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Summary
We study properties of the index J3, defined as the accuracy, or the maximum correct
classification, for a given three-class classification problem. Specifically, using J3 one can assess
the discrimination between the three distributions and obtain an optimal pair of cut-off points c1 <
c2 in the sense that the sum of the correct classification proportions will be maximized. It also
serves as the generalization of the Youden index in three-class problems. Parametric and non-
parametric approaches for estimation and testing are considered and methods are applied to data
from an MRS study on HIV patients.
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1 Introduction
A number of questions have to be answered before the wide-scale use of a marker. For
example, the marker n-acetyl-aspartate over creatine (NAA/Cr) measured by Magnetic
Resonance Spectroscopy (MRS) has been widely considered as a marker of neuronal
metabolism in the brain [1]. Consequently, it has been suggested that NAA/Cr may be
decreased in the brain of HIV-infected subjects with neurological disease secondary to their
HIV disease [2]. Thus, when the outcome is binary such as, for example, neurologically
impaired (diseased) versus non-impaired (non-diseased), the first step in the validation of the
marker is to assess whether the marker significantly discriminates the diseased and non-
diseased populations based on the distributions of the marker measurements in the two
classes. Specifically, a cut-off point in the marker levels is considered and subjects with
marker levels below (above) the cut-off point are identified as “diseased”, while those with
marker levels above (below) the cut-off point are considered as “non-diseased”. Receiver
Operating Characteristic (ROC) curve analysis is the most widespread technique used in
marker validation when there are two disease classes. The ROC curve is the plot, on the unit
square, of the true positive rate (the proportion of times the marker identifies a diseased
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individual as such) versus the false positive rate (the proportion of times the marker
erroneously identifies a non-diseased individual as diseased) at each cut-off point. Better
markers have higher true positive rates (sensitivity) than false positive rates at each cutoff
point, resulting in an ROC curve that lies above the diagonal between the origin and the
point (1,1). The index of the area under the ROC curve (AUC) reflects the amount of
discrimination of the marker-level distributions in the two samples of subjects derived from
the non-diseased and diseased populations, X1,…,Xn sampled from distribution F and Y1,…,
Ym sampled from distribution G, respectively. The empirical AUC estimates the probability
P(X < Y), which quantifies the discrimination of F and G. Formal assessment of the
statistical significance of the AUC index is described comprehensively in [3].

After a marker has been shown to discriminate between diseased and non-diseased
populations, the next step involves the selection of an optimal cut-off point based on which a
diagnosis will be made. Approaches for the selection of the optimal cut-off point in the
framework of ROC analysis are discussed in [3]-[5]. Another approach for the assessment of
the discrimination of the diseased and non-diseased populations and cut-off point selection
involves the use of a maximally selected statistic chosen to maximize a measure of
difference between the two groups. Maximally selected statistics for the two-class case have
been studied in [6]- [10] among others. Gail and Green [11] considered a generalization of
the Youden index as the selected statistic of interest and made the important connection
between ROC curves and random walks. The Youden index [12] is defined as J =
maxc{sens(c)+spec(c)–1} = maxc{Fn(c)−Gm(c)}, where sens(c) = Pr[Y > c] = 1–G(c) and
spec(c) = Pr[X < c] = F(c) for given cut-off point c. Use of the Youden index has intuitive
appeal because the optimal cut-off point is the one that maximizes the sum of sensitivity and
specificity ([13], [14]). Fluss et al [14] elaborate on the use of the Youden index and discuss
methods for its estimation in two-class classification problems. By its definition, the Youden
index is essentially the Kolmogorov-Smirnov statistic.

In our study we are interested in determining the optimal cut points for the metabolite
marker NAA/Cr, to classify subjects into three groups: HIV-negative individuals, HIV-
positive neurologically unimpaired patients, and HIV-positive neurologically impaired
patients. Therefore, we extend the optimal cut point selection methods for two classes to
three classes. Consider the three-class setting, where X1,…,Xn, are sampled from distribution
F, Y1,…,Ym, are sampled from G, and Z1,…,Zl, are sampled from H, are measurements from
three disease classes. Analogous to the true and false positive rates in the two class setting,
in the three class setting, the true-class rate for X is defined as TCX = Pr[X < c1], the true-
class rate for Y is TCY = Pr[c1 < Y < c2], and the true-class rate for Z is TCZ = Pr[Z > c2] for
a given pair of cut-off points c1 < c2 in the support of the diagnostic marker measurements
and order of interest X < Y < Z. Construction of the ROC surface based on these definitions
of true-class rates and calculation of the corresponding summary measure volume under the
ROC surface (VUS) has been introduced in [15]-[18]. Cut-off point selection in the three-
class case has only been described in a theoretical context in [19]. In this article, we study
J3, a generalization of the Youden index in three dimensions as an index for cut-off point
selection after the construction of a conventional ROC surface in a three-class classification
problem. J3 is the maximum sum of the three true-class rates that define each point on the
ROC surface. Thus, a maximum correctness criterion is used as described by He and Frey
[19].

In Section 2, the estimation of J3 and of the associated cut-off points is described and testing
procedures for J3 are derived using a reference permutation distribution based on all possible
random walks in three dimensions using an analogous idea as that of Gail and Green. Bias
and root mean squared error (RMSE) of two parametric estimators and a non-parametric
estimator of J3 and cutoff points c1,c2 are assessed through simulations in Section 3.1. A
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study comparing size and power of the testing approaches follows in Section 3.2. The
proposed methods are applied to proton MRS data in Section 4, where classification is
performed into three classes: HIV-negative individuals, HIV-positive neurologically
unimpaired patients and HIV-positive neurologically impaired patients. We conclude with a
discussion in Section 5.

2 Methods
In this section we briefly describe selection of cut-off points for the two class setting and
then introduce extensions that are applicable to three classes.

2.1 Two-class setting
The ROC curve is the plot depicting (1 – F(c), 1 – G(c)), for all c in the support of a
diagnostic marker measurements. If no ties are present, the empirical ROC curve, based on
X = (X1,…,Xn)T and Y = (Y1,…,Ym)T, is a step function, which can be described as a random
walk in the unit square starting from the point (1,1) when c < min(X,Y) and ending at the
origin (0,0) for c > max(X,Y). First, X and Y measurements are combined and sorted while
keeping track of the true disease status of each measurement. The random walk is moving

by  horizontally to the left when the next measurement is in X or by  down when the next
measurement is in Y as c moves from −∞ to ∞ ([11], [20]).

To carry out inference, a procedure for testing for the significance of the discrimination
between F and G, similar to the one proposed by Gail and Green [11], can be used for the
assessment of the diagnostic marker under study. Specifically, under the assumption of
exchangeability between the measurements X and Y, where X = Y, all random permutations
between measurements of X, Y are considered resulting in all possible random walks based
on the given measurements.That is, X and Y measurements are combined and redistributed at
random to form two groups (diseased and non-diseased) that are of the same size as for the
observed data. The Youden index is calculated for each permutation, providing a reference
distribution for the Youden index. The number of all possible permutations is

 [11]. This number will be quite large even for small sample sizes. Thus,
in practice, only k random permutations are generated to derive the reference distribution.
The null hypothesis of non-significant discrimination between F and G is rejected when the
Youden index from the original data is larger, or more extreme, than the 95th percentile of
the distribution of the k Youden indices calculated from the k random permutations of the
observations. If F and G are significantly discriminated, then the cut-off point c that
corresponds to the Youden index is the optimal cutoff point for clinical diagnosis of disease.
The Youden index for any ROC curve corresponds to the maximum distance from the
diagonal attained by the random walk. An extensive study on parametric and non-parametric
approaches for the estimation of the Youden index and the respective cut-off points has been
conducted by Fluss, Faraggi and Reiser [14].

2.2 Three-class setting
The ROC surface is the 3-dimensional plot in the unit cube depicting (F(c1), G(c2) – G(c1),
1 – H(c2)), for all cutoff points (c1, c2), with c1 < c2, in the support of the diagnostic marker
measurements. If no ties are present, the empirical ROC surface is constructed based on X =
(X1,…,Xn)T, Y = (Y1, …,Ym)T, and Z = (Z1,…, Zl)T. In a similar manner as in the two-
dimensional case, the ROC surface can be described as a random walk in the unit cube:
First, X, Y, Z measurements are combined and sorted while keeping track of their true label.
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Starting from (0, 0, 1) for c1 < c2 < min (X, Y, Z), it moves by  parallel to the y-axis

towards the (TCX, 1, TCZ) plane, when the next measurement is in Y, or down by  in the
direction of the (TCX, TCY, 0) plane when the next measurement is in Z, as c2 moves from c1

to ∞. The random walk also moves by  parallel to TCX in the direction of the (1, TCY, TCZ)

plane when the next measurement is in X, or by  parallel to TCY and to the direction of the
(TCX, 0, TCZ) plane when the next measurement is in Y, as c1 moves from −∞ to c2. Cutoffs
c1, c2 traverse all possible values with c2 > c1. For each value of c1, TCZ goes from 1 to 0 as
c2 moves to the right and, for each value of c2, TCX goes from 0 to 1 as c1 moves from left
to right, while TCY is close to 0 when c1 is close to c2 and close to 1 when c1 is far from c2.

The random walk formulation results in a generalization of the Youden index to the three-
class case. The three-class Youden index (J3) can be calculated as follows:

(1)

The pair of cut-off points c1, c2 that correspond to J3 are considered optimal and can be used
in practice for diagnostic purposes. When the three distributions completely overlap J3 = 1,
because TCX+TCY+TCZ = 1 in the completely uninformative case. When the distributions F,
G, H are perfectly discriminated and X < Y < Z, J3 = 3 because the ROC surface covers the
whole unit cube and the point of the ROC surface corresponding to J3 will be located at the
corner of the unit cube with coordinates (1, 1, 1).

J3 can be interpreted as the maximum accuracy in a three-class classification problem where
equal weight is given to the three true class rates. If unequal weights are desired, then
weights can be added to J3 to reflect the relative importance of the three true-class rates.
Specifically, weights ν, μ, and λ are included in J3 to reflect the relative importance of the
three respective true-class rates:

 is equivalent to the maximum correctness criterion/maximum expected utility proposed by
He and Frey [19] when ν, μ, and λ are equal to the prevalence of each the three disease
classes. Such weights were considered for the Youden index [11] because the definition of
Youden index implies that the prevalence of disease is about 50% and the costs of
misclassification of the two classes are equivalent [4]; thus interpretation of the Youden
index is problematic if the costs of misclassification differ. J3 is the focus of the remainder
of this paper.

J3 can be estimated non-parametrically using the empirical cumulative distribution functions
(CDF) as estimates of the CDF of X, Y, and Z. The empirical CDF are, respectively,

,  and , where the
indicator function I(·) equals one if the expression is true and equals zero otherwise. Then J3
can be estimated as
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(2)

Parametric approaches can also be used for estimation. Based on normality assumptions,

, , , we get from equation (1),

(3)

given the constraint c1 < c2. The problem of finding the values c1, c2, with c1 < c2, which
maximize J3 can be solved numerically using constrained optimization. A Box-Cox power

transformation of the type , if λ ≠ 0; f (y) = ln (y), if λ = 0, can be employed
when normality assumptions fail [21]. This type of transformation has also been addressed
for the Youden index in the two-class case [14].

The approach of Gail and Green [11] can be generalized in three dimensions for the
assessment of the discrimination of the three distributions under study in the anticipated
order. To obtain a reference distribution for J3, all possible random walks in the unit cube
resulting from all permutations among X1,…,Xn, Y1,…,Ym, andZ1,…,Zl must be considered
and J3 must be computed for each one. Since the number of all possible permutations is

equal to , it will be computationally prohibitive to consider
every single random walk even for sample sizes as small as m = n = l = 10. We follow the
same sampling approach described in the two-dimensional case by generating k random
permutations. The null hypothesis of non-significant discrimination between F, G and H is
rejected at an alpha level equal to 5%, when J3, calculated from the original data, is larger
than the 95th percentile of the distribution of the k indices calculated from the k random
permutations. If F, G and H are significantly discriminated, then the pair of cut-off points
(c1,c2) that corresponds to J3 is optimal in the sense of maximum accuracy of classification
and can be used for clinical diagnosis based on the three available possibilities. Specifically,
a subject will be classified as being in class X if the marker measurement is less than c1.
Classification into class Y will be made if the marker measurement is between c1 and c2.
Classification into class Z will be made if the marker measurement is above c2. Standard
bootstrap methodology can be used for the calculation of a confidence interval for J3, while
confidence intervals for c1, c2 will follow from the bootstrapped J3 values.

3 Simulation studies
In the simulation studies that follow R = 1000 replications and k = 1000 random
permutations were used. In our experience even R = k = 500 would suffice in order to
estimate empirical size and power, and obtain a reference distribution for J3 and, through
exploratory work, we have always found that very little additional precision is obtained even
for R much higher than 1000. R = 1000 has also been used by other investigators (see for
example [22]), while the use of k = 1000 is justified in [23].

3.1 Bias study
A simulation study was conducted in order to assess the accuracy and precision of the
estimation of J3 and the cutoff points c1 and c2. Estimation was performed using the
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parametric and non-parametric (empirical) approaches discussed above. R = 1000
replications were simulated and relative bias was estimated by:

where J3 is calculated based on equation (1). A similar approach was followed to estimate
relative bias in the estimation of c1, c2. Root Mean Square Errors (RMSE) the square root of

the mean square errors (i.e.,  were also estimated.

Six different scenarios are considered (Table 1). Scenarios 1 and 2 refer to differences
resulting from location shifts in the means of the three distributions when data are simulated
from normal distributions. Parametric approaches are expected to perform better in these
cases. Scenario 3 studies location-scale differences between the three distributions, while
under scenarios 4 to 6 scale and shape differences exist. Non-parametric approaches are
usually preferred when significant shape and scale differences exist between the
distributions under study because they are more robust when significant deviations from
normality are present. The true J3 and c1 < c2 values were calculated from Equations (1) and
(3). Data were simulated with 20, 40, and 80 subjects in all three of the classes.

Results of the bias study for J3 are shown in Table 2. Bias becomes less important for the
empirical approach and the parametric approaches with and without Box-Cox
transformation as location differences between the three distributions become larger
(scenarios 1, 2) and as the sample size increases. When the data are sampled from normal
distributions, the parametric methods perform better than the non-parametric ones (scenarios
1-3) with the Box-Cox approach being slightly better than the parametric approach which
does not employ a Box-Cox transformation. However, parametric approaches seem to also
perform better in scenarios 4 and 5 where shape differences exist between the three
sampling distributions. In scenario 6, the empirical approach estimates J3 more accurately.
In this case, extreme shape and scale differences exist between the three distributions and
one cannot rely on any of the parametric approaches for estimation of J3. RMSE follow a
similar pattern, implying that all methods perform, in terms of precision, in much the same
way as they perform in terms of accuracy for J3 estimation. Unequal class sample sizes and
several other scenarios were examined but not presented since conclusions were not altered.

Table 3 shows the bias and RMSE for c1,c2 estimation. The parametric approach without a
Box-Cox transformation outperforms its competitors in scenarios 1-3. However, in scenario
4 no clear winner exists and the choice of approach should be in accord with the most
suitable approach for J3 estimation. In scenario 5, c1 is more accurately estimated by the
empirical approach but more precisely by the Box-Cox approach, while for c2 the Box-Cox
approach is better. The empirical approach is preferable in scenario 6 as was the situation for
J3 estimation.

3.2 Power study
The testing procedures for the assessment of the discrimination of F, G and H are described
in the methods section. Both VUS and J3 quantify the discrimination between the three
distributions under study. Our goal was to assess the power procedure based on each of
these indices has to detect varying differences between measurements X, Y, and Z. Size and
power of the parametric and non-parametric methods were compared in this simulation
study.
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R = 1000 replications were used and data were simulated for each of the scenarios described
in Table 1 with 10, 20, and 40 subjects in all the classes. To be used as a reference
procedure, VUS was also estimated based on all three approaches (empirical, parametric
using normality assumption and parametric after Box-Cox transformation) and reference
distributions were estimated based on a sample of k = 1000 random walks. The null
hypothesis of equality of the three distributions was rejected whenever the calculated p-

value was less than α = 0.05. In Table 4, the proportion of times p < α, i.e. , is
shown.

In scenario 1, the empirical size of the test was assessed by simulating data from
distributions that completely overlap. All six testing procedures have size close to the
nominal level of 0.05. Both parametric VUS-based tests and the J3 test based on the Box-
Cox transformation performed similarly in terms of power in scenarios 2 and 3, where
location differences exist between the three sampling distributions. However, parametric J3
approaches performed better in scenario 4 where location-scale differences exist between the
three distributions, a case that is to be expected in real-world experiments. In scenario 5, the
Box-Cox approach for VUS was superior while, in scenario 6, the empirical J3 was superior.
As expected, the power increased for increasing sample size. Power was relatively high in
scenarios 2, 5, and 6 while it was relatively low in scenario 3 where location differences are
small.

Again for the power study unequal class sample sizes and several other cases were examined
and conclusions remained unchanged.

4 Data Analysis
Human immunodeficiency virus (HIV) invades the central nervous system causing structural
and metabolic changes in the brain resulting in varying degrees of cognitive, motor, and
behavioral impairment [24]. Pathological studies performed on the brains of deceased HIV-
infected patients have shown significant abnormalities including neuronal injury and loss
[25]. With recent advances in anti-HIV therapies, which have dramatically improved
survival rates among HIV-infected persons, in-vivo approaches are needed to detect
neuronal injury thus identifying HIV-infected patients who may be at risk for cognitive
impairment.

A number of studies have shown that proton magnetic resonance spectroscopy (MRS)
provides a reliable in vivo, non-invasive method for the assessment of HIV-associated brain
injury (see for example [2]). Proton MRS produces spectral peaks that correspond to
metabolite levels in the brain (Figure 1). The area under each spectral peak is associated
with the concentration of a metabolite that reflects activity in a specific cell type in response
to signals in its microenvironment. A frequently measured metabolite is N-acetyl aspartate
(NAA), a marker of mature neurons and axons [1]. Usually, the ratio of NAA over creatine
(Cr) is obtained to reduce the variability of the measurement. Reduced levels of NAA/Cr,
reflecting either neuronal injury or loss, have been observed in HIV-infected individuals in
both the neuroasymptomatic and cognitively impaired stages of infection (e.g., [2], [26],
[27]).

NAA/Cr levels were available on 137 subjects (37 HIV-negative individuals - NEG, 39
HIV-positive non-symptomatic subjects - NAS, and 61 HIV-positive subjects with AIDS
dementia complex - ADC). Detailed description of recruitment and cohort characteristics
has been reported elsewhere [28]. In the present application, we consider the use of J3 and
VUS for classification of these subjects in the three groups, NEG, NAS and ADC, based on
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levels of NAA/Cr measured on each patient. It is anticipated that NAA/Cr levels will be
highest among HIV-negative controls and lowest among HIV-positive neurologically
impaired patients, with the NAS group being intermediate to the other two. That is, the
anticipated ordering is ADC<NAS<NEG [28]. The data clearly support the normality
assumption (Kolmogorov-Smirnov goodness-of-fit test conducted). As a result the Box-Cox
transformation approach was not employed as it is expected that the Box-Cox approach will
perform identically to the parametric approach which assumes a normal distribution of the
NAA/Cr measurements. 95% confidence intervals were constructed for J3 using the 2.5th
and 97.5th quantiles of the bootstrap sample. Confidence intervals for c1 and c2 follow from
the bootstrapped J3 values.

Results are shown pictorially in Figure 2. From the position of the normal curves it is clear
that distinguishing between the groups in terms of NAA/Cr level will be most accurate
between NAS controls and ADC subjects and between NEG controls and ADC subjects, but
not as much between NEG and NAS controls given the overlap of the two neurologically
unimpaired groups. The estimated J3 is slightly larger for the non-parametric approach (J3 =
1.434, with p = 0.008, 95% CI 2.5% and 97.5% quantiles: (1.282,1.588)) compared with the
parametric approach (J3 = 1.367, with p = 0.001, 95% CI: (1.231,1.500)). The estimated
cutoff c2 is similar for the two approaches (1.990, 95% CI: (1.931, 2.046), and 1.960, 95%
CI: (1.928, 1.999), respectively), but the estimated cutoff c1 is larger for the non-parametric
approach (1.830, 95% CI: (1.773, 1.888), vs 1.697, 95% CI: (1.655, 1.734)). The
nonparametric VUS is equal to 0.294 (p < 0.001, 95% CI: (0.229, 0.362)), while the
parametric VUS is 0.308 (p < 0.001, 95% CI: (0.246, 0.370)). We rely on the normality of
the data and recommend the use of the parametric approach results in clinical practice.

5 Discussion
In this paper, we discuss J3 as an index of diagnostic accuracy and classification into three-
classes in a specific monotone ordering, such as X < Y < Z. It can be used as a
complementary index to VUS, the three-dimensional generalization of the area under the
ROC curve in the two-dimensional case. Non-parametric and parametric approaches were
considered for estimating J3 and the cut-points c1 and c2. Simulation results indicate that
overall the normality assumption can be useful when normality holds or after the Box-Cox
transformation for small sample sizes. J3-based tests are suitable when location-scale
differences exist. Empirical approaches can be a safe choice when normality clearly does not
hold and important shape differences exist between the three distributions. In practice, both
VUS and J3 approaches can be consulted for the assessment of the discrimination between
the three distributions under study. J3 also maximizes the three-dimensional random walk
height thus generalizing existing ideas [11] from two to three dimensions. In this regard, J3
constitutes a generalization of the Kolmogorov-Smirnov test in three-class discrimination.

The non-parametric method appears to be biased for small sample sizes and when the three
distributions are poorly discriminated. This happens because in these cases J3 may not
correspond to a unique point on the ROC surface but to multiple points, usually two or even
three, depending on the data, a fact that holds for the Youden index too. In the simulations
we have picked one ‘optimal’ operating point at random between all ‘optimal’ ones
whenever this was the case. As a result, parametric methods are preferable for small sample
sizes.

In the uninformative case the Youden index is J = 0 which has some intuitive appeal.
However, in the uninformative case J3 is equal to one. Both J and J3 are defined as sums of
points coordinates on the ROC curve and ROC surface respectively. Since J3 – 1 is only a
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location difference it can be used instead of J3 without any change in the essence of this
work.

Application of the J3 index in the validation of the MRS ratio NAA/Cr as a classification
criterion between HIV-negative and HIV-positive control subjects and HIV-positive
neurologically impaired patients led to the identification of two optimal cutoff points for this
classification and showed that the classification with the NAA/Cr index is viable, and is
particularly useful to distinguish between HIV-positive non-symptomatic patients and HIV-
positive neurologically impaired patients. We have assumed that the reference standard used
to classify patients as HIV-negative, HIV-positive neurologically unimpaired, or HIV-
positive neurologically impaired is accurate. This reference standard is described in detail in
[28] and has been considered as the consensus clinical diagnostic standard. A refinement of
this standard has been recently proposed [29]. As the reference standard in this study may be
imperfect, the methods may provide biased estimates. The issue of defining J3 and its
associated cut-off points when subjects are classified with error is a topic of future research.
In the current study, the produced estimates are still relevant given that the Price & Sidtis
clinical diagnostic measure is still being used. Another issue concerns the potential use of
the NAA/Cr marker. Given that the use of MRS measures to diagnose HIV infection is
unlikely, distinguishing between HIV-negative and HIV-positive patients, based on NAA/Cr
levels, is of tertiary importance from a diagnostic perspective. However, the lack of any
difference in the levels of NAA/Cr in the neurologically unimpaired groups provides
significant insights into the burden of the virus on the brain and supports a two-stage model
of neurological impairment where neuronal loss is a hallmark of late infection and
neurological impairment. Thus, the use of NAA/Cr measured in the frontal white matter to
detect HIV-associated neurological disease in HIV-infected patients is both feasible and
useful.
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Figure 1.
MRS voxel in the frontal white matter of HIV-infected patient and resulting MRS spectrum
with the NAA and Cr peak identified.
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Figure 2.
First line: Estimated normal distributions of NAA/Cr levels and optimal cutoffs according to
non-parametric (left panel) and parametric (right panel) approaches. Second line:
Corresponding three-dimensional ROC surface. Third line: Simulated J3 reference
distributions. The non-parametric reference distribution tends to the parametric one as the
sample size increases.
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Table 2

Estimated relative bias (%) and RMSE for J3 following the empirical and parametric approaches under
scenarios of Table 1 for three different sample size cases. Theoretical J3 is given in the first column.

Scenario Approach
Relative

n=m=l=20
bias (%)

n=m=l=40
(RMSE)

n=m=l=80

1. J3 = 1.7658 Empirical 12.05 (0.1877) 8.41 (0.137) 5.75 (0.0976)

Parametric 1.35 (0.1301) 0.96 (0.0933) 0.40 (0.0662)

Box-Cox 0.25 (0.1343) 0.62 (0.0961) 0.25 (0.0674)

2. J3 = 1.3948 Empirical 18.38 (0.2347) 12.74 (0.1658) 8.28 (0.1112)

Parametric 3.14 (0.1313) 1.67 (0.0924) 0.56 (0.0636)

Box-Cox 1.89 (0.1298) 1.14 (0.0927) 0.37 (0.0634)

3. J3 = 1.5006 Empirical 14.58 (0.2092) 9.68 (0.1506) 6.49 (0.1055)

Parametric 1.79 (0.1359) 1.16 (0.1064) 0.72 (0.0754)

Box-Cox 0.61 (0.1448) 0.67 (0.1096) 0.47 (0.0765)

4. J3 = 1.2681 Empirical 19.29 (0.2234) 12.68 (0.1554) 8.01 (0.1028)

Parametric 8.12 (0.141) 5.81 (0.1058) 5.06 (0.0828)

Box-Cox 2.9 (0.1313) 1.93 (0.0969) 1.18 (0.0718)

5. J3 = 2.0394 Empirical 9.07 (0.1656) 6.12 (0.1153) 4.31 (0.088)

Parametric 1.27 (0.1305) 0.54 (0.0910) 0.24 (0.0687)

Box-Cox 1.27 (0.1336) 0.71 (0.0909) 0.59 (0.0681)

6. J3 = 1.8334 Empirical 3.74 (0.1631) 1.7 (0.1181) 1.68 (0.0846)

Parametric 6.95 (0.1843) 6.49 (0.1463) 7.95 (0.108)

Box-Cox 5.39 (0.2151) 1.24 (0.2089) 5.36 (0.1132)
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