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Abstract— Due to the joint clearance, parallel manipulators
always exhibit some position and orientation errors at the
mobile platform. This paper aims to provide a systematic
framework for the error analysis problem of general parallel
mechanisms influenced by the joint clearance. A novel and
efficient method is proposed to evaluate the maximal pose errors
of general spatial parallel manipulators with joint clearance.

I. INTRODUCTION

Despite the fact that joint clearance simplifies the assembly
and manufacturing of parallel mechanisms, the generated
pose error of links, however, can not be ignored when the
mechanism requires high accuracy. Compared with other
error sources, such as assembly and manufacturing errors
and motor actuation errors, etc, joint clearance has more
significant impact on the position accuracy for both serial
and parallel manipulators. Therefore, it is quite important to
provide an accurate model that can predict the effects of joint
clearance on the mechanism’s positioning performance. As
indicated in [1], contrary to the assembly and manufacturing
errors, joint clearance leads to uncertain error motions at
an arbitrary pose of the mechanism. Its effects are highly
non-repeatable and can not be rectified with any kind of
calibration.

Much research has been devoted to the problem of ac-
curacy in parallel mechanisms. Some authors applied prob-
abilistic analysis to determine the pose error of clearance-
affected joints and moving platform [2]. Parenti-Castelli
and Venanzi [3] used the virtual work method to deter-
mine the position that the moving platform reaches when
a given external load is exerted on it. P.Voglewede and
I.Ebert-Uphoff [4] aimed to predict precisely the mobile
platform error motions for 3-RRR and some special parallel
mechanisms with joint clearance. In this paper, we will
provide a deeper insight into the accuracy problem of parallel
mechanisms affected by joint clearance. A general and yet
efficient error evaluation method is also proposed which
can handle any kind of parallel mechanisms, no matter
planar or spatial, overconstrained or non-overconstrained.
Furthermore, its efficiency makes it possible to compute
the global maximum pose errors of a clearance-affected
mechanism in a prescribed workspace, other than just at a
given theoretical configuration.
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Fig. 1. Pose Error of A Rigid Body

Fig. 2. Clearance-affected Revolute Joint

II. POSE ERROR ANALYSIS OF PARALLEL

MANIPULATORS WITH CLEARANCE-AFFECTED PAIRS

A. End-effector and Joint Pose Error

Fig.1 shows the end-effector of a parallel mechanism with
some configuration (including the position and orientation)
error. Suppose that the nominal (or ideal) configuration of the
end-effector (the dashed rigid body in Fig.1) is g0 ∈ SE(3),
which is the relative transformation from the nominal body
frame B to the inertial frame A. With some configuration
error, the relative transformation from the actual body frame
B′ to the inertial frame A, however, gives rise to the real
configuration g′ of the end-effector. Let A′ be another frame
attached to the end-effector, which is chosen such that the
relative transformation from B′ to A′ is g0 (see Fig.1). Then
it is clear that without configuration error, A′ frame will co-

Fig. 3. Clearance-affected Prismatic Joint
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incide with the inertial frame A, and B′ frame will coincide
with B. Hence the error rigid motion of the end-effector
from the nominal configuration to the real configuration can
be described either by the relative transformation from B′

to B, which is g−1
0 g′, or the relative transformation from A′

to A, that is g′g−1
0 . Correspondingly, the configuration error

can be defined as (g−1
0 g′ − e) and (g′g−1

0 − e), which are
called the configuration error with respect to the body frame
and the inertial frame respectively.

Normally the error rigid motions g−1
0 g′ and g′g−1

0 are
restricted within a small neighborhood of e. Hence the two
expressions of the configuration error can be reasonably
approximated by their first order terms, that is,

g−1
0 g′ − e = eê1∆xb

eê2∆yb

eê3∆zb

eê4∆αb

eê5∆βb

eê6∆γb − e
≈ (ê1∆xb + · · · + ê6∆γb)

and

g′g−1
0 − e = eê1∆xa

eê2∆ya

eê3∆za

eê4∆αa

eê5∆βa

eê6∆γa − e
≈ (ê1∆xa + · · · + ê6∆γa)

where {ei|i = 1, · · · , 6} is the canonical basis of R
6,

and the six components ∆xb, · · · ,∆γb (and ∆xa, · · · ,∆γa)
represent the three translation and three rotation errors of
the end-effector about the x, y and z axis of the B (and
A) frame respectively. In the above two equations, the ∧
operation identifies R

6 with se(3) (see [5] for more details).
Hence if we let δgb = (∆xb,∆yb,∆zb,∆αb,∆βb,∆γb)T

and δga = (∆xa,∆ya,∆za,∆αa,∆βa,∆γa)T , then it is
easy to see that g−1

0 g′ − e ≈ ˆδgb and g′g−1
0 − e ≈ ˆδga. To

avoid the confusion with the term configuration error, δgb

will be called the pose error with respect to body frame, and
δga the pose error with respect to the initial frame. From
now on, the pose error of the end-effector other than the
configuration error will be mainly used and studied in this
paper. As the relative transformation from B to A frame
is g0, the two expressions of the pose error are related by
δga = Adg0δg

b, where for g = (p,R), the Adjoint map is
defined by

Adg =
[

R p̂R
0 R

]
The pose error of the end-effector is caused by many fac-

tors, such as assembly and manufacturing errors (occurring at
the adjacencies between the links and the joints), actuation
motor errors, joint clearance, etc. As the major source of
the pose error comes from the error motions caused by the
joint clearance [6], in this paper, we will focus on studying
the impact of joint clearance on the deviations of the end-
effector’s configurations. Hence, we will assume that joint
clearance is the unique error source. In the remain part of
this subsection, we study the impact of joint clearance on the
pose error of two links connected by a clearance-affected
joint. Only revolute and prismatic joints are considered in
this paper, but other types of joints can be analyzed in a
similar manner.

A clearance-affected kinematic pair (i.e., a pair with joint
clearance) actually has 6-DoFs. Thus at a given nominal
configuration (the theoretical configuration of the pair), there

are 6 twists associated with a pair. Some twists result
in the desired motions of the joint, called ideal twists,
whereas others give rise to the error motions caused by joint
clearance. For example, for a clearance-affected revolute pair
in Fig.2, if we attach a local coordinate frame C to the
bearing with z-axis along the pair’s theoretical axis, then e6

generates the ideal rotational motions of the joint, whereas
e1, · · · , e5 generate error motions of the shaft with respect
to the bearing. The pose error of the relative configuration
of the two links with respect to the local frame C thus is
given by

δΥc =
5∑

i=1

ei∆σi (1)

where ∆σ1,∆σ2,∆σ3 represent 3-infinitesimal error trans-
lations along x, y, z axis, and ∆σ4,∆σ5 represent 2-
infinitesimal error rotations about x, y axis. Hereafter
∆σi, i = 1, · · · , 5 will be called the error motions caused by
the joint clearance, with values restricted by the joint geom-
etry and the magnitude of joint clearance. For a particular
design of a clearance-affected revolute joint, it is possible
to formulate explicitly the set of constraints that bound the
values of ∆σi. For example, for the journal bearing design
(Fig.2) of a revolute joint, because of the axial symmetry,
the x, y axis can be chosen freely. With origin chosen at
the joint center, and the geometrical dimensions L, D and
the magnitude of joint clearance εr, εa given beforehand,
the values of ∆σi are constrained by a set of quadratic and
second order cone constraints :

(∆σ1 + L
2 ∆σ5)2 + (∆σ2 − L

2 ∆σ4) ≤ ε2r
(∆σ1 − L

2 ∆σ5)2 + (∆σ2 + L
2 ∆σ4) ≤ ε2r

D
2

√
∆σ2

4 + ∆σ2
5 − ∆σ3 ≤ εa

D
2

√
∆σ2

4 + ∆σ2
5 + ∆σ3 ≤ εa

(2)

For other types of designs of clearance-affected revolute
joint, though the structure may be more complicated, one can
get similar constraint inequalities as (2). If there is an inertial
reference frame A such that the relative transformation from
C to A is gR

ac, then the pose error caused by joint clearance
can be written with respect to the inertial frame A by

δΥa = AdgR
ac

δΥc =
∑5

i=1(AdgR
ac

ei)∆σi (3)

Similarly, for a clearance-affected prismatic pair(Fig.3),
if we attach a local coordinate frame C to the supporting
carriage with x-axis along the pair’s ideal translational axis,
then the pose error of the slider with respect to the supporting
carriage is given with respect to C by

δΓc =
6∑

j=2

ej∆τj (4)

where ∆τj , j = 2, · · · , 6 are also error motions caused
by the joint clearance. If y, z axis are parallel to the two
faces of the supporting carriage, and the origin lies on the
geometrical center of the joint (see Fig.3), then values of the
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error motions are restricted by a set of linear constraints

−εa ≤ +L
2 ∆τ6 − D

2 ∆τ4 + ∆τ2 ≤ εa

−εa ≤ −L
2 ∆τ6 + D

2 ∆τ4 + ∆τ2 ≤ εa

−εb ≤ −L
2 ∆τ5 + D

2 ∆τ4 + ∆τ3 ≤ εb

−εb ≤ +L
2 ∆τ5 − D

2 ∆τ4 + ∆τ3 ≤ εb

(5)

Supposing that the transformation from C to the inertial
frame A is gP

ac, then the pose error is given with respect
to frame A by

δΓa = AdgP
ac

δΓc =
∑6

j=2(AdgP
ac

ej)∆τj (6)

Finally, we remark that the two designs of Fig.2 and
Fig.3 have ever been intensively studied in [7] and [3].
However, the constraints of error motions in those literatures
are formulated as sets of general nonlinear inequalities. In
this paper, we have reformulated them into sets of so-called
convex constraints, as seen from (2) and (5). As we will see
later, this reformulation will make the convex optimization
feasible to the evaluation of the pose errors.

B. Gross Pose Error of Joints

The desired motions of an actuated joint are controlled
by the motors mounted on the joint. Assuming there is no
motor actuation error, then at a nominal configuration, the
pose error of an actuated joint is solely raised by its joint
clearance. Hence the expression of gross pose error of an
actuated joint is the same as Eq.(1) and (3). However, for
passive joints in a parallel mechanism, in addition to the
errors motions caused by joint clearance, the idle motions
about the ideal twists also play a role in the pose errors
of their two links. Hence, the gross pose error of a passive
revolute joint is given with respect to its local frame by

δΥc =
5∑

i=1

ei∆σi + e6∆θ (7)

where ∆θ is the idle rotation error of the shaft about the
joint’s ideal axis. With respect to the inertial frame A, the
gross pose error is

δΥa = AdgR
ac

δΥc =
∑5

i=1(AdgR
ac

ei)∆σi + (AdgR
ac

e6)∆θ

=
∑5

i=1(AdgR
ac

ei)∆σi + ξ∆θ

where ξ is the ideal twist of the joint when expressed in the
inertial frame. Similarly, two gross pose errors of a passive
prismatic joint can be written as

δΓc =
6∑

j=2

ej∆τj + e1∆µ (8)

and

δΓa = AdgP
ac

δΓc =
∑6

j=2(AdgP
ac

ej)∆τj + η∆µ

respectively, where ∆µ is the idle translational error along
the joint’s ideal axis, and η is the ideal twist representation
of the joint in the inertial frame A.

Fig. 4. Tsai’s 3-UPU Manipulator

Fig. 5. A Parallelogram Joint

C. End-effector Pose Error of A Parallel Mechanism

In this subsection, we study the pose error of the end-
effector of a parallel mechanism caused by the clearance
of its constituent joints. We use some examples to illustrate
how to get the pose error of the end-effector at a general
theoretical configuration(say, g0), subject to the error motions
generated by all the clearance-affected joints.

Example 1: Pose Error Analysis of Tsai’s Manipulator
Consider a Tsai’s 3-UPU manipulator in Fig.4. Each U -

joint consists of two perpendicularly connected clearance-
affected revolute joints modelled by Fig.2. The three pris-
matic joints P1, · · · , P3, being actuated, are also clearance-
affected and modelled by Fig.3. The inertial frame A and the
body frame B are located at the center of the base and the
mobile platform respectively. And the local frames of Rij

(denoted CR
ij ), and that of Pi (denoted by CP

i ), i = 1, · · · , 3,
j = 1, · · · , 4, are located at the center of each joint, with x,

Fig. 6. Orthoglide Manipulator

WeC6.2

891



y axis chosen at one’s convenience. The mobile platform(or
end-effector) ideally can undergo three DoF pure translations
T (3) under some geometrical conditions [8]. At a nominal
configuration g0 ∈ T (3) which is not singular for the sake of
simplicity, the transformation matrix from CR

ij and CP
i to A,

denoted by gR
ij and gP

i respectively, can be obtained through
the inverse kinematic analysis of the ideal mechanism at g0.
From the last subsection, the pose error of Pi is given with
respect to the inertial frame A by

∆Pi =
∑6

l=2(AdgP
i
el)∆τil i = 1, · · · , 3

and the pose error of Rij is given by

∆Rij =
∑5

l=1(AdgR
ij

el)∆σijl + ξij∆θij

where i = 1, · · · , 3, j = 1, · · · , 4, and ξij is the ideal twist
associated with Rij . The pose error of ith open subchain,
i = 1, · · · , 3, can thus be written by

∆Ei = ∆Pi +
∑4

j=1 ∆Rij

=
∑6

l=2(AdgP
i
el)∆τil +

∑4
j=1 ξij∆Θij

+
∑4

j=1

∑5
l=1(AdgR

ij
el)∆σijl

= Ai · dΓi +
∑4

j=1 Bij · dΥij + Ji · dΘi

= Ai · dΓi + Bi · dΥi + Ji · dΘi

(9)

where Ai = [AdgP
i
e2 · · · AdgP

i
e6], dΓi =

(∆τi2, · · · ,∆τi6)T , Bij = [AdgR
ij

e1 · · · AdgR
ij

e5],
dΥij = (∆σij1, · · · ,∆σij5)T , Bi = [Bi1 · · · Bi4],
dΥi = (dΥT

i1, · · · , dΥT
i4)

T , Ji = [ξi1 · · · ξi4],
dΘi = (∆θi1, · · · ,∆θi4)T .

Equating ∆E1 and ∆E2, ∆E2 and ∆E3, we can get

J ·

 dΘ1

dΘ2

dΘ3


 = A ·


 dΓ1

dΓ2

dΓ3


 + B ·


 dΥ1

dΥ2

dΥ3


 (10)

where

J =
[

J1 −J2

−J2 J3

]
(11)

is a nonsingular square matrix, and

A =
[ −A1 A2

A2 −A3

]
, B =

[ −B1 B2

B2 −B3

]
From Eq.(10) and (11), we may see that the idle passive
joint motions are uniquely determined by the error motions
∆τil and ∆σijl caused by the joint clearance. After the idle
motions dΘi are determined, we can substitute it into Eq.(9)
for any subchain to obtain the pose error of the moving
platform the nominal configuration g0. Choosing the first
subchain as example, we can write the result in a concise
way as follows

∆Eg0 = A1 · dΓ1 + B1 · dΥ1 + J1 · dΘ1

= A1 · dΓ1 + B1 · dΥ1 + [J1 0 0]


 dΘ1

dΘ2

dΘ3




= A1 · dΓ1 + B1 · dΥ1 + [J1 0 0] · J−1

·

A ·


 dΓ1

dΓ2

dΓ3


 + B ·


 dΥ1

dΥ2

dΥ3







= H · (dΓT
1 , dΓT

2 , dΓT
3 , dΥT

1 , dΥT
2 , dΥT

3 )T

In the above equation, we get a linear transformation
matrix H that maps the error motions of the clearance-
affected joints, ∆τil and ∆σijl, to the pose error of the
moving platform ∆Eg0 . From Eq.(10), ∆τil and ∆σijl are
free variables of the mechanism, the number of which reflects
the total extra DoF of the mechanism at a non-singular
nominal configuration. However, the values of ∆τil and
∆σijl are bounded within the sets of convex constraints
given by inequalities (2) and (5) for each joint. Therefore, the
maximal pose error of the moving platform at the nominal
configuration g0, denoted by ∆Em

g0
, can be obtained by six

convex optimizations applied to each components of ∆Eg0 .
If one further want to get the maximal pose error of the
moving platform in a prescribed workspace W , for example,
a cube centered by the home configuration, he can discretize
W and calculate ∆Em

g at any point of W . After that, the
global maximal pose error in W can be obtained by

∆Em = (max
g∈W

∆Em
g (1), · · · ,max

g∈W
∆Em

g (6))T

where ∆Em
g (i) is the ith component of ∆Em

g .

For overconstrained parallel manipulators, however, not
all error motions associated with joints’ clearance are free
variables, as seen from the next example.

Example 2: Pose Error Analysis of A Parallelogram
Joint In this example, we study the pose error of a
parallelogram (Pa) composing of four clearance-affected
revolute joints. Since Pa usually serves as an extended pair in
complex parallel mechanisms, e.g., the Delta robot, we also
attach a frame C, called the local frame of the parallelogram
joint, to the base link of the parallelogram, as shown in Fig.5.
Frame C is located at the center of the base link, with z axis
parallel to the ideal rotation axis of Rij , and x axis pointing
to the geometrical center of R21. Thus the ideal configuration
space of the parallelogram CM is a circle in the x-y plane
of C. At each nominal configuration g0 ∈ CM , we define
four local frames Cij for Rij , i = 1, 2, j = 1, 2. As the
choice of x, y axis of Cij is free, for our convenience, Cij

may be chosen with origin lying at the geometrical center
of Rij , and x, y, z axis aligned with that of C. Hence, the
transformation from Cij to C is given by

gij =
[

I pij

0 1

]
where pij is the geometrical center of Rij . Assume that R11

is the actuation joint, then the pose error of four revolute
joints with respect to the C frame is given by

∆Rij =
5∑

l=1

(Adgij
el)∆σijl + ξij∆θij i = 1, 2, j = 1, 2

where ∆θ11 = 0. The pose error of ith subchain, i = 1, 2
thus can be easily got as

∆Ei = ∆Ri1 + ∆Ri2

=
∑2

j=1

∑5
l=1(Adgij

el)∆σijl +
∑2

j=1 ξij∆Θij

=
∑2

j=1 Aij · dΥij +
∑2

j=1 ξij∆Θij
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where Aij = [Adgij
e1 · · · Adgij

e5], dΥij =
(∆σij1, · · · ,∆σij5)T , i = 1, 2, j = 1, 2. As ∆θ11 = 0,
by equating ∆E1 and ∆E2, we can get

J ·

 ∆Θ12

∆Θ21

∆Θ22


 = A ·




dΥ11

dΥ12

dΥ21

dΥ22


 (12)

where J = [ξ12 − ξ21 − ξ22], and A = [−A11 −
A12 A21 A22]. Clearly, J is a 6 × 3 full column rank
matrix. J may combine with three twists Adg21e3, Adg21e4,
and Adg21e5 to form a 6 × 6 non-singular square matrix
J ′ = [ξ12 − ξ21 − ξ22 −Adg21e3 −Adg21e4 −Adg21e5].
Then Eq.(12) can be re-written as follows

J ′ ·




∆Θ12

∆Θ21

∆Θ22

∆σ213

∆σ214

∆σ215




= A′ ·




dΥ11

dΥ12

∆σ211

∆σ212

dΥ22


 (13)

where A′ = [−A11 −A12 Adg21e1 Adg21e2 A22]. Therefore,
only 17 error motions dΥ11, dΥ12, dΥ22 and ∆σ211, ∆σ212

are free variables of the mechanism. The other three joint
error motions ∆σ213, ∆σ214, ∆σ215, plus the idle passive
joint motions ∆Θ12, ∆Θ21, ∆Θ22, are uniquely determined
by these free variables. Denote by B = J ′−1

A′, B(i) the
ith row of B, i = 1, · · · , 6, and gac the transformation from
the local frame C to the inertial frame A. Then pose error
of the end-effector at the nominal configuration g0 is given
with respect to the inertial frame by

∆Eg0 = Adgac
(∆R11 + ∆R12)

= Adgac
[A11 A12]

(
dΥ11

dΥ12

)
+ Adgac

ξ12∆Θ12

= Adgac
[A11 A12]

(
dΥ11

dΥ12

)

+Adgac
ξ12B(1)




dΥ11

dΥ12

∆σ211

∆σ212

dΥ22




= H · (dΥT
11 dΥT

12 ∆σ211 ∆σ212 dΥT
22)

T

(14)

subject to the constraints

(∆σij1 + L
2 ∆σij5)2 + (∆σij2 − L

2 ∆σij4) ≤ ε2r
(∆σij1 − L

2 ∆σij5)2 + (∆σij2 + L
2 ∆σij4) ≤ ε2r

D
2

√
∆σ2

ij4 + ∆σ2
ij5 − ∆σij3 ≤ εa

D
2

√
∆σ2

ij4 + ∆σ2
ij5 + ∆σij3 ≤ εa


 ∆σ213

∆σ214

∆σ215


 =


 B(4)

B(5)
B(6)


 ·




dΥ11

dΥ12

∆σ211

∆σ212

dΥ22




(15)

where i = 1, 2 and j = 1, 2. Thus the calculation of maximal
pose error of an overconstrained parallel manipulator at

g0 is a convex optimization problem with linear equality
constraints. By [9], such a problem can also be quickly
solved by very efficient algorithms.

Pa is often used as an extended passive pair in some
common parallel mechanisms, e.g, the Delta robot. In this
case, R11 is a passive revolute joint instead of an actuated
one, which implies that ∆θ11 �= 0. Assume that the body
frame B originally coincides with A frame, then the ideal
configuration space of the end-effector is given by

Q =
{[

I (eω̂θ11 − I)v
0 1

]
| θ11 ∈ [0, 2π]

}
where ω is the ideal rotation axis of the parallelogram, and v
the vector connecting Ri1 and Ri2 at the home configuration.
Clearly, at the nominal configuration g0 = Q(θ11), the
configuration error of the end-effector caused by ∆θ11 is
given with respect to the inertial frame A by

∆̂F g0 =
dQ

dθ11
Q−1∆θ11 =

[
0 ωeω̂θ11v
0 0

]
∆θ11

The total pose error thus is the linear summation of ∆Fg0

and ∆Eg0

∆Tg0 = ∆Eg0 + ∆Fg0

= H · (dΥT
11 dΥT

12 ∆σ211 ∆σ212 dΥT
22)

T

+ωeω̂θ11v∆θ11

(16)

subject to the constraints of (15). The value of ∆θ11, as
we will see in the next example, is determined by the loop
closure equation of the parallel mechanism that contains this
Pa.

Example 3: Pose Error Analysis of Orthoglide The
Orthoglide manipulator [10], as shown in Fig.6, consists of
three PRPaR identical subchains. The actuated joints are
the three orthogonal prismatic ones. Ideally, the manipulator
is an overconstrained one, with end-effector motion a subset
of T (3). At a nominal configuration g0 ∈ T (3), using the
same approach as before, we may find the pose errors of
prismatic joints Pi and revolute joints Rij , i = 1, · · · , 3,
j = 1, 2. As the end-effector is connected to the prismatic
joints through a set of three passive parallelograms, the pose
error of the parallelogram is given by Eq.(16). Thus the pose
error of the ith subchain, i = 1, · · · , 3, is shown to be

∆Ei = ∆Pi + ∆Ri1 + ∆Ti + ∆Ri2

=
∑6

l=2(AdgP
i
el)∆τil

+
∑5

l=1(AdgR
i1

el)∆σi1l + ξi1∆Θi1

+Hi · (dΥT
i11 dΥT

i12 ∆σi211 ∆σi212 dΥT
i22)

T

+ωie
ω̂iθi11vi∆θi11

+
∑5

l=1(AdgR
i2

el)∆σi2l + ξi2∆Θi2

= Ai · dΓi +
∑2

j=1 Bij · dΩij + Hi · dΥi

+Ji · dΘi

= Ai · dΓi + Bi · dΩi + Hi · dΥi + Ji · dΘi

where gP
i is the transformation matrix from the local

frame of the Pi to the inertial frame A, and gR
ij the one

from the local frame of Rij to A. Furthermore, Ai =
[AdgP

i
e2 · · · AdgP

i
e6], dΓi = (∆τi2, · · · ,∆τi6)T , Bij =

[AdgR
ij

e1 · · · AdgR
ij

e5], dΩij = (∆σij1, · · · ,∆σij5)T ,
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Bi = [Bi1 Bi2], dΩi = (dΩT
i1, dΩT

i2)
T , dΥi =

(dΥT
i11 dΥT

i12 ∆σi211 ∆σi212 dΥT
i22)

T , Ji =
[ξi1 ωie

ω̂iθi11vi ξi2], dΘi = (∆θi1,∆θi11,∆θi2)T ,
i = 1, · · · , 3, j = 1, 2. Equating ∆E1 and ∆E2, ∆E2 and
∆E3, we can get

J


 dΘ1

dΘ2

dΘ3


 = A


 dΓ1

dΓ2

dΓ3


 + B


 dΩ1

dΩ2

dΩ3


 + C


 dΥ1

dΥ2

dΥ3




where

J =
[

J1 −J2

−J2 J3

]
(17)

is a 12 × 9 full column rank matrix, and

A =
[ −A1 A2

A2 −A3

]
, B =

[ −B1 B2

B2 −B3

]
C =

[ −H1 H2

H2 −H3

]
Note that the rotation axis of the twist AdgP

i
e4 is along the

ideal translation axis of Pi, i = 1, · · · , 3, hence the former
equation may be re-written as

J ′




dΘ1

∆τ14

dΘ2

∆τ24

dΘ3

∆τ34




= A′


 dΓ′

1

dΓ′
2

dΓ′
3


 + B


 dΩ1

dΩ2

dΩ3


 + C


 dΥ1

dΥ2

dΥ3




where

J ′ =
[

J1 AdgP
1
e4 −J2 − AdgP

2
e4

−J2 − AdgP
2
e4 J3 AdgP

3
e4

]
is a 12 × 12 non-singular matrix, and

A′ =
[ −A′

1 A′
2

A′
2 −A′

3

]
,

A′
i = [AdgP

i
e2 AdgP

i
e3 AdgP

i
e5 AdgP

i
e6], dΓ′

i =
(∆τi2,∆τi3,∆τi5,∆τi6)T , i = 1, · · · , 3.

From the above transformed equation, one may see that
only dΓ′

i, dΩi and dΥi, i = 1, · · · , 3, are free variables
of the mechanism. Three joint error motions ∆τi4, together
with the idle passive joint motions dΘi, i = 1, · · · , 3, are
uniquely determined by totally 4× 3 + 5× 3 + 17× 3 = 78
free variables. The pose error of the end-effector thus is given
by

∆Eg0 = A1 · dΓ1 + B1 · dΩ1 + H1 · dΥ1 + J1 · dΘ1

= A1 · dΓ1 + B1 · dΩ1 + H1 · dΥ1 + [J1 0 · · · 0]·

J ′−1


A′


 dΓ′

1

dΓ′
2

dΓ′
3


 + B


 dΩ1

dΩ2

dΩ3


 + C


 dΥ1

dΥ2

dΥ3







subject to the constraint of (2) for revolute joints, (5) for
prismatic joints, (15) for parallelogram, and the following
linear equalities
 ∆τ14

∆τ24

∆τ34


 = D · (dΓ′

1
T
, · · · , dΓ′

3
T
, dΩT

1 , · · · , dΩT
3 , dΥT

1 ,
· · · , dΥT

3 )T

where the matrix D can be derived from Eq.(3). Hence
the calculation of the maximal pose error of the Orthoglide
manipulator at g0 is a still a convex optimization problem
with linear equality constraints.

III. CONCLUSION

In this paper, we propose a general method to evaluate
the pose(position and orientation) error of the end-effectors
of parallel manipulators due to the joint clearance. We
show that for non-overconstrained parallel manipulators, the
error motions caused by joint clearance are free variables
subject to some constraints defined by the joint geometry
and magnitude of clearance. However, for overconstrained
parallel mechanisms, part of these joint error motions are
dependent on the remaining ones. For some particular de-
signs of common lower pairs, the pose error analysis for both
non-overconstrained and overconstrained parallel manipula-
tors can be formulated into standard convex optimization
problems, which makes it possible to compute the maximum
pose errors in a prescribed workspace other than just at a
single configuration.
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