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ABSTRACT
We investigate the accuracy and precision of triaxial dynamical orbit models by fitting two
dimensional mock observations of a realistic 𝑁-body merger simulation resembling a massive
early-type galaxy with a supermassive black hole (SMBH). We show that we can reproduce
the triaxial 𝑁-body merger remnant’s correct black hole mass, stellar mass-to-light ratio and
total enclosed mass (inside the half-light radius) for several different tested orientations with
an unprecedented accuracy of 5-10%. Our dynamical models use the entire non-parametric
line-of-sight velocity distribution (LOSVD) rather than parametric LOSVDs or velocity mo-
ments as constraints. Our results strongly suggest that state-of-the-art integral-field projected
kinematic data contain only minor degeneracies with respect to the mass and anisotropy recov-
ery. Moroever, this also demonstrates the strength of the Schwarzschild method in general. We
achieve the proven high recovery accuracy and precision with our newly developed modeling
machinery by combining several advancements: (i) our new semi-parametric deprojection code
probes degeneracies and allows to constrain the viewing angles of a triaxial galaxy; (ii) our
new orbit modeling code SMART uses a 5-dim orbital starting space to representatively sample
in particular near-Keplerian orbits in galaxy centers; (iii) we use a generalised information
criterionAICp to optimise the smoothing and to compare different mass models to avoid biases
that occur in 𝜒2-based models with varying model flexibilities.

Key words: galaxies: elliptical and lenticular, cD – galaxies: kinematics and dynamics –
galaxies: structure – galaxies: supermassive black holes – methods: numerical

1 INTRODUCTION

Early-type galaxies (ETGs) at the high-mass end (absolute
magnitude 𝑀𝐵 < −20.5 mag) bring along particular interesting
aspects. They provide information about advanced stages of galaxy
evolution, they host the most massive black holes (BHs) observed
so far (Mehrgan et al. 2019), form in mergers and typically show
a central flat core with a tangentially anisotropic orbit distribution
(Faber et al. 1997; Bender 1988a; Bender et al. 1989; Gebhardt
et al. 2003; Kormendy & Bender 2009; Gebhardt et al. 2011;
Kormendy & Ho 2013; Thomas et al. 2014). The most massive
ETGs also reveal particularities concerning supermassive black
hole scaling relations and stellar population analysis. Growth
models for supermassive black holes (SMBHs) present different
predictions for the level of scatter at the high-mass end of SMBH
scaling relations (Peng 2007; Hirschmann et al. 2010; Somerville &
Davé 2015; Naab & Ostriker 2017). Moreover, it is highly debated
whether the stellar initial mass function (IMF) is universal across
galaxies or not. Massive ETGs may show the highest fraction of
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low-mass dwarf stars compared to the Milky Way-like Kroupa-
(Kroupa 2001) or Chabrier- (Chabrier 2003) IMF (Treu et al. 2010;
van Dokkum & Conroy 2010; Thomas et al. 2011; Cappellari et al.
2012; Spiniello et al. 2012; Ferreras et al. 2013; La Barbera et al.
2013; Vazdekis et al. 2015; Smith et al. 2015; Lyubenova et al.
2016; Parikh et al. 2018).
Studying these internal structure and mass composition properties
of ETGs is indispensable for understanding massive galaxy
formation and evolution. This emphasizes the importance of
accurate dynamical modeling routines being able to provide precise
information about the intrinsic dynamical structure of ETGs.
Modeling massive ETGs, however, poses challenges, since specific
observational phenomena of massive ETGs, e.g. isophotal twists
(Bertola & Galletta 1979; Williams & Schwarzschild 1979; Binney
1978), minor axis rotation (Schechter & Gunn 1978; Contopoulos
1956; Binney 1985) and kinematically decoupled components
(Bender 1988b; Franx & Illingworth 1988; Statler 1991; Ene et al.
2018) point to a triaxial intrinsic shape of ETGs. Within the SDSS
Data Release 3, the bright and massive elliptical galaxies with a de
Vaucouleurs profile (de Vaucouleurs 1948) were reported to have a
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general distribution of the triaxiality parameter1Franx et al. (1991)
of 0.4 < T < 0.8 (Vincent & Ryden 2005). Recently, de Nicola
et al. (2022b) used a newly developed semi-parametric triaxial
deprojection code (de Nicola et al. 2020) to measure radially
resolved shape profiles of individual brightest cluster galaxies.
These galaxies are almost maximally triaxial at all radii, however
tend to be rounder at their centers compared to their outskirts.
Besides the triaxial nature of the stellar components of massive
ETGs, most cosmological simulations with collisionless dark
matter (DM) halos also predict triaxial DM halo shapes (e.g. Jing
& Suto 2002; Bailin & Steinmetz 2005; Allgood et al. 2006; Bett
et al. 2007; Hayashi et al. 2007; Schneider et al. 2012; Despali et al.
2013; Vega-Ferrero et al. 2017).
The given three dimensional shape of ETGs complicates the
extraction of information about their intrinsic properties, since
observations only provide a two dimensional projection onto the
plane of the sky. The state-of-the-art method to tackle this problem
is a dynamical modeling method based on Schwarzschild’s orbit
superposition technique (Schwarzschild 1979). However, it is
still unclear how accurate dynamical models in general – and
Schwarzschild models in particular – can get. The literature about
dynamical models addresses a large variety of possible degeneracy
issues. For example, Gerhard & Binney (1996) proved that even
in the axisymmetric limit, the deprojection of density distributions
is not unique. Dynamical models are moreover affected by the
well-known mass-anisotropy degeneracy (e.g. Gerhard 1993),
where missing mass in the outer parts, for example, can be hidden
by a more tangential orbit distribution. In the axisymmetric limit,
the determination of the correct viewing angles with dynamical
modeling routines holds repeatedly stated degeneracies (e.g.
Krajnović et al. 2005; Cappellari et al. 2006; Onken et al. 2007;
Thomas et al. 2007). Such problems generally increase when going
from two to three dimensional systems and the recovery of the
orientation and shape of triaxial galaxies has also been reported to
be difficult (van den Bosch et al. 2008). Moreover, Jin et al. (2019)
report large possible stellar and dark-matter mass uncertainties
due to the potential degeneracy between them, when analysing
galaxies from the Illustris (Vogelsberger et al. 2014) simulation
with a triaxial Schwarzschild modeling routine (van den Bosch
et al. 2008).
Nevertheless, the discussion of scientifically interesting issues, like
the previously mentioned questions concerning the stellar IMF
and SMBH growth models demand correct and accurate black
hole mass and stellar mass-to-light ratio recoveries. Fortunately,
the last years have provided a lot of progress in various aspects of
dynamical modeling such that it is worth to readdress the above
degeneracy issues. For example, in the early days of Schwarzschild
modeling it was standard to parameterise line-of-sight velocity
distributions with Gauss-Hermite moments. Today, it is possible
to routinely use the entire, non-parametric line-of-sight velocity
distribution (Mehrgan et al. 2019), Falcón-Barroso & Martig
(2021)). The so increased amount of information available certainly
helps to overcome some of the degeneracies in earlier models.
Also, until recently, the most common method for determining the
best fit parameters of dynamical models was a minimization of
the observed and modelled discrepancies in a least square sense
(e.g. Richstone & Tremaine 1984; Rix et al. 1997; Cretton et al.

1 The triaxiality parameter is defined as𝑇 =
1−𝑝2
1−𝑞2 with 𝑞 = 𝑐

𝑎
and 𝑝 = 𝑏

𝑎
,

where 𝑎, 𝑏 and 𝑐 are the semi major, intermediate and minor axes of the
galaxy.

1999; Siopis & Kandrup 2000; Häfner et al. 2000; Gebhardt et al.
2000; Valluri et al. 2004; Thomas et al. 2004; van den Bosch et al.
2008; Vasiliev & Valluri 2020; Neureiter et al. 2021). However,
Lipka & Thomas (2021) showed that the quality of fit between
different models cannot be compared with each other without
considering the individual model’s degrees of freedom.Minimizing
a 𝜒2 across models with varying degrees of freedom leads to
biased results. Thomas & Lipka (2022) derived a generalisation
of the classical Akaike Information Criterion (AIC) which can be
applied to penalised maximum-likelihood models such as most
implementations of the Schwarzschild method are. This generalised
AICp allows to rigorously include the varying model flexibilities
in the comparison of different mass models. Moreover, it allows a
data-driven optimisation of the regularisation for each individual
trial model (Thomas & Lipka 2022).
As another improvement, in our newly developed three dimensional
triaxial Schwarzschild Modeling code called SMART (Neureiter
et al. 2021) we use a five-dimensional starting space for orbits to
guarantee that all the different orbit types, in particular near the
central black hole, are included in the model.
Finally, the new semi-parametric deprojection method SHAPE3D
introduced by de Nicola et al. (2020) has shown that the goodness
of fit strongly depends on the chosen viewing angles, thus allowing
to select the light densities yielding the best rms (cf. de Nicola
et al. 2022b).
All these advancements can potentially reduce the amount of
degeneracy in dynamical modeling, and in Schwarzschild modeling
in particular.
In order to test the combined power and precision of the new
semi-parametric deprojection code SHAPE3D by de Nicola et al.
(2020), the dynamical modeling routine SMART by Neureiter et al.
(2021) and the advanced model selection tools developed by Lipka
& Thomas (2021) and Thomas & Lipka (2022), we apply them to
high-resolution 𝑁-body simulations including SMBHs by Rantala
et al. (2018). This provides us with the knowledge of the intrinsic
scatter and remaining degeneracy uncertainties that one has to deal
with when applying triaxial deprojection and dynamical modeling
routines to future observational data. In the current paper we focus
on the mass reconstruction while in a companion paper by de
Nicola et al. 2022a, hereafter called Paper II, we discuss the shape
and anisotropy recovery.

This paper will be structured as follows: Section 2 and 3 briefly
summarize the used deprojection and dynamical modeling codes. In
Section 4 we describe the used 𝑁-body simulation and our method-
ology to process its data and model it. In Section 5 we present our
results, which are then discussed in Sections 6 and summarized in
Section 7.

2 TRIAXIAL DEPROJECTION

de Nicola et al. (2020) presented a new semi-parametric deprojec-
tion code called SHAPE3D as triaxial extension of the non-parametric
axisymmetric algorithm by Magorrian (1999). Triaxial deprojec-
tions are highly degenerate. Therefore, one aims for a deprojection
method being able to consider all possible density distributions
leading to the same projected surface brightness and afterwards
evaluate their individual likelihood. Parametric methods like the
well known and widely used Multi Gaussian Expansion Method
(MGE, introduced by Monnet et al. (1992)) are fast, however fail to
suggest more than one out of many possible solutions per viewing
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Triaxial Mass Models 3

angle and to select the best light densities using an rms-cutoff.
SHAPE3D is, in contrast, able to deal with the degeneracy issue and
allows to search for a range of possible deprojections per viewing
angle. It is a semi-parametric constrained-shape approach in the
sense that it searches for best-fit light densities assuming that the
contours of the luminosity density can be described as ellipsoids
with possible boxy or discy deformations as well as radially varying
axis ratios. Under this assumption the galaxy’s three dimensional
density function 𝜌(𝑥, 𝑦, 𝑧) can at every point be described by an
ellipsoid whose radius is given as

𝑚2−b (𝑥) = 𝑥2−b (𝑥) +
[

𝑦

𝑝(𝑥)

]2−b (𝑥)
+
[

𝑧

𝑞(𝑥)

]2−b (𝑥)
. (1)

The four one dimensional functions 𝜌(𝑥), 𝑝(𝑥), 𝑞(𝑥) and b (𝑥) de-
scribe the density, axis ratios 𝑝 ≡ 𝑦/𝑥 and 𝑞 ≡ 𝑧/𝑥 and the discy-
(b > 0) or boxiness (b < 0) along the major axis. The code utilizes
a grid-based approach, where the observed surface brightness and
density are evaluated on elliptical and ellipsoidal polar grids, re-
spectively. Due to the used semi-parametric method, a regularizing
penalty function 𝑃 is necessary to discard unsmooth, non-physical
solutions. In total, the code minimizes 𝐿 = − 𝜒2

2 + 𝑃, where 𝜒2

describes the difference between the observed and modeled SB. de
Nicola et al. (2020) proved that their code is able to recover the
triaxial intrinsic density of an 𝑁-body simulation (Rantala et al.
2018) with high precision when the viewing angles are known.

Very important for the dynamical modeling is the fact that in
the observationally realistic case of unknown viewing directions
the assumption of a pseudo-ellipsoidal density structure constrains
the range of possible orientations quite strongly (de Nicola et al.
2020). Moreover, the code filters out deprojections leading to un-
realistic 𝑝- and 𝑞-profiles, i.e. deprojections which are either not
smooth, or are outside the observed shape distribution of massive
ellipticals. Furthermore, the code identifies deprojections where the
order of the principal axes (short, intermediate, long) changes with
radius. Finally, the range of possible viewing directions is narrowed
down even more by re-projecting the remaining densities and by
evaluating the likelihood of the corresponding isophotal shapes in
comparison with the distribution of observed isophotal shapes of
ETGs in general (see also Thomas et al. 2005).

3 TRIAXIAL SCHWARZSCHILD CODE SMART

SMART is the abbreviation for "Structure and MAss Recovery of
Triaxial galaxies" and is a three dimensional implementation of
Schwarzschild’s Orbit Superposition Technique based on its ax-
isymmetric predecessor by Thomas et al. (2004). We refer to our
paper by Neureiter et al. (2021) for a detailed description and will
only briefly summarize the most important aspects here.

(i) SMART assembles the total gravitational potential

Φ = Φ∗ +ΦDM +ΦSMBH (2)

out of its three relevant contributions.Φ∗ andΦDM are the potentials
of stars and dark matter (DM). They are computed from the stellar
and DM densities (see Section 4.3) via expansion into spherical
harmonics. This enables the capability to deal with non-parametric
densities. ΦSMBH corresponds to the point-like potential from the
central supermassive black hole.
(ii) SMART launches thousands of orbits from a five dimensional
starting space and integrates their trajectories for 100 surfaces of
section crossings. The five dimensional starting space enables to

deal with radially changing structures in the integrals-of-motion-
space and therefore allows an automatic adaption to changes in
the gravitational potential including a more spherical shape of the
potential in the close vicinity of the SMBH giving rise to nearly-
Keplerian or rosette orbits (e.g. Neureiter et al. 2021; Frigo et al.
2021).
(iii) SMART fits the kinematic data by computing

𝜒2 =
𝑁losvd∑︁

𝑗

𝑁vlos∑︁
𝑘

(
Ldata 𝑗𝑘 − Lmod 𝑗𝑘

ΔLdata 𝑗𝑘

)2
(3)

as the discrepancy between the non-parametric, full LOSVD of the
model Lmod and the data Ldata summed over all spatial bins 𝑗 and
velocity bins 𝑘 .Lmod is the sum over the individual orbital LOSVDs
weighted by the orbits’ occupation numbers, hereafter called orbital
weights 𝑤𝑖 . Since the number of orbital weights as free parameters
in general is larger than the total number of observed data consisting
as the number of kinematic bins 𝑁vlos times the number of spatial
bins 𝑁losvd, solving for the orbital weights is underconstrained and
the solution ambiguous. This issue asks for the inclusion of a penalty
function.
(iv) SMART therefore conducts the orbit superposition by maximiz-
ing and entropy-like quantity

𝑆 ≡ 𝑆 − 𝛼 𝜒2, (4)

where 𝛼 is a regularization parameter and

𝑆 = −
∑︁
𝑖

𝑤𝑖 ln
(
𝑤𝑖

𝜔𝑖

)
. (5)

The parameters 𝜔𝑖 can be interpreted as weights of the orbital
weights 𝑤𝑖 . The orbital weights 𝑤𝑖 are constrained to reproduce
the observed photometry as a boundary condition and the specific
choice of𝜔𝑖 defines the chosen entropy termwhich gets maximized.
In our fiducial set-up, we use 𝜔𝑖 = const so that 𝑆 is linked to the
Shannon entropy. By picking a specific set of 𝜔𝑖 the solution for the
orbital weights becomes unique and SMART recovers this solution
in the extremely high-dimensional space of the orbital weights with
very high precision (Neureiter et al. 2021). Different sets of 𝜔𝑖 lead
to formally different solutions. We showed in Neureiter et al. (2021)
that varying the 𝜔𝑖 allows to probe the entire space of possible
solutions. However, in the same paper we showed that this modeling
freedom does not significantly affect the macroscopic properties of
interest such as the mass or anisotropy recovery. Hence, we do not
need to explore this additional model space and only use the set
𝜔𝑖 = const as described above.
(v) In contrast to the orbital weights, the specific choice of the
regularization parameter 𝛼 however does show a notable impact
on the model results and achieved precision. It has been shown
for axisymmetric models by Lipka & Thomas (2021) that using
the optimal smoothing is important to obtain unbiased results. To
optimise the smoothing in each individual mass model we compute
models for a range of different smoothing values2 and select the
best one using the generalised information criterion

AICp = 𝜒2 + 2𝑚eff (6)

for penalisedmaximum-likelihoodmodels (Thomas&Lipka 2022).
In AICp the model flexibility – which decreases with increasing
smoothing strength (i.e., 𝛼 → 0) – is represented by the number

2 We typically use 𝑁𝛼 = 30 trial smoothing values distributed homoge-
neously between log 𝛼 = −6 and log 𝛼 = 1.
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of effective free parameters 𝑚eff (Lipka & Thomas 2021). As dis-
cussed in more detail in this paper, 𝑚eff is computed by creating
𝑁b bootstrap iterations for the LOSVDs, hereafter called Lbdata,
by adding random Gaussian noise based on the observational er-
ror ΔLdata to the original modelled fit Lmod. The number of free
parameters is then given as as:

𝑚eff =
1
𝑁b

𝑁b∑︁
b

𝑁data∑︁
𝑛

1
(ΔL𝑛

data)
2 (L

b𝑛
bfit−L

𝑛
mod) (L

b𝑛
bdata−L

𝑛
mod), (7)

where 𝑁data = 𝑁losvd × 𝑁vlos is the total number of data points and
Lbfit is the new modelled fit to the bootstrap data set Lbdata.
It was shown in Thomas & Lipka (2022) that the optimal smoothing
is achieved at the minimum of AICp. As discussed in detail in the
same paper, the smoothing optimisation can be done with a very
low number of bootstrap iterations for 𝑚eff . We use 𝑁b = 1. We
note that the optimal smoothing strength usually varies from model
to model. In our case, the closer the assumed mass distribution and
orientation are to the true properties of the 𝑁-body projection, the
stronger the optimal smoothing becomes.
(vi) When evaluating different mass models (or orientations)
against each other, the intrinsic model flexibilities vary as described
above. The fit qualities cannot be compared to each other in an
unbiased manner without taking into account the individual num-
ber of the models’ degrees of freedom (Lipka & Thomas 2021).
Again, we select the best model based on AICp. However, here the
correlations between different models are weaker than in the case
of the smoothing optimisation. As a result, one is often faced with
jagged 𝜒2 curves and also with an increased scatter in 𝑚eff (cf.
the extended discussion in Thomas & Lipka 2022). When com-
paring models obtained with different orbit libraries (i.e. models
with different mass distributions and/or with different assumed ori-
entations/shapes) we therefore use 𝑁b = 15 bootstrap iterations to
calculate an improved estimate of 𝑚eff at the optimal value of the
regularisation parameter 𝛼 of the individual mass model. As we will
show below, with this newly integrated approach we avoid any bias
and achieve significantly improved constraints when searching for
our best-fit parameters.

4 THE 𝑁-BODY SIMULATION

We apply our deprojection routine and SMART to the high-resolution
𝑁-body simulation by Rantala et al. (2018).
The simulation is in particular suitable for our application under
study since it represents a realistic triaxial remnant of a single
generation binary galaxy merger with a structure and shape
resembling the core galaxy NGC1600 (e.g. Thomas et al. 2009;
Rantala et al. 2019). It has a final SMBH of 1.7 × 1010𝑀� , a
sphere of influence3 of 𝑟SOI ∼ 1 kpc and an effective radius of
𝑟𝑒 ∼ 14 kpc.
The simulation was chosen on purpose for our requested analysis
because of its ability to accurately compute the dynamics close
to the SMBH due to an algorithmic chain regularization routine
AR-CHAIN (Mikkola & Merritt 2006, 2008) included in the
Gadget-3 (Springel 2005) based KETJU simulation code (Rantala
et al. 2017). The used snapshot, which is about one Gyr after the
merger has happened, shows a large core and a prolate shape in
the outskirts with a more spherical shape towards the center. The

3 We here define the sphere of influence as the radius within which the total
stellar mass equals the black hole mass.

stellar component of the merger remnant is maximally triaxial (i.e.
𝑇 = 0.5) at ∼ 3kpc.

4.1 Tested viewing directions

We analyse four different projections of this 𝑁-body simulation: two
principal axes of the chosen snapshot as lines of sight ("interm",
"minor") as well as one projection exactly in between the principal
axes ("middle") and one projection with randomly sampled viewing
angles ("rand"). The specific projections and their corresponding
viewing angles can be read from table 1. The viewing angles \ and
𝜙 determine the projection to the plane on the sky and 𝜓 determines
the rotation in the plane of the sky. The viewing angles transform the
intrinsic coordinates (𝑥, 𝑦, 𝑧), which are adapted to the symmetry of
the object, to the sky-projected coordinates (𝑥′, 𝑦′, 𝑧′) via the two
matrices 𝑃 and 𝑅:

©«
𝑥′

𝑦′

𝑧′
ª®¬ = 𝑅 · 𝑃 · ©«

𝑥

𝑦

𝑧

ª®¬ , (8)

with

𝑅 =
©«
sin𝜓 − cos𝜓 0
cos𝜓 sin𝜓 0
0 0 1

ª®¬ (9)

and

𝑃 =
©«

− sin 𝜙 cos 𝜙 0
− cos \ cos 𝜙 − cos \ sin 𝜙 sin \
sin \ cos 𝜙 sin \ sin 𝜙 cos \

ª®¬ . (10)

projection: (\, 𝜙, 𝜓)

interm (90, 90, 90)◦
minor (0, 90, 90)◦
middle (45, 45, 45)◦
rand (60.4, 162.3, 7.5)◦

Table 1: Tested projections with corresponding viewing angles. In
order to deproject and model different sets of input data we evaluate
the SB and kinematic data of the 𝑁-body simulation along four
different lines of sight. The tested projections include two principal
axes, i.e. the intermediate (hereafter called "interm") and "minor"
axes of the triaxial merger remnant, as lines of sight.We test another
projection exactly in between the principal axes, which we hereafter
call "middle", and one more projection (hereafter called "rand")
with randomly drawn viewing angles.

4.2 Processing the simulation data

We align the coordinate system of the remnant galaxy to the center
of mass and principle axes of the reduced inertia tensor for stars and
dark matter within 30 kpc.
Afterwards, we individually compute the surface brightness (SB)
and kinematics for the four different projections under study (see
table 1). We assume the galaxy to be in a distance of 20 Mpc.
The SB in units of stellar simulation particles is computed with a
resolution of 0.1 arcsec within a FOV of (40 × 40) arcsec and a

MNRAS 000, 1–12 (2020)
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resolution of 0.5 arcsec within (10300 × 10300) arcsec (spanning
about 30 times the effective radius).
The kinematic data is computed by using the Voronoi tessellation
method of Cappellari & Copin (2003). Our chosen field of view
of ∼ 15 kpc spans about the effective radius. The central Voronoi
tesselation within the sphere of influence samples a higher resolu-
tion than the tesselation scheme in the outskirts. We compute the
Voronoi tesselation grid individually for every projection to guaran-
tee a constant number of stellar simulation particles 𝑁∗ in each bin.
The size of the Voronoi bins is chosen so that the signal-to-noise
ratio is

signal
noise

=
√︁
signal =

√︁
𝑁∗ =

{
70 for 𝑟 < 𝑟SOI,

150 for 𝑟SOI < 𝑟 < 15 kpc.
(11)

Averaged over the four tested projections, our kinematic data
exhibit 𝑁voronoi = 220 Voronoi bins within the whole FOV and
𝑁voronoi = 51 Voronoi bins within 𝑟SOI. The innermost Voronoi
bin spans an average radius of 0.58 arcsec. With this, our chosen
resolution matches realistic observational data.
For each Voronoi bin we compute the simulation’s LOSVDs for
𝑁vlos = 15 spanning 𝑣maxmin = ±1669 km s−1.
To provide realistic conditions, which are comparable to future
observational data, we add Gaussian noise to the intrinsically
noiseless kinematic data of the simulation. We set the standard
deviation for the Gaussian scattering as 3% of the maximum
of each LOSVD. With this, the velocity dispersion of the noisy
kinematic simulation data results in an observationally realistic
error of ∼ 2%.

We have chosen this simulation and mock data setup on pur-
pose, since its high resolution meets the requirements of our study.
Our goal is to demonstrate the accuracy and precision that can
be achieved with advanced dynamical models and the best current
observational data. The actual precision in any specific measure-
ment will depend on the circumstances, e.g. signal-to-noise ratio
in the spectral observations, spatial resolution, distance and many
other factors. It is not an intrinsic property of the modeling process.
However, better data do not necessarily guarantee better results. In
particular for dynamical modelling, the existence of intrinsic degen-
eracies (e.g. between mass and anisotropy) may eventually limit the
achievable precision regardless of the quality of the data. However,
while often discussed, the effect of such degeneracies has rarely
been quantified. Our goal here is to show that they do not hamper
highly accurate dynamical measurements on a 10% level.

4.3 Modeling the N-body simulation

We first apply the deprojection routine to the different tested
projections of the 𝑁-body simulation as if dealing with an observed
galaxy. For each tested projection, the original grid of 1800 trial
viewing angles is reduced by the deprojection code to a few dozen
candidate orientations or shapes, respectively (see also Paper II).
Similar to when modeling real observational data, we model a
multidimensional parameter space and do not provide any a priori
knowledge about the analysed 𝑁-body merger. Besides the viewing
angles \, 𝜙 and 𝜓, we vary the black hole mass 𝑀𝐵𝐻 , the stellar
mass-to-light ratio Υ as well as five dark matter halo parameters.
The DM halo profile is parameterised similar to a generalized
NFW model with a scale radius 𝑟𝑠 , density normalisation 𝜌0, axis
ratios 𝑝DM and 𝑞DM and a variable inner logarithmic density
slope 𝛾in. However, because the original halos of the 𝑁-body

progenitor galaxies were based on a Hernquist profile, we set the
outer logarithmic density slope equal to 𝛾out = −4.5 (measured
value for the remnant of our merger simulation) rather than the
canonical NFW value of 𝛾out = −3.0.
The individual parameters of our ten dimensional parameter
space are each sampled on a grid and the best-fit parameters are
determined by looking for the minimum in AIC𝑝 (see Equation 6
in Section 3). We do this individually for each tested projection.
The results for the best-fit viewing angles are detailed in Paper II.
There, it is shown that the viewing angles are recovered with an
average deviation of ∼ 20◦.
In the current paper we focus on the detailed recovery of the stellar
mass-to-light ratio and black hole mass. The sampled grid for the
stellar mass-to-light ratio covers 10 values within Υ ∈ [0.6, 1.4].
The corresponding grid size is ΔΥ = 0.09, which equals 9% of
the true value Υsim = 1 of the simulation. The grid for the black
hole mass covers 10 values within 𝑀𝐵𝐻 ∈ [1.0, 3.0] × 1010𝑀�
(Δ𝑀𝐵𝐻 = 0.22 × 1010𝑀� , i.e. 13% of the true black hole mass
𝑀𝐵𝐻,sim = 1.7 × 1010𝑀�).
The model results presented in this paper are attained by modeling
each projection twice: by taking advantage of the triaxial symmetry
of the simulation we can split the kinematic data of each projection
along, e.g., the apparent minor axis (determined by averaging over
the projected isophotes). One data set shows only positive values
for the sky-projected coordinates 𝑥′ > 0 (hereafter called ’right
side’ of the galaxy) and the other data set shows only negative
values for the long axis of the sky-projection coordinates, i.e. 𝑥′ < 0
(hereafter called ’left side’ of the galaxy). This provides us with
two independent kinematic data-sets for each tested projection,
allowing us to determine the scatter of our modeling results. While
it is actually common practice in Schwarzschild models to derive
parameter uncertainties from a Δ𝜒2-criterion, we specifically chose
to use a different method. Since Lipka & Thomas (2021) showed
that the effective number of parameters in the models varies with
mass, viewing angles, etc. and that the Schwarzschild fitting is a
model selection process rather than a parameter optimisation, a
Δ𝜒2-criterion is statistically meaningless. An easy and unbiased
way to determine errors in such a situation is to use the actual
scatter ‘measured’ over fits to several data sets (see Lipka &
Thomas 2021).
As our results in Section 5 will demonstrate, this method results in
robust estimates of the actual scatter in the best-fit parameters.

For every kinematic data set we ran on average 3000 models to
sample our ten dimensional parameter space. We use the software
NOMAD (Nonlinear Optimisation by Mesh Adaptive Direct
search; Audet & Dennis, Jr. 2006; Le Digabel 2011) to optimise
the search. NOMAD is designed for time-consuming constrained
so-called black-box optimisation problems.

5 RESULTS

In Paper II, we discuss the recovery of the intrinsic shape, including
the recovery of the viewing angles \, 𝜙, 𝜓, axis ratios 𝑝, 𝑞 and
triaxiality parameter 𝑇 , as well as anisotropy 𝛽 of the 𝑁-body
simulation, while we here focus on the question how well we can
recover the mass distribution.

SMART fits the kinematic input data very well, indepen-
dent of the chosen projection. The average goodness-of-fit is

MNRAS 000, 1–12 (2020)



6 B. Neureiter et al.

Δ𝜒2/Ndata = 0.69, where 𝑁data = 𝑁vlos × 𝑁voronoi consists of
the number of velocity bins 𝑁vlos times the number of Voronoi
bins 𝑁voronoi of the individual projection and respective modeled
side. Fig. 1 shows maps of the velocity, velocity dispersion, as
well as the Gauss-Hermite parameters ℎ3 and ℎ4 (Gerhard 1993;
van der Marel & Franx 1993; Bender et al. 1994). The Figure
shows both the input data and the model fit and we have chosen
the intermediate-axis projection as an example. The velocity
maps for the minor, middle and rand projections are plotted in
Apendix B. As one can see, the modeled maps match the input
kinematic data homogeneously well over the whole field of view.
In particular, SMART is able to reproduce the negative ℎ4-parameter
in the center, which corresponds to a tangentially anisotropic orbit
distribution produced during the core formation process. Note,
that we do not fit the Gauss-Hermite moments but instead fit the
entire non-parametric LOSVDs at 𝑁vlos line-of-sight velocities
𝑣los in each Voronoi bin. We show the Gauss-Hermite maps only
to illustrate the fit quality. However, the Figure also shows the
goodness-of-fit Δ𝜒2/Nvlos achieved over the entire non-parametric
LOSVD in each individual Voronoi bin.

Fig. 2 shows the curves of AICp versus the tested stellar
mass-to-light ratios and black hole masses for the different
projections and sides. For these curves we first search at each
Υ (or 𝑀BH, respectively) the minimum AICp over all other
parameters and then connect these values. As already mentioned
in Section 4.3, the final best-fit model is determined as the
global minimum of all AICp values over all parameters, hereafter
called min(AICp). The absolute AICp-values of the various
projections/sides are not important. They cannot be compared
to each other, because every data set has a different number of
kinematic input data (see section 4.2). We therefore subtract the
individual min(AICp) from the respective AICp values of the same
data set. Each AICp curve represents the results of ∼ 3000 models
in the ten dimensional space of the mass and orientation parameters.

As one can see, all best-fit stellar mass-to-light ratios and black
hole masses scatter within a small variation range around the true
values of the simulation (red lines). For future studies it is interest-
ing to investigate the accuracy and precision of individual measure-
ments for observational data with similar resolution and coverage
as assumed in this study. For this we analyse the mean black hole
masses and stellar mass-to-light ratios and their corresponding stan-
dard deviations for the two sides of each individual projections (as
in detail explained in Section 4.3). The results for the individual
measurements are summarized in table 2. Within the individual
standard deviations, the black hole mass as well as the stellar mass-
to-light ratio were correctly recovered on the 10% accuracy level.
As one can see, with our choice of averaging over two independent
data-sets, we yield representative scatter measurements, which are
in the same order of magnitude for each tested projection.

In addition to the precision of individual measurements it
is also important to study the statistical accuracy, which can in
principle be achieved with an accurate triaxial dynamical modeling
machinery. Due to the fact that we analyse several mock samples
by modeling different projections, we can determine an average
accuracy of the method. Averaged over the results of the interm,
minor, middle and rand projection, we achieve Υ = 1.06 ± 0.09
and 𝑀BH = (1.67 ± 0.16) × 1010𝑀� . With this, the mean stellar
mass-to-light ratio is recovered within ΔΥ = 6% and the mean
black hole mass is recovered within Δ𝑀BH = 2% in comparison
to the true values (Υ𝑠𝑖𝑚 = 1, 𝑀𝐵𝐻,sim = 1.7 × 1010𝑀�) of the

Υ 𝑀𝐵𝐻

interm 1.04 ± 0.05 (1.67 ± 0.07) × 1010𝑀�
minor 1.09 ± 0.13 (1.67 ± 0.22) × 1010𝑀�
middle 1.05 ± 0.08 (1.78 ± 0.11) × 1010𝑀�
rand 1.05 ± 0.08 (1.56 ± 0.11) × 1010𝑀�

true Υsim = 1 𝑀𝐵𝐻,sim = 1.7 × 1010𝑀�

Table 2: Recovery precision ofΥ and 𝑀𝐵𝐻 for individual measure-
ments. In order to estimate the precision level one can expect when
analysing future observational data with a resolution similar to the
one from the N-body simulation in the current analysis, we here
individually list the results of the black hole mass and stellar mass-
to-light ratio of the four tested projections and compare them to
the true values from the simulation. Within the standard deviations,
which are given by modeling the two sides of each projection, every
tested data-set correctly recovers the true values from the simulation
with a minor deviation on the ∼ 5 − 10% level.

simulation. The true values lie within the standard deviation of our
tested models. This accuracy is slightly below our considered grid
step sizes of ΔgridΥ = ±9% and Δgrid𝑀BH = ±13%. We therefore
estimate conservatively that the accuracy is at least the grid step
size, i.e. of the order of 10%, though it is probably even better.

In order to provide a complete test in our analysis along all
principal axes of a triaxial galaxy, we also performed models along
the long axis of the analysed 𝑁-body galaxy and found that the
discussed results change for this particular line of sight. For our
fiducial ten dimensional parameter space setup, the best-fit black
hole masses derived from the major-axis projection of the 𝑁-body
are off by more than 70%. In Appendix A we show that these offsets
vanish when we assume the right orientation and radial shape of
the DM halo profile, i.e. when we provide the normalized stellar
and DM halo density profiles of the simulation and/or when we in-
crease the input data resolution. Hence, these offsets are not related
to SMART, but instead indicate that the dynamical modeling and in
particular the recovery of the exact black hole mass of a triaxial
galaxy gets more difficult when a galaxy happens to be observed
along its intrinsic long axis. This would not be entirely surpris-
ing since we know that even the pseudo-ellipsoidal deprojections
become degenerate when an object happens to be observed along
one of its principal axes. Kinematic degeneracies are likely largest
for viewing-angles along the principal axes as well. However, such
viewing angles – in particular if only the major axis is concerned –
are rare and an increased uncertainty along this direction will not
severely affect the results of triaxial models for randomly selected
galaxies. Nevertheless, we plan a more in-depth analysis of this
particular case and its implications in a future paper.

Fig. 3 shows the recovery of the enclosed stellar (left panel)
and total mass (right panel) profiles for the interm, minor, middle
and rand projection. The total mass consists of the sum of the black
hole, stellar and DM mass. Within 𝑟SOI < 𝑟 < 𝑟𝑒 the stellar part
dominates over the BH and dark matter. At a distance of 𝑟 ∼ 𝑟𝑒,
the enclosed DM mass equals the enclosed stellar mass of the sim-
ulation. Therefore, for radii 𝑟 > 𝑟𝑒 the DM mass is the main contri-
bution to the enclosed total mass, whereas the BH mass dominates
the mass contribution within the sphere of influence. As one can
see, the stellar enclosedmass profiles of all best-fit models (different
colors) follow the real one from the simulation (red) over all radii, in
particular within the relevant radial region between 𝑟SOI < 𝑟 < 𝑟𝑒,
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Figure 1: Velocity (first column), velocity dispersion (second column), ℎ3 (third column) and ℎ4 (fourth column) map of the simulation (first
row) and the best-fit model (second row) for the intermediate axis projection (’right’ data set). The true viewing angles are \ = 𝜙 = 𝜓 = 90◦
in this case, the recovered ones are \ = 60◦, 𝜙 = 90◦, 𝜓 = 90◦ (see Paper II). SMART is able to accurately fit the kinematic input data with
𝜒2/Ndata = 0.62. The 𝜒2/Nvlos-map (bottom right panel) shows that the fit can be produced homogeneously well over the whole field of
view. The top right panel shows the surface brightness map in logarithmic units of stellar particle numbers 𝑁∗ of the simulation.
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Figure 2: Mass recovery results of Υ (left panel) and 𝑀𝐵𝐻 (right panel) for the four tested projections (different colors) and their respective
modeled sides (solid lines for the right sides and dotted lines for the left sides). The minima of the AICp-curves point at the best-fit stellar
mass-to-light ratio (left panel) and black hole mass (right panel) of the individual models, which cover a multi-dimensional parameter space.
The true mass values from the simulation (Υsim = 1 and 𝑀𝐵𝐻,sim = 1.7× 1010𝑀�) are marked with red lines. For each modelled projection,
the best-fit values consistently scatter within 10% of the true values (see Table 2). With this, we are able to reproduce the correct mass
parameters with an unprecedented accuracy. This achieved precision indicates that, in general, projected kinematic data of a triaxial galaxy
contain only minor degeneracies.

and even down to a radius, where the stellar mass is less than 10%
of 𝑀BH. At an intermediate radius of 7kpc the mean deviation from
the stellar enclosed mass between the best-fit models and the sim-
ulation is only Δ𝑀∗ (7kpc) = 5.9%. Also the total enclosed mass
profiles of all best-fit models follow the real one from the simulation
over all radii. It follows that also the enclosed DM profile is well
reproduced. Averaged over the four different projections, the rela-
tive deviation from the total enclosed mass is Δ𝑀tot (𝑟SOI) = 5.9%
at the sphere of influence and Δ𝑀tot (𝑟𝑒) = 4.5% at the effective
radius.
Besides the accurate recovery of the total enclosed mass, SMART is
furthermore able to determine the correct, non-spherical shape of
the DM halo. Averaged over our tested projections and sides, the

axis ratios 𝑝DM = 0.79± 0.06 and 𝑞DM = 0.91± 0.06 show a max-
imum deviation of the true values 𝑝DM,sim = 𝑞DM,sim = 0.93 of
only 0.14. The principal axis ratios 𝑝DM,sim, 𝑞DM,sim are thereby
computed via the eigenvalues from the reduced inertia tensor of
the simulated DM particles within 100 kpc. Our findings show that
our triaxial deprojection and orbit modeling codes prove to produce
reliable mass recovery results for the SMBH, stellar and DM com-
ponents with an accuracy on the ∼ 5 − 10% level.
Of course the precision of individual measurements depends on
specific circumstances like the signal-to-noise ratio of the data,
their spatial resolution etc. Hence the above numbers do not imply
that every measurement will have this precision. However, our tests
demonstrate that a 5 − 10% level of precision is possible with ap-

MNRAS 000, 1–12 (2020)



8 B. Neureiter et al.

propriate data and advanced Schwarzschild models.
In Paper II we show that a similar level of accuracy is achieved for
the orbital anisotropy. This provides a rigorous test for our modeling
machinery.

All these results together strongly suggest that, in principle,
the intrinsic degeneracies contained in the photometric data and in
particular in state-of-the-art integral field kinematic data are small
enough so that macroscopic parameters of interest like the mass
of the central SMBH, the stellar mass-to-light ratio and also the
anisotropy profile (cf. Paper II) of a triaxial galaxy can be deter-
mined with better than 10% precision. In this sense, this sets a
reference for the astonishing small intrinsic scatter of triaxial dy-
namical modeling routines, which can be expected and achieved for
precise kinematic data comparable to the N-body’s resolution.
Special caution must be paid, when a triaxial galaxy is observed
along its long axis (App. A).

6 DISCUSSION

The results presented in the previous Sec. 5 suggest that the accuracy
and precision that can be achieved with (triaxial) dynamical orbit
models is much better than previously anticipated.

6.1 Importance of model selection

We used the same triaxial 𝑁-body simulation already in Neureiter
et al. (2021) to show that the central SMBH mass, the stellar
mass-to-light ratio and 𝛽-profile can be recovered to better than a
few percent accuracy with our dynamical models. In that paper,
we assumed the angles and the stellar and DM density shape to
be known and focused on testing our orbit modeling code SMART,
i.e. did not go through all the analysis steps of a real galaxy. Here
we go one step further. We simulate the entire modeling process
of an observed galaxy. The difference to Neureiter et al. (2021) is
not only that we here use noisy input data but we also simulate the
realistic situation where we do not know the galaxy’s orientation
and intrinsic shape because we only have its projected image on the
sky. Still, the mass and anisotropy recovery results of our current
studies (see also Paper II) reach a similar precision (∼ 5 − 10%) as
in the idealised case studied in Neureiter et al. (2021). On the one
side, this reaffirms our previous tests and suggests that even in the
realistic case where one has to deal with (i) noisy data and (ii) a
situation where the intrinsic shape and orientation are unknown,
an almost unique solution for the macroscopic parameters of
interest of a triaxial galaxy can be found. However, on the other
side it is surprising that even though the number of unknowns
in the modeling process has increased so much, we still reach a
comparable precision as in Neureiter et al. (2021). A substantial
difference between the current work and the work presented in
Neureiter et al. (2021) is the way in which we choose our best-fit
model. The results presented in Neureiter et al. (2021) were
evaluated at values of 𝛼, for which the internal velocity dispersions
of the 𝑁-body simulation were best recovered by the model. This
information is of course not available for real observational data.
Therefore, in the current paper we use the approach explained
in Section 3: We optimise the smoothing for each individual
orbit library using a purely data-driven method. This allows the
smoothing to adapt to the particular data set at hand and varies
from one mass model to the other.
To illustrate how important this smoothing optimisation and
the AICp comparison (cf. Section 3) of different models is, we

remodelled ten different mock realisations of the interm projection
of the 𝑁-body simulation using a very idealised model setup: we
assumed the DM halo to be known, the three dimensional stellar
light profile to be known and the viewing angles to be known.
Only 𝑀BH and Υ were treated as free parameters. In classical
Schwarzschild applications the 𝜒2 (see eq. 3) would be minimised
for some constant value of the smoothing value 𝛼. In Fig. 4 we
illustrate this case by the grey lines. Each line shows the modeling
results of a classical 𝜒2 minimisation for some constant value of
𝛼. We consider only smoothing values for which the minimum
obtained 𝜒2 < 𝑁data – i.e. only smoothing values that lead to
acceptable best-fit models. As the figure shows, even in this highly
idealised case, where almost all properties are known to the model,
the optimisation of the remaining two paramters 𝑀BH and Υ

leads to results with unsatisfyingly large uncertainties (∼30%
for 𝑀BH). Moreover, the values for Υ tend to be biased high by
up to 20%. In comparison, the model selection using AICp and
adaptive optimised smoothing is much more accurate and precise
(see green lines in Fig. 4). The fact that the 𝜒2 minimisation in
this case, where almost every property of the model is assumed to
be known, results in uncertainties/biases much larger than for our
fiducial full modeling shows how important the correct model se-
lection is to reach the accuracy and precision that we reported above.

Another possible way to calibrate the relative strength of
goodness-of-fit – measured by the 𝜒2 – and the strength of the
smoothing would be through Monte-Carlo simulations. Based on
a toy model with known properties one tests different smoothing
strengths and checks which one allows for the best recovery. This
(constant) smoothing strength is then used for the analysis of ob-
served galaxies. Thismethod is expensive since in principle it should
be repeated for each individual data set with its characteristic indi-
vidual error distributions, spatial coverage etc. and for each galaxy
with its characteristic individual orbital structure, shape etc. It is
also uncertain since there is no guarantee that the toy model used
for calibration has the same structure as the galaxy to be analysed.
In this context, we want to stress here, that the optimal smoothing
in our case even depends on which projection of the 𝑁-body we
analyse – even though it is always the same 𝑁-body simulation that
we fit.
Since all Schwarzschild codes use some sort of regularisation in
order to avoid overfitting (e.g. Richstone & Tremaine 1988; Merritt
1993; Verolme & de Zeeuw 2002; Thomas et al. 2004; Valluri et al.
2004; van den Bosch et al. 2008; Vasiliev & Valluri 2020; Neureiter
et al. 2021), the question of how to choose an optimised regulariza-
tion becomes crucial when it comes to the level of high accuracy
and precision that we could achieve with SMART.

6.2 Comparison to other triaxial Schwarzschild Models

van den Bosch & van de Ven (2009) modelled 13 simulated pho-
tometric and kinematic data resembling SAURON (e.g. Emsellem
et al. 2004) observations from possible oblate fast rotators to triaxial
slow rotators. They skipped any recovery of black hole masses and
concentrated on recovering the intrinsic shape and stellar mass-to-
light ratio. They correctly recovered Υ within 10% for the cases
with well recovered intrinsic shape and within 20% for the cases
with less constrained intrinsic shapes. Using the same code, Jin
et al. (2019) modelled 9 triaxial early-type galaxies from the high
resolution Illustris simulation. They were able to recover the total
enclosed mass within the effective radius with 15% accuracy and an
underestimation of the stellar mass of ∼ 24%. Again, no recovery
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Figure 3: Mass recovery results of the enclosed stellar (left panel) and total mass (right panel) profiles. The simulation’s sphere of influence
and effective radius are marked with grey lines. For 𝑟 < 𝑟SOI the black hole is the dominant mass contributor. The stellar mass dominates
within 𝑟SOI < 𝑟 < 𝑟𝑒 and the DM mass dominates for 𝑟 > 𝑟𝑒. The stellar and total enclosed mass profiles from the different projections and
modeled sides (different colors) follow the real one from the simulation (red line) over all radii. The average deviation of the stellar mass is
only Δ𝑀∗ (7kpc) = 5.9% at an intermediate radius of 7kpc and the average deviation of the total enclosed mass is Δ𝑀tot (𝑟SOI) = 5.9% at the
sphere of influence and Δ𝑀tot (𝑟𝑒) = 4.5% at the effective radius.

Figure 4: Constraints on the black-hole mass 𝑀BH (left) and the stellar mass-to-light ratio Υ (right) in idealised model fits. As input data
we use ten different mock realisations of the interm projection. For the model fits we assume the true DM halo, the true viewing angles
and the true three dimensional stellar light profile – only 𝑀BH and the normalisation of the stellar mass are assumed to be unknown. The
grey lines show 𝜒2 curves derived using a constant regularisation parameter 𝛼. We only show results for 𝛼 values that lead to acceptable
fits (𝜒2 < 𝑁data). This does not uniquely determine 𝛼. Typically, all models for 𝛼 >∼ 10−3 provide such acceptable fits. We show for all
ten mocks all of the 𝜒2 curves resulting from these different assumed plausible smoothings. The green lines show the AICp curves derived
as described in Sec. 3. The red vertical lines mark the true values of the 𝑁-body simulation. The figure shows that even under the idealised
conditions assumed here (halo, orientation and stellar light profile known), the 𝜒2 minimisation allows for a wide range of different solutions
and that the best-fit Υ-values are often strongly biased (Υ ≈ 1.0 − 1.2). The fact that 𝜒2-based mass derivations can be biased high was
already discussed in Lipka & Thomas (2021) for axisymmetric models. This bias disappears and the constraints improve significantly when
the model selection via AICp is applied – for both the optimisation of the smoothing and the comparison of different mass models.

of black holes was included in the study. A direct comparison re-
mains difficult because different studies assume different input data.
Nevertheless, the unprecedented precision that we achieved in our
tests highlights the importance of extensive methodology verifica-
tions, e.g. by application to high resolution 𝑁-body simulations. The
application of triaxial dynamical models with an unexpected high
precision as demonstrated here for our code to future observational
data promises interesting new results from stellar dynamics.

7 SUMMARY AND CONCLUSION

We have presented the updated version of our modeling machinery
and its efficiency by application to an 𝑁-body merger simulation
resembling a realisticmassive early-type galaxy hosting a supermas-
sive black hole. In order to create realistic conditions we compute
the triaxial merger remnant’s kinematic two dimensional data on
a Voronoi binning with a spatial resolution comparable to today’s
telescopes’ resolution. We furthermore add a plausible amount of
Gaussian noise and evaluate the kinematic data with a velocity reso-
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lution similar to future observational data. Our modeling machinery
implements several features:

(i) To provide our dynamical modeling code SMART with a prede-
cision on possible deprojections and viewing angles, we use the
flexible new semi-parametric triaxial deprojection code SHAPE3D
(cf. de Nicola et al. 2020).
(ii) SMART reconstructs the stellar orbit distribution by integrating
thousands of orbits, which are launched from a five dimensional
starting space to cover all orbital shapes in particular near the central
black hole (cf. Neureiter et al. 2021).
(iii) SMART exploits the full non-parametrically sampled LOSVDs
rather than using velocity moments as constraints (cf. Neureiter
et al. 2021).
(iv) SMART uses an adaptive smoothing scheme to optimise the
regularisation in each trial mass model (cf. Thomas & Lipka 2022).
(v) SMART uses a generalised information criterion for penalised
models to select the best-fitting orbit model, avoiding potential bi-
ases in 𝜒2-based approaches (cf. Lipka & Thomas 2021; Thomas
& Lipka 2022).

Similar to the case of observed galaxies, we model a multi-
dimensional parameter space, including the a priori unknown view-
ing angles as well as the mass parameters for the stellar and DM
components of the galaxy’s potential. In order to test multiple mock
samples, we apply our triaxial deprojection code SHAPE3D andmod-
eling code SMART to four different projections from the 𝑁-body
simulation.
SMART is able to fit the kinematic input data homogeneously well
over the whole field of view with a mean accuracy of Δ𝜒2/Ndata =
0.69.
For each modelled projection, we are able to reconstruct the
true stellar mass-to-light ratio Υsim = 1 and black hole mass
𝑀𝐵𝐻,sim = 1.7× 1010𝑀� of the simulation with an acuracy on the
∼ 5 − 10% level.
Also the enclosed total mass profile was correctly recovered by
SMART over all radii. The average deviation of the total enclosed
mass, consisting of the black hole, stellar and DM mass contribu-
tions, is only Δ𝑀tot (𝑟SOI) = 5.9% at the sphere of influence and
Δ𝑀tot (𝑟𝑒) = 4.5% at the effective radius.
We are furthermore able to recover the correct, non-spherical shape
of the simulation’s DM halo by recovering the true axis ratios 𝑝DM
and 𝑞DM with a maximum deviation of only 0.14.
As more extensively presented in our companion Paper II by de
Nicola et al. 2022a, we are also able to reconstruct the simulation’s
shape and anisotropy with similar accuracy. We refer to this paper
for an extensive discussion of the recovery results for the viewing
angles \, 𝜙, 𝜓, axis ratios 𝑝, 𝑞 and orbital anisotropy.
The surprisingly high accuracy and precision as well as low degree
of degeneracy that we find in our models reaffirm our earlier results
presented in Neureiter et al. (2021). There, in an idealised setting
with known viewing angles and known deprojection we found that
macroscopic parameters of a triaxial galaxy, like the anisotropy and
mass composition, are not severely influenced by any degeneracy
remaining in the reconstruction of the orbit distribution function.
We can now go one step further. Our results strongly suggest that in
general, the projected kinematic data of a triaxial galaxy hold only
minor degeneracies, which enables an unentangled recovery of the
intrinsic structure and mass composition.
With this analysis we were able to show that the intrinsic scatter of
accurate triaxial dynamical modeling routines, which are applied
to precise kinematic data, is small enough to target scientific ques-
tions concerning the scatter of SMBH scaling relations and the well

known IMF issue.
Our study points to a possible change of this statement for the anal-
ysis of a triaxial galaxy observed along its long axis, which will be
more extensively studied in a future paper.
Another study covered by a future paper will be the axisymmetric
analysis of a triaxial galaxy.
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APPENDIX A: MAJOR AXIS ANALYSIS

Whenmodeling the ten dimensional parameter space of the 𝑁-body
simulation projected along its major axis, we find different results
in comparison to the other tested projections (cf. Section 5). Along
this specific line of sight, the stellar mass-to-light ratio is repro-
duced with a maximum uncertainty of only 20% (best-fit stellar
mass-to-light ratio for the right side of the major axis projection is
Υ(𝑥′ > 0) = 1.04 and Υ(𝑥′ < 0) = 1.22 for the left side), however,
the best-fit black hole mass is more than 70% underestimated.
In order to check that the black hole mass uncertainty along the ma-
jor axis projection is not caused by an intrinsic bug of SMART along
this axis, we remodeled a three dimensional mass parameter grid for
the right side of the kinematic data for this axis. To minimize mod-
eling uncertainties that originate from incomplete sampling in the
ten dimensional parameter space or from uncertainties in the depro-
jection, we make the following simplifications: We do not provide
SMART with plausible deprojections determined by the triaxial de-
projection routine from de Nicola et al. (2020), but we forward the
true normalized stellar density from the simulation to SMART. Also,
instead of modeling a gNFW halo with five unknown parameters,
as used for the analysis in Section 5, we here model the DM halo
by providing SMART with the correct normalized DM density of the
simulation with an unknown scaling parameter 𝑠DM. This is the
same Ansatz as used in Neureiter et al. (2021). The remaining three
parameters for this analysis to be determined by SMART areΥ,𝑀𝐵𝐻

and 𝑠DM.
We also increase the resolution of the kinematic input data from
𝑁vlos = 15 (see Section 4.2) to 𝑁vlos = 45. This allows us
to fit the kinematic input data with a velocity resolution of
Δ𝑣vlos = 71.1 km s−1 instead of the lower velocity resolution of
Δ𝑣vlos = 223.5 km s−1 used for the more time-consuming analysis
of Section 5.
For this adapted set-up we evaluate 343 models with different Υ-,
𝑀𝐵𝐻 - and 𝑠DM-input-masses. The tested mass grid covers a grid
size of 5% around the correct mass parameters.
Fig. A1 shows the outcome of this analysis, where we plot the
AICp-curves of the models with different 𝑠DM-input-masses (dif-
ferent colors) against the tested Υ- (left panel) and 𝑀𝐵𝐻 - values
(right panel). Since all models are provided with the same number
of kinematic input data 𝑁data, their absolute AICp-values can be
compared with each other and their total minimum provides the
best-fit model. SMART is able to determine the true stellar mass-to-
light ratio, black hole mass as well as DM scaling parameter.
This test enables us to show that SMART is in principle able to recover
the correct mass parameters for kinematic data projected along the
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Figure A1: Mass recovery results of Υ (left panel), 𝑀𝐵𝐻 (right panel) and dark matter scaling factor 𝑠DM (different colors) for the major-axis
projection. In this analysis we remodel a higher resolved kinematic input data of the right side of the major axis by providing SMART with
the true normalized stellar and DM density of the simulation. For a better comparison we subtract the minimum AICp-value of the models
with the correct 𝑠DM-parameter, i.e. min1.0sDM (AICp) (blue line), from all AICp curves. The individual minima for the different colored
AICp-curves provide the respective best-fit Υ- and 𝑀𝐵𝐻 -values for the models with different 𝑠DM-input values. It turns out, that the best-fit
model of all tested 343 models covering this three dimensional parameter space, is the one with the true Υsim- and 𝑀𝐵𝐻,sim-values from
the simulation (red) as well as the correct 𝑠DM-parameter (minimum of all curves). This indicates that SMART shows no intrinsic bug when
modeling kinematic data with high enough resolution projected along the major axis of a triaxial galaxy.

long axis of a triaxial galaxy.
The uncertainty of the black hole mass recovery of 70%, which was
achieved within our fiducial ten dimensional parameter space setup
with unknown stellar and DM shape, therefore appears to origin
from uncertainties caused by the deprojection and/or the multi-
dimensional DM halo modeling and/or the lower resolution of the
tested parameter grid size as well as of the kinematic input data,
which was used for reasons of computational time.
Of course, a non-negligible intrinsic physical degeneracy along this
axis cannot be excluded. A more detailed study of this apparent
major-axis abnormality will be performed in the future.

APPENDIX B: VELOCITY-, SURFACE BRIGHTNESS-
AND 𝜒2-MAPS

Fig. B2 shows the velocity 𝑣, velocity dispersion 𝜎, ℎ3 and ℎ4
maps of the simulation and kinematic fit for the minor, middle and
rand axis as line of sight. In addition, the surface brightness of
the simulation is plotted in logarithmic units of stellar simulation
particles. The 𝜒2-map shows the deviation between the kinematic
input data and the best-fit model evaluated by SMART. As already
stated in Section 5, SMART fits the kinematic input data well for all
tested axes over the whole field of view with an average deviation
between the input and modelled LOSVDs of Δ𝜒2/Ndata = 0.69.
The maps of the Gauss-Hermite parameters in Fig. B2 are only to
illustrate the fit quality. SMART actually fits the entire LOSVDs. To
demonstrate the fit of the true LOSVD data, Fig. B1 shows two
input LOSVDs (red lines) and two fitted LOSVDs (green lines) for
a central Voronoi bin and an outer Voronoi bin projected along two
different lines-of-sight.
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Figure B1: Exemplary demonstration of the achieved LOSVD fit
(green lines) in comparison to the input LOSVDs (red lines) for the
interm projection (top panels) and for the rand projection (bottom
panels) at two different radii, respectively.
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Figure B2: Velocity, velocity dispersion, ℎ3, ℎ4 and surface brightness maps of the simulation (top row) as well as velocity maps of the
best-fit model and corresponding 𝜒2-map (bottom row) for different projections. The individual line of sight for the different projections
can be read from the title. The velocity maps for the intermediate axis were already shown in Fig. 1. Overall, SMART is able to well fit the
kinematic input data independent of the individual viewing angles. The average deviation from the kinematic input data with the modeled fit
is Δ𝜒2/Ndata = 0.69. The 𝜒2-maps indicate SMART’s ability to fit the kinematic input data homogeneously well over the whole field of view.
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