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ACCURACY AND RELIABILITY OF MODELS OF STOCHASTIC
PROCESSES OF THE SPACE Subϕ(Ω)

UDC 519.21

YU. V. KOZACHENKO AND I. V. ROZORA

Abstract. Stochastic processes of the space Subϕ(Ω) are considered in the paper.
We prove upper bounds for large deviation probabilities and construct models of
stochastic processes in the space C[0, 1] with a given accuracy and reliability. Strongly
sub-Gaussian processes are also considered as a particular case.

1. Introduction

We consider stationary stochastic processes of the space Subϕ(Ω) and construct models
of these processes with a given accuracy and reliability. Similar problems for models of
some stochastic processes are considered in [1]–[3]. In the proofs below we follow the
method of [1].

Section 2 of this paper contains basic definitions and properties of stochastic processes
of the space Subϕ(Ω). More detail can be found in [4]. Stationary stochastic processes
with discrete spectrum are considered in Section 3. Section 4 is devoted to models of
stationary processes of the space Subϕ(Ω). We obtain results for models approximating
a stochastic process with a given accuracy and reliability in the Banach space C[0, 1]. A
particular case of sub-Gaussian processes is considered in Section 5.

2. Stochastic processes of the space Subϕ(Ω)

Definition 2.1 ([4]). A convex even continuous function ϕ(x) such that ϕ(0) = 0 is
called an N -function if ϕ(x) > 0 for x �= 0, ϕ(x)/x → 0 as x → 0, and ϕ(x)/x → ∞ as
x → ∞.

Lemma 2.1 ([4]). A function ϕ(x), x ∈ R, is an N-function if and only if

ϕ(x) =
∫ |x|

0

l(u) du, x ∈ R,

where the density l(u), u ≥ 0, is a nondecreasing right continuous function such that
l(0) = 0, l(x) > 0 for x �= 0, and l(x) → ∞ as x → ∞.

Definition 2.2. Let f(x), x ∈ R, be a real function. A function f∗(x), x ∈ R, is called
the Young–Fenchel transform of the function f or the conjugate function to f if

f∗(x) = sup
y∈R

(xy − f(y)).
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Lemma 2.2 ([4]). If f(x), x ∈ R, is an N-function, then f∗(x), x ∈ R, is also an
N-function. Moreover

f∗(x) = xy0 − f(y0)

for all x > 0, where y0 = l(−1)(x) and l(−1)(x) is the generalized inverse function for the
density l(x).

Now we give the definition of the space Subϕ(Ω) and stochastic processes of the space
Subϕ(Ω).

Let ϕ(x) be an N -function and let there exist constants x0 and c > 0 such that
ϕ(x) = c · x2 for |x| < x0.

By (Ω, B, P) we denote the standard probability space.

Definition 2.3. The space of centered random variables ξ such that for all λ ∈ R there
exists a constant r ≥ 0 for which

E exp{λξ} ≤ exp{ϕ(λr)}
is called the space Subϕ(Ω) of random variables.

Theorem 2.1 ([4]). The space Subϕ(Ω) is a Banach space with respect to the norm

(1) τϕ(ξ) = sup
λ>0

ϕ(−1)(lnE exp{λξ})
λ

where ϕ(−1) is the generalized inverse function to ϕ. Then the norm τϕ(ξ) is such that

E exp{λξ} ≤ exp{ϕ(λτϕ(ξ))}
for all λ ∈ R. Moreover there exists a constant c > 0 such that(

E
(
ξ2
))1/2

< cτϕ(ξ).

Theorem 2.2 ([4]). Let ξ1, ξ2, . . . , ξn be independent random variables of the space
Subϕ(Ω). If ϕ(

√
x) is a convex function, then

τ2
ϕ

(
n∑

i=1

ξi

)
≤

n∑
i=1

τ2
ϕ(ξi).

If ϕ(x) = x2/2, then random variables ξ of the space Subϕ(Ω) are called sub-Gaussian.
We denote the space of sub-Gaussian random variables by

Subx2/2(Ω) = Sub(Ω).

If Eξ2 = τ2(ξ), then the random variable ξ is called strongly sub-Gaussian. The family
of all strongly sub-Gaussian random variables defined on the standard probability space
is denoted by SSub(Ω).

Definition 2.4. We say that a stochastic process ξ(t), t ∈ [0, T ], belongs to the space
Subϕ(Ω) if

ξ(t) ∈ Subϕ(Ω)

for any fixed t ∈ [0, T ] and supt∈[0,T ] τϕ(ξ(t)) < ∞.

In the space Subϕ(Ω) equipped with the norm τϕ, consider a stochastic process

ξ = {ξ(t), t ∈ [0, 1]},
where ϕ(x) is an N -function such that ϕ(

√
x) is convex. The following result is proved

in [5].
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Lemma 2.3. Let ξ = {ξ(t), t ∈ [0, 1]} be a separable stochastic process of the space
Subϕ(Ω). Assume that there exists an increasing continuous function σ(h), h ≥ 0, such
that σ(h) → 0 as h → 0 and

sup
|t−s|<h

(τϕ(ξ(t) − ξ(s))) < σ(h).

Let γ0 = supt∈[0,1] τϕ(ξ(t)), β ≤ σ( 1
2 ), and let {r(u), u ≥ 1} be a nondecreasing contin-

uous function such that r(u) ≥ 0 for u ≥ 1, r(1) = 0, and the function r(exp{u}) is
convex. Assume that ∫ β

0

θϕ(u) du < ∞,

where

θϕ(u) =
r
(
N
(
σ(−1)(u)

))
ϕ(−1)

(
ln N

(
σ(−1)(u)

)) ,
N(u) is the metric massiveness, that is, the minimal number of closed balls of radius u
that cover the interval [0, 1]. Then

E exp

{
λ sup

t∈[0,1]

|ξ(t)|
}

≤ 2 exp
{

ϕ

(
λγ0

1 − p

)
(1 − p) + ϕ

(
λβ

1 − p

)
p

}

×
(

r(−1)

(
λγ0θϕ(pβ) +

λ

(1 − p)p

∫ βp2

0

θϕ(u) du

))2(2)

for all λ ∈ R and p ∈ (0, 1).

We prove the following result.

Theorem 2.3. Let the assumptions of Lemma 2.3 hold and let β ≤ min{γ0, σ( 1
2 )}. If

x > 0 is such that
γ0 < x,

βγ0 < xσ

(
1

2(exp{ϕ(1)} − 1)

)
,

then

P

{
sup

t∈[0,1]

|ξ(t)| > x

}

≤ 2 exp
{
−ϕ∗

(
x

γ0
− 1
)}

×
(

r(−1)

(
x · l(−1) (x/γ0 − 1)

βγ0
·
∫ βγ0/x

0

r

(
1

2σ(−1)(u)
+ 1
)

du

))2

.

Proof. We apply Lemma 2.3.
The assumption of Theorem 2.3 implies that β ≤ min{γ0, σ( 1

2 )} ≤ γ0. Thus

ϕ

(
λγ0

1 − p

)
(1 − p) + ϕ

(
λβ

1 − p

)
p ≤ ϕ

(
λγ0

1 − p

)
,

whence we obtain by the Chebyshev inequality and (2) that

(3) P

{
sup

t∈[0,1]

|ξ(t)| > x

}
≤ exp

{
−λx + ϕ

(
λγ0

1 − p

)}
· 2Ir,
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where

Ir =

(
r(−1)

(
λγ0θϕ(pβ) +

λ

(1 − p)p

∫ βp2

0

θϕ(u) du

))2

.

It follows from Lemma 2.2 that xy = ϕ(x)+ϕ∗(y) for x = l(−1)(y), where ϕ∗(y) is the
Young–Fenchel transform and l(−1)(y) is the inverse function to the density l(x). Using
this result, we obtain that

(4) λx − ϕ

(
λγ0

1 − p

)
=

λγ0

1 − p
· x(1 − p)

γ0
− ϕ

(
λγ0

1 − p

)
= ϕ∗

(
x(1 − p)

γ0

)

for λγ0/(1 − p) = l(−1)(x(1 − p)/γ0). Thus

(5) λ =
1 − p

γ0
l(−1)

(
x(1 − p)

γ0

)
.

Note that the function

θϕ(u) =
r
(
N
(
σ(−1)(u)

))
ϕ(−1)

(
ln N

(
σ(−1)(u)

)) , u ≥ 0,

decreases in u. Hence

θϕ(pβ) ≤ 1
βp(1 − p)

∫ βp

βp2
θϕ(u) du

and

λγ0θϕ(pβ) ≤ λγ0

βp(1 − p)

∫ βp

βp2
θϕ(u) du.

Since γ0/β ≥ 1, we have

(6) λγ0θϕ(pβ) +
λ

p(1 − p)

∫ βp2

0

θϕ(u) du ≤ γ0

β

λ

p(1 − p)

∫ βp

0

θϕ(u) du.

Now we apply (6) for Ir with λ defined in (5) and get

(7) (Ir)1/2 ≤ r(−1)

(
l(−1)

(
x(1 − p)/γ0

)
βp

∫ βp

0

θϕ(u) du

)
.

Note that N(u) ≤ 1/(2u) + 1, whence

θϕ(u) =
r
(
N
(
σ(−1)(u)

))
ϕ(−1)

(
ln N

(
σ(−1)(u)

)) ≤
r
(

1
2σ(−1)(u)

+ 1
)

ϕ(−1)
(
ln
(

1
2σ(−1)(u)

+ 1
)) .

Since the function

ϕ(−1)

(
ln
(

1
2σ(−1)(u)

+ 1
))

decreases in u, u ∈ (0, βp), and

βγ0 < xσ

(
1

2(exp{ϕ(1)} − 1)

)
,

we obtain, by the assumptions of the theorem, that

ϕ(−1)

(
ln
(

1
2σ(−1)(u)

+ 1
))

> 1
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for u ∈ (0, βp). Thus

∫ βp

0

θϕ(u) du ≤
∫ βp

0

r
(

1
2σ(−1)(u)

+ 1
)

ϕ(−1)
(
ln
(

1
2σ(−1)(u)

+ 1
)) ≤

∫ βp

0

r

(
1

2σ(−1)(u)
+ 1
)

du.

The latter relation together with (3), (4), and (7) implies that

P

{
sup

t∈[0,1]

|ξ(t)| > x

}
≤ 2 exp

{
−ϕ∗

(
x(1 − p)

γ0

)}

×
(

r(−1)

(
l(−1)

(
x(1 − p)/γ0

)
βp

∫ βp

0

r

(
1

2σ(−1)(u)
+ 1
)

du

))2

.

(8)

Since p ∈ (0, 1) is arbitrary, one can substitute p = γ0/x < 1 in (8). This will complete
the proof of the theorem. �

Example 2.1. If ϕ(x) = x2/2, that is, if we deal with the space of sub-Gaussian random
variables, then the Young–Fenchel transform and the density for ϕ are given by ϕ∗(y) =
y2/2 and l(x) = x, respectively.

Theorem 2.3 implies the following result.

Theorem 2.4. Let ξ = {ξ(t), t ∈ [0, 1]} be a separable stochastic process of the space
Sub(Ω) of sub-Gaussian random variables; let a function σ(h) satisfy the assumptions
of Lemma 2.3, γ0 = supt∈[0,1] τ (ξ(t)), β = min{σ( 1

2 ), γ0}; and let {r(u), u ≥ 1} be a
nondecreasing continuous function satisfying all the assumptions of Lemma 2.3. If x > 0
is such that

γ0 < x,

βγ0 < xσ

(
1

2(exp{1/2} − 1)

)
,

then

P

{
sup

t∈[0,1]

|ξ(t)| > x

}
≤ 2 exp

{
−1

2

(
x

γ0
− 1
)2
}

×
(

r(−1)

(
x · (x − γ0)

βγ2
0

·
∫ βγ0/x

0

r

(
1

2σ(−1)(u)
+ 1
)

du

))2

.

3. Stationary processes with discrete spectrum

Let {ξ(t), t ∈ [0, 1]} be a stationary stochastic process such that Eξ(t) = 0, t ∈ [0, 1],
and Eξ(t + h)ξ(t) = B(h).

Definition 3.1. A stationary process ξ(t) is called a process with discrete spectrum if
its correlation function B(h) can be represented in the form

B(h) =
∞∑

k=0

b2
k cos λkh,

where b2
k > 0,

∑∞
k=0 b2

k < ∞, and λk are some numbers such that 0 ≤ λk ≤ λk+1 and
λk → ∞ as k → ∞.
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The latter definition and Karhunen theorem imply that a stationary stochastic process
ξ = {ξ(t), t ∈ [0, 1]} with discrete spectrum can be represented in the form of the series

(9) ξ(t) =
∞∑

k=0

(ξkbk cos λkt + ηkbk sin λkt),

where ξk and ηk are independent random variables such that

Eξk = Eηk = Eξkηl = 0, Eξkξl = Eηkηl = δl
k, k = 0, 1, 2 . . . , l = 0, 1, 2 . . . ,

and series (9) converges in the mean square sense.
If the random variables ξk and ηk, k = 0, 1, 2 . . . , belong to the space Subϕ(Ω), then

ξ(t) ∈ Subϕ(Ω), too. Similarly, if ξk and ηk, k = 0, 1, 2 . . . , are strongly sub-Gaussian,
then ξ(t) ∈ SSub(Ω).

4. Models of stochastic processes of the space Subϕ(Ω)

We construct a model ξ̃N (t) of a process ξ(t) such that ξ̃N (t) approximates ξ(t) with
a given accuracy and reliability in the Banach space C[0, 1].

Consider a stationary process ξ with a discrete spectrum and assume that the process
belongs to the space Subϕ(Ω). In what follows we assume that τϕ(ξk) = τϕ(ηk) = d > 0.
Let the numbers bk be unknown, but we know their approximate values b̃k. We also
know that

(10) |bk − b̃k| ≤ γk

for some known constants γk.

Definition 4.1. A process ξ̃N (t) is called a model of ξ(t) if

ξ̃N (t) =
N∑

k=0

b̃k(ξk cos λkt + ηk sin λkt),

where the numbers b̃k satisfy inequality (10) and ξk and ηk are independent random
variables of the space Subϕ(Ω) such that

Eξk = Eηk = Eξkηl = 0, Eξkξl = Eηkηl = δl
k, k = 0, . . . , N, l = 0, . . . , N.

Definition 4.2. We say that a model ξ̃N (t) approximates a process ξ(t) with a given
reliability 1 − ν, ν ∈ (0, 1), and accuracy δ > 0 in the space C([0, 1]) if

P

{
sup

t∈[0,1]

∣∣∣ξ(t) − ξ̃N (t)
∣∣∣ > δ

}
≤ ν.

It is easy to see that the error of the model is

∆(t, N) = ξ(t) − ξ̃N (t)

=
N∑

k=0

(bk − b̃k)(ξk cos λkt + ηk sin λkt) +
∞∑

k=N+1

bk(ξk cos λkt + ηk sin λkt)

:= ∆1(t, N) + ∆2(t, N).

Next we find upper estimates for τϕ(∆(t, N)), t ∈ [0, 1], and τϕ(∆(t, N) − ∆(s, N)),
t, s ∈ [0, 1].
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Theorem 2.2 implies that τ2
ϕ(∆(t, N)) ≤ τ2

ϕ(∆1(t, N)) + τ2
ϕ(∆2(t, N)) and

τ2
ϕ(∆1(t, N)) ≤

N∑
k=0

(
bk − b̃k

)2 (
τ2
ϕ(ξk) cos2 λkt + τ2

ϕ(ηk) sin2 λkt
)

≤ d2
N∑

k=0

γ2
k := AN .

(11)

Recall that we consider the case where τϕ(ξk) = τϕ(ηk) = d > 0. Similarly to the case of
∆1 we estimate

(12) τ2
ϕ(∆2(t, N)) ≤ d2

∞∑
k=N+1

b2
k := BN .

To estimate τϕ(∆(t, N) − ∆(s, N)), we use the following auxiliary result proved in [3].

Lemma 4.1. Let ψ(u), u ≥ 0, be a continuous increasing function such that ψ(0) = 0.
Assume that the function u/ψ(u) is nondecreasing for u > u0 where u0 ≥ 0 is some
constant. Then ∣∣∣∣sin u

v

∣∣∣∣ ≤ ψ(u + u0)
ψ(v + u0)

for all u ≥ 0 and v > 0.

Example 4.1. The function ψ(u) = uα, α ∈ (0, 1], satisfies the assumptions of Lemma
4.1 for u0 = 0. Thus ∣∣∣∣sin u

v

∣∣∣∣ ≤ uα

vα
for u, v > 0.

Example 4.2. Another example for Lemma 4.1 is the function ψ(u) = lnα(u+1), α > 0,
and u0 = eα − 1. We have in this case∣∣∣∣sin u

v

∣∣∣∣ ≤
(

ln(eα + u)
ln(eα + v)

)α

.

Using Lemma 4.1, we get the estimate

τ2
ϕ(∆1(t, N) − ∆1(s, N))

≤ d2
N∑

k=0

(bk − b̃k)2
[
(cos λkt − cos λks)2 + (sin λkt − sin λks)2

]

≤ 2d2
N∑

k=0

γ2
k(1 − cos λk(t − s)) = 4d2

N∑
k=0

γ2
k

(
sin2 λk(t − s)

2

)

≤ 22d2
N∑

k=0

γ2
k

ψ2 (λk/2 + u0)
ψ2 (|t − s|−1 + u0)

:= CN
1

ψ2 (|t − s|−1 + u0)
.

(13)

Assume that
∑∞

k=1 b2
kψ2(λk/2 + u0) < ∞. Following the same idea, one can prove

that

τ2
ϕ

(
∆2(t, N) − ∆2(s, N)

)
≤ 22d2

∞∑
k=N+1

b2
k

ψ2 (λk/2 + u0)
ψ2 (|t − s|−1 + u0)

:= DN
1

ψ2 (|t − s|−1 + u0)
.

(14)
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Therefore relations (11)–(14) and Theorem 2.2 imply that

τ2
ϕ(∆(t, N)) ≤ AN + BN ,(15)

τ2
ϕ

(
∆(t, N) − ∆(s, N)

)
≤ (CN + DN )

1
ψ2 (|t − s|−1 + u0)

.(16)

In what follows we assume that the function ψ(u) in Lemma 4.1 is such that ψ(u) → ∞
as u → ∞. Then it follows from (15) and (16) that

(17) γ0 =
√

AN + BN := γ0(N), σ(h) =
√

CN + DN

ψ (1/h + u0)
:=

L(N)
ψ (1/h + u0)

= σN (h),

where γ0 and σ(h) satisfy all the assumptions of Lemma 2.3.

Theorem 4.1. Let
∑∞

k=1 b2
kψ2(λk/2 + u0) < ∞, let the function ψ(u) satisfy the as-

sumptions of Lemma 4.1, and moreover let ψ(u) → ∞ as u → ∞. Let there exist
a nondecreasing continuous function {r(u), u ≥ 1} such that r(u) ≥ 0 for u ≥ 1,
r(1) = 0, and r(exp{u}) is convex. We also assume that

∫ β

0
r(θ(u)) du < ∞, where

θ(u) = ψ(−1)(L(N)/u).
A stochastic process ξ̃N (t) is a model approximating a separable process ξ(t) of the

space Subϕ(Ω) with a given reliability 1 − ν, ν ∈ (0, 1), and accuracy δ > 0 in the space
C([0, 1]) if N is such that

γ0(N) < δ,

βNγ0(N) <
δL(N)

ψ (2(exp{ϕ(1)} − 1) + u0)
,(18)

2 exp
{
−ϕ∗

(
δ

γ0(N)
− 1
)}

×
(

r(−1)

(
δ · l(−1) (δ/γ0(N) − 1)

βNγ0(N)

∫ βN γ0(N)/δ

0

r(θ(u)) du

))2

< ν,

(19)

where βN = min{γ0(N), L(N)/ψ(2 + u0)} and constants γ0(N) and L(N) are defined
in (17).

Proof. Since ξ(t), ξ̃N(t) ∈ Subϕ(Ω), their difference ξ(t) − ξ̃N (t) is also a process of the
space Subϕ(Ω). We proved above that

γ0 = γ0(N) =
√

AN + BN , σ(h) = σN (h) = L(N)
1

ψ (1/h + u0)
,

whence
σ(−1)(u) =

(
ψ(−1)(L(N)/u) − u0

)−1
.

Thus

r

(
1

2σ(−1)(u)
+ 1
)

= r

(
1
2

(
ψ(−1)

(
L(N)

u

)
− u0

)
+ 1
)

≤ r

(
1
2
ψ(−1)

(
L(N)

u

)
+ 1
)

.

Now we prove that
1
2
ψ(−1)(L(N)/u) > 1

for all u of the interval (0, βNγ0(N)/δ). Since the function ψ(−1)(L(N)/u) decreases in
u and γ0(N)/δ < 1 by the assumptions of the theorem, it remains to prove that

1
2
ψ(−1)(L(N)/βN ) > 1.
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The latter inequality is equivalent to the relation

L(N)/ψ(2) > βN

that is obviously true, since

βN = min
{

γ0(N), σN

(
1
2

)}
≤ σN

(
1
2

)
≤ L(N)/ψ(2).

Hence

r

(
1

2σ(−1)(u)
+ 1
)

≤ r

(
ψ(−1)

(
L(N)

u

))
.

It is easy to see that

σ

(
1

2(exp{ϕ(1)} − 1)

)
=

L(N)
ψ (2(exp{ϕ(1)} − 1) + u0)

.

Substituting the upper bound obtained above into the inequality of Theorem 2.3, we
complete the proof of Theorem 4.1. �

Consider the case of the function ψ(u) = uα, α ∈ (0, 1], and u0 = 0. In this case we
obtain the following result.

Theorem 4.2. Let
∑∞

k=1 b2
kλ2α

k < ∞, α ∈ (0, 1]. A stochastic process ξ̃N (t) is a model
approximating a separable process ξ(t) ∈ Subϕ(Ω) with a given reliability 1−ν, ν ∈ (0, 1),
and accuracy δ > 0 in the space C([0, 1]) if N is such that

γ0(N) < δ,

βNγ0(N) <
δL(N)

2α(exp{ϕ(1)} − 1)α
,

2 exp
{
−ϕ∗

(
δ

γ0(N)
− 1
)}((

α

α − b

(
δL(N)

βNγ0(N)

)b/α

− 1

)
l(−1)

(
δ

γ0(N)
− 1
)

+ 1

)2/b

< ν,

where γ0(N) and L(N) are defined in (17), βN = min{γ0(N), L(N)/2α}, and 0 < b < α.

Proof. Recall that we deal with the case of ψ(u) = uα, α ∈ (0, 1], and u0 = 0. Then the
inequalities of Theorem 4.1 imply the first two inequalities of Theorem 4.2. It remains
to prove that the third inequality of Theorem 4.2 holds. We apply relation (19) with
r(u) = ub − 1, b ∈ (0, α). Note that this function r(u) satisfies all the assumptions of
Theorem 4.1 and that ψ(−1)(u) = u1/α, α ∈ (0, 1]. We have

∫ βN γ0(N)/δ

0

r(θ(u)) du =
∫ βN γ0(N)/δ

0

((
ψ(−1)

(
L(N)

u

))b

− 1

)
du

=
∫ βN γ0(N)/δ

0

((
L(N)

u

)b/α

− 1

)
du

=
α(L(N))b/α

α − b

(
βNγ0(N)

δ

)1−b/α

− βNγ0(N)
δ

.
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Since r(−1)(u) = (u + 1)1/b for b ∈ (0, α), we conclude that

r(−1)

(
δ · l(−1) (δ/γ0(N) − 1)

βNγ0(N)

∫ βN γ0(N)/δ

0

r(θ(u)) du

)

=

((
α

α − b

(
δL(N)

βNγ0(N)

)b/α

− 1

)
l(1)
(

δ

γ0(N)
− 1
)

+ 1

)1/b

.

Substituting the right-hand side of the latter equality into (19), we complete the proof
of the theorem. �

5. Models of sub-Gaussian stochastic processes

We consider sub-Gaussian stochastic processes in this section; that is, we deal with
the function ϕ(u) = u2/2. Then the Young–Fenchel transform and the density for ϕ are
ϕ∗(x) = x2/2 and l(x) = x, respectively. The following result follows from Theorem 4.1

Theorem 5.1. Let the assumptions of Theorem 4.1 hold. A model ξ̃N (t) approximates
a process ξ(t) with a given reliability 1 − ν, ν ∈ (0, 1), and accuracy δ > 0 in the space
C([0, 1]) if N is such that

γ0(N) < δ,(20)

2 exp

{
−1

2

(
δ

γ0(N)
− 1
)2
}(

r(−1)

(
δ(δ − γ0(N))

βNγ2
0(N)

∫ βN γ0(N)/δ

0

r(θ(u)) du

))2

< ν.

Proof. Theorem 5.1 follows from Theorem 4.1. We prove only that relation (20) implies
inequality (18) in the case of sub-Gaussian processes; that is, we prove that

γ0(N) < δ =⇒ βNγ0(N) <
δL(N)

ψ (2(exp{1/2} − 1) + u0)
.

Indeed,

L(N)
ψ (2(exp{1/2} − 1) + u0)

= σ

(
1

2(exp{1/2} − 1)

)
≈ σ(0.7).

Note that βN = min{γ0(N), σ(1/2)} ≤ σ(1/2). The function σ(u) is increasing by
definition. Thus

βN ≤ δL(N)
/
ψ
(
2(exp{1/2} − 1) + u0

)
.

The theorem is proved. �

If ψ(u) = uα, α ∈ (0, 1], and u0 = 0, then Theorems 4.1 and 5.1 yield the following
result.

Theorem 5.2. Let
∞∑

k=1

b2
kλ2α

k < ∞, α ∈ (0, 1].

A stochastic process ξ̃N (t) is a model approximating a separable sub-Gaussian process ξ(t)
with a given reliability 1− ν, ν ∈ (0, 1), and accuracy δ > 0 in the space C([0, 1]) if N is
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such that

γ0(N) < δ,(21)

2 exp

{
−1

2

(
δ

γ0(N)
− 1
)2
}

×
(

α

α − b

((
δL(N)

βNγ0(N)

)b/α

− 1
)(

δ

γ0(N)
− 1
)

+ 1

)2/b

< ν

(22)

for some b ∈ (0, α), α ∈ (0, 1], where β = min{γ0(N), L(N)/2α} and γ0(N) and L(N)
are defined in (17).

Example 5.1. Consider the case of ψ(u) = uα, α ∈ (0, 1], and u0 = 0. Let the
process ξ(t) in (9) be sub-Gaussian. This means that the random variables ξk and ηk,
k ≥ 0, are strongly sub-Gaussian random variables; that is,

d2 = τ2(ξk) = Eξ2
k, d2 = τ2(ηk) = Eη2

k.

Thus d = 1.
Let bk = k−a, a > 1, λk =

√
k, and let the errors of approximation of the numbers bk

be the constants γk = γ for all k ≥ 1. Then
∞∑

k=0

b2
kλ2

k =
∞∑

k=0

1
k2a−1

< ∞

and the numbers AN , BN , and γ0(N) =
√

AN + BN are such that

AN = d2
N∑

k=0

γ2
k = (N + 1)γ,

BN = d2
∞∑

k=N+1

1
b2
k

=
∞∑

k=N+1

1
k2a

=
∞∑

k=N+1

∫ k

k−1

1
k2a

dx ≤
∫ ∞

N

1
x2a

dx =
1

(2a − 1)N2a−1
,

γ2
0(N) ≤ (N + 1)γ2 +

1
(2a − 1)N2a−1

.

Now we find the point of minimum and the minimum value of the right-hand side of
the latter inequality over all real numbers N > 0.

It is obvious that

Nmin =
(

1
γ

)1/(a−1)

is the point of minimum in this case. Then

min γ0(N) =
(

γ2−1/a + γ2 +
1

2a − 1
γ2−1/a

)1/2

≤ γ1−1/(2a)

√
4a − 1
2a − 1

:= γ0(γ), a > 1.

To construct the model, we take N = [Nmin] + 1, where [c] stands for the integer part of
a number c.

Theorem 5.2 implies that γ0(N) satisfies condition (21). All possible γ < 1 in this
case are determined by the condition

γ1−1/(2a)

√
4a − 1
2a − 1

< δ =⇒ γ <

(
δ

√
2a − 1
4a − 1

)2a/(2a−1)

.
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Thus

(23) γ ∈

⎛
⎝0, min

⎧⎨
⎩1,

(
δ

√
2a − 1
4a − 1

)2a/(2a−1)
⎫⎬
⎭
⎞
⎠ .

Remark. When we apply Theorem 4.1, the numbers δ, ν, a, α, and b ∈ (0, α) as well as γ
in (23) are known. Thus the problem of constructing a model of a process is reduced to
the problem of finding the minimal number N that satisfies conditions (21)–(22).

Now we evaluate L(N) =
√

CN + DN for bk = k−a, a > 1, λk =
√

k, and γk = γ.
First,

CN = 22−2αd2
N∑

k=0

γ2
kλ2α

k = 22−2αγ2
N∑

k=0

∫ k+1

k

kα dx ≤ 22−2αγ2(N + 1)α+1

α + 1
,

DN = 22−2αd2
∞∑

k=N+1

b2
kλ2α

k = 22−2α
∞∑

k=N+1

1
k2a−α

≤ 22−2α

(2a − α − 1)N2a−α−1
.

Then

L2(N) ≤ 22−2α

(
γ2(N + 1)α+1

α + 1
+

1
(2a − α − 1)N2a−α−1

)
.

Substituting Nmin into L(N), we get

L(Nmin) = 21−αγ1−(α−1)/(2a−2)

((
1 + γ1/(a−1)

)α+1

γ2(α + 1)
+

1
(2a − α − 1)

)1/2

:= L(γ).

Thus Theorem 5.2 can be rewritten as follows.

Theorem 5.3. A stochastic process

ξ̃N (t) =
N∑

k=0

1
b̃k

(
ξk cos

√
kt + ηk sin

√
kt
)

, a > 1, N =

[(
1
γ

)1/a
]

+ 1,

is a model approximating a separable process

ξ(t) =
∞∑

k=0

1
ka

(
ξk cos

√
kt + ηk sin

√
kt
)

,

∣∣∣∣ 1
ka

− b̃k

∣∣∣∣ < γ, 0 ≤ k ≤ N,

with a given reliability 1 − ν, ν ∈ (0, 1), and accuracy δ > 0 in the space C([0, 1]) if for
b ∈ (0, α), α ∈ (0, 1], there exists a number γ in the interval⎛

⎝0, min

⎧⎨
⎩1,

(
δ

√
2a − 1
4a − 1

)2a/(2a−1)
⎫⎬
⎭
⎞
⎠

such that

2 exp

{
−1

2

(
δ

γ0(γ)
− 1
)2
}(

α

α − b

((
δL(γ)

βγγ0(N)

)b/α

− 1

)(
δ

γ0(γ)
− 1
)

+ 1

)2/b

< ν,

where βγ = min{γ0(γ), L(γ)/2α} and

γ0(γ) = γ1−1/(2a)

√
4a − 1
2a − 1

,

L(γ) = 21−αγ1−(α−1)/(2a−2)

((
1 + γ1/(a−1)

)α+1

γ2(α + 1)
+

1
(2a − α − 1)

)1/2

.
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Conclusion

Above we obtained some results for models of separable stationary processes belonging
to the space Subϕ(Ω). We found conditions under which a model approximates a process
with a given accuracy and reliability in the Banach space C[0, 1]. The results can be
extended to the case of other Banach spaces.
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