
Scenario 1: MT versus uT model

In Scenario 1, we observed that the prediction accuracies 

of the MT model were higher than those of the uT mod-

els for most traits and locations in our analysis (Table 2). 

On average (across traits and locations), the MT model 

yielded prediction accuracies that were 59% higher for 

VIGOR, 43% for RTNO, 27% for DM, 40% for MCMDS, 

55% for FYLD and 18% for MCGM compared to the uT 

model. Averaged across traits and locations, the MT 

models were 40% more accurate than the uT models.

Scenario 2: ME versus uE model

In Scenario 2, we observed different patterns of pre-

diction accuracies of the uE and ME models. �e ME 

model yielded higher prediction accuracies for DM and 

MCMDS at all locations. On average (across locations), 

the uE model resulted in prediction accuracies that were 

2% better for VIGOR and 1% for RTNO, while the ME 

model resulted in prediction accuracies that were 32% 

better for DM, 24% for MCMDS, 5% for FYLD, and 4% 

for MCGM. Prediction accuracy of the ME model was 

12% higher than that of the uE model averaged across 

all traits and locations in the model. Trait correlations 

from the ME model representing the expected corre-

lated responses to selection ranged from 0.21 to 0.66 for 

VIGOR, 0.36 to 0.54 for RTNO, 0.57 to 0.81 for DM, 0.68 
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Table 2 Cross-validation prediction accuracies for GS models in Scenarios 1 and 2

Prediction accuracies for MT and uT models (GS Scenario 1) and for ME and uE models (GS Scenario 2)

The numbers in brackets are standard deviations for cross-validation repeat cycles

VIGOR seedling vigor, RTNO number of storage roots per plot at harvest, FYLD fresh weight of harvested roots in tons per hectare, DM percentage dry matter of 

storage roots, MCMDS plot mean cassava mosaic disease severity, MCGM plot mean cassava green mites severity

Single-trait single environment (uT) Multi-trait (MT)

Trait Ubiaja Mokwa Ibadan Ubiaja Mokwa Ibadan

GS Scenario 1

 VIGOR 0.24 (0.02) 0.16 (0.03) 0.42 (0.02) 0.41 (0.02) 0.31 (0.03) 0.58 (0.01)

 RTNO 0.32 (0.02) 0.17 (0.02) 0.37 (0.02) 0.46 (0.02) 0.24 (0.03) 0.53 (0.02)

 DM 0.60 (0.01) 0.33 (0.02) 0.51 (0.01) 0.72 (0.01) 0.46 (0.02) 0.64 (0.02)

 MCMDS 0.49 (0.01) 0.37 (0.03) 0.59 (0.01) 0.69 (0.02) 0.60 (0.04) 0.74 (0.01)

 FYLD 0.41 (0.02) 0.11 (0.03) 0.40 (0.01) 0.58 (0.02) 0.30 (0.03) 0.55 (0.02)

 MCGM 0.38 (0.01) 0.50 (0.02) 0.58 (0.01) 0.48 (0.01) 0.56 (0.02) 0.69 (0.01)

Single-trait multi-environment (uE) Multi-environment (ME)

Trait Ubiaja Mokwa Ibadan Ubiaja Mokwa Ibadan

GS Scenario 2

 VIGOR 0.22 (0.01) 0.10 (0.01) 0.37 (0.01) 0.24 (0.01) 0.12 (0.02) 0.32 (0.01)

 RTNO 0.29 (0.01) 0.11 (0.01) 0.34 (0.01) 0.27 (0.02) 0.13 (0.01) 0.34 (0.02)

 DM 0.49 (0.01) 0.20 (0.02) 0.40 (0.01) 0.60 (0.01) 0.35 (0.01) 0.50 (0.01)

 MCMDS 0.40 (0.01) 0.23 (0.01) 0.53 (0.01) 0.48 (0.01) 0.39 (0.02) 0.57 (0.01)

 FYLD 0.38 (0.01) 0.10 (0.02) 0.35 (0.01) 0.37 (0.01) 0.12 (0.03) 0.36 (0.02)

 MCGM 0.31 (0.01) 0.48 (0.01) 0.56 (0.01) 0.38 (0.02) 0.47 (0.01) 0.55 (0.01)

to 0.87 for MCMDS, 0.31 to 0.52 for FYLD and 0.24 to 

0.53 for MCGM. �us, genetic effects for MCMDS and 

DM were more consistent across locations than those for 

the other traits.

Discussion
Scenario 1: MT versus uT model

Some studies reported comparisons between MT and 

uT genomic prediction models using simulated data or 

real datasets [51–53]. Based on simulated datasets, Guo 

et  al. [53] and Calus et  al. [52] reported similar accura-

cies between MT and uT models with accuracies of 

the MT models for lowly heritable traits being slightly 

higher when the genomic correlations between the traits 

increased. Using Holstein and Jersey breed datasets from 

the US Dairy National evaluation program, VanRaden 

et  al. [51] also reported similar accuracies between MT 

and uT models for all the traits analyzed. However, for 

several traits, they obtained accuracies that were slightly 

higher with the uT model than with the MT model. For 

highly heritable traits and especially if complete pheno-

typic data are available for these, accuracies obtained by 

the MT model are not clearly better than those obtained 

by the uT model [53]. Improvement in prediction accura-

cies with the MT model is accrued mostly for lowly her-

itable traits when they are analyzed jointly with highly 

heritable traits that have medium to high genetic correla-

tions and low residual correlations [52, 53]. Our results 

were consistent with those of other studies [52, 53] since, 

in our analysis, our MT model yielded higher accura-

cies for most traits and locations and resulted from the 

joint analysis of low and high heritability traits. Most of 

the genetic correlations between traits at all locations in 

the MT models were significant (substantial) with low 

error correlations (not shown). �ese contributed to the 

increased prediction accuracies observed for the MT 

models compared to those of the uT models. Substan-

tial increases in prediction accuracies of the MT models 

were observed for VIGOR, RTNO and FYLD, which had 

mostly moderate to high genetic correlations with other 

traits at all locations although their heritabilities were 

mostly low.

For parental selections in specific locations, we recom-

mend the use of MT models but to confirm this conclu-

sion, further studies on the selection gains obtained by 

applying these models are necessary.

Scenario 2: ME versus uE model

Comparisons between different ME and uE genomic 

prediction models have been reported in plant breed-

ing literature [54–56]. Burgueno et  al. [29] conducted 

extensive modeling for multi-environment trials using 
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pedigree and genomic markers and incorporated many 

covariance structures including diagonal, factor analytic 

(FA), identity and unstructured covariances for both 

the genomic and error components in their models. 

�ey observed that prediction accuracies of a genomic 

ME model with a diagonal genomic covariance struc-

ture and a diagonal error covariance structure  (MED–D) 

were higher than that of a genomic ME model with a FA 

genomic covariance structure and diagonal error covari-

ance  (MEFA-D) for most of the locations measured in their 

analysis based on a cross-validation scheme (CV1) [29]. 

�is  MED–D is a univariate model with fewer parameters 

but it can be compared to our uE model. Although the 

uE model in our study assumed identical genomic and 

error variances for all locations analyzed, total pheno-

typic variance was partitioned into direct clonal genomic, 

clone-by-location interaction and error variance compo-

nents. Hence, effects due to clones and clone-by-location 

interaction were combined to generate location-specific 

GEBV, which can be compared to location-specific GEBV 

obtained in the  MED–D model. Our results were in line 

with this study for the traits VIGOR and RTNO at all 

locations with the uE model yielding higher prediction 

accuracies than the ME models and differed for the traits 

DM and MCMDS at all locations with the ME models 

yielding higher prediction accuracies. However, on aver-

age across locations and traits, prediction accuracies of 

the ME models were higher.

To further understand the strength of the impact of 

GxE interaction on the cassava core traits analyzed in 

our study, we used information from the proportion of 

total variation explained by clone and clone-by-location 

effects from the uE model (Table 3). From the total vari-

ation explained by SNPs, the effect of clone-by-location 

interaction was approximately 30% for VIGOR, 48% for 

RTNO, 12% for DM, 15% for MCMDS, 56% for FYLD 

and 46% for MCGM. �ese proportions show strong 

clone-by-location interactions for FYLD, RTNO, MCGM 

and VIGOR but weak interactions for DM and MCMDS. 

In addition, the genetic correlations between the three 

locations for DM and MCMDS were relatively high rang-

ing from 57 to 81 and 68 to 87%, respectively (Table 4), 

supporting our findings. �ese high correlations revealed 

that cassava DM and MCMDS were repeatable across 

the locations in our study, which suggests that geno-

types selected for these traits will perform comparably 

across locations. From the genetic correlations in Table 4, 

improvement for RTNO and FYLD at Ubiaja will result 

in a correlated response of about 50% for these traits at 

Mokwa and about 35% at Ibadan. �e low predicted cor-

related responses confirm that the environment had a 

higher impact on RTNO, FYLD, VIGOR and MCGM, 

thus improving these traits is more challenging. �is 

makes a case for decentralized breeding especially for 

yield component traits. Breeding for good varieties that 

combine these core traits may be targeted towards spe-

cific locations or groups of locations with specific geno-

types selected for these locations.

�e ME model exploits the positive genomic correla-

tions captured in its G matrix for prediction. �e major 

difference between the prediction accuracies obtained by 

the ME and uE models were mainly due to the fact that 

the ME model accounted for genetic covariances when 

generating GEBV since genetic variances from both mod-

els were similar. Genetic covariances from the ME mod-

els are a reflection of the GxE interactions for the trait of 

interest and ME breeding values capture both additive 

Table 3 Proportion of explained variance by clone 

and clone-by-location effects

These estimates are from effects based on genotyping by sequencing markers 

from the uE model

VIGOR seedling vigor, RTNO number of storage roots per plot at harvest, FYLD 

fresh weight of harvested roots in tons per hectare, DM percentage dry matter 

of storage roots, MCMDS plot mean cassava mosaic disease severity, MCGM plot 

mean cassava green mites severity

Trait Variance explained by effect (%)

Clone-by-location Clone

VIGOR 4.52 10.70

RTNO 8.70 9.54

DM 4.59 33.52

MCMDS 10.00 58.90

FYLD 13.01 10.11

MCGM 7.00 8.33

Table 4 Genetic correlations from the multi-environment 

analysis

The genetic correlations are from the ME model (standard error of estimates in 

brackets)

VIGOR seedling vigor, RTNO number of storage roots per plot at harvest, FYLD 

fresh weight of harvested roots in tons per hectare, DM percentage dry matter 

of storage roots, MCMDS plot mean cassava mosaic disease severity, MCGM plot 

mean cassava green mites severity

Trait Location Ubiaja Mokwa

VIGOR Mokwa 0.39 (0.02)

Ibadan 0.66 (0.02) 0.21 (0.03)

RTNO Mokwa 0.54 (0.08)

Ibadan 0.36 (0.08) 0.38 (0.08)

DM Mokwa 0.57 (0.00)

Ibadan 0.81 (0.00) 0.77 (0.00)

MCMDS Mokwa 0.80 (0.03)

Ibadan 0.87 (0.05) 0.68 (0.04)

FYLD Mokwa 0.52 (0.02)

Ibadan 0.31 (0.02) 0.33 (0.04)

MCGM Mokwa 0.34 (0.01)

Ibadan 0.24 (0.01) 0.53 (0.01)



Page 8 of 10Okeke et al. Genet Sel Evol  (2017) 49:88 

genotypic and additive genotype-by-environment effects. 

However, the lack of information from between-trait 

correlations (which are captured by MT models) in ME 

breeding values represents a challenge when selection 

decisions based on information from the interconnec-

tion between multiple trait and multiple location data 

are required. �e interconnection between these data 

may be useful for understanding GxE and for selection 

on traits that are highly influenced by the environment. 

�erefore, there is an opportunity for interconnection 

between information from a valuable single environment 

and MET data which are readily available in plant breed-

ing programs.

Another potential use of the ME models is for clus-

tering environments into target populations of environ-

ments (TPE). If correlated responses to selection of target 

traits are similar for certain locations based on genetic 

correlations from the ME model, then these locations 

can be grouped into a TPE. Regional breeding can begin 

within this TPE and all multi-location trials are carried 

out within this TPE. For example, for the traits VIGOR, 

DM and MCMDS that have correlated responses to 

selection ranging from 66 to 87% (Table  4), Ubiaja and 

Ibadan can belong to same TPE.

Parameter estimates and implications for cassava breeding

�e estimates of genomic correlations and heritabilities in 

Table 5 have interesting implications for cassava genetic 

improvement. Genetic correlations between RTNO and 

FYLD estimated with the MT model were high and posi-

tive for all locations (ranging from 0.65 to 0.8), whereas 

those between RTNO and DM and between FYLD and 

DM were close to zero (ranging from − 0.02 to 0.20). �e 

genetic correlations for these core production traits (DM, 

RTNO and FYLD) indicate that concurrent improvement 

of these traits is achievable. However, more replication in 

trials targeting these production traits will help reduce 

error variances and improve the accuracy of paren-

tal selections given the low heritabilities for FYLD and 

RTNO. VIGOR can also be improved concurrently with 

these production traits since it is mostly positively cor-

related with these (Table 5). �e disease trait (MCMDS) 

showed moderate to strong negative genomic correla-

tions with VIGOR and the production traits, which is 

favorable for cassava breeding in Africa especially where 

the cassava mosaic disease (CMD) pressure is high. Con-

sequently, cassava breeders have selected for CMD resist-

ance genes over time [57, 58]. With the favorable genetic 

correlations between these target traits in mind, the 

Table 5 Genetic correlations and heritabilities for the traits analyzed

Plot-based heritabilities on the diagonal, genetic correlations from the MT model on the off-diagonal (standard error of estimates in brackets)

VIGOR seedling vigor, RTNO number of storage roots per plot at harvest, FYLD fresh weight of harvested roots in tons per hectare, DM percentage dry matter of 

storage roots, MCMDS plot mean cassava mosaic disease severity, MCGM plot mean cassava green mites severity

Trait VIGOR RTNO DM MCMDS FYLD MCGM

Ubiaja

 VIGOR 0.16

 RTNO 0.63 (0.01) 0.21

 DM 0.27 (0.01) 0.19 (0.01) 0.42

 MCMDS − 0.67 (0.02) − 0.53 (0.01) − 0.22 (0.03) 0.62

 FYLD 0.62 (0.01) 0.80 (0.01) 0.11 (0.01) − 0.42 (0.02) 0.26

 MCGM 0.05 (0.01) − 0.03 (0.00) − 0.17 (0.01) 0.22 (0.01) − 0.08 (0.01) 0.1

Mokwa

 VIGOR 0.06

 RTNO − 0.11 (0.01) 0.16

 DM 0.12 (0.02) − 0.003 (0.01) 0.31

 MCMDS − 0.03 (0.02) − 0.35 (0.01) − 0.14 (0.02) 0.64

 FYLD 0.04 (0.01) 0.65 (0.01) − 0.15 (0.01) − 0.18 (0.01) 0.21

 MCGM 0.32 (0.01) − 0.15 (0.01) − 0.02 (0.01) − 0.03 (0.01) − 0.1(0.01) 0.26

Ibadan

 VIGOR 0.19

 RTNO 0.46 (0.01) 0.26

 DM 0.18 (0.02) 0.20 (0.02) 0.37

 MCMDS − 0.64 (0.03) − 0.52 (0.03) − 0.13 (0.03) 0.77

 FYLD 0.34 (0.02) 0.77 (0.02) − 0.02 (0.02) − 0.44 (0.04) 0.35

 MCGM − 0.14 (0.01) 0.16 (0.01) − 0.08 (0.01) 0.11 (0.03) 0.11 (0.02) 0.22
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merit index from MT breeding values should be efficient 

since it takes genetic correlations into account.

We would like to make it clear here that fitting MT 

and ME models are computationally expensive since, in 

our case, they required the estimation of 90 and 36 addi-

tional covariance parameters for the MT and ME mod-

els, respectively, compared to the uT and uE models. We 

had a few thousand records to estimate these parameters 

accurately for our target traits as shown by the standard 

errors of these estimates in Tables 4 and 5. When these 

correlations are not significant, breeding values from uni-

variate models are sufficient because MT models are not 

expected to result in improved prediction accuracies [59].

Conclusions
�e effectiveness of a breeding program is evaluated by 

its ability to provide adapted and productive varieties 

to the farming community in the target environments it 

serves. To achieve this goal for the cassava breeding pro-

gram at IITA, we recommend a decentralized breeding 

strategy for the different agro-ecological zones in Nige-

ria using total merit indices based on MT breeding val-

ues. Further studies should be conducted to understand 

how much selection gain can be achieved by using this 

strategy. ME models provided less improvement in pre-

diction accuracy but were useful for understanding GxE 

interactions.
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