
Accuracy-Adaptive Simulation of Transaction Level Models

M. Radetzki, R. Salimi Khaligh
Institut für Technische Informatik, Universität Stuttgart, Stuttgart, Germany

{radetzki, salimi}@informatik.uni-stuttgart.de

Abstract
Simulation of transaction level models (TLMs) is an estab-
lished embedded systems design technique. Its use cases in-
clude virtual prototyping for early software development,
platform simulation for design space exploration, and ref-
erence modelling for verification. The different use cases
mandate different trade-offs between simulation perfor-
mance and accuracy. Therefore, multiple TLM abstraction
layers have been defined of which one has to be chosen and
integrated into the system model prior to simulation. In this
contribution we present a modelling technique that allows
covering several layers in a single model and switching be-
tween the layers at any time, in particular dynamically dur-
ing simulation. This feature is employed to automatically
adapt simulation accuracy to an appropriate level depend-
ing on the model’s state, leading to an improved trade-off
between simulation performance and accuracy.

1 Introduction
Transaction level modelling aims at enabling system

level simulation of large systems, for which RTL simula-
tion would require an unacceptable amount of time. This
goal is achieved by abstracting from signal level communi-
cation and modelling complex communication operations
as atomic transactions, thereby reducing the number of
events to be processed by event-driven simulators. In the
case of bus based platforms, transactions model bus trans-
fers such as burst or single word read and write operations.

Transaction level models exist at different layers which
can roughly be characterized as untimed, approximately-
timed, cycle-approximate and cycle-accurate. These layers
provide different trade-offs between abstraction and accura-
cy suitable for different use models.

The decision which layer to employ is made by the user
prior to simulation based on the use case and required accu-
racy. Hence, the same layer is employed throughout a com-
plete simulation run. This layer may, however, not at all
times during the simulation constitute an optimal perfor-
mance / accuracy trade-off. For example, assume that a
model with pre-emption of bus transfers is being simulated
in order to perform bus performance estimation with rela-
tively high accuracy. During simulation periods in which

only one master or the highest priority master is active, a
more abstract layer without pre-emption could be employed
to gain simulation speed at no loss of accuracy. On the other
hand, when a situation occurs that requires simulation on a
more accurate layer, a temporary switch to this layer can
help increase accuracy at little performance cost (as long as
it occurs infrequently).

In the remainder of this paper, we present a novel ap-
proach that collects different layers in a single model and
automatically adapts the accuracy (or layer) to the changing
simulation scenarios. Related work is analyzed in the next
section. Section 3 outlines the fundamental concepts of
adaptive TLMs, and section 4 provides details on a Sys-
temC based implementation. In section 5, we present exper-
imental results on simulation performance. Section 6
concludes our contribution.

2 Related work
Many TLM layers and terminologies have been sug-

gested by multiple authors and groups [2]. We adopt the ter-
minology of the SystemC TLM group for our work but give
a more precise definition of the layers based on Niemann’s
and Haubelt’s concept of atomic transactions [4]: At the PV
and PV+T layers, a bus transfer is modelled as a single
transaction; at CA layer, a transfer is modelled with at least
one transaction per bus cycle, and at CX layer(s) with more
transactions than PV(+T) but less than CA.

TLM layers are typically separated into disjoint models
and few models describe a relation between the layers. The
GreenBus [3] is a generic bus model that introduces the
concept of transactions consisting of uninterruptible phases
(atoms) which are collections of payload values (quarks).
By identifying bus protocol signals as quarks, the generic
model can be customized to model concrete buses. Simula-
tion can be performed at the layer of transactions, atoms or
quarks, corresponding to approximately-timed, cycle-ap-
proximate, and cycle-accurate layers.

Multi-accuracy simulation has been introduced to TLM
by Beltrame et al. [1] for the purpose of switching at run
time between power models with different accuracy / per-
formance trade-offs. Accuracy selection is performed under
user control by multiplexing and demultiplexing different

978-3-9810801-3-1/DATE08 © 2008 EDAA

channel models. Switching is not instantaneous since trans-
actions in the switched-off model need to be completed
while new transactions are initiated with the switched-on
model. This appears acceptable for the main application of
simulating a model with low accuracy until a point of inter-
est is reached at which switching to a higher accuracy mod-
el can be done. However, it is not possible to react quickly
to simulation scenarios such as transfer pre-emption.

A modelling approach adaptive to simulation scenarios
has been presented by Schirner and Dömer [7] under the
term Result Oriented Modeling (ROM). ROM simulates a
complete bus transfer as an atomic transaction and extends
the duration of a transaction when the bus transfer would
have been pre-empted in the real system. Based on the au-
thors’ definition of timing accuracy, which only considers
the simulated start and end points of each transaction, the
model is fully timing accurate. However, all data is trans-
ferred at the beginning of a transaction. Hence, with respect
to data, the model is not cycle-accurate and functional cor-
rectness can be impaired. E.g., if a write transfer to a RAM
slave is pre-empted by a read transfer, a data value may be
read that has not yet been transferred in the real system.

3 Adaptive modelling
Cycle-accurate TLMs perform bus arbitration in each

bus cycle. We reduce the amount of arbitration processing
under the assumption of a time-invariant arbitration proto-
col: Since the grant decision is not modified unless the state
of the waiting and active transfers changes, arbitration can
be limited to cycles in which a new communication request
arrives to the bus or in which the currently active transac-
tion releases the bus (e.g. because the transfer is finished),
giving waiting masters the chance to be granted the bus.
The need for arbitration is signalled by a single, central
event in our bus model. Figure 1 depicts the time instants at
which this event has to be triggered. In the best case (per-
formance-wise), this reduces arbitration effort significantly
compared to the cycle-accurate approach. On the other
hand, in cases of high bus utilization with transfers being
initiated or finished in each cycle, the model inherently con-
verges towards cycle-accuracy.

Fig. 1: Triggering the arbitration event

As a result of bus arbitration, a transfer may be active
without pre-emption from its initiation until completion.
Such a transfer can be modelled accurately and efficiently
as a single atomic transaction. Whether this is the case de-

pends on bus requests by other masters (of potentially high-
er priority) while the transfer is active. This information,
however, is not known before the transfer is finished.
Therefore, data is transferred as a single block at the end of
a transaction in our model as shown in Figure 2. In absence
of interfering transfers, the end time of a transaction can
precisely be estimated from its start time, the amount of
data to be transferred and the bus cycle time.

Fig. 2: Uninterrupted transfers as single transactions

During the simulation of a bus transfer, another transfer
may be initiated by a higher-priority master. Then, after ar-
bitration, the current bus transfer must be pre-empted. An
atomic transaction in this case only models an uninterrupted
portion of the transfer. Simulation adapts to this scenario by
quitting the transaction and transferring an amount of data
corresponding to transaction duration as shown in Figure 3.
The state of the transfer is stored for later resumption. Then,
the higher-priority transfer is simulated using the same
adaptive approach, i.e. starting with the ability to cover the
complete transfer efficiently and accurately with a single
transaction, yet ready to partition it into multiple transac-
tions should the simulation scenario require it.

After completion of the high-priority transfer, simula-
tion resumes the pre-empted transfer with a new transaction
which starts with the stored transfer state. The transfer may
be pre-empted again, which is handled as explained before.
Otherwise, the simulation of the transfer is finalized with
this transaction, and only the remaining amount of data is
transferred at its end.

Fig. 3: Pre-empted transfer as multiple transactions

The simulation mechanism automatically adapts to cy-
cle-accuracy if bus transfers are initiated or completed in
every cycle. In this case, bus arbitration is performed cycle-
by-cycle and transaction duration may be reduced to a sin-
gle cycle in the extreme case. However, if arbitration does
not result in pre-emption, transactions can still extend over
more than a cycle without losing accuracy, thereby achiev-
ing higher simulation performance than a purely cycle-ac-
curate approach.

Time

High Priority
Master

Low Priority
Master

Arbitration
Event

active

activewait pre-empted

active

active

Time

High Priority
Master

Low Priority
Master

Model
Accuracy

active

active waiting

PV+T

data transfer

Time

High Priority
Master

Low Priority
Master

Model
Accuracy

active

active

CX

active

PV+T PV+T

data transferdata transfer

 pre-empted

4 Implementation in SystemC
We have implemented the adaptive TLM concepts in a

SystemC model based on the object-oriented approach of
[5]. The API for initiating transfers is provided by a master
port, a specialized SystemC port which implements opera-
tions for performing transfers over the bus (cf. Figure 4). A
transfer is initiated by calling the read or write operation,
respectively. The base address to be accessed and the num-
ber of bus data words to be transmitted are passed via the
parameters addr and size. If size is greater than one, the
transfer is a burst to successive addresses starting from ad-
dr. The data of a write transfer must be supplied by calls to
the operation put, and read data can be obtained via get.
This facilitates cycle-true modelling of the master: it can
initiate, e.g., a write transfer without having to know all
data in advance, and can later provide the data words as
they are computed cycle by cycle. On the other hand, the
master may abstract from timing by supplying all data with-
out delay just after initiating the transfer, and at any time
synchronize to the timed bus model by calling the finish op-
eration which waits for transfer completion.

Fig. 4: Transfer API and data structure

When a transfer is initiated, a corresponding transfer
message is created and stored in the port’s attribute tx.
Figure 4 shows the message that represents a write transfer.
In addition to address, burst size and data, the message car-
ries information on the amount of data, pos_m, that has
been supplied by the master via put and the position in the
burst, pos_s, that is to be processed next by the slave. Each
transfer object includes two events, preempt_evt and
finish_evt, that are used by the bus model to signal the pre-
emption and completion of a transfer, respectively.

Figure 5 is a UML activity diagram specifying the pro-
tocol-specific behaviour of the bus model, where
• m is the master that currently owns the bus,
• m’ is the master to which the bus is handed over,
• tx is a reference to the current transfer,
• s is the slave addressed by the transfer, and
• put, get, and peek are operations of TLM channels as de-

fined by the SystemC TLM standard.
The behaviour consists of the phases (1)-(4) shown in

Fig. 5. It is triggered (1) by a central event, arbitrate_evt,
which occurs as described in Section 3. In phase 2, the cur-

rent transfer (if any) is removed from the bus in case it is
finished. In phase 3, the new master that gets the bus ac-
cording to the modelled arbitration scheme is determined;
this may, e.g. in a round robin scheme, depend on the cur-
rent master. The function arbitrate shall skip masters that
have no transfer message. Finally, in phase 4, the transfer
message of the new master (if any) is forwarded to the ad-
dressed slave after pre-emption of a previously active trans-
fer (if any).

Fig. 5: Arbitration processing activity

The behaviour explained so far is independent of simu-
lation accuracy. Layer-dependent and adaptive behaviour
are assembled in the transaction model as follows:

Fig. 6: Transaction processing activity

The transfer’s execute method implements the slave
side of processing a transfer as illustrated in Figure 6 with
the example of a write transfer. The activity begins when a
transaction is received (1) over the slave’s port. The activity
waits (2) for the maximum duration of the transaction (tim-
eout), corresponding to PV+T layer simulation. A pre-emp-

execute(slave : slave_if)

base_addr : uint
size : uint
data : uint [size]
pos_m : uint
pos_s : uint
preempt_evt : sc_event
finish_evt : sc_event

write_transfer

read(addr, size, ctrl : uint)
get() : uint
write(addr, size, ctrl : uint)
put(data : uint)
finish()

tx : transfer

master_port

arbitrate_evt

tx is finished

get mport[m]

m := -1; tx := 0

tx.finish_evt

m’ := arbitrate(m)

tx 0
tx.preempt_evt

m := m’
s := decode(tx.addr)

put tx sport[s]

tx = peek mport[m’]

tx is
split

(3)(1)

m’ = melse else

tx=0

(2) (4)

tx = get s_port

preempt_evt [CX simulation] or
timeout((size - pos_s)×t_cycle)

(2)

(4)

(1)

t_act := now()

cycles := (now() – t_act) / t_cycle
cycles :=

size – pos_s

CA simulation

else

cycles = 0

pos_s pos_m

slave.write(start_addr+pos_s, data[pos_s])
pos_s := pos_s+1; cycles := cyles–1;

t_cycle
not
CA

CA

E

pos_s < size

arbitrate_evt

pos_s = size

(3)

tion by the bus model may occur if CX simulation is
enabled. At the end of phase 2, the number of bus cycles
elapsed while waiting is computed. A value less than the
full transfer time represents the case of cycle-approximate
simulation.

The slave operations that would have taken place during
the elapsed bus cycles in the modelled system are per-
formed retroactively in phase 3. If the slave would proceed
beyond the amount of data put by the master so far (pos_s
reaches pos_m), an error occurs (E). Alternatively, wait op-
erations could be introduced to model busy cycles (or slave
wait states). The completion of a transaction is shown in
phase (4): If the end of the transfer is reached, the arbitra-
tion event is released. Otherwise, the transfer will be com-
pleted later by starting the activity again.

5 Experimental results
The experimental setup used for performance evalua-

tion of the adaptive simulation approach has been chosen so
as to enable a comparison with the related work [7]. Simu-
lations have been performed on a computer with Pentium M
1.66 GHz. The setup includes two masters and one slave.
The first master issues transfers of increasing burst length.
The second master has a higher priority and issues transfer
requests of eight-beat bursts at a constant rate to achieve a
base utilization u of 10 to 50 percent. With increasing u, an
increasing pre-emption of the first master’s transfers has to
be simulated.

Fig. 7: Performance for varying amount of pre-emption

Figure 7 shows the resulting simulation performance of
the adaptive model in comparison to pure PV+T [5] and CX
[6] models. Since our model switches between PV+T and
CX accuracy, its performance is in-between the perfor-
mance of the fixed-layer models. With higher base utiliza-
tion, performance decreases because more pre-emptions
have to be simulated, and simulation accuracy is more often
at CX layer. However, for transfer sizes less than 8 words,
this relationship is reversed for two reasons:

• Shorter low-priority transfers are more likely to be fin-
ished just in time when a high-priority transfer arrives to
the bus, so that no pre-emption occurs and simulation can
be at the more efficient PV+T layer.

• The high-priority transfers are never pre-empted and due
to their longer duration simulated more efficiently than
the shorter low-priority transfers. This is also the reason
for exceeding PV+T performance (measured with
u = 0%) at transfer size less than three words.

Performance of the ROM approach has been measured
in [7] as the simulation time for a transfer at u = 33% and
ranges from 0.002 to 0.05 milliseconds for transfer sizes
from 1 to 1024 bytes. Corresponding measurements with
our model show simulation times from 0.003 to 0.08 milli-
seconds. Hence, adaptive modelling can remove the intra-
transaction inaccuracy inherent to ROM at a slight perfor-
mance penalty.

6 Conclusions
We have introduced a new, accuracy-adaptive transac-

tion level modelling and simulation concept that relieves
the user of handling multiple models at different abstraction
layers. The concept has been implemented in a model that
achieves cycle-by-cycle data accuracy if required for func-
tional correctness but switches to more abstract simulation
of transfers at completion and pre-emption points when
possible. Simulation performance is significantly above
previous CA and CX models and comes close to the PV+T
layer of non-preemptible transfers.

7 References
[1] G. Beltrame, D. Sciuto, C. Silvano: Multi-Accuracy Power

and Performance Transaction-Level Modeling. IEEE
Trans. on Computer Aided Design of Integrated Circuits
and Systems (TCAD), vol. 26, pp. 1830-1842, 2007.

[2] M. Burton at al.: Transaction Level Modelling: A Reflection
on What TLM Is and How TLMs May Be Classified. Proc.
Forum on Design Languages (FDL), 2007.

[3] W. Klingauf et al.: GreenBus - A Generic Interconnect Fab-
ric for Transaction Level Modelling. Proc. 43rd Design
Automation Conference (DAC), 2006.

[4] B. Niemann, Ch. Haubelt: Towards a Unified Execution
Model for Transactions in TLM. Proc. Formal Methods and
Models for Codesign (MEMOCODE), 2007.

[5] M. Radetzki: SystemC TLM Transaction Modelling and
Dispatch for Active Objects. Proc. Forum on Design Lan-
guages (FDL), 2006.

[6] M. Radetzki, R. Salimi Khaligh: Modelling Alternatives for
Cycle Approximate Bus TLMs. Proc. Forum on Design Lan-
guages (FDL), 2007.

[7] G. Schirner, R. Dömer: Fast and Accurate Transaction
Level Models using Result Oriented Modeling. Proc. Int’l
Conference on Computer Aided Design (ICCAD), 2006.

 100000

 1e+06

 1e+07

 1 10 100

S
im

ul
at

io
n

pe
rf

or
m

an
ce

 [c
yc

le
s/

s]

Transfer size [words]

PV+T u= 0%
adaptive u=10%
adaptive u=20%
adaptive u=33%
adaptive u=50%

CX u= 0%

