Gilles et al. BMC Genomics 2011, 12:245
http://www.biomedcentral.com/1471-2164/12/245

BMC
Genomics

RESEARCH ARTICLE Open Access

Accuracy and quality assessment of 454 GS-FLX
Titanium pyrosequencing

André Gilles'", Emese Meglécz'", Nicolas Pech'!, Stéphanie Ferreira®, Thibaut Malausa® and Jean-Francois Martin®*

Abstract

Background: The rapid evolution of 454 GS-FLX sequencing technology has not been accompanied by a
reassessment of the quality and accuracy of the sequences obtained. Current strategies for decision-making and
error-correction are based on an initial analysis by Huse et al. in 2007, for the older GS20 system based on
experimental sequences. We analyze here the quality of 454 sequencing data and identify factors playing a role in
sequencing error, through the use of an extensive dataset for Roche control DNA fragments.

Results: We obtained a mean error rate for 454 sequences of 1.07%. More importantly, the error rate is not
randomly distributed; it occasionally rose to more than 50% in certain positions, and its distribution was linked to
several experimental variables. The main factors related to error are the presence of homopolymers, position in the
sequence, size of the sequence and spatial localization in PT plates for insertion and deletion errors. These factors
can be described by considering seven variables. No single variable can account for the error rate distribution, but
most of the variation is explained by the combination of all seven variables.

Conclusions: The pattern identified here calls for the use of internal controls and error-correcting base callers, to
correct for errors, when available (e.g. when sequencing amplicons). For shotgun libraries, the use of both
sequencing primers and deep coverage, combined with the use of random sequencing primer sites should partly
compensate for even high error rates, although it may prove more difficult than previous thought to distinguish

between low-frequency alleles and errors.

Background

Scientific strategies and approaches based on next-gen-
eration sequencing (NGS) have been revolutionizing
genetics over the last few years. Many aspects of basic,
applied and clinical research now rely on the generation
of enormous amounts of sequence data from various
sample sources, to assess polymorphism (mostly SNPs),
or expression data (RNA-Seq) at the genome level [1,2].
This shift in the scale of sequence acquisition has been
achieved by simultaneous progress in bioinformatics, the
availability of genome assemblies and key technical find-
ings in the domains of biochemistry and sequencing
device physics [3]. In this context, the 454 GS-FLX
(Roche Diagnostics Corporation), Illumina® technology
(Illumina, Inc.) and SOLIDTM systems (Applied
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BiosystemsTM) offer a number of complementary solu-
tions for specific requirements (see Metzker [4] for a
review). 454 GS-FLX Titanium technology provides
around 1,000,000 sequences in a single 10-hour run.
These sequences, with an average read length equal to
330 bp, may be up to 500 bp in shotgun libraries condi-
tions, much longer than can be obtained with the other
available approaches. This makes mapping easier, parti-
cularly for repetitive regions, and facilitates de novo gen-
ome sequencing, exome capture, metagenomics and
amplicon sequencing [4].

One of the basic questions arising from this spectacu-
lar increase in sequence volume concerns the possible
detrimental effects of this shift in quantity on the quality
of the obtained data. In other words, is there a tradeoff
between the quantity and quality of information? It is
widely accepted that next-generation sequencing
approaches generate such large amounts of sequence
data that even if overall accuracy (derived from error
rate) or quality (percentage of error-free sequences) is
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suboptimal it is still possible to reconstruct polymorph-
ism rigorously by comparing redundant sequences that
cover the same genomic region multiple times (i.e.
depth of coverage provides accuracy, not the individual
read) [5-8]. This is the typical “quick and dirty” view of
NGS. This approach may sound reasonable, but it is
based on assumptions such as low error rate and error
randomness for the unambiguous detection of poly-
morphism. If this last assumption is challenged, even a
low error rate has a huge impact on sequence analysis,
as in cases of related allele detection, paralogous
sequences or pseudogene identification. In these cases,
the “quick and dirty” approach is inadequate, because
consensus sequence calculation is accurate only if these
three sources of sequence diversity are distinguishable
from the error due to background noise [9].

In 2007, S. Huse and collaborators raised the question
of the accuracy and quality of massively parallel pyrose-
quencing GS20 systems, performing an empirical analy-
sis of the per-base error rate [10]. This was needed as
“the quality score of a position is not a measure of a
confidence that the correct base a called at that position,
as with a traditional PHRED score. Instead, the GS20
quality score is a measure of confidence that the homo-
polymer length at a position is correct” [10,11]. They
used V6 hypervariable region sequences from cloned
microbial ribosomal DNA for this purpose. They con-
cluded that the accuracy rate was 99.51%, on average,
and that 82% of the sequences contained no error. They
also demonstrated that 39% of the errors corresponded
to homopolymer effects [10]. Finally, they detected no
significant correlation between error and distance from
the 5" end of the sequences for 101 positions. Surpris-
ingly, despite changes in this technology over the last
four years, the accuracy and quality of 454-based
sequences has not been reevaluated and this previous
study remains the basic reference used by the scientific
community to account for error rate in 454 GS-FLX sys-
tems (181 articles citing this study at the time of writ-
ing). Over the same period, chemistry, acquisition
devices (CCD cameras in particular) and quality filtering
algorithms have evolved. A new analysis is therefore
required, and this was the main goal of this work.

Furthermore, in addition to estimating the per-base
error rate, we aimed to identify the potential causes of
sequencing errors and possible solutions for improving
both the accuracy and quality of pyrosequences. We
selected several variables likely to affect sequencing
errors directly or indirectly: (i) the position of the
nucleotide base within the sequence (the beginning of
the sequence may be more accurate than the end), (ii)
the primary structure of the sequence, including, in par-
ticular, the presence of homopolymers, (iii) the length of
the sequence generated (a sequence may be short due to
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quality filtering, resulting from an accumulation of
errors or the stochastic ending of polymerization), and
(iv) the position of the bead carrying the sequence both
within and between the regions on a PT plate (PicoTi-
terPlate) (edge effect), and between multiple PT plates.
Our analyses are based on Roche test fragments. These
are sequences used for GS-FLX Titanium diagnostics
that are included in all runs, but not subjected to PCR
amplification before sequencing. Thus with these frag-
ments we estimate the sequencing error due to pyrose-
quencing. Huse et al. [10] found that the experimental
sequences they used display error rate five times higher
than the GS20 Roche test fragments (0.1% vs. 0.49%).
Since almost all of their results are based on experimen-
tal sequences, we cannot directly compare our results to
theirs. However, we do not intend to focus on a general
error rate, but rather assess the effect of several variables
on error generation.

Results and Discussion

Accuracy and quality of sequences

We assessed the quality of the sequences obtained by
454 GS-FLX Titanium sequencing, using the control
DNA fragment Type I sequences (provided with 454
sequencing kits) as reference templates (see Materials
and Methods for details). As these internal controls are
added to the pyrosequencing process during the sequen-
cing step, they are modified only by sequencing errors
and are not related to any previous step. The quality of
these control sequences is not influenced by the samples
themselves, particularly with Titanium technology, in
which loading beads are isolated from each other and
there should therefore be no interference from adjacent
beads. We analyze here the 86,237 sequences that
passed the quality filters, representing the six control
DNA fragments from three 454 GS-FLX runs. These
results revealed several general trends in the sequencing
error generated by 454 GS-FLX Titanium technology
(Table 1). It also provided detailed information about
the different types of error: insertion, deletion, mis-
matches and ambiguous base calls. We first analyzed
the error on the first 101 sequenced positions from the
5" end (with reference to the sequencing primer) of the
control DNA fragments. We compared the sequences
obtained with those for the GS20 system and then
extended the error analysis to full-length sequences (500
to 592 bases, depending on the reference sequence ana-
lyzed, see Materials and Methods for details).

The error rate for the first 101 sequenced positions
(corresponding to 8,596,016 examined bases) displayed a
mean = 0.534% (95% CI: [0.529, 0.539]) (45,895 erro-
neous bases) for 454 GS-FLX Titanium data. This global
error rate is five times higher than the error rate
obtained by the analyses of GS20 test fragments and is
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Table 1 Comparative analysis of the accuracy and quality of sequences

# of sequences % of error-free sequences # of positions Insertions Deletions Mismatch Ambiguous Total % of error
GS20 (107) 34015 82.00% 32801429 0.18% 0.13% 0.08% 0.10% 0.49%
Ref 1 (101) 16052 87.12% 1605640 0.15% 0.05% 0.01% 0.01% 0.22%
Ref 2 (101) 16466 60.01% 1600327 042% 0.23% 0.04% 0.01% 0.70%
Ref 3 (101) 12215 72.96% 1228804 0.17% 0.19% 0.01% 0.01% 0.38%
Ref 4 (101) 9908 56.43% 984452 0.30% 0.37% 0.03% 0.00% 0.70%
Ref 5 (101) 15880 50.93% 1595718 0.34% 0.48% 0.05% 0.01% 0.88%
Ref 6 (101) 15716 7517% 1581075 0.25% 0.10% 0.00% 0.01% 0.36%
Total 86237 67.57% 8596016 0.27% 0.23% 0.02% 0.01% 0.53%
Ref 1 (572) 16052 6.75% 5359696 0.52% 0.46% 0.10% 0.12% 1.20%
Ref 2 (552) 16466 9.75% 4789285 0.89% 0.28% 0.10% 0.08% 1.35%
Ref 3 (500) 12215 18.75% 4180478 0.30% 0.35% 0.07% 0.12% 0.84%
Ref 4 (532) 9908 6.88% 2572843 0.56% 0.71% 0.19% 0.11% 157%
Ref 5 (592) 15880 7.46% 6171098 0.38% 0.38% 0.06% 0.07% 0.89%
Ref 6 (516) 15716 11.81% 6027338 0.60% 0.17% 0.07% 0.04% 0.88%
Total 86237 10.09% 29100738 0.54% 0.36% 0.09% 0.09% 1.07%

The different types of error are detailed for each reference sequence for 454 sequencing. Errors are classified according to the nomenclature used by Huse et al.
(2007): insertions, deletions, mismatches and ambiguous base calls (see materials and methods). Error rates are given for two length categories (first 101 bases

vs. full length).

similar to that obtained from for GS20 experimental
sequences. Indeed, 0.49% of the positions were erro-
neous for a comparable dataset relating to 101 positions
(Table 1). If we break down the global error rate for all
reference sequences according to the type of error,
insertions are found to be the most common errors
(mean = 0.273% [0.269, 0.276]; mode q;,, = 0.215), fol-
lowed by deletions (0.232% [0.229, 0.235]; q;,» = 0.170),
mismatches (0.022% [0.021, 0.023]; q;/» = 0.010), and
ambiguous base calls (0.007% [0.006, 0.007]; q1/» =
0.010). This pattern is entirely consistent with that
described by Huse et al. [10]. This pattern is in agree-
ment with the study of 454 GS-FLX [12] but markedly
different from IlluminaTM sequencing, in which inser-
tions and deletions of single bases occur less frequently
than mismatches [13,14]. In total, 58,269 sequences
(67.57% [67.26, 67.88]) of this length were found to be
free from error. This trend is similar to that reported
for GS20 experimental sequences, for which 82% of
sequences matched the corresponding reference
sequence perfectly. Unfortunately the data are not avail-
able for GS20 test fragments.

If we restricted the analysis to full-length sequences
(500 to 592 positions), we found for the 86,237
sequences that passed the 454 quality filters (29,100,738
bases) that 312,351 bases were erroneous (1.073%
[1.069, 1.077]). The pattern observed for the first 101
positions was confirmed for the full-length sequence
data, with insertions (0.541% [0.538, 0.543]; q1/2 =
0.465) and deletions (0.359% [0.357, 0.362]; q;/» = 0.350)
being the most common types of error and mismatches
(0.088% [0.087, 0.089]; q1,» = 0.085) and ambiguous
base calls (0.085% [0.084, 0.086]; q1/» = 0.090) making a

smaller contribution to global error rate. Only 8,702 of
the 86,237 full-length sequences (10.09% [9.89, 10.29])
had no error with respect to the corresponding refer-
ence sequence. This result strongly contrasts with the
higher proportion of error-free sequences for the first
101 bases.

The comparison of error rates between sequences of
different lengths (first 101 positions vs full-length
sequences) highlighted two key developments in addi-
tion to the doubling of the global error rate for full-
length sequences as found elsewhere [15]. This length-
associated overall increase in error rates did not reflect
a common mechanism for all types of error, as insertion
and deletion rates increased only slightly (by factors of 2
and 1.5, respectively), whereas mismatch and ambiguous
base call rates increased to a much greater extent (by
factors of 5 and 9, respectively). This decoupling of the
changes in rate for different types of errors modified the
contribution to global error rate of the various types of
errors. Thus, mismatch and ambiguous base call errors
made a greater contribution to global error rate for
longer sequences, although their effects remained mod-
erate. Thus, overall error rates and the rates of different
types of error are not uniform for the sequences
obtained by 454 GS-FLX Titanium sequencing. Conse-
quently, the conclusions drawn for short sequences
should not be directly extrapolated to longer sequences,
as sequence length affects error rates. Another key result
in this in-depth analysis of error was the finding that
error rate (1.07%) should be seen in the light of the
large number of erroneous sequences (89.91%) in the
dataset. This combination of a low error rate and a
large number of erroneous sequences results from the
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occurrence of only very small numbers of errors in indi-
vidual sequences, on average. These findings conflict
with those reported for GS20 sequencing and suggest
that the removal of erroneous sequences may not be
useful, to increase the overall quality.

However, the consequences of this may be relatively
minor even if most sequences display errors (89.91
[89.71, 90.11]), as the overall error rate is low, with only
1.07% of bases being problematic. It is widely believed
that deep sequencing coverage (multiple independent
sequences for the same locus) should make it possible
to correct for errors in this context [16]. Like other
types of high-throughput sequencing, 454 pyrosequen-
cing is thought to be suitable for use in this context.
Indeed, for some applications, such as SNP discovery in
whole-genome sequences [17,18] or amplicon sequen-
cing [7,19], an almost unlimited number of sequences
may be obtained. We need to consider the number of
sequences required to correct an erroneous position
appropriate, at a given probability, for an error rate of
1.07%. As detailed in additional file 1, at least five
sequences would be required to correct for random
error at low error rates (<10% error rate). However, an
analysis of error along the length of the sequence (com-
paring the first 101 bases with the full-length sequence)
indicated that error rate was heterogeneous along the
length of the sequence. Longer sequences therefore
would be subject to higher error rates at their 3’ ends.
The distribution of error, as illustrated in Figure 1, does
not fit a stochastic model, for any error type. Most of
the positions are correct, but a few have high error
rates, even exceeding 50% in some cases. There is no
clear way to resolve the issue, particularly when this pat-
tern (error hot spots) is repeatable between runs [9].
This pattern is particularly problematic for 454 data, as
the number of sequences significantly decreases after
300 bases (see Figure 1 and additional file 2 for illustra-
tion) whatever the reference sequence considered (for a
total length ranging from 500 to 592). In summary, for
the longest sequences (>300 positions), the combination
of higher error rates along the length of the sequence,
combined with the decrease in the number of sequences
available, may make it difficult to correct errors. This
difficulty results from a deficit in the number of
sequences required to decrease the probability of erro-
neous assignation for a given sequence position, under a
reasonable coverage threshold (i.e. minimum number of
reads per bp required, see additional file 1).

This issue is further complicated by the heterogeneous
distribution of the error types among the six different
control DNA reference sequences, within and between
gasket regions for a PT GS-FLX Titanium plate and also
between PT plates, as initially estimated from the large
standard errors (derived from table 1) in the error
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Figure 1 Distribution of errors along sequences. The blue line
indicates the proportion of generated sequences (y-axis) as a
function of sequence position (x-axis), based on data obtained from
the analysis of reference sequence #3. The error rate for each type
of error (insertions, deletions, mismatches and ambiguous base calls)
is presented as a function of sequence position (X-axis) and specific
position on the y axis. The position and length of homopolymers
for each base are given on the x-axis to facilitate interpretation
(green: A, red: T, black: G, blue: C). See additional file 2 for the data
obtained with the other five reference sequences.

estimate. This overall variability of error distribution
makes it difficult to draw any clear conclusions ruling
out particular parameters that might potentially influ-
ence error rates or to identify a single mechanism
accounting for the observed errors in the dataset. This
pattern requires an in-depth analysis of the interaction
and explanatory power of various factors before we can
assess the degree of sequencing error and identify solu-
tions for preventing artifacts.

Interactions between variables and error characterization

The evolution of 454 technology combines progress in
chemistry, acquisition devices, such as CCD cameras
and PT plates handling equipment, and improvements
in quality filters and base-calling algorithms. All these
modifications are potential sources of variation in the
amount, length and quality of sequences. In this work,
we analyzed the interaction of seven variables identified
as potential sources of sequencing error. We character-
ized sequencing error as a function of information
about position in the sequence (Position and Seq.length),
the presence of homopolymers (Homopolymer) and
reference sequence type (Seq.type), all considered being
sequence-specific information. Location on the PT plate
was also taken into account through the region of origin
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(Region), the distance of beads to the region center (Dist.
region) or the plate center (Dist.plate, see Materials ad
Methods for details) as both the flow of chemicals
through the plate and the central position of the CCD
camera may play a role in the error generation. Before
this analysis, we tested the hypothesis of homogeneous
error rates on the three PT plates. This hypothesis was
rejected (x* = 2613.3, df = 2, P < 2 x 107'°). The signifi-
cant result obtained in this test is mostly due to the
high power of detection associated with the large num-
ber of samples available, but this heterogeneity requires
the specification of individual parameter values for the
logistic model describing each PT plate. The three runs
were therefore analyzed separately. This approach did
not prevent us from extracting the common trends
influencing error rate and distribution. The models (for
each plate and for each type of error) explained between
14.32% and 37.38% of the error distribution and were
highly significant (P < 2 x 107').

The nullity of r (Bravais-Pearson correlation coeffi-
cient) between pairs of the seven variables was tested
independently for each run. As the usual assumptions
required to infer the distribution of the test statistics
were not met, we used permutations to approximate the
distribution of the test statistic under Hy,. We used a
type I error rate of 0.05 and Benjamini-Hochberg cor-
rection [20] to take multiple testing into account. Most
of the pairs of variables (74.29%) were significantly cor-
related, using a threshold of o = 0.05 in a permutation
test for multiple testing. However 41.85% of the pairs of
variables correlated with 0.005 < r < 0.05. The pair of
variables displaying the strongest correlation was the
position of the error in the reference sequence (position)
and sequence length (Seq.length), with 0.40 < r < 0.50,
depending on the PT plate considered. The second
strongest correlation was that between distance to the
region center (Dist.region) and distance to the PT plate
center (Dist.plate), with 0.38 < r < 0.62.

The nature and significance of a correlation between
two variables does not provide any information about
the ability of this combination of variables to explain a
third variable [21]. For each plate and each kind of
error, we considered a logistic model [22] (see materials
and methods for the detailed procedure) accounting for
the binary (error) variable in terms of the seven vari-
ables considered. For the separation of the effect of a
given explicative variable from the combined effect of
the other variables, we propose (see materials and meth-
ods) breaking down each explanatory variable into three
additive terms: the effect of the variable itself, the com-
bined effect of the other variables and the rest. The
combined effect of the variables ranged from 20% to
80% of the total variation in error rate (Figure 2 and
additional file 3). More specifically, for individual error
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types, the combined effect accounted for 38.00% + 13.05
of the total information for mismatch errors, 64.10% +
4.54 for ambiguous base call errors, 75.83% + 3.78 for
insertion errors and 79.95% + 3.08 for deletion errors.
The remaining information results from the specific
effects of each variable. These high percentages of
shared information highlight the high degree to which
the error can be explained by combinations of variables.
This may be due to partial redundancy of the informa-
tion contained in each variable or the combined contri-
bution to the total amount of error explained [21]. In
the first case, a variable may substitute for the effect of
others, whereas, in the second, only the combined infor-
mation provided by each variable can account for the
observed pattern. The results of correlation analysis,
indicating that most regression coefficients were low,
ruled out redundancy as the primary cause of the
observed pattern, as most variables were independent.
There is therefore no single variable consistently
accounting for the distribution of sequencing error, as
detailed in Figure 2. We investigated the main trends
highlighted by the logistic model, by focusing on the
distribution of sequencing error at sequence level. We
then characterized the variables most strongly influen-
cing error in terms of the location of the bead carrying
the sequence, in a given region of a PT plate.

At DNA sequence level, we detailed the variables indi-
vidually accounting for the highest proportion of the
error rate for each error type. It was essential to bear in
mind, during this analysis, the fact that most of the
explanatory power of these variables was obtained with
combinations of variables. We analyzed each type of
error independently.

For insertion errors (Figure 2), the variable Homopoly-
mer accounted for 5.97% + 1.33 of the variation in error
on its own, and was concurrent to the error rate. This
finding is consistent with available published empirical
observations linking errors to homopolymers [9]. The vari-
able Position accounted for 11.94% + 2.22 of the variation
and was also concurrent to error. In other words, the
error rate due to insertions increased along the sequence.
Finally, the variable Seq.length accounted for 5.48% + 3.13
of the variation. Insertion rates were lower for longer
sequences and higher for shorter sequences. These last
two results may appear paradoxical, but the combined
information for these variables indicates that the distribu-
tion of insertion errors along sequences is not random,
with more insertions in 3’ end, whatever the length of the
sequence considered. This is fully explained if we consid-
ered that i) the number of sequences decreases with length
(Figure 1), hence changing the number of sequences for
which error rates are computed with respect to the refer-
ence and ii) the quality filtering process (v2.3) implemen-
ted in the GS-FLX system involves the trimming of reads
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with many off-peak signal intensities by the software. In
particular, for insertions, the TrimBack Valley Filter trims
sequences from the 3’ end until the number of valley flows
(intermediate signal intensity, i.e., a signal intensity occur-
ring in the valley between the peaks for 1-mer and 2-mer
incorporations, or 2-mer and 3-mer, etc.) is < 1.25% [23].
This implies that short sequences are not short because
the strand synthesis stops prematurely, but due to a rapid
decrease in the quality of the flowgram (raw sequence)
resulting from early out-of-phase synthesis. Trimming
eliminates the 3’ end with above-threshold ambiguous
base calls, but the remaining sequence still contains errors.

For deletion errors, Seq.type accounted for 2.36% + 1.39
of the variation, reflecting substantial heterogeneity

between the reference sequences. The variables Homopo-
lymer (accounting for 6.89% + 0.89 of the variation) and
Position (accounting for 8.93% + 5.21 of the variation)
were both concurrent to the deletion rate. Deletion errors
tend to occur more frequently in homopolymers and
their rates are higher towards the 3’ end of sequences.

Finally, mismatch and ambiguous base call error rates
were both found to be linked to Position (45.24% + 4.04
and 25.85% + 1.71, respectively) and Seq.length (25.00%
+ 9.61 and 7.66% + 2.11, respectively), with higher error
rates found in 3’ positions within sequences and longer
sequences tending to have lower error rates.

Given this pattern, the next step in the integration of
information is characterizing the effect of bead



Gilles et al. BMC Genomics 2011, 12:245
http://www.biomedcentral.com/1471-2164/12/245

localization on error rate. In particular, it is useful to
consider whether position in a particular region or on
the PT plate is linked to error rate. Heterogeneity in
error rate as a function of bead location was found for
insertions and deletions, whatever the PT plate analyzed.
Heterogeneity was observed at both the region and plate
scales. More precisely, error rate variation was mostly
accounted for by the combination of several variables
but, when the distribution of insertion errors fitted a
gradient following the Y-axis in each region (Figure 3
and additional file 4), it was not accounted for by the
variable Dist.region alone. However, the proportion of
the model accounted for by the remaining variables is
small (23.01% + 2.62). Adding the Dist.region to the
model increases explanatory power to 76.99% + 2.62.
The situation was similar for extraction of the signal at
plate level, with Dist.plate increasing the explanatory
power to 77.39% + 2.12. In summary, all regions had
heterogeneous insertion and deletion error rates, but
there were conserved gradients along both the x and y
axes. Inverse physical gradients were observed for inser-
tions and deletions. The covariation of these error types
and sequence length indicates that they are influenced
by a single latent variable (Figure 3).

Conclusions
From statistical inference to technical causes and
perspectives
As detailed in the results and discussion section, error
rate variability is mostly accounted for by the combina-
tion of the seven variables analyzed. However, the het-
erogeneous physical pattern may be partially driven by
the combined influence of the central CCD camera
(edge effect) with chemical flow direction (Y-axis). This
explanation is, however, insufficient in itself to account
for the observed pattern, and other variables clearly
influence error rate. The negative relationship between
insertion and deletion errors is probably related to phy-
sical acquisition issues, but chemistry-related artifacts
probably also have an effect (through the related statisti-
cal variables analyzed), including the CAFIE effect (carry
forward and incomplete extension) in particular. Carry
forward occurs when a trace amount of nucleotide
remains in a well after the apyrase wash, perpetuating
premature nucleotide incorporations for specific
sequence combinations during the next base flow and
contributing to signal ‘noise’. Incomplete extension
occurs when some DNA strands on a bead fail to incor-
porate during the appropriate base flow. The strands
that fail to incorporate must await another flow cycle
for sequencing to continue and are thus incorporated
out-of-phase with the rest of the strands [23].

This study clearly demonstrates that sequencing error
rate, as deciphered here, is a heterogeneous feature in
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454 GS-FLX Titanium pyrosequencing. We cannot
extrapolate the results obtained for other technologies,
such as the GS20 system, to this system, nor is the use
of a single global error rate inappropriate. Our results
provide information about the number of sequences
required to correct for a specific erroneous position,
when detected, but this procedure requires the error
rate to be computed from within the 454 PT plate
regions in which the physical distribution of error rate
is heterogeneous. Internal DNA controls should there-
fore be used when appropriate [7,19,24] (readily avail-
able for amplicon sequencing), together with an error-
corrected base caller [25], and routine procedures taking
error data into account should be defined. When error
rate is not estimated, a large number of potential false-
positive polymorphisms would be expected and only
post-sequencing validation can account for these arti-
facts [26,27]. For the resolution of this issue, the use of
both sequencing primers and deep coverage, combined
with the use of random sequencing priming sites, should
partially compensate for error — even for high error
rates — although it may be more difficult to distinguish
between low-frequency alleles and errors than previously
anticipated.

Methods

Experimental design and reference sequences

We used the six control DNA fragment Type I
sequences (as provided in Roche 454 protocols) as refer-
ence sequences. This made it possible to use a large
number of strictly identical templates to characterize the
sequencing error rate of this technology. The sequences
generated constituted a set of three replicates from
three different runs, making it possible to assess the
quality and accuracy of the 454 GS-FLX Titanium
method. Six references were used, with lengths ranging
from 500 to 592 bp and GC contents from 52.75% to
65.85%; each of these reference sequences contained a
large number of homopolymers (20 to 34), defined as a
succession of three or more identical bases. Homopoly-
mer positions are shown on Figure 1 and in additional
file 2. The reference sequences are provided in addi-
tional file 5.

All reference sequence positions were classified
according to the presence and length of a homopoly-
mer: (i) the first and last bases of a homopolymer
and those within two bases on either side of a homo-
polymer were coded “1”. All the other positions
within the homopolymer were coded “3” to “6” (the
length of the homopolymer). All positions outside
these zones (not influenced by the homopolymer)
were coded “0”.

The dataset consisted of 86,237 sequences, corre-
sponding to 29,100,738 positions. Sequencing was
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Figure 3 Spatial distribution of error rate variation. For each error type and sequence length, the x-axis represents the spatial location of 454
reads and the y-axis represents the y-coordinates on the PT plate. The results presented in this figure correspond to plate #1. Data for the other
two runs is presented in additional file 4. The 15 strips represent the 15 regions. We display separately the four types of error (insertions,
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carried out at Genoscreen, France. We aimed to identify
factors linked to error rate. For a tractable analysis, we
analyzed a dataset corresponding to all the positions at
which an error was detected, plus a similar number of
error-free positions randomly selected from the whole
original dataset.

Sequencing error analysis

Reads (see additional file 6) were sorted according to
their reference sequences, by BLASTn [28]. Each read
was aligned to its reference sequence, to identify the
positions and the number of sequencing errors. For
optimization of the pairwise alignment parameters, the
total number of errors was counted in a test dataset of
500 kb for a series of gap opening and gap extension
penalties. The final analyses were carried out with Clus-
talW [29], using “1” as the gap opening penalty, and
“10” as the gap extension penalty.

In the analyses, the observation unit was the position
on the 454-generated sequences. These positions were
transformed into the position on the reference
sequence. Insertions are reported with respect to the
position of the base preceding the gaps. For each posi-
tion, a binary variable was defined indicating the pre-
sence or absence of a sequencing error. An error is
defined here as discordance between two homologous
positions: the first in the reference sequence and the
second in the generated sequence. Discordance may
refer to an insertion, a deletion, a nucleotide mismatch
or an ambiguous base call (N) with respect to a non-
available nucleotide determination on the replicate
sequence (according to Huse et al. [10]). We investi-
gated the pattern of 454-error type, focusing on the
following seven factors: (i) Position, position in the
sequence expressed as a proportion of the total length
of the reference sequence (treated as a quantitative
variable); (ii) Segq.type, the different reference
sequences (qualitative variable with 6 settings); (iii)
Homopolymer, type of homopolymer linked to the
position as defined above; (iv) Dist.region, Euclidean
distance between the generated sequence (bead) and
the center of the region on the plate; (v) Dist.plate,
Euclidean distance between the generated sequence
and the center of the plate; (vi) Seq.length, length of
the considered generated sequence (the observed
sequence length results from the GS-FLX quality filter-
ing process); (vii) Region, region of the plate in which
the replicate was observed, region of the considered
replicate.

The R package was used for all statistical tests [30].
The significance of regression coefficients was assessed
by a permutation test with Benjamini-Hochberg correc-
tion, with o = 0.05. As we studied both qualitative and
quantitative variables, we decided to transform the

Page 9 of 11

qualitative variables. The various possible settings of
each qualitative variable were therefore replaced by a
binary variable (dummy variable).

Let us define as mi the sequencing error rate for the
position i. As this value is supposed to vary as a func-
tion of the factors defined above, we have il = P(Y; = 1/
x') = E(Yi/x";) = m(x;). Y; is the binary variable equal to
1 if an error is present and 0 otherwise. x; is the vector
(%75 %24 ..y X7;) of the explanatory variables. We chose to
model the error rate mi(x’;) with a logistic model [22]:

(X Bxxi)+Bo
* —_
ﬂ(xi ) = 1+ 6(2111"‘“1')*50

Maximum likelihood estimators were considered to
estimate the parameters of the model. Tests of signifi-
cance of the parameters were then carried out with Stu-
dent’s t test. A model was generated for each of the
three plates and for each of the error types (insertion,
deletion, mismatch and N). All the analyses were per-
formed with R (version 2.6.0).

The contribution of a given explanatory variable xi is
assessed as follows. Let us denote by comp.mod the
logistic model including all the variables considered, and
dev(comp.mod), its deviance. Let us define dev(sub.
model) as the deviance associated with the model
including all the variables other than the considered xi.
Then, part(xi) = (dev(sub.mod)- dev(comp.mod))/dev
(comp.mod)) expresses the contribution of xi in addition
to the other variables. We can symmetrically define the
participation of all the variables other than xi: part
(whole\xi) = (dev(xi)-dev(comp.mod))/(dev(comp.mod)).
Hence the deviance of the complete model may be bro-
ken down into the sum of three terms: the first exclu-
sive to xi, the second exclusive to the rest of the
variables and the last expressing the explanation com-
mon to xi and the other variables: 1 = part(xi) + part
(whole\xi) + (1- part(xi) - part(whole\xi)).

Additional material

Additional file 1: Number of sequences to correct erroneous
positions. 1a: this file illustrates the number of sequences necessary to
obtain a majority of correct sequences. The x-axis shows the error rate
and the y-axis shows the number of sequences needed, according to
three possible probabilities: 0.001 0.01 and 0.05. b the x-axis shows the
error rate for a given position (ranging from 0 to 0.5); the y-axis shows
the cumulative proportion of erroneous sequences sampled (ranging
from 0 to 0.5) in the total sample. Sample size varies from 10 to 100, 500
and 1,000 sequences. For a given error rate and a cumulative proportion
of erroneous sequences in the sample of size N, the probability of
observing this combination is indicated in color: green: 1 to 0.95, blue:
0.95 to 0.8, yellow: 0.8 to 0.6, orange: 0.6 to 0.5, red: 0.5 to 04, gray: 0.4
to 0.2 and white: below 0.2. For example, if the error rate is 0.2, the
probability of observing a cumulative proportion of erroneous sequences
in the sample of between 0 and 0.2 ranges between 04 and 0.5 (red
envelope). In this case, the probability of there being 20% erroneous
sequences in the sample is between 0.4 and 0.5. If we consider the same
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error rate (0.2) with 40% erroneous sequences, then the probability
ranges from 0.8 to 0.95 (blue envelope). If N increases, the variance of
the probability envelopes decreases.

Additional file 2: Distribution of errors along the reference
sequences. The blue line represents the proportion of sequences
generated (y-axis) according to the sequence position (x-axis), using data
obtained from the analysis of reference 5 reference sequences (excluding
reference #3, which is displayed in Figure 1). The error rate for each type
of error (insertions, deletions, mismatches and ambiguous base calls) is
presented as a function of the sequence position (x-axis) and specific
position on the y-axis. The position and length of homopolymers for
each base is given on the x-axis to facilitate interpretation (green: A, red:
T, black: G, blue: ).

Additional file 3: Breakdown of error rate variation using all
available variables. For each plate, we used a logistic model to
decipher the role of each selected variable in explaining the variation of
error rate (see materials and methods). The figure is broken down by
error type: a) insertions, b) deletions, ¢) mismatches and d) ambiguous
base calls. We tested the deviance from the complete model by
breaking down the model into the sum of three terms: the first exclusive
to the single effect of the variable considered (in black), the second
exclusive effect of the rest of the variables without the variable of
interest (in gray) and the last expressing the sum of the effects of
interactions between the variable considered and the other variables (in
white). The contribution of each term (the proportion) for a considered
variable can be viewed on the y-axis. Additional file 3 displays the results
for plates #2 and #3 (results from the plate #1 are presented as Figure 2).

Additional file 4: Spatial localization of error rate variation. For each
error type and the sequence length, the x-axis represents the spatial
localization of 454 reads as x-coordinates and the y-axis represents the y-
coordinates on the PT plate. The results presented in this additional data
file 4 correspond to plates #2 and #3. The strips represent the regions.
We display separately the four types of error (insertions, deletions,
mismatches and ambiguous base calls) and the length of the generated
sequences. Colors represent the ranges of error rates from 0 to 1 (or the
length of the sequences from 0 to 500), using a sliding window (see
materials and methods).

Additional file 5: FASTA file of the 6 reference sequences. The six
reference DNA sequences used in this analysis are found in the
corresponding FASTA file. They correspond to the control DNA
fragments of type | provided with 454 GS-FLX Titanium sequencing kits.
As such, the polymorphism displayed by the sequences corresponds
purely to sequencing errors.

Additional file 6: Raw data sequences from 454 GS-FLX Titanium
sequencing. This file contains three archives, including the raw FASTA
files for each sequencing run.
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