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Abstract High-order derivatives of analytic functions are expressible as Cauchy in-
tegrals over circular contours, which can very effectively be approximated, e.g., by
trapezoidal sums. Whereas analytically each radius r up to the radius of convergence
is equal, numerical stability strongly depends on r . We give a comprehensive study
of this effect; in particular, we show that there is a unique radius that minimizes the
loss of accuracy caused by round-off errors. For large classes of functions, though
not for all, this radius actually gives about full accuracy; a remarkable fact that we
explain by the theory of Hardy spaces, by the Wiman–Valiron and Levin–Pfluger the-
ory of entire functions, and by the saddle-point method of asymptotic analysis. Many
examples and nontrivial applications are discussed in detail.

Keywords Numerical differentiation · Accuracy · Stability · Analytic functions ·
Cauchy integral · Optimal radius · Hardy spaces · Entire functions of perfectly and
completely regular growth
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1 Introduction

Real variable formulas for the numerical calculation of high-order derivatives suffer
severely from the ill-conditioning of real differentiation. Balancing approximation
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errors with round-off errors yields an inevitable minimum amount of error that blows
up as the order of differentiation increases (see, e.g., Miel and Mooney 1985, The-
orem 2). It is therefore quite tricky, using these formulas with hardware arithmetic,
to obtain any significant digits for derivatives of orders of, say, a hundred or higher.
For functions which extend analytically to the complex plane, numerical quadrature
applied to Cauchy integrals has on various occasions been suggested as a remedy
(see Gautschi 1997, p. 152/187). To be specific, let us consider an analytic function
f with the Taylor series1

f (z) =
∞
∑

k=0

akz
k

(

|z| < R
)

(1.1)

having radius of convergence R > 0 (with R = ∞ for entire functions). Cauchy’s
integral formula applied to circular contours yields (n = 0,1,2, . . . ,0 < r < R)

an = f (n)(0)

n!

= 1

2π i

∫

|z|=r

f (z)

zn+1
dz

= 1

2πrn

∫ 2π

0
e−inθf

(

reiθ )dθ. (1.2)

Since trapezoidal sums2 are known to converge geometrically for periodic analytic
functions (Davis 1959), the latter integral is amenable to the very simple and yet
effective approximation3

an(r,m) = 1

mrn

m−1
∑

j=0

e−2π ijn/mf
(

re2π ij/m
)

. (1.3)

This procedure for approximating an was suggested by Lyness (1967). Later, Lyness
and Sande (1971) observed that the correspondence

(

rnan(r,m)
)m−1
n=0 ↔

(

f
(

re2π ij/m
))m−1

j=0

induced by (1.3) is, in fact, the discrete Fourier transform; accordingly, they published
an algorithm for calculating a set of normalized Taylor coefficients rnan based on the
fast Fourier transform (FFT).

Whereas all radii 0 < r < R are, by Cauchy’s theorem, analytically equal, they
are not so numerically. On the one hand, the geometric convergence rate of the trape-

1Without loss of generality, the point of development is z = 0, which we choose for ease of notation
throughout this paper. Though such series are often named after Maclaurin, we keep the name Taylor
series to stress that we really do not use anything specific to z = 0.
2Recall that, for periodic functions, the trapezoidal sum and the rectangular rule are the same.
3For other quadrature rules see the remarks in Sect. 2.3.
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zoidal sums improves for smaller r . On the other hand, for r → 0 there is an in-
creasing amount of cancellation in the Cauchy integral which leads to a blow-up of
relative errors (Lyness 1967, p. 130). Moreover, there is generally also a problem of
numerical stability for r → R (see Sect. 3 of this paper). So, once again there arises
the question of a proper balance between approximation errors and round-off errors:
what choice of r is best and what is the minimum error thus obtained?

There is not much available about this problem in the literature. Lyness and Sande
(1971) circumnavigate it altogether by just considering the absolute errors of the
normalized Taylor coefficients rnan instead of relative errors, leaving the choice of r

to the user as an application-specific scale factor. On p. 670 they write:

It is natural to ask why this choice of output [i.e., rnan] was made, rather than
perhaps a set of Taylor coefficients an or a set of derivatives f (n)(0). The most
immediate reason is that the algorithm naturally provides a set of normalized
Taylor coefficients to a uniform absolute accuracy. If, for example, one is in-
terested in a set of derivatives, the specification of the accuracy requirements
becomes very much more complicated. However, if one looks ahead to the use
to which the Taylor coefficients are to be put, one finds in many cases that
uniform accuracy in normalized Taylor coefficients corresponds to the sort of
accuracy requirement which is most convenient.

Fornberg (1981a, 1981b) addresses the choice of a suitable radius r by suggesting
a simple search procedure that tries to make (rnan)

m−1
n=0 approximately proportional

to the geometric sequence 0.75n. If accomplished, this results, for m = 32, in a loss
of at most about m| log10(0.75)| .= 4.0 digits;4 see Sect. 3.1 below. Further, he ap-
plies Richardson extrapolation to the last three radii of the search process to enhance
the convergence rate of the trapezoidal sums. However, the success of both devices
is limited to functions whose Taylor coefficients approximately follow a geometric
progression. In fact, Fornberg (1981a, p. 542) identifies some problems:

Some warning about cases in which full accuracy may not be reached. Such
cases are

(1) very low-order polynomials (for example, f (z) = 1 + z);
(2) functions whose Taylor coefficients contain very large isolated terms (for

example, f (z) = 106 + 1/(1 − z));
(3) certain entire functions (for example, f (z) = ez);
(4) functions whose radius of convergence is limited by a branch point at which

the function remains many times [real] differentiable (for example, f (z) =
(1 + z)10 log(1 + z) expanded around z = 0).

As illustrated by the numerical experiments of Fig. 1, an answer to the question of
choosing a proper radius r becomes absolutely mandatory for derivatives of orders
of about n = 100 and higher: outside a narrow region of radii there is a complete loss
of accuracy. However, rather surprisingly, Fig. 1 also shows that about full accuracy

4We write “
.=” to indicate that a number has been correctly rounded to the digits given, “∼” to denote a

rigorous asymptotic equality, and “≈” to informally assert some approximate agreement.
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Fig. 1 (Color online) Numerical stability of using Cauchy integrals to compute f (n)(0): plots of the
empirical loss of digits (solid red line), that is, the ratio of the relative error divided by the machine
precision, and its prediction by the condition number κ(n, r) (dashed blue line) vs. the radius r . The
vertical lines (dashed green) of the last three plots visualize a finite radius of convergence R < ∞. In each
plot the results for two different orders of differentiation are shown: n = 10 (the less steep curves starting
from the left) and n = 100 (the steeper curves starting farther to the right). The number m of nodes of the
trapezoidal sum approximation was chosen large enough not to change the picture. The qualitative shape
(convexity in the double logarithmic scale, coercivity and monotonicity properties) of these condition
number plots can be completely understood from the general results in Sect. 4



Found Comput Math (2011) 11: 1–63 5

can be obtained for some functions if we choose the optimal radius that minimizes
the loss of accuracy. We observe that such an optimal radius strongly depends on n

(and f ). This strong dependence, together with the complete loss of accuracy far
off the optimal radius, prevents us from using, for larger n, just a single radius r to
calculate all the leading Taylor coefficients a0, . . . , an in one go; it thus puts the FFT
effectively out of business for the problem at hand.

The goal of this paper is a deeper mathematical understanding of all these effects.
In particular, we would like to automate the choice of the parameters m and r and to
predict the possible loss of accuracy. This turns out to be a surprisingly rich and mul-
tifaceted topic, with relations to some classical results of complex analysis such as
Hadamard’s three circles theorem (Sect. 7) as well as to some more advanced topics
such as the theory of Hardy spaces (Sects. 4 and 6), the Wiman–Valiron theory of the
maximum term of entire functions (Sect. 8), the Levin–Pfluger theory of the distribu-
tion of zeros of entire functions (Sect. 10); and with relations to some advanced tools
of asymptotic analysis and analytic combinatorics such as the saddle-point method
(Sect. 9) and the concept of H -admissibility (Sect. 11).

Outline of the Paper

To guide the reader through the thicket of this paper, we summarize its most relevant
findings:

• from the point of approximation theory and convergence rates as m → ∞, smaller
radii are better than larger ones (Sect. 2); there are useful explicit upper bounds
of the number of nodes m in terms of the desired relative error ǫ, the order of
differentiation n, and the chosen radius r ((2.8) and (2.11));

• with respect to absolute errors, the calculation of the normalized Taylor coefficients
rnan is numerically stable for any radius r < R (Sect. 3.1);

• with respect to relative errors, the loss of significant digits is modeled by
log10 κ(n, r) where κ(n, r) denotes the condition number of the Cauchy integral
(Sect. 3.2, see also Fig. 1), which is independent of the particular quadrature rule
chosen for the actual approximation; it can be estimated on the fly (algorithm given
in Fig. 3);

• logκ(n, r) is a convex function of log r (Corollary 4.2) and there exists an (es-
sentially unique) optimal radius r∗(n) = arg minrκ(n, r) that minimizes the loss
of accuracy caused by round-off errors; these optimal radii form an increasing se-
quence satisfying r∗(n) → R as n → ∞ (Theorem 4.6);

• for finite radius of convergence R < ∞, the corresponding optimal condition num-
ber κ∗(n) blows up if f belongs to the Hardy space H 1 (Theorem 4.7); on the
other hand, κ∗(n) remains essentially bounded if f does not belong to the Hardy
space H 1 and is amenable to Darboux’s method (Sects. 5 and 6), in which case
there are useful explicit (asymptotic) formulas for r∗(n) and κ∗(n) ((6.3) and (6.4));

• for entire transcendental functions it is more convenient to analyze a certain
upper bound κ̄(n, r) of the condition number (7); this yields a unique radius
r⋄(n) = arg minr κ̄(n, r), called the quasi-optimal radius, with a corresponding
quasi-optimal condition number κ⋄(n) = κ(n, r⋄(n)) ≥ κ∗(n); the quasi-optimal
radii also form an increasing sequence with r⋄(n) → R as n → ∞ (Theorem 7.3);
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• for entire functions of perfectly regular growth there is a simple asymptotic formula
for r⋄(n) in terms of the order and type of such a function (Theorem 8.4);

• r⋄(n) is the modulus of certain saddle points of |z−nf (z)| in the complex plane
(Theorem 9.1); the saddle-point method offers a methodology to obtain asymptotic
results for κ⋄(n) (Sect. 9.2);

• for entire functions of completely regular growth (satisfying certain conditions on
the zeros), the circular contour of radius r⋄(n) is optimal in the sense that it passes
the saddle points approximately in the direction of steepest descent (10); this yields
the extremely simple asymptotic condition number bound lim supn κ⋄(n) ≤ Ω

where Ω is the number of maxima of the Phragmén–Lindelöf indicator function
of f (Theorem 10.2); in fact, there is an explicit asymptotic formula for κ⋄(n) in
terms of a finite sum (Theorem 10.1) that turns out to yield κ⋄(n) ∼ 1 in many
relevant examples;

• for H -admissible entire functions we have κ⋄(n) ∼ 1 (Corollary 11.3);
• for entire functions f with nonnegative Taylor coefficients the quasi-optimal radius

r⋄(n) can be calculated as the solution of the scalar convex optimization problem
r⋄(n) = arg minrr

−nf (r) (Theorem 12.1); we prove κ⋄(n) ∼ 1 for a model of a
Fredholm determinant with nonnegative Taylor coefficients (12.8).

We shall comprehensively discuss many concrete examples and applications
throughout this paper: most notably the functions illustrated in Fig. 1, the func-
tions from the list of the Fornberg quote on p. 3, the functions whose properties
are listed in Table 2, the functions f (z) = (1 − z)β (β ∈ R \ N0) (Example 5.2), the
generalized hypergeometric functions (Example 8.2), the reciprocal gamma function
f (z) = 1/Ŵ(z) (10.4), a generating function from the theory of random matrices
(Examples 3.1 and 12.3), and a generating function from the theory of random per-
mutations (Example 12.5).

2 Approximation Theory

2.1 Convergence Rates

In this section we recall some basic facts about the convergence of the trapezoidal
sums applied to Cauchy integrals on circular contours. We use the notation

Dr =
{

z ∈ C : |z| < r
}

, Cr =
{

z ∈ C : |z| = r
}

,

for (open) disks and circles of radius r . Let f be an analytic function as in Sect. 1,
Pm be the set of all polynomials of degree ≤ m, and let

Em(f ; r) = inf
p∈Pm

‖f − p‖L∞(Dr )
(0 < r < R)

denote the error of best polynomial approximation of f on the closed disk Dr . Equiv-
alently, by the maximum modulus principle, we have

Em(f ; r) = inf
p∈Pm

‖f − p‖L∞(Cr ) (0 < r < R).
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The following theorem certainly belongs to the “folklore” of numerical analysis; pin-
ning it down, however, in the literature in exactly the form that we need turned out
to be difficult. For accounts of the general techniques used in the proof, see, for the
aliasing relation, Henrici (1986, Sects. 13.2/4) and, for the use of best approximation
in estimating quadrature errors, Davis and Rabinowitz (1984, Sect. 4.8).

Theorem 2.1 Let f be analytic in DR and 0 < r < R. Then, with the n-th Taylor co-
efficient an and its approximation an(r,m) as in (1.2) and (1.3), we have the aliasing
relation

rnan(r,m) = rn′
an′(r,m) (n ≡ n′ mod m) (2.1)

and the error estimate

rn
∣
∣an − an(r,m)

∣
∣ ≤ 2Em−1(f ; r) (0 ≤ n < m). (2.2)

Proof The key to this theorem is the observation that an(r,m), with 0 ≤ n < m, is the
exact Taylor coefficient of the polynomial p∗ ∈ Pm−1 that interpolates f in the nodes
re2π ij/m (j = 0, . . . ,m − 1). This fact, and also the aliasing relation, easily follows
from the discrete orthogonality

1

m

m−1
∑

j=0

e−2π ijn/me2π ijn′/m =
{

1, n ≡ n′ mod m;
0, otherwise.

Now, by introducing the averaging operators

In(f ; r) = 1

2π

∫ 2π

0
e−inθf

(

reiθ )dθ,

(2.3)

Qn(f ; r,m) = 1

m

m−1
∑

j=0

e−2π ijn/mf
(

re2π ij/m
)

,

we have rnan = In(f ; r) and rnan(r,m) = Qn(f ; r,m). The observation about the
approximation being exact for polynomials implies, for p ∈ Pm−1 and 0 ≤ n < m,
that In(p; r) = Qn(p; r,m) and hence

∣
∣In(f ; r) − Qn(f ; r,m)

∣
∣

≤
∣
∣In(f ; r) − In(p; r)

∣
∣ +

∣
∣Qn(p; r,m) − Qn(f ; r,m)

∣
∣ ≤ 2‖f − p‖L∞(Cr ).

Taking the infimum over all p finally implies (2.2). �

From the aliasing relation we immediately infer an important basic criterion for
the choice of the parameter m, namely the

Sampling Condition: m > n. (2.4)

For otherwise, if m ≤ n, the value an(r,m) is just a good approximation of rk−nak ,
with 0 ≤ k < m the remainder of dividing n by m. However, in general, rk−nak will
differ considerably from an.



8 Found Comput Math (2011) 11: 1–63

2.2 Estimates of the Number of Nodes

To obtain more quantitative bounds of the approximation error as m → ∞, we have
a closer look at the error of best approximation. With R the radius of convergence
of the Taylor series (1.1) of f , the asymptotic geometric rate of convergence of this
error is given by (Walsh 1965, Sect. 4.7)

lim sup
m→∞

Em(f ; r)1/m = r

R
. (2.5)

Thus, if we introduce the relative error (assuming an �= 0)

δm(n, r) = |an − an(r,m)|
|an|

, (2.6)

we get from (2.2) and (2.5) that

lim sup
m→∞

δm(n, r)1/m ≤ r

R
. (2.7)

2.2.1 Finite Radius of Convergence

If R < ∞, we obtain from (2.7) that, for n and r fixed,

1

m
log δm(n, r)−1 ≥ log(R/r) + o(1) (m → ∞).

Therefore, if mǫ denotes the smallest value such that δm(n, r) ≤ ǫ for m ≥ mǫ (which
implies δmǫ ∼ ǫ as ǫ → 0), we get the asymptotic bound

mǫ ≤ log(ǫ−1)

log(R/r)

(

1 + o(1)
)

(ǫ → 0). (2.8)

Example 2.2 To illustrate the sharpness of this bound, we consider the function
f (z) = z/(ez − 1) for n = 100, taking the radius r = 6.22, which is about the op-
timal one shown in Fig. 1.e. Here R = 2π and, for a relative error ǫ = 10−12 (which
is, for this particular choice of r , large enough to exclude any finite precision effects
of the hardware arithmetic), we get

mǫ = 2734 ≤ log(ǫ−1)

log(R/r)
︸ ︷︷ ︸
.=2733.80

·1.00007;

thus, the bound (2.8) is an excellent prediction. In Example 6.2 we will see that,
for general n, the radius rn = 2π(1 − n−1) is, in terms of numerical stability,
about optimal and yields the estimate mǫ ≈ n log ǫ−1. That is, for ǫ fixed, we get
mǫ = O(n) as n → ∞, which is the best we could expect in view of the sampling
condition (2.4). Further examples of this kind are provided in Sects. 5 and 6.
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2.2.2 Entire Functions

If f is entire, that is, R = ∞, the estimate (2.7) shows that the trapezoidal sums
converge even faster than geometrically:

lim
m→∞

δm(n, r)1/m = 0.

In fact, if f is a polynomial of degree d , we already know from Theorem 2.1 that
the trapezoidal sum is exact for m > d , which implies5 δm(n, r) = 0. If f is entire
and transcendental, a more detailed resolution of the behavior of δm depends on the
properties of f at its essential singularity in z = ∞. For example, entire functions of
finite order ρ > 0 and type τ > 0 (for a definition see Sect. 8 below) yield (Batyrev
1951; Giroux 1980)

lim sup
m→∞

m1/ρEm(f ; r)1/m = r(eρτ)1/ρ . (2.9)

We thus get

lim sup
m→∞

m1/ρδm(n, r)1/m ≤ r(eρτ)1/ρ (2.10)

and therefore, for n and r fixed,

1

m
log δm(n, r)−1 − 1

ρ
log

(

m/(eρτ)
)

≥ log(1/r) + o(1) (m → ∞).

Solving for mǫ , as defined in Sect. 2.2.1, yields the asymptotic bound

mǫ ≤ ρ log(ǫ−1)

W(log(ǫ−1)/(eτrρ))

(

1 + o(1)
)

(ǫ → 0). (2.11)

Here W(z) denotes the principal branch of the Lambert W -function defined by the
equation z = W(z)eW(z). In Remark 8.5 we will specify this bound, for entire func-
tions of perfectly regular growth, using a particular radius that is about optimal in the
sense of numerical stability.

Example 2.3 To illustrate the sharpness of this bound, we consider f (z) = ez for
n = 10 taking the radius r = 10, which we read from Fig. 1.a to be close to optimal.
Here, the order and type of the exponential functions are ρ = τ = 1 (see Table 2) and
we get the results of Table 1 (which were computed using high-precision arithmetic
in Mathematica). As we can see, (2.11) turns out to be a very useful upper bound.

2.3 Other Quadrature Rules

To approximate the Cauchy integral (1.2), there are other quite effective quadra-
ture rules available besides the trapezoidal sums; examples are Gauss–Legendre and

5Recall that we have assumed an �= 0 in the definition of δm , which restricts us to n ≤ d < m.
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Table 1 Sharpness of the bound (2.11) for f (z) = ez (n = 10, r = 10)

ǫ minimal mǫ ρ log ǫ−1/W(log ǫ−1/eτrρ )

10−12 32 48.21

10−100 126 140.30

10−1000 694 706.73

Clenshaw–Curtis quadrature. From the point of complexity theory, however, Gensun
and Xuehua (2005) have shown (drawing from the pioneering work of Nikolskii in the
1970s) that the trapezoidal sums are, for the problem at hand, optimal in the sense of
Kolmogorov.6 Hence, for definiteness and simplicity, we stay with trapezoidal sums
in this paper.

It is, however, important to note that the results of this paper apply to other fam-
ilies of quadrature rules as well: first, the estimates (2.8) and (2.11) remain valid if
the quadrature error is bounded by the error of polynomial best approximation (as
in (2.2), up to some different constant); which is, e.g., the case for Gauss–Legendre
and Clenshaw–Curtis quadrature (see Trefethen 2008). Second, the discussion of nu-
merical stability in the next section applies to quadrature rules with positive weights
in general. In particular, the estimated digit loss (3.7) depends only on the condition
number of the Cauchy integral itself, an analytic quantity independent of the chosen
quadrature rule. Then, starting with Sect. 4, optimizing that condition number is the
main objective of this paper.

3 Numerical Stability

As we have seen in Sect. 1 and Fig. 1, there are stability issues with using (1.3) in the
realm of finite precision arithmetic. Specifically, small finite precision errors in the
evaluation of the function f can be amplified to large errors in the resulting evaluation
of the sum (1.3). This error propagation is described by the condition number of the
Cauchy integral and depends very much on the chosen radius r and on the underlying
error concept.

3.1 Absolute Errors

Any perturbation f̂ of the function f within a bound of the absolute error,

‖f − f̂ ‖L∞(Cr ) ≤ ǫ,

induces perturbations ân(r) and ân(r,m) of the Cauchy integral (1.2) and of its ap-
proximation (1.3) by the trapezoidal sum. Note that even though the value of the
Cauchy integral does not depend on the specific choice of the radius r (within the

6That is, the m-point trapezoidal sum minimizes, among all m-point quadrature formulas, the worst-case
quadrature error for the Cauchy integral (1.2) over all analytic functions whose modulus is bounded by
some constant in an open disk containing |z| ≤ r .
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Fig. 2 (Color online) Left: the gap probability E2(10; s) of GUE calculated as the tenth Taylor coefficient
of a Fredholm determinant; right: the absolute error of the calculation. The dotted lines (red) show the
results for the radius r = 1; the solid lines (blue) show the results for the quasi-optimal radius r⋄ , which
depends on s (see Example 12.3 and Fig. 7). The dashed horizontal lines show the level of machine
precision

range 0 < r < R), the perturbed value ân(r) generally does depend on it. Because
both the integral and the sum are rescaled mean values of f , we get the simple esti-
mates

∣
∣rnan − rnân(r)

∣
∣ ≤ ǫ,

∣
∣rnan(r,m) − rnân(r,m)

∣
∣ ≤ ǫ. (3.1)

Thus, the normalized Taylor coefficients rnan are well conditioned with respect to
absolute errors (with condition number one); a fact that has basically already been
observed by Lyness and Sande (1971, p. 670). There are indeed applications where
absolute errors of normalized Taylor coefficients are a reasonable concept to consider,
which then typically leads to a proper choice of the radius r . We give one such ex-
ample from our work on the numerical evaluation of distributions in random matrix
theory (Bornemann 2009).

Example 3.1 The sequence of hermitian random matrices XN ∈ CN×N with entries

(XN )j,j = ξj,j , (XN )j,k = ξj,k + iηj,k√
2

, (XN )k,j = ξj,k − iηj,k√
2

(j < k),

formed from independent and identically distributed (i.i.d.) families of real stan-
dard normal random variables ξi,j and ηi,j , is called the Gaussian unitary ensemble
(GUE).7 The GUE is of considerable interest since, on one hand, various statistical
properties of the spectrum σ(XN ) enjoy explicit analytic formulas. On the other hand,
in the large matrix limit N → ∞, by a kind of “universal” limit law, these properties
are often known (or conjectured) to hold for other families of random matrices, too.

7In MATLAB, the sequence of commands

X = randn(N) + 1i*randn(N); X = (X+X’)/2;

can be used to sample from the N × N GUE.
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An example of such a property concerns the bulk scaling X̂N = π−1N1/2XN , for
which the mean spacing of the scaled eigenvalues goes, in the large matrix limit, to
one. The basic statistical quantities then considered are the gap probabilities8

E2(n; s) = lim
N→∞

P
(

#
(

σ(X̂N ) ∩ [0, s]
)

= n
)

,

the probability that, in the large matrix limit, exactly n of the scaled eigenvalues are
located in the interval [0, s]. (For Wigner hermitian matrices with a subexponential
decay, Erdős et al. (2010) have, just recently, established the universality of E2(0; s).)
The generating function of the sequence E2(0; s),E2(1; s),E2(2, s), . . . is given by
the Fredholm determinant of Dyson’s sine kernel K(x,y)) = sinc(π(x − y)) (see,
e.g., Mehta 2004, Sect. 6.4), namely,

∞
∑

k=0

E2(k; s)zk = det
(

I − (1 − z)K
∣
∣
L2(0,s)

)

.

For given values of n and s, the strategy to calculate E2(n; s) is as follows. First,
by using the method of Bornemann (2010) for the numerical evaluation of Fredholm
determinants, the function

f (z) = det
(

I − (1 − z)K
∣
∣
L2(0,s)

)

can be evaluated for complex arguments of z up to an absolute error of about
ǫ = 10−15. Second, the Taylor coefficients E2(n; s) of f are calculated by means
of Cauchy integrals. Now, since these Taylor coefficients are probabilities, the num-
ber 1 is the natural scale for the absolute errors, which makes r = 1 the proper choice
for the radius (Bornemann 2009, Sect. 4.3). By (3.1), we expect an absolute error of
about ǫ = 10−15, which is confirmed by numerical experiments; see Fig. 2. However,
the figure also illustrates that there is a complete loss of information about the tails
(that is, those very small probabilities which are about the size of the error level or
smaller). By controlling the radius with respect to relative errors using the method
exposed in the rest of this paper, we were able to increase the accuracy of the tails
considerably. The reader should note, however, that in most applications of random
matrix theory the accurate calculation of the tails would be irrelevant. It typically suf-
fices to just identify such small probabilities as being very small; thus, the concept of
absolute error is completely appropriate in this example.

There are examples where small absolute errors of the normalized Taylor coef-
ficients rnan are not accurate enough. Because of the supergeometric growth of the
factorial, examples of such cases are the derivatives f (n)(0) = n!an, for high orders n.
Accuracy will only survive the scaling by n! if the Taylor coefficients themselves al-
ready have small relative errors.

8We denote by #S the number of elements in a finite set S.
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3.2 Relative Errors

We now consider perturbations f̂ of the function f whose relative error can be ren-
dered in the form

f̂
(

reiθ ) = f
(

reiθ )(1 + ǫr(θ)
)

, ‖ǫr‖∞ ≤ ǫ. (3.2)

Such a perturbation induces a perturbation ân(r) of the Cauchy integral (1.2) which
satisfies the straightforward bound (Deuflhard and Hohmann 2003, Lemma 9.1)

|an − ân(r)|
|an|

≤ κ(n, r) · ǫ (3.3)

of its relative error (assuming an �= 0), where

κ(n, r) =
∫ 2π

0 |f (reiθ )|dθ

|
∫ 2π

0 e−inθf (reiθ )dθ |
≥ 1 (3.4)

is the condition number of the Cauchy integral.9 Note that this number measures
the amount of cancellation within the Cauchy integral: κ(n, r) ≫ 1 indicates a large
amount of cancellation, whereas κ(n, r) ≈ 1 if there is virtually no cancellation; see
Fig. 4 for an illustration.

Correspondingly, there are perturbations ân(r,m) of the trapezoidal sum approxi-
mations (1.3) of the Cauchy integrals. They satisfy the same type of bound, namely

|an(r,m) − ân(r,m)|
|an(r,m)| ≤ κm(n, r) · ǫ, (3.5)

of its relative error (assuming an(r,m) �= 0), where

κm(n, r) =
∑m−1

j=0 |f (re2π ij/m)|
|
∑m−1

j=0 e−2π ijn/mf (re2π ij/m)|
≥ 1 (3.6)

is the condition number of the trapezoidal sum (Higham 2002, p. 538).
If m is chosen large enough such that the trapezoidal sum an(r,m) is a good ap-

proximation of the Cauchy integral an, then we typically also have

1

m

m−1
∑

j=0

∣
∣f

(

re2π ij/m
)∣
∣ ≈ 1

2π

∫ 2π

0

∣
∣f

(

reiθ )
∣
∣dθ.

This is because the integrand |f (reiθ )| is a smooth periodic function of θ , and
the trapezoidal sum therefore gives excellent approximations of this integral, too.10

9This condition number is completely independent of how the Cauchy integral is actually computed.
10By the Euler–Maclaurin summation formula, the approximation error is of arbitrary algebraic order
(Deuflhard and Hohmann 2003, Theorem 9.16).
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Fig. 3 MATLAB implementation of calculating f (n)(0) using the Cauchy integral (1.2) with radius r ,
approximated by trapezoidal sums. It assumes f to be evaluated up to a relative error tol. The number
m of nodes is determined by a successive doubling procedure until the estimated relative error satisfies a
bound corresponding to the level of round-off error given by (3.3). The error estimate (see Lyness 1967,
(4.12)) is based on the assumption of a geometric rate of convergence (2.5) which is excellent if R < ∞
and an overestimate if R = ∞. The initialization of m satisfies the sampling condition (2.4). The doubling
of nodes is arranged so that already-computed values of f are reused

Moreover, because of positivity, there are no additional stability issues here. That
said, for reasonably large m, we have

κm(n, r) ≈ κ(n, r)

as long as the computation of an(r,m) is not completely unstable. We use κ(n, r)

in the theory developed in this paper, but we use κm(n, r) to monitor stability in our
implementation, which is given in Fig. 3. In fact, the examples of Fig. 1 show that
κ(n, r) gives an excellent prediction of the actual loss of (relative) accuracy in the
calculation of the Taylor coefficients; it thus models the dominant effect of the choice
of the radius r (in fact, for any stable and accurate quadrature rule):

# lost significant digits ≈ log10 κ(n, r). (3.7)

4 Optimizing the Condition Number

4.1 General Results on the Condition Number

It is convenient to rewrite the expression (3.4), which defines the condition number,
briefly as

κ(n, r) = M1(r)

|an|rn
, (4.1)
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using the mean of order 1 of the modulus of f on the circle Cr ,

M1(r) = 1

2π

∫ 2π

0

∣
∣f

(

reiθ )
∣
∣dθ. (4.2)

Concerning the properties of M1, we recall the following classical theorem. For the
standard proof, see Dienes (1931, p. 156) or Pólya and Szegö (1964, Sect. III.310).

Theorem 4.1 (Hardy 1915) Let f be given by a Taylor series with radius of conver-
gence R. The mean value function M1 satisfies the following, for 0 < r < R:

(a) M1(r) is continuously differentiable.
(b) If f �≡ 0, logM1(r) is a convex function of log r .
(c) If f �≡ const, M1(r) is strictly11 increasing.

Because logκ(n, r) = logM1(r) − log |an| − n log r , there are some immediate
consequences for the condition number.

Corollary 4.2 Let f �≡ 0 be given by a Taylor series with radius of convergence R.
Then, for n with an �= 0 and for 0 < r < R:

(a) κ(n, r) is continuously differentiable with respect to r .
(b) logκ(n, r) is a convex function of log r .

We now study the behavior of κ(n, r) as r → 0 and r → ∞. The first direction is
simple and gives us the expected numerical instability for small radii.

Theorem 4.3 Let f �≡ 0 be given by a Taylor series with radius of convergence R

and let an0 be its first nonzero coefficient. Then, for n > n0,

κ(n, r) → ∞ (r → 0);

but κ(n0, r) → 1.

Proof From the expansion

M1(r) = 1

2π

∫ 2π

0

∣
∣f

(

reiθ )
∣
∣dθ = |an0 |rn0 + O

(

rn0+1) (r → 0)

we get

κ(n, r) ∼ |an0 |
|an|

rn0−n (r → 0),

which implies both assertions. �

The other direction, r → R, is more involved and depends on further properties
of f . Let us begin with entire functions (R = ∞).

11The fact that the monotonicity is strict was added to Hardy’s theorem by Taylor (1950).
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Theorem 4.4 Let f be an entire function. If f is transcendental, then, for all n ∈ N,

κ(n, r) → ∞ (r → ∞).

If f is a polynomial of degree d , then this results holds for all n �= d , but κ(d, r) → 1.

Proof Let us assume that, for a particular m ∈ N,

lim inf
r→∞

M1(r)

rm
= lim inf

r→∞
1

2πrm

∫ 2π

0

∣
∣f

(

reiθ )
∣
∣dθ < ∞.

Then, for all n > m,

0 ≤ |an| ≤ lim inf
r→∞

1

2πrn

∫ 2π

0

∣
∣f

(

reiθ )
∣
∣dθ = 0;

that is, an = 0; implying that f is a polynomial of degree d ≤ m. This proves the as-
sertion for transcendental f , and for the cases n < d if f is a polynomial of degree d .
The cases n > d follow trivially from an = 0, which implies κ(n, r) = ∞. Finally,
the case n = d gives, because of |f (z)| = |ad ||z|d + O(|z|d−1) as z → ∞,

κ(d, r) = 1

2π |ad |rd

∫ 2π

0

∣
∣f

(

reiθ )
∣
∣dθ = 1 + O

(

r−1) (r → ∞),

which completes the proof. �

For finite radius of convergence, R < ∞, we recall the definition of the Hardy
norm (the last equality follows from the monotonicity of M1):

‖f ‖H 1(DR) = sup
0<r<R

M1(r) = lim
r→R

M1(r). (4.3)

If ‖f ‖H 1(DR) < ∞ the function f belongs to the Hardy space H 1(DR). From the
strict monotonicity and differentiability of M1(r) we infer that the function

σ(r) = logM1(r)

satisfies σ ′(r) > 0 (0 < r < R). Since logM1(r) is convex in log r , the function
rσ ′(r) is monotonically increasing. Therefore, the limit

ν = sup
0<r<R

rσ ′(r) = lim
r→R

rσ ′(r) > 0 (4.4)

exists (with ν = ∞ a possibility, however).

Theorem 4.5 Let f be given by a Taylor series with finite radius of convergence
R < ∞. Then, for an �= 0,

lim
r→R

κ(n, r) =
‖f ‖H 1(DR)

|an|Rn
.
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This is finite if and only if f belongs to the Hardy space H 1(DR). If n > ν then
κ(n, r) is strictly decreasing for 0 < r < R; whereas if ν = ∞ then, for all n, κ(n, r)

is strictly increasing in the vicinity of r = R.

Proof The limit can be directly read from (4.3). If n > ν, we have

d

dr
logκ(n, r) = σ ′(r) − nr−1 ≤ (ν − n)r−1 < 0 (0 < r < R),

which shows that κ(n, r) is strictly decreasing. If ν = ∞ then σ ′(r) → ∞ as r → R,
which implies that

d

dr
logκ(n, r) = σ ′(r) − nr−1 → ∞ (r → R).

Hence, κ(n, r) must be, for r close to R, strictly increasing. �

4.2 The Optimal Radius

Optimizing the numerical stability of the Cauchy integrals means, by (3.7), to choose
a radius r that minimizes the condition number κ(n, r). The general results of
Sect. 4.1 imply that such a minimum actually exists. Indeed, assuming n > n0 (see
Theorem 4.3), an �= 0, and that f is not a polynomial,12 we have the following ingre-
dients allowing the optimization:

• continuity: κ(n, r) is continuous for 0 < r < R (Corollary 4.2) and, if R < ∞ and
‖f ‖H 1(DR) < ∞, can be continuously continued to r = R (Theorem 4.5);

• convexity: logκ(n, r) is convex in log r (Corollary 4.2);
• coercivity: κ(n, r) → ∞ as r → 0 (Theorem 4.3) and, if R = ∞ (Theorem 4.4) or

if R < ∞ and ‖f ‖H 1(DR) = ∞ (Theorem 4.5), as r → R.

Hence, by the strict monotonicity of the logarithm, the optimal condition number

κ∗(n) = min
0<r≤R

κ(n, r) (4.5)

exists and is taken for the optimal radius13

r∗(n) = arg min
0<r≤R

κ(n, r). (4.6)

Because the functions r−nM1(r) and κ(n, r) only differ by a factor that is indepen-
dent of r (namely, |an|), it is convenient to extend the definition of the optimal radius

12Polynomials are addressed by Theorem 4.4: first, one detects the degree d from limr→∞ κ(d, r) = 1;
then, the cases n < d are dealt with as for entire transcendental f of order ρ = 0 (see Sect. 8).
13Since we have no proof of strict convexity, we cannot exclude the case that the minimizing radius
happens to be not unique (even though we have not encountered a single such example). However, because
of convexity, the set of all minimizing radii would form a closed interval. We therefore define r∗(n) as the
smallest minimizing radius, which, in view of (2.7) and (2.10), gives the best rates of approximation of the
trapezoidal sums.
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r∗(n) to the case an = 0 by setting14

r∗(n) = arg min
0<r≤R

r−nM1(r). (4.7)

Theorem 4.6 Let the nonpolynomial analytic function f be given by a Taylor series
with radius of convergence R. Then, the sequence r∗(n) satisfies the monotonicity

r∗(n) ≤ r∗(n + 1) (n > n0)

and has the limit limn→∞ r∗(n) = R. Furthermore, the case r∗(n) = R is character-
ized by

r∗(n) = R =⇒ R < ∞, ‖f ‖H 1(DR) < ∞, and ν < ∞,

and

R < ∞, ‖f ‖H 1(DR) < ∞, and ν < n =⇒ r∗(n) = R.

Proof Because of the optimality of r∗(n) and since M1(r) > 0, we have, for 0 < r <

r∗(n),

r∗(n)−(n+1)M1
(

r∗(n)
)

≤ r∗(n)−1r−nM1(r) < r−(n+1)M1(r).

Hence, the optimal radius r∗(n+1) must satisfy r∗(n+1) ≥ r∗(n). This monotonicity
implies that r0 = limn→∞ r∗(n) exists. Let us assume that r0 < R. Then, for each
r0 < r < R, by taking the limit n → ∞ in

r∗(n)−1M1
(

r∗(n)
)1/n ≤ r−1M1(r)

1/n,

and recalling the continuity of M1, we conclude that r−1
0 ≤ r−1. Since this contradicts

the choice r0 < r , we must have r0 = R. The characterization of r∗(n) = R follows
straightforwardly from Theorem 4.5. �

Bounded analytic functions f that belong to the Hardy space H 1(DR) are known
to possess boundary values (Garnett 1981, Sect. II.3); that is, the radial limits

f
(

Reiθ ) = lim
r→R

f
(

reiθ )

exist for almost all angles θ . These boundary values form an L1-function,

‖f ‖H 1(DR) = 1

2π

∫ 2π

0

∣
∣f

(

Reiθ )
∣
∣dθ,

whose Fourier coefficients are just the normalized Taylor coefficients of f :

anR
n = 1

2π

∫ 2π

0
e−inθf

(

Reiθ )dθ (n = 0,1,2, . . .).

14Note that all the qualitative results that we stated in Sect. 4.1 for κ(n, r) hold verbatim for r−nM1(r),
independently of whether an �= 0 or not.
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As the following theorem shows, this fact is bad news for the optimal condition num-
ber of such functions for large n: it grows beyond all bounds, at a rate that is all the
faster the more regular the boundary values of f are.

Theorem 4.7 Let the analytic function f be given by a Taylor series with finite radius
of convergence R < ∞. If f ∈ H 1(DR) then

κ∗(n) → ∞ (n → ∞).

For boundary values of f belonging to the class15 Ck,α(CR), the optimal condition
number grows at least as fast as κ∗(n) ≥ cnk+α for some constant c > 0.

Proof Since anR
n are the Fourier coefficients of the L1-function formed by the radial

boundary values of f , the Riemann–Lebesgue lemma implies that

anR
n → 0 (n → ∞),

with a rate O(n−k−α) if these boundary values belong to the class Ck,α (see, e.g.,
Zygmund 1968, Sect. II.4). By Theorem 4.6 we have r∗(n) → R. Hence, for n → ∞,

κ∗(n) = κ
(

n, r∗(n)
)

= M1(r∗(n))

|an|r∗(n)n
∼

‖f ‖H 1(DR)

|an|r∗(n)n
≥

‖f ‖H 1(DR)

|an|Rn
→ ∞,

since ‖f ‖H 1(DR) > 0 (otherwise, we would have f = 0 and R = ∞). �

5 Examples of Optimal Radii

Qualitatively, the general results of Sect. 4.1 are nicely illustrated by the examples of
Fig. 1. In this section we study a couple of important examples more quantitatively
for large n.

Example 5.1 This example illustrates the excellent behavior of certain entire func-
tions; a general theory will be developed in Sects. 7–12. Here, we consider one of the
simplest such functions, namely, the exponential function

f (z) = ez,

which is an entire function (R = ∞) with the Taylor coefficients an = 1/n!. The mean
value of the modulus is explicitly given in terms of the modified Bessel function of
the first kind of order zero (Watson 1944, Sect. 3.71),

M1(r) = 1

2π

∫ 2π

0

∣
∣exp

(

reiθ )
∣
∣dθ = 1

2π

∫ 2π

0
er cos θ dθ = I0(r) (r ≥ 0).

15Ck,α denotes the functions that are k times continuously differentiable with a k-derivative satisfying a
Hölder condition of order 0 ≤ α ≤ 1.
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Fig. 4 (Color online) Real part (oscillatory, blue line) and absolute modulus (envelope, red line) of the
integrand of the Cauchy integral (1.2) for various radii r ; f (z) = ez , n = 100. Clearly visible is the huge
amount of cancellation if the condition number κ(n, r) is large. Note that this is not an issue of frequency,
which is moderate and perfectly dealt with by the sampling condition (2.4), but rather an issue of amplitude

Hence, the condition number is

κ(n, r) = r−nn!I0(r).

Figure 4 illustrates the vast cancellations that occur in the Cauchy integral for large
condition numbers κ(n, r), that is, for far-from-optimal radii r . Using Stirling’s for-
mula and the asymptotic expansion of the modified Bessel function (Andrews et al.
1999, (4.12.7)),

I0(r) = er

√
2πr

(

1 + 1

8r
+ 9

128r2
+ O

(

r−3)
)

(r → ∞),

we get an explicit description of the optimal radius and its condition number: namely,
as n → ∞,

r∗(n) = n + 1

2
+ 1

8n
+ O

(

n−2), (5.1a)

κ∗(n) = 1 + 1

12n
+ 7

288n2
+ O

(

n−3). (5.1b)

In fact, even the first term of this expansion for r∗(n) gives uniformly excellent con-
dition numbers:

1 < κ(n,n) < 1.3 (n ≥ 1).

Thus, the derivatives of the exponential function can be calculated to full accuracy
using Cauchy integrals, for all orders n. On the other hand, Fig. 1.a shows that, by
choosing a fixed radius r independently of n, it would be impossible to get condition
numbers that remain moderately bounded for orders of differentiation between, say,
1 and 100. This explains the failure that Fornberg (1981a, p. 542) has documented
using his implementation for the exponential function.

Example 5.2 In preparation for Sect. 6, we consider the family

fβ(z) = (1 − z)β (β ∈ R \ N0)
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of analytic functions, which are not polynomials for the values of β considered. The
radius of convergence of the Taylor series is R = 1, and the Taylor coefficients are
given by

an =
(

n − β − 1

n

)

(n = 0,1,2, . . .).

By a simple transformation of Euler’s integral representation (Andrews et al. 1999,
Theorem 2.2.1), the mean value of the modulus can explicitly be expressed in terms
of the hypergeometric function 2F1(a, b; c; z):

M1(r) = 1

2π

∫ 2π

0

∣
∣1 − reiθ

∣
∣
β

dθ = 1

2π

∫ 2π

0

(√

1 + r2 − 2r cos θ
)β

dθ

= (1 + r)β2F1

(
1

2
,−β

2
;1; 4r

(1 + r)2

)

(0 ≤ r < 1). (5.2)

The classical results of Gauss (Andrews et al. 1999, Theorems 2.1.3 and 2.2.2) for
the hypergeometric function 2F1(a, b; c; z) as z → 1 imply, as r → 1 from below,

M1(r) ∼

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

2βŴ(
β+1

2 )
√

πŴ(
β
2 + 1)

(β > −1);

1
π

log( 1
1−r

) (β = −1);

Ŵ(− β+1
2 )

2
√

πŴ(− β
2 )

(1 − r)β+1 (β < −1).

(5.3)

Therefore, we have to distinguish three cases.

Case I: β > −1

Here, (5.3) implies that fβ belongs to the Hardy space H 1(D1) with norm

‖fβ‖H 1(D1)
= lim

r→1
M1(r) =

2βŴ(
β+1

2 )
√

πŴ(
β
2 + 1)

≥ 1.

(The estimate from below holds since the last expression of that norm is a convex
and coercive function of β , taking its minimum at β = 0.) The constant ν, defined in
(4.4), can be computed from

M ′
1(r) = β(1 + r)β−3

(

(1 + r)2
2F1

(
1

2
,−β

2
;1; 4r

(1 + r)2

)

+ (r − 1)2F1

(
3

2
,1 − β

2
;2; 4r

(1 + r)2

))
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to have the value

ν = lim
r→1

rσ ′(r) =
M ′

1(1)

M1(1)
= β

2
.

Thus, by Theorems 4.5 and 4.6, the condition number κ(n, r) is strictly decreasing
for n > β/2 (see Fig. 1.f for an example); hence,

r∗(n) = 1 (n > β/2), (5.4a)

which induces (by Stirling’s formula)

κ∗(n) =
‖fβ‖H 1(D1)

|
(
n−β−1

n

)

|
≥ 1

|
(
n−β−1

n

)

|
∼

∣
∣Ŵ(−β)

∣
∣nβ+1 → ∞ (n → ∞). (5.4b)

Given the C⌊β⌋,β−⌊β⌋ regularity of the boundary values of fβ , this lower bound on
the growth of the optimal condition number is actually just a little sharper than the
order nβ bound that can be read from Theorem 4.7.

Thus, for each radius r , there will be a complete loss of significant digits if n

is large enough (e.g., there is already a more than 12-digit loss for β = 11/2 and
n = 100, see Fig. 1.f); an effect that will be more pronounced for larger β . Now,
larger β correspond to higher order real differentiability at the branch point z = 1;
an observation which helps to explain the failure that Fornberg (1981a, p. 542) has
documented of his method for such functions.

Case II: β = −1

Now, (5.3) shows that fβ does not belong to the Hardy space H 1(D1) anymore. Thus,
by Theorems 4.5 and 4.6, we have 0 < r∗(n) < 1 with r∗(n) → 1 as n → ∞. Because
of an = 1, and by (5.3) once more, we have the asymptotic expansion

κ(n, r) = M1(r)

rn
∼ 1

πrn
log

(
1

1 − r

)

(r → 1).

It is now a more or less straightforward exercise in asymptotic analysis (de Bruijn
1981, Chap. 2) to get from here to the following expansions of the optimal radius and
condition number: as n → ∞,

r∗(n) = 1 − 1

n logn
+ O

(
log logn

n(logn)2

)

, (5.5a)

κ∗(n) = logn

π
+ O(log logn). (5.5b)

This logarithmic growth is very moderate; indeed, one has

1 < κ

(

n,1 − 1

n logn

)

< 4.8 (3 ≤ n ≤ 10 000),

which means that less than one digit is lost for a significant range of n.
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Remark 5.3 In practice it is not always advisable to use the optimal radius: a small
sacrifice in accuracy might considerably speed up the approximation of the Cauchy
integral by the trapezoidal sum. In fact, if we recall (2.8), we realize that the near-
optimal choice rn = 1 − (n logn)−1 would need about16

mǫ ≈ n logn · log ǫ−1 (5.6)

nodes to achieve an approximation of relative error ǫ. We can actually eliminate the
factor logn here if we use the suboptimal radius r̃n = 1 − αn−1 (α > 0) instead.
Asymptotically, as n → ∞, the condition number is then

κ(n, r̃n) ∼ 1

πr̃n
n

log

(
1

1 − r̃n

)

= 1

π(1 − αn−1)n
log(n/4) ∼ eα

π
logn, (5.7)

and therefore still of logarithmic growth: compared to rn we additionally sacrifice
just about log10 eα .= 0.43α digits, independently of n. However, the corresponding
number of nodes now grows like

mǫ ≈ n

α
log ǫ−1, (5.8)

which is about an α logn improvement in speed.
To be specific, let us run some numbers for n = 100. Since κ(100, r100)

.= 3.25,
we are about to lose 0.51 digit using rn; in hardware arithmetic we could therefore
strive for a relative error of ǫ = 2 × 10−15. By (5.6) we have to take about mǫ ≈
16 000 nodes; actually, a computation with m = 20 000 gives us the relative error
2.6 × 10−15. In contrast, for α = 4, we have κ(100, r̃100)

.= 101.63, so we are about
to lose 2.0 digits using r̃n; we could therefore strive for a relative error of ǫ = 5 ×
10−14 here. Because of (5.8) we now have to take just about mǫ ≈ 800 nodes, and
indeed, a computation with m = 800 gives us the relative error 4.9 × 10−14. Thus,
sacrificing just a little more than one digit cuts the number of nodes by a factor of 25
(the prediction was 4 log 100

.= 18.4).

Case III: β < −1

As for β = −1, (5.3) shows that these fβ do not belong to the Hardy space H 1(D1).
Thus, by Theorems 4.5 and 4.6, we have 0 < r∗(n) < 1 with r∗(n) → 1 as n → ∞.
Hence, (5.3) implies the asymptotic expansions

r∗(n) = 1 + β + 1

n
+ O

(

n−2) (n → ∞) (5.9a)

16Note that, by (2.8) and (2.11), estimates of the form mǫ ≈ · · · include, among other approximations,
a factor of the form 1 + o(1) as ǫ → 0. Therefore, one should not expect too much precision of such
estimates, in particular, not if additionally finite precision effects come into play for ǫ close to machine
precision. Even then, however, in all the examples of this paper, we observe ratios of the actual values
of mǫ to their estimates that are smaller than Sect. 1.3; thus, these rough estimates are, in practice, quite
useful devices to predict the actual computational effort.
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of the optimal radius and

κ∗(n) ∼ 1

2
√

π |
(
n−β−1

n

)

|
Ŵ(−β+1

2 )

Ŵ(−β
2 )

(−β+1
n

)β+1

(1 + β+1
n

)n

∼ (2e)−β−1(−β − 1)β

π
Ŵ

(
1 − β

2

)2

= cβ (5.9b)

of the optimal condition number. Note that there is no explosion in n and that cβ → 1
monotonically from above as β → −∞. Quantitatively, we have

1 ≤ cβ ≤ 2 (β ≤ −1.362),

that is, we are just about to lose one binary digit of accuracy within this range of
values of β (for large n). Finally, to accomplish an approximation of relative error
ǫ by using a trapezoidal sum, we would need, in view of (2.8), about the following
number of nodes:

mǫ ≈ n

−β − 1
· log ǫ−1. (5.10)

Here are some actual numbers: for β = −6, n = 100, rn = 1 + (β + 1)n−1, and
the accuracy requirement ǫ = 10−15, we get

κ(n, rn)
.= 1.0769, mǫ ≈ 700.

In fact, a computation in hardware arithmetic secures a relative error of 4 × 10−15

using m = 900 nodes.

Example 5.4 We analyze a further example that Fornberg (1981a, p. 542) has docu-
mented to fail his implementation:

f (z) = (1 + z)10 log(1 + z)

with radius of convergence R = 1. Having norm ‖f ‖H 1(D1)
.= 180.14, this function

belongs to the Hardy space H 1(D1). Theorem 4.7 gives κ∗(n) → ∞ as n → ∞.
More quantitatively, we get, by Theorem 4.5,

κ(n, r) ≥ κ(n,1)
.= 180.14

|an|
(n > ν

.= 5.727).

The asymptotics (the first equality is valid for n ≥ 11)

an = (−1)n−1

11
(

n
11

) ∼ (−1)n−110!
n11

(n → ∞)

implies

κ(n, r) ≥ κ(n,1)
.= 1981.57

(
n

11

)

∼ 5.46 × 10−4 · n11 (n → ∞).
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For instance, n = 50 gives κ(50, r) ≥ κ(50,1)
.= 7.4 × 1013, meaning that a loss of

more than about 14 digits is unavoidable here.

Example 5.5 The final example of this section is also taken from the list of failures
documented by Fornberg (1981a, p. 542):

f (z) = 106 + 1

1 − z

with radius of convergence R = 1. This function is a perturbation of the function f−1

from Example 5.2. Denoting by M1(f−1; r) the mean value of the modulus of f−1

we get, using (5.3),

M1(r) ≤ 106 + M1(f−1; r) ∼ 106 +
log( 1

1−r
)

π
(r → 1).

The suboptimal choice rn = 1 − n−1 (see Remark 5.3) yields

κ(n, rn) ≤ 106e + e

π
logn ≈ 3 × 106 (

1 ≤ n ≤ 10100 000).

Hence, we expect a loss of (at most) about 6.5 digits throughout this huge range of n.
The estimate is, in fact, quite sharp: for instance, n = 100 yields

κ(100, r100)
.= 2.7 × 106.

An actual calculation using a trapezoidal sum with m = 4096 nodes yields a relative
error of 3.13 × 10−10, which corresponds to a loss of a little more than 6 digits in
hardware arithmetic.

6 Functions Amenable to Darboux’s Theorem

Example 5.2 contains, in fact, all the information that is needed to address a large
class of analytic functions:

f (z) = (1 − z)βv(z) (β ∈ R \ N0),

where v(z) is analytic in a neighborhood of D1, v(1) �= 0. In particular, the radius of
convergence is R = 1. By Darboux’s theorem (Wilf 2006, Theorem 5.3.1), the Taylor
coefficients are asymptotically given by

an = v(1)
n−β−1

Ŵ(−β)

(

1 + O
(

n−1)) (n → ∞). (6.1)

Hence, the condition number is asymptotically described by

κ(n, r) ∼ M1(r)

|v(1)|rn

∣
∣Ŵ(−β)

∣
∣nβ+1 (n → ∞). (6.2)
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The mean value of the modulus satisfies, as r → 1 (compare with (5.3))

M1(r) = 1

2π

∫ 2π

0

∣
∣1 − reiθ

∣
∣
β ·

∣
∣v

(

reiθ )
∣
∣dθ

∼

⎧

⎪
⎨

⎪
⎩

c (β > −1);
c log( 1

1−r
) (β = −1);

c(1 − r)β+1 (β < −1).

Here, c denotes some positive constant that depends on v and β . This implies, just as
in Example 5.2, that, as n → ∞,

r∗(n)

⎧

⎪
⎨

⎪
⎩

= 1 (β > −1);
∼ 1 − 1

n logn
(β = −1);

∼ 1 + β+1
n

(β < −1);
κ∗(n) ∼

⎧

⎪
⎨

⎪
⎩

cnβ+1 (β > −1);
c logn (β = −1);
c (β < −1).

(6.3)

For large orders of differentiation, this means that, once more in accordance with
Theorem 4.7, the Hardy space case β > −1 yields polynomial growth of the condition
numbers; whereas for β = −1 we get just logarithmic growth and for β < −1 there
is a uniform bound of the condition number.

To address the last two cases more quantitatively, we can estimate the mean mod-
ulus by

M1(r) ≤ ‖v‖H∞(D1)

2π

∫ 2π

0

∣
∣1 − reiθ

∣
∣
β

dθ (0 < r < 1)

with the help of yet another Hardy space norm, defined by

‖f ‖H∞(Dr ) = ess sup
0≤θ≤2π

∣
∣f

(

reiθ )
∣
∣.

Denoting the condition number of the Cauchy integral for the function fβ by
κ(fβ;n, r) (recall that this expression can be evaluated in terms of the hypergeo-
metric function, see (5.2)), we thus obtain a useful estimate of the condition number
itself, namely

κ(n, r) ≤ ‖v‖H∞(D1)

|v(1)| κ(fβ;n, r) (0 < r < 1). (6.4)

Note that there is nothing special about R = 1 here. For functions of the form

f (z) = (z0 − z)βv(z) (β ∈ R \ N0)

with |z0| = R, v(z) analytic in a neighborhood of DR , and v(z0) �= 0 we get accord-
ingly

κ(n, r) ≤ ‖v‖H∞(DR)

|v(z0)|
κ(fβ;n, r/R) (0 < r < R). (6.5)
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If there is more than one singularity on the circle CR , we would have to use sym-
metry arguments, or we would have to consider superpositions of these estimates.

Example 6.1 We study the example of Fig. 1.d, that is,

f (z) = sec(z)6

which has radius of convergence R = π/2. To begin with, we extract the poles at
z = ±π/2 by the factorization

f (z) = g(z)6 · v(z), v(±π/2) = 1,

with the rational function

g(z) = resπ/2 sec

z − π/2
+ res−π/2 sec

z + π/2
= 4π2

π2 − 4z2
.

One easily checks that ‖v‖H∞(D1) = 1, so that, by (6.5) and by a symmetry argument,

1 ≤ κ(n, r) ≤ κ(f−6;n, r/R) (R = π/2).

In view of (6.3) we choose the radius

rn = π

2

(

1 − 5

n

)

and obtain (see (5.9b) for a definition of cβ )

1 ≤ κ(n, rn) ≤ κ
(

f−6;n,1 − 5n−1) ∼ c−6 = 9e5

1250
.= 1.0686 (n → ∞).

We should thus be able to get about full accuracy for large orders of differentiation.
In fact, for n = 100, we have

κ(n, rn)
.= 1.0767 ≤ 1.0769

.= κ(f−6;n, rn).

Striving for a relative error of ǫ = 10−15 requires, see (5.10), a trapezoidal sum with
a number of nodes of about

mǫ ≈ n

5
log ǫ−1 ≈ 700.

In fact, an actual computation with m = 880 yields a little more than 14 correct digits
in hardware arithmetic.

Example 6.2 In this example we address the accurate computation of the Bernoulli
numbers Bk given by their exponentially generating function (see Fig. 1.e)

f (z) = z

ez − 1
=

∞
∑

k=0

Bk

k! zk,
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which has radius of convergence R = 2π . We extract the poles at z = ±2π i by the
factorization

f (z) = g(z) · v(z), v(±2π i) = 1,

with the rational function

g(z) = res2π i f

z − 2π i
+ res−2π i f

z + 2π i
= − 8π2

4π2 + z2
.

One easily checks that ‖v‖H∞(D1) = 2π/(1 − e−2π )
.= 6.2949, so that, by (6.5) and

by a symmetry argument,

1 ≤ κ(n, r) ≤ 6.3κ(f−1;n, r/R) (R = 2π).

Because of (5.7) we expect just a moderate loss of accuracy using the choice rn =
2π(1 − n−1). In fact, for n = 100 we get κ(100, r100)

.= 7.2355, meaning a loss of
less than one digit. In view of (5.8) we expect to accomplish an approximation error
ǫ = 10−15 using a trapezoidal sum with a number of nodes of about

mǫ ≈ n log ǫ−1 ≈ 3500.

In fact, an actual calculation with m = 4096 gives more than 15 correct digits in
hardware arithmetic.

7 The Quasi-Optimal Radius

For entire transcendental functions, it turns out that an upper bound of the condition
number is actually easier to analyze, namely

κ(n, r) = M1(r)

|an|rn
≤ M(r)

|an|rn
= κ̄(n, r),

where

M(r) = max
0≤θ≤2π

∣
∣f

(

reiθ )
∣
∣

denotes the maximum modulus function of f . In fact, we will see in Sects. 9–12
that the radius that is optimal for this upper bound is in many cases already close to
optimal for the condition number itself.

For the maximum modulus, the analogue of Hardy’s theorem is a classical theorem
of complex analysis (the three circles theorem); for the standard proof see Markushe-
vich (1977, Vol. II, p. 221) or Pólya and Szegö (1964, Sects. III.304/305):

Theorem 7.1 (Hadamard 1896; Blumenthal 1907; Faber 1907) Let f be given by
a Taylor series with radius of convergence R. The maximum modulus function M

satisfies the following, for 0 < r < R:

(a) M(r) is continuously differentiable, except for a set of isolated r ;
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(b) if f (z) is not a monomial, logM(r) is a strictly convex function of log r ;
(c) if f �≡ const, M(r) is strictly increasing.

With the same proofs as in Sect. 4.1 for the condition number, we deduce from this
theorem the following results (however, restricting ourselves to entire transcendental
functions).

Theorem 7.2 Let f be an entire transcendental function with Taylor coefficients an,
and let an0 be its first nonzero coefficient. Then, for n > n0, with an �= 0 and r > 0:

(a) κ̄(n, r) is continuously differentiable, except for a set of isolated r ;
(b) log κ̄(n, r) is a strictly convex function of log r ;
(c) κ̄(n, r) → ∞, as r → 0 and r → ∞.

The same reasoning as in Sect. 4.2 shows the existence of the optimal upper bound

κ̄⋄(n) = min
r>0

κ̄(n, r), (7.1)

which is now taken for the radius

r⋄(n) = arg min
r>0

κ̄(n, r). (7.2)

Note that r⋄(n) is unique because of the strict convexity stated in Theorem 7.2. As
for r∗(n) it is convenient to extend the definition of r⋄(n) to the case of an = 0 by
setting

r⋄(n) = arg min
r>0

r−nM(r). (7.3)

We call r⋄(n) the quasi-optimal radius and define, accordingly, the quasi-optimal
condition number by

κ⋄(n) = κ
(

n, r⋄(n)
)

≥ κ∗(n). (7.4)

Finally, by repeating the proof of Theorem 4.6, we get the following.

Theorem 7.3 Let f be an entire transcendental function. Then, the sequence r⋄(n)

satisfies the monotonicity

r⋄(n) ≤ r⋄(n + 1) (n > n0)

and has the limit limn→∞ r⋄(n) = ∞.

It turns out that the radius r⋄(n) is generally much easier to calculate than the
optimal radius r∗(n) (see Theorems 8.4 and 9.1). Surprisingly, in all of these cases
the radius r⋄(n) is also very close to optimal and the condition number κ⋄(n) is close
to one. Before giving a theoretical frame for these effects, we illustrate them with two
examples.
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Example 7.4 Since its Taylor coefficients are positive, the exponential function
f (z) = ez has the maximum modulus function M(r) = er . A short calculation shows
that

r⋄(n) = n, κ̄⋄(n) = n!
(

e

n

)n

=
√

2πn
(

1 + O
(

n−1)) (n → ∞);

where the asymptotics follows from Stirling’s formula. However, the quasi-optimal
condition number κ⋄(n) behaves much better than just being of order O(n1/2). In
fact, a comparison with (5.1) yields, as n → ∞,

r⋄(n) ∼ r∗(n), κ⋄(n) = 1 + 5

24n
+ 97

1152n2
+ O

(

n−3),

which is very close to optimal indeed.

Example 7.5 We consider the example of Fig. 1.c, that is, the entire function

f (z) = eez−1.

By the positivity of the Taylor coefficients, the maximum modulus function is also
given by M(r) = eer−1. A short calculation yields an explicit formula for the quasi-
optimal radius,

r⋄ = W(n),

with the Lambert W -function as introduced in Sect. 2.2.2. To find the corresponding
condition number bound, we realize that n!an is the n-th Bell number whose asymp-
totics is well studied in the literature. Flajolet and Sedgewick (2009, Prop. VIII.3)
prove (using the concept of H -admissibility that we will study in Sect. 11)

an ∼ eer⋄−1

rn
⋄
√

2πr⋄(r⋄ + 1)er⋄
= eer⋄−1

rn
⋄
√

2πn(r⋄ + 1)
(n → ∞).

Hence, asymptotically, we obtain the condition number bound

κ̄⋄(n) = eer⋄−1

anr
n
⋄

∼
√

2πn(r⋄ + 1) ∼
√

2πn logn (n → ∞), (7.5)

where we have used the asymptotic expansion (de Bruijn 1981, (2.4.3))

W(t) = log t − log log t + O

(
log log t

log t

)

(t → ∞). (7.6)

Even though (7.5) looks like a possible, though moderate, O(n1/2(logn)1/2) growth
of the condition number, things turn out to be much better than this. For instance,
n = 100 yields the excellent quasi-optimal condition number κ⋄(100)

.= 1.013. In
Sect. 11 we will explain the surprising effect that κ⋄(n) is close to one for any order n,
see Corollary 11.3.
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8 Entire Functions of Perfectly Regular Growth

8.1 Order and Type of Entire Functions

Since r⋄(n) → ∞, an explicit asymptotic description of the optimization (7.3) re-
quires a detailed study of the growth of the maximum modulus function M(r) as
r → ∞. A fruitful characterization is by the order and type of f ; for the following
see Markushevich (1977, Theorems II.9.2–9.5).

The order ρ of an entire function f is given by

ρ = lim sup
r→∞

log logM(r)

log r
≥ 0. (8.1)

Note that polynomials have order ρ = 0. If 0 < ρ < ∞ (which means that f is tran-
scendental), the type τ of f is given by

τ = lim sup
r→∞

logM(r)

rρ
≥ 0. (8.2)

We say that f is of minimal type if τ = 0, of normal type if 0 < τ < ∞, and of
maximal type if τ = ∞. Order and type can also be read from the coefficients an of
the Taylor series; if f is of order ρ, then

ρ = lim sup
n→∞

n logn

log(1/|an|)
; (8.3)

if f is of order ρ and type τ , then

τ = 1

eρ
lim sup
n→∞

n|an|ρ/n. (8.4)

However, to arrive at an explicit asymptotic formula for r⋄(n) (see Theorem 8.4)
we need to consider a somewhat stricter class of entire functions (Valiron 1949, p. 45):
an entire transcendental function of order 0 < ρ < ∞ is said to be of perfectly regular
growth if the limit

τ = lim
r→∞

logM(r)

rρ
(8.5)

exists and is positive and finite; f is then of normal type τ . The following fundamen-
tal theorem is extremely helpful for the purpose of identifying such functions; for a
proof see Valiron (1949, p. 108).

Theorem 8.1 (Wiman 1916; Valiron 1923) Let f be an entire transcendental func-
tion. If f is the solution of a holonomic17 differential equation of order q , then f is
of perfectly regular growth with a rational order ρ ≥ 1/q .

17Holonomic differential equations are homogeneous linear with polynomial coefficients.
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Example 8.2 The generalized hypergeometric functions

pFq(b1, . . . , bp; c1, . . . , cq; z) =
∞
∑

n=0

(b1)n · · · (bp)n

(c1)n · · · (cq)n

zn

n! (−bj ,−ck /∈ N0) (8.6)

are known to be (Luke 1969, Sects. 3.3/5.1)

• entire transcendental if and only if p ≤ q;

• satisfying a holonomic differential equation of order max(p, q + 1).

Thus, by Theorem 8.1, if p ≤ q , these functions are entire transcendental of perfectly
regular growth with a rational order ρ ≥ 1/(q + 1). It is an easy exercise in dealing
with Stirling’s formula18 to calculate from (8.3) and (8.4) the order and type of these
functions:

ρ = 1

q + 1 − p
, τ = q + 1 − p (p ≤ q). (8.7)

Many transcendental functions can be identified as a generalized hypergeometric
function (see Luke 1969, Sect. 6.2); if this relation is of the form

f (z) = αzμ · pFq

(

b1, . . . , bp; c1, . . . , cq;βzν
)

(α,β �= 0,μ ∈ N0, ν ∈ N),

then f is also of perfectly regular growth and we easily obtain, using (8.7), that the
order and type of f are given by

ρ = ν

q + 1 − p
, τ = (q + 1 − p)|β|1/(q+1−p).

With the exception of the Airy functions, all the functions in the first section of Ta-
ble 2 can be dealt with directly this way. It suffices to demonstrate just one such
example in detail:

cos z = 0F1

(

; 1

2
;−1

4
z2

)

has p = 0, q = 1, ν = 2, and β = −1/4; therefore ρ = τ = 1.

Example 8.3 The Airy functions Ai(z) and Bi(z) satisfy a holonomic differential
equation of second order,

y′′(z) − zy(z) = 0.

By the theory of linear analytic differential equations (Hartman 1982, p. 70), because
the leading coefficient of this equation is 1, the Airy functions are entire transcenden-
tal. Thus, Theorem 8.1 tells us that the Airy functions are of perfectly regular growth
with a rational order ρ ≥ 1/2. The precise values of the order and type can be read

18Stirling’s formula implies, for −c /∈ N0, that log |(c)n| = n logn − n + O(logn) as n → ∞.
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Table 2 Various growth characteristics of some entire transcendental functions; all the functions with
normal type are of completely regular growth and, a fortiori, of perfectly regular growth. The column for
r⋄(n) gives the asymptotics as n → ∞. The angle θ is understood to be restricted to −π ≤ θ ≤ π . For
1/Ŵ(z) the limit given is meant to be the interval (lim infκ⋄(n), lim supκ⋄(n)). For the q-series (−z;q)∞
we assume that 0 < q < 1

f (z) order ρ type τ r⋄(n) limκ⋄(n) indicator h(θ) Ω ω

ez 1 1 n 1 cos θ 1 1

cos(z) 1 1 n 1 | sin θ | 2 1/2

sin(z) 1 1 n 1 | sin θ | 2 1/2

Jk(z) 1 1 n 1 | sin θ | 2 1/2

Ik(z) 1 1 n 1 | cos θ | 2 1/2

z−k/2Ik(2
√

z) 1/2 2 n2 1 2 cos(θ/2) 1 1

erf(z) 2 1
√

n/2 1 (− cos(2θ))+ 2 1/2

e−z2
2 1

√
n/2 1 − cos(2θ) 2 1/2

Ai(z) 3/2 2/3 n2/3 2/
√

3 − 2
3 cos( 3

2 θ) 2 1/
√

3

Bi(z) 3/2 2/3 n2/3 4/3 2
3 | cos( 3

2 θ)| 3 2/3

C(z) 2 π/2
√

n/π 1 π
2 | sin(2θ)| 4 1/4

S(z) 2 π/2
√

n/π 1 π
2 | sin(2θ)| 4 1/4

(−z;q)∞ 0 – q
1
2 −n 1 – – –

1/Ŵ(z) 1 ∞ eReW( 1
2 −n)

(1,∞) – – –

eez−1 ∞ – W(n) 1 – – –

from the asymptotic expansions (Abramowitz and Stegun 1965, (10.4.59–65)) of the
Airy functions as z → ∞, which imply

M(r) = c√
πr1/4

e
2
3 r3/2(

1 + O
(

r−3/2)) (r → ∞),

with c = 1/2 for Ai(z) and c = 1 for Bi(z). Hence, by (8.1) and (8.2), we get

ρ = 3

2
, τ = 2

3
.

8.2 The Asymptotics of the Quasi-Optimal Radius

A short calculation shows that any entire function f with the maximum modulus
function

logM(r) = τrρ (ρ, τ > 0)

would have the quasi-optimal radius

r⋄(n) =
(

n

τρ

)1/ρ

. (8.8)
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By the definition (8.5), functions of perfectly regular growth satisfy the asymptotic
relation

logM(r) = τrρ
(

1 + o(1)
)

(r → ∞), (8.9)

which suggests that (8.8) might still hold, at least asymptotically, as n → ∞. The
following theorem shows that this is indeed the case; however, the proof is quite
involved.19 Concrete examples of the result can be found in Table 2.

Theorem 8.4 Let f be an entire transcendental function of perfectly regular growth
having order ρ and type τ . Then, the quasi-optimal radius satisfies

r⋄(n) ∼
(

n

τρ

)1/ρ

(n → ∞). (8.10)

Proof The difficulty of the proof is to deal with the simultaneous limits r → ∞
and n → ∞ whose coupling has yet to be established. To this end we introduce a
transformed variable η by

r =
(

neη

τ

)1/ρ

.

We rewrite (8.9) in the form

log
(

r−nM(r)
)

= neη
(

1 + o(1)
)

− n

ρ
η − n

ρ
log

n

τ
= n · fn(η) − n

ρ
log

n

τ
,

defining functions fn(η) that satisfy

fn(η) = eη
(

1 + o(1)
)

− ρ−1η;

note that the estimate o(1) holds locally uniformly in η as n → ∞. By the properties
of the maximum modulus function M stated in Theorem 7.1, we know that these
functions fn are strictly convex in η and coercive, which means that

fn(η) → ∞ (η → ±∞).

The quasi-optimal radius r⋄(n), which, by definition, minimizes r−nM(r), is now
given in the form

r⋄(n) =
(

neηn

τ

)1/ρ

,

where ηn is the unique minimizer of fn(η). The assertion of the theorem is therefore
equivalent to limn→∞ ηn = logρ−1, which remains to be proven.

19Under the additional assumption of the nonnegativity of the Taylor coefficients of f , it is possible to
give a much shorter proof of this theorem; see Remark 12.2.
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To establish the limit of ηn we proceed by constructing a convex enclosure of fn

for large n: for ǫ > 0 small, we define the strictly convex functions

f±ǫ(η) = eη(1 ± ǫ) − ρ−1η.

The minimizer of fǫ is explicitly given by

ηǫ = arg minfǫ(η) = log
1

ρ(1 + ǫ)
.

Since f−ǫ(η) < fǫ(η) for all η, and because f−ǫ is convex and coercive, there exist
points η

ǫ
and ηǫ with η

ǫ
< ηǫ < ηǫ satisfying

f−ǫ(ηǫ
) = f−ǫ(ηǫ) = fǫ(ηǫ).

It is clear that η
ǫ
, ηǫ → logρ−1 as ǫ → 0; in particular, η

ǫ
and ηǫ remain bounded.

By the asymptotics of fn as n → ∞, we have, for n ≥ nǫ ,

fn(ηǫ) ≤ fǫ(ηǫ) = f−ǫ(ηǫ
) ≤ fn(ηǫ

),

fn(ηǫ) ≤ fǫ(ηǫ) = f−ǫ(ηǫ) ≤ fn(ηǫ).

Thus, the strictly convex function fn is neither strictly increasing nor strictly decreas-
ing between the points η

ǫ
and ηǫ . Hence, its minimizer ηn must lie there,

η
ǫ
< ηn < ηǫ .

Now, taking the limit n → ∞ yields

η
ǫ
≤ lim inf

n→∞
ηn ≤ lim sup

n→∞
ηn ≤ ηǫ .

Finally, letting ǫ → 0 proves that limn→∞ = logρ−1 as required. �

Remark 8.5 By means of (8.10) and (2.11) we can estimate the number of nodes mǫ

that a trapezoidal sum would need to achieve the relative approximation error ǫ if we
choose the quasi-optimal radius r = r⋄(n). To this end we recall the Taylor series

W(z) =
∞
∑

n=1

(−1)n−1nn−1 zn

n!
(

|z| < e−1) (8.11)

of the Lambert W -function (see de Bruijn 1981, Sect. 2.3) and obtain

mǫ ≈ en + ρ log ǫ−1. (8.12)

Note how close this is already to the lower bound m > n given by the sampling
condition (2.4).
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8.3 An Upper Bound of the Quasi-Optimal Condition Number

At first sight the precise asymptotic description (8.10) of the quasi-optimal radius
r⋄(n) does not tell us much about the size of the corresponding condition number
κ⋄(n). In fact, restricting ourselves to subsequences of n which make the limes supe-
rior in (8.4) a proper limit, we just get

logκ⋄(n) ≤ log κ̄⋄(n) = o(n) (n → ∞). (8.13)

Such a weak estimate could not even exclude a super-polynomial growth of the con-
dition number. However, we can do much better (see the explicit asymptotic bound
(8.18) below) by optimizing the upper bound

κ̄⋄(n) ≤ M(r)

|an|rn
(r > 0)

from a dual point of view: by choosing the radius r in a way such that the modulus
of anr

n becomes maximal among all normalized Taylor coefficients, which directly
leads us into studying the Wiman–Valiron theory of entire functions. For an account
of the basics of this theory, see Pólya and Szegö (1964, Sects. IV.1–76); surveys of
some more refined recent results can be found in Hayman (1974) and Gol’dberg et
al. (1997, Chap. 1.4).

The fundamental quantities of the Wiman–Valiron theory are the maximum term
of an entire function f with Taylor coefficients an at a given radius r , defined by

μ(r) = max
n

|an|rn, (8.14)

and the corresponding maximal index taking this value, called the central index,

ν(r) = max
{

n : |an|rn = μ(r)
}

. (8.15)

The asymptotic properties of these quantities are described in the following theorem;
for a proof see Pólya and Szegö (1964, Sect. IV.68).

Theorem 8.6 (Wiman 1914) If the entire function f is of perfectly regular growth
with order ρ and type τ , then

logM(r) ∼ logμ(r) ∼ τrρ, ν(r) ∼ τρrρ (r → ∞).

We restrict ourselves to those entire functions f of perfectly regular growth for
which eventually, if n is only large enough, each term |an|rn (with an �= 0) can be
made the unique maximum term for a properly chosen radius. All the functions of
Table 2 belong to this class.

Remark 8.7 If an �= 0 for n large enough, then this property is known (see Pólya
and Szegö 1964, Sect. IV.43) to be equivalent to the fact that |an/an+1| eventually
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becomes a strictly increasing sequence. This criterion is, for instance, satisfied by the
generalized hypergeometric functions (8.6) with p ≤ q: we find

∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
= (n + 1)

∣
∣
∣
∣

(n + c1) · · · (n + cq)

(n + b1) · · · (n + bp)

∣
∣
∣
∣
∼ nq+1−p + O

(

nq−p
)

(n → ∞),

which is therefore strictly increasing if n is only large enough.

Thus, if an �= 0 and n is large enough, then there will be a radius r̄n with

n = ν(r̄n), |an|r̄n
n = μ(r̄n).

Theorem 8.6 yields the asymptotics (where n runs only through those indices with
an �= 0)

n = ν(r̄n) ∼ τρr̄ρ
n (n → ∞),

which implies, in view of Theorem 8.4, the remarkable asymptotic duality

r̄n ∼
(

n

τρ

)1/ρ

∼ r⋄(n) (n → ∞). (8.16)

We thus expect the bound (recall that r⋄(n) is defined as the minimizer of κ̄(n, r))

κ̄⋄(n) = M(r⋄(n))

|an|r⋄(n)n
≤ M(r̄n)

|an|r̄n
n

= M(r̄n)

μ(r̄n)
(8.17)

to be quite sharp for large n. Now, one of the deep results of the Wiman–Valiron
theory is the following explicit bound of the ratio M(r)/μ(r) in general; for a proof
see Hayman (1974, Theorem 6).

Theorem 8.8 (Wiman 1914; Valiron 1920) Let f be an entire function of finite or-
der ρ. Then, for each ǫ > 0, there is an exceptional set Eǫ of relative logarithmic
density smaller than 1/(1 + ǫ) such that

M(r) < ρ(1 + ǫ)μ(r)
√

2π logμ(r) (r /∈ Eǫ).

Shchuchinskaya (1982) has characterized those entire functions of finite order for
which there are no exceptional radii, that is, for which Eǫ = ∅. However, we did not
bother to check her complicated conditions for any concrete functions. Let us simply
assume the weaker condition that the sequence r̄n eventually does not belong to Eǫ

for all ǫ > 0. We would then obtain from Theorems 8.6 and 8.8, and from (8.16) and
(8.17), the asymptotic bound (where n runs only through those indices with an �= 0)

κ⋄(n) ≤ κ̄⋄(n) ≤ ρ
√

2π logμ(r̄n) ∼
√

2πρn (n → ∞). (8.18)

Note that this bound is consistent with the results obtained in Example 7.4 for f (z) =
ez, in which particular case the bound of κ̄⋄(n) is even sharp; quite a success for such
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a general approach. In preparation for Sect. 10, we rephrase (8.18) by introducing yet
another growth characteristic of f , namely the quantity

0 ≤ ω = lim sup
n→∞:an �=0

κ̄⋄(n)√
2πρn

≤ 1. (8.19)

See Table 2, and also Pólya and Szegö (1964, Sect. IV.50), for some examples of ω.

9 Relation to the Saddle-Point Method

The results of the last section have shown that, for a certain class of entire functions
of perfectly regular growth, the quasi-optimal condition number κ⋄(n) grows at worst
like

1 ≤ κ⋄(n) ≤ κ̄⋄(n) = O
(

n1/2) (n → ∞).

However, as we have seen in Examples 7.4 and 7.5, there are cases where the quasi-
optimal condition number is asymptotically optimal, actually satisfying the best of all
possible asymptotic bounds, κ⋄(n) ∼ 1. We now develop a methodology which can
be used to understand and prove this highly welcome effect for a large class of entire
functions; concrete examples will follow in the next sections.

9.1 The Saddle-Point Equation

The key lies in the observation (Hayman 1974, Lemma 6) that the maximum modulus
function M of an entire function f satisfies, except for a set of isolated radii (see also
Theorem 7.1), the equation

r
d

dr
logM(r)

∣
∣
∣
∣
r=r0

= z
d

dz
logf (z)

∣
∣
∣
∣
z=z0

,

where z0 ∈ C is one of the points for which |z0| = r0 and |f (z0)| = M(r0). We apply
this observation to the quasi-optimal radius rn = r⋄(n) which, by definition, mini-
mizes r−nM(r). If not accidentally one of those isolated exceptions, this radius must
fulfill the differential optimality condition

r
d

dr
logM(r)

∣
∣
∣
∣
r=rn

= n.

Thus, there is a complex number zn with

rn = |zn|, M(rn) =
∣
∣f (zn)

∣
∣,

that satisfies the transcendental equation

n = z
d

dz
logf (z)

∣
∣
∣
∣
z=zn

= zn

f ′(zn)

f (zn)
.
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Table 3 For f (z) = Ai(z), a comparison of the quasi-optimal radius r⋄(n) with its asymptotic value
(8.10) as taken from Table 2. This asymptotic value is already quite accurate for small n. The value of
r⋄(n) = |zn| was actually computed by numerically solving the saddle-point equation znf ′(zn)/f (zn) = n

in the complex plane. Note that limn→∞ κ⋄(n) = 2/
√

3
.= 1.15470, see (10.15)

n r⋄(n) κ⋄(n) n2/3 κ(n,n2/3)

1 1.21575 1.37413 1.00000 1.56499

10 4.72421 1.19188 4.64159 1.21120

100 21.58047 1.15832 21.54435 1.16003

1000 100.01668 1.15506 100.00000 1.15523

Fig. 5 (Color online) Plots of |z−nf (z)| for n = 31; left: f (z) = ez; right: f (z) = Ai(z). The solid curve
(red) is the image of the circle |z| = r⋄(n), showing that the maximum modulus along this circle is taken
right at some saddle points. Note that the circle leaves these saddle points approximately in the direction
of steepest descent. The left plot explains nicely the qualitative differences between the plots in Fig. 4:
where a circle gets close to being a level line of |z−nf (z)|, there must be oscillations of the integrand of
the Cauchy integral

This equation can be rewritten in the form

F ′(zn) = 0, F (z) = z−nf (z). (9.1)

For functions F(z) that are analytic in a neighborhood of a point zn (with F(zn) �= 0)
it is well known (see de Bruijn 1981, Sect. 5.2) that F ′(zn) = 0 holds if and only
if the modulus |F(z)| forms a saddle at z = zn. Since, by construction, |F(z)| has a
local maximum at the saddle point zn in the angular direction, it must thus show a
local minimum in the radial direction there; see Fig. 5 for an illustration. On the other
hand, by the convexity properties of the maximum modulus function M stated in
Theorem 7.1, any saddle point zn of |F(z)| satisfying |f (zn)| = M(|zn|) such that the
saddle is oriented this way (local minimum in the radial direction and local maximum
in the angular direction) will give us in turn the unique quasi-optimal radius r⋄(n) =
rn = |zn|. We have thus proven the following theorem.
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Theorem 9.1 Let f be an entire transcendental function and let zn ∈ C be a solution
of the saddle-point equation F ′(zn) = 0 with F(z) = z−nf (z), that is,

n = zn

f ′(zn)

f (zn)
. (9.2a)

If zn = rneiθn satisfies |f (zn)| = M(|zn|), ∂θθ |F(rneiθn)| < 0, and ∂rr |F(rneiθn)| > 0,
then we get the following representation of the quasi-optimal radius:

r⋄(n) = |zn|. (9.2b)

On the other hand, if r⋄(n) is a point of differentiability of M(r), then there is a
solution zn of the saddle-point equation that satisfies these three conditions.

Theorem 9.1 allows us the actual computation of r⋄(n); see Tables 3/4 and
Sect. 10.4 for some examples.

9.2 The Saddle-Point Method

Taking the quasi-optimal radius r⋄ = r⋄(n), we write the Cauchy integral (1.2) in the
form

an = 1

2π

∫ 2π

0
F

(

r⋄eiθ )dθ

with F(z) = z−nf (z). If |f (z)|, and thus |F(z)|, is small for those z on the circle
that are not close to the saddle points zn of Theorem 9.1, the integral localizes to the
vicinity of these saddle points, and we can estimate

an ≈ 1

2π

∑

θn :zn=r⋄eiθn
saddle point

∫

θ≈θn

F
(

r⋄eiθ )dθ.

It is actually possible to estimate each of the integrals

1

2π

∫

θ≈θn

F
(

r⋄eiθ )dθ = 1

2π

∫

θ≈θn

elogF(r⋄eiθ ) dθ

by the Laplace method (see de Bruijn 1981, Sect. 5.7). To this end we expand the
function logf (reiθ ) with respect to the angular variable θ ; for θ → θ∗ we calculate
that

logf
(

reiθ ) = logf (z∗) + ia(z∗)(θ − θ∗) − 1

2
b(z∗)(θ − θ∗)

2 + O(θ − θ∗)
3 (9.3a)

with z∗ = reiθ∗ and the coefficients

a(z) = z
f ′(z)

f (z)
, b(z) = za′(z). (9.3b)
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By specifying as the expansion point z∗ a saddle point zn = r⋄eiθn as in Theorem 9.1,
we thus have a(zn) = n and therefore

logF
(

r⋄eiθ ) = logF(zn) − 1

2
b(zn)(θ − θn)

2 + O(θ − θn)
3;

hence, by taking real parts,

log
∣
∣F

(

r⋄eiθ )
∣
∣ = log |F(zn)| −

1

2
Reb(zn)(θ − θn)

2 + O(θ − θn)
3.

In particular, if |F(z)| takes, when moving along the circle, a strict local maximum
at the saddle point zn, we infer that necessarily

Reb(zn) > 0. (9.4)

Thus, the Laplace method is applicable and gives, by “trading tails,”

1

2π

∫

θ≈θn

elogF(r⋄eiθ ) dθ ≈ 1

2π

∫

θ≈θn

elogF(zn)− 1
2 b(zn)(θ−θn)2

dθ

≈ 1

2π

∫ ∞

−∞
elogF(zn)− 1

2 b(zn)θ2
dθ = F(zn)√

2πb(zn)
. (9.5)

Summarizing our results so far, we get the following estimate of the Taylor coeffi-
cient an:

an ≈ 1√
2π

∑

θ :z=r⋄eiθ
saddle point

F(z)√
b(z)

. (9.6)

Correspondingly, we estimate the mean modulus by

1

2π

∫ 2π

0

∣
∣F

(

r⋄eiθ )
∣
∣dθ ≈ 1

2π

∑

θn:zn=r⋄eiθn

saddle point

∫

θ≈θn

∣
∣F

(

r⋄eiθ )
∣
∣dθ

= 1

2π

∑

θn:zn=r⋄eiθn

saddle point

∫

θ≈θn

eRe logF(r⋄eiθ ) dθ

≈ 1√
2π

∑

θ :z=r⋄eiθ

saddle point

|F(z)|√
Reb(z)

(9.7)

and, therefore, the quasi-optimal condition number by

κ⋄(n) = κ(n, r⋄) =
∫ 2π

0 |F(r⋄eiθ )|dθ

|
∫ 2π

0 F(r⋄eiθ )dθ |
≈

∑

θ :z=r⋄eiθ

saddle point

|F(z)|√
Reb(z)

|
∑

θ :z=r⋄eiθ

saddle point

F(z)√
b(z)

|
. (9.8)
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As we will see in the following sections, for some interesting classes of entire func-
tions our reasoning can eventually be sharpened by replacing the somewhat vague
“≈” signs of approximation with rigorous asymptotic equality as n → ∞. Moreover,
the estimate (9.8) is actually quite precise even for small n, as is typical for such
asymptotic estimates of integrals; see Sect. 10.4 for an example.

9.3 Steepest Descent

In general, there is not much to further conclude about the approximate values of
κ⋄(n) from the estimate (9.8). Thus, to obtain a result like κ⋄(n) ≈ 1 we need some
additional structure: a look at the examples of Fig. 5 tells us that there the circle of
radius r⋄ passes through the saddle points of |F(z)| approximately in the direction
of steepest descent. In the following sections we will explain why this is the case for
some larger classes of entire functions.

From general facts about the method of steepest descent in asymptotic analysis20

we learn (see de Bruijn 1981, p. 84) that the circular contour through the saddle point
zn is approximately of steepest descent if and only if b(zn) is approximately real, that
is, if and only if

Imb(zn) ≈ 0. (9.9)

Note that this implies that the integrand in (9.5) has approximately constant phase.
In fact, geometrically it is straightforward to see that the circle is the contour of
steepest descent if and only if the off-diagonal elements of the Hessian of G(r, θ) =
log |F(reiθ )| vanish; at a saddle point zn = r⋄eiθn as in Theorem 9.1, we actually
obtain

hessG(r⋄, θn) =
(

Reb(zn)r
−2
⋄ − Imb(zn)r

−1
⋄

− Imb(zn)r
−1
⋄ −Reb(zn)

)

. (9.10)

Now, assume additionally that the circle of radius r⋄ = r⋄(n) passes through just one
saddle point zn (this amounts to the case Ω = 1 in Sect. 10.3). Then, we infer from
the condition number estimate (9.8) and the steepest descent condition (9.9) that

κ⋄(n) ≈
|F(zn)|√
Reb(zn)

| F(zn)√
b(zn)

|
= 4

√

1 +
(

Imb(zn)

Reb(zn)

)2

≈ 1.

This line of reasoning thus explains why the best of all possible results,
κ⋄(n) ≈ 1, actually may come into place even though the radius r⋄ = r⋄(n) itself
was first introduced by optimizing just the upper bound κ̄(n, r) of the condition num-
ber.

20For a detailed exposition see de Bruijn (1981, Chap. 5), Miller (2006, Chap. 4), and Flajolet and
Sedgewick (2009, Chap. VIII). Gil et al. (2007, Sect. 5.5) explain how steepest descent contours are used
as an analytic tool for obtaining numerically stable integral representations of certain special functions, a
topic that is certainly closely related to the theme of this paper.
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10 Entire Functions of Completely Regular Growth

10.1 The Indicator Function

The reasoning of Sect. 9.3 relies on the remarkable fact (observed in Fig. 5) that
for certain functions the circle passing through the relevant saddle points is approx-
imately tangential to the contour of steepest descent. This could be understood if
F(z) = z−nf (z) happens to grow predominantly in a radial direction. A first hint that
this is exactly the right picture is the existence of the Phragmén–Lindelöf indicator
function

h(θ) = lim sup
r→∞

r−ρ log
∣
∣f

(

reiθ )
∣
∣ (10.1)

for entire functions of finite order ρ and normal type τ . We recall some of its proper-
ties; see Markushevich (1977, Sect. II.45) or Levin (1980, Sect. I.15/16) for proofs:

• h(θ) is 2π -periodic;
• h(θ) is continuous and has a derivative except possibly on a countable set;
• if 0 < ρ ≤ 1/2, then 0 ≤ h(θ) ≤ τ ; if ρ > 1/2, then −τ ≤ h(θ) ≤ τ ;
• τ = maxθ h(θ).

As it was convenient in Sect. 8 to consider the functions of perfectly regular growth,
for which the limes superior in the definition (8.2) of the type τ becomes the proper
limit (8.5), we do the same with the limes superior in the definition of the indicator
function here.

An entire function of finite order ρ and normal type τ is said to be of completely
regular growth (Levin 1980, Chap. III) if

h(θ) = lim
r→∞:r /∈E

log |f (reiθ )|
rρ

, (10.2)

uniformly in θ . Here, the exceptional set E is required to have relative linear density
zero; it will obviously be related to the zeros of f . In fact, if there are no zeros of
f in an open sector containing the ray of direction θ , then (10.2) holds in a closed
subsector without the need of an exceptional set. An important result of Levin (1980,
p. 142) states that if (10.2) holds just pointwise for θ in a set that is dense in [−π,π],
then f is already of completely regular growth. This criterion can be used to check
that all of the functions in the first section of Table 2 are of completely regular growth
with the indicator functions given there: one just has to look at the known asymptotic
expansions of f (z) as z → ∞ within certain sectors of the complex plane, as they
are found, e.g., in Abramowitz and Stegun (1965). It is also known that the statement
of Theorem 8.1 extends to completely regular functions, see Müller (1997, p. 747).

As developed mainly by Pfluger and Levin in the 1930s, there is a deep relation
between the angular density of zeros of a function f of completely regular growth
and the properties of its indicator function h(θ). The following characterization of a
density of zero will be of importance to us (Levin 1980, p. 155):

lim
r→∞

# zeros |z| ≤ r of f in an open sector containing the ray at θ0

rρ
= 0

⇐⇒ h(θ) is ρ-trigonometric in the vicinity of θ0, (10.3)
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where a function of θ is called ρ-trigonometric if it is of the form α sin(ρθ + β) for
some real α and β .

10.2 Circles Are Contours of Asymptotic Steepest Descent

We now look at a direction θ∗ in which there is predominantly growth of f , that is,
h(θ∗) = τ . If there are at most finitely many zeros of f in an open sector containing
the ray at θ∗ (which is the case for all of the functions in the first section of Table 2),
then f will also be of perfectly regular growth and the indicator will be, by (10.3),
ρ-trigonometric in the vicinity of θ∗. In particular, we get

h(θ∗) = τ, h′(θ∗) = 0, h′′(θ∗) = −τρ2. (10.4)

By the reasoning of Sect. 9 there will be a sequence zn = r⋄eiθn (writing r⋄ = r⋄(n)

for brevity) satisfying the saddle-point equation (9.2a) with θn → θ∗ as n → ∞. To
show that the circle passing through zn is asymptotically a contour of steepest descent
there, we look at the Hessian of log |F(zn)|. From (10.2) we first get

log
∣
∣F(zn)

∣
∣ = log

∣
∣f

(

r⋄eiθn
)∣
∣ − n log r⋄

∼ r
ρ
⋄ h(θn) − n log r⋄ (n → ∞). (10.5)

Next, by Theorem 8.4 and (10.4), the Hessian of the right-hand side, G(r, θ) =
rρh(θ) − n log r , becomes asymptotically diagonal:

hessG(r⋄, θn) ∼ nρ

(

r−2
⋄ 0

0 −1

)

(n → ∞);

note that this form of the Hessian is actually consistent with (9.10) and (9.4). Since
the off-diagonal terms are zero, the θ -direction is, asymptotically, the direction of
steepest descent.

10.3 Condition Number Bounds

We follow the strategy of Sect. 9.2 and apply the Laplace method to the contour in-
tegral with radius r⋄ = r⋄(n). However, instead of using the Taylor expansion (9.3)
to simplify logF(reiθ ), we now proceed by first recalling from Sect. 9.3 that con-
tours of steepest descent yield integrands of an asymptotically constant phase and by
next using the indicator function (10.2) to simplify log |F(reiθ )|, asymptotically as
r → ∞. Note that the Laplace method rigorously applies if there is a proper decay
of log |F(reiθ )|, as r → ∞, for directions θ far off those θ∗ that belong to the saddle
points. Assuming this to be the case for the given f (it can be checked to be true for
all the functions in the first section of Table 2), we get for the Cauchy integral (1.2),
because of (10.5), (10.4), and (8.10), as n → ∞:

an = 1

2πrn
⋄

∫ π

−π

e−inθf
(

r⋄eiθ )dθ = 1

2π

∫ π

−π

elogF(r⋄eiθ ) dθ
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∼ 1

2π

∑

θ :h(θ)=τ

ei Im logF(r⋄eiθ )

∫ ∞

−∞
eRe logF(r⋄eiθ )+ 1

2 r
ρ
⋄ (t−θ)2h′′(θ) dt

= 1

2π

∑

θ :h(θ)=τ

√

2π

−r
ρ
⋄ h′′(θ)

F
(

r⋄eiθ )

∼ 1√
2πρn · rn

⋄

∑

θ :h(θ)=τ

e−inθf
(

r⋄eiθ ).

Likewise, we get, as n → ∞,

M1(r⋄)

rn
⋄

= 1

2πrn
⋄

∫ π

−π

∣
∣f

(

r⋄eiθ )
∣
∣dθ = 1

2π

∫ π

−π

eRe logF(r⋄eiθ ) dθ

∼ 1√
2πρn · rn

⋄

∑

θ :h(θ)=τ

∣
∣f

(

r⋄eiθ )
∣
∣

and certainly

M(r⋄)

rn
⋄

∼ r−n
⋄ max

θ :h(θ)=τ

∣
∣f

(

r⋄eiθ )
∣
∣.

To summarize, we have proven the following theorem.

Theorem 10.1 Let f be an entire function of completely regular growth with order ρ,
type τ , and Phragmén–Lindelöf indicator function h(θ). If f has at most finitely many
zeros in some sectorial neighborhoods of those rays of direction θ for which h(θ) = τ

and if |f | decays properly, for large radius r , in the angular direction off these rays,
then we have

κ̄⋄(n)√
2πρn

∼ maxθ :h(θ)=τ |f (r⋄eiθ )|
|
∑

θ :h(θ)=τ e−inθf (r⋄eiθ )| (n → ∞ : an �= 0) (10.6)

and

κ⋄(n) ∼
∑

θ :h(θ)=τ |f (r⋄eiθ )|
|
∑

θ :h(θ)=τ e−inθf (r⋄eiθ )| (n → ∞ : an �= 0). (10.7)

That is, the quasi-optimal condition number κ⋄(n) of the Cauchy integral is asymp-
totically equal to the condition number of the finite sum

∑

θ :h(θ)=τ e−inθf (r⋄eiθ ).

Let us introduce the number of global maxima of the indicator function,

Ω = #
{

θ : −π < θ ≤ π,h(θ) = τ
}

. (10.8)

Now, by Theorem 10.1, Ω = 1 clearly implies that limn→∞ κ⋄(n) = 1 and that the
quantity defined in (8.19) satisfies ω = 1; this observation is precisely matched by two
examples in Table 2. On the other hand, if Ω > 1 then it seems, at first glance, that the
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condition number of the finite sum
∑

θ :h(θ)=τ e−inθf (r⋄eiθ ) could suffer from severe
cancellation. However, as the next theorem shows, there will be generally no such
cancellation for the class of functions considered in this section. (But see Sect. 10.4
for an example of severe resonant cancellations in a different setting.)

Theorem 10.2 Let f be an entire function of completely regular growth which sat-
isfies the assumptions of Theorem 10.1 as well as those that led to (8.19), that is, to
ω ≤ 1. Then, this bound can be supplemented by

0 < Ω−1 ≤ lim inf
n→∞:an �=0

κ̄⋄(n)√
2πρn

≤ lim sup
n→∞:an �=0

κ̄⋄(n)√
2πρn

= ω ≤ 1, (10.9)

and the quasi-optimal condition number κ⋄(n) is asymptotically bounded as follows:

1 ≤ lim inf
n→∞:an �=0

κ⋄(n) ≤ lim sup
n→∞:an �=0

κ⋄(n) ≤ Ω · ω. (10.10)

In particular, we have

ω = Ω−1 =⇒ lim
n→∞:an �=0

κ⋄(n) = lim
n→∞:an �=0

κ̄⋄(n)√
2πρn

= 1.

Proof The obvious estimate
∣
∣
∣
∣

∑

θ :h(θ)=τ

e−inθf
(

r⋄eiθ )
∣
∣
∣
∣
≤

∑

θ :h(θ)=τ

∣
∣f

(

r⋄eiθ )
∣
∣ ≤ Ω · max

θ :h(θ)=τ

∣
∣f

(

r⋄eiθ )
∣
∣ (10.11)

yields, by Theorem 10.1 and (8.19), the asymptotic bounds asserted in (10.9). More-
over, (8.19) and (10.6) imply

lim sup
n→∞:an �=0

maxθ :h(θ)=τ |f (r⋄eiθ )|
|
∑

θ :h(θ)=τ e−inθf (r⋄eiθ )| = ω ≤ 1.

Hence, by using (10.11) once more to estimate the numerator in (10.7), we get

lim sup
n→∞:an �=0

κ⋄(n) ≤ Ω lim sup
n→∞:an �=0

maxθ :h(θ)=τ |f (r⋄eiθ )|
|
∑

θ :h(θ)=τ e−inθf (r⋄eiθ )| ≤ Ω · ω,

which proves the asserted asymptotic bound (10.10). �

Example 10.3 If, by the symmetries of the function f in the complex plane, there is
just one single phase φn ∈ R that allows us the representation

eiφn · e−inθf
(

r⋄eiθ ) = max
θ∗:h(θ∗)=τ

∣
∣f

(

r⋄eiθ∗
)∣
∣ (10.12)

for all θ with h(θ) = τ , then we get by Theorem 10.1 that already the best of all
possible bounds holds, namely,

lim
n→∞:an �=0

κ⋄(n) = 1, lim
n→∞:an �=0

κ̄⋄(n)√
2πρn

= Ω−1. (10.13)
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We then have, by definition, ω = Ω−1. Note that the symmetry relation (10.12) ap-
plies to all of the functions of the first section of Table 2, except for the Airy functions
Ai(z) and Bi(z), which will be dealt with in the next two examples.

Example 10.4 The point of departure for discussing the Airy function Ai(z) is the
asymptotic expansion (Abramowitz and Stegun 1965, (10.4.59))

Ai(z) ∼ 1

2π
z−1/4e− 2

3 z3/2
∞
∑

k=0

(−1)kŴ(3k + 1
2 )

9kŴ(2k + 1)
z−3k/2 (

z → ∞ : | arg z| < π
)

.

(10.14)
This implies, by Levin’s criterion given above, that Ai is of completely regular
growth. Moreover, we get

∣
∣Ai

(

reiθ )
∣
∣ = 1

2π
r−1/4e− 2

3 r3/2 cos( 3
2 θ)

(

1 + O
(

r−3/2)) (

r → ∞ : |θ | < π
)

,

from which we can directly read the order ρ = 3/2, the type τ = 2/3, and the
Phragmén–Lindelöf indicator function

h(θ) = −2

3
cos

(
3

2
θ

)
(

|θ | < π
)

.

Note that this indicator h(θ), continued as a 2π -periodic function, is ρ-trigonometric
exactly for θ �= kπ (k ∈ Z). Thus, by Levin’s general theory, there is a positive density
of zeros in an arbitrarily small sectorial neighborhood of the ray at θ = −π ; indeed,
Ai(z) has countably many zeros along the negative real axis and no zeros elsewhere.
We have h(θ) = τ for θ = ± 2

3π ; hence Ω = 2. The expansion (10.14) implies for
these maximizing angles that

Ai
(

re± 2
3 π i) = e∓ π

6 i

2
√

π
r−1/4e

2
3 r3/2(

1 + O
(

r−3/2)) (r → ∞),

that is,

arg Ai
(

re± 2
3 π i) = ∓π

6
+ O

(

r−3/2) (r → ∞).

Hence we obtain, because of h(− 2
3π) = h( 2

3π): as n → ∞,

∣
∣
∣
∣

∑

θ :h(θ)=τ

e−inθ Ai
(

r⋄eiθ )
∣
∣
∣
∣
∼

∣
∣e

2
3 πnie

π
6 i + e− 2

3 πnie− π
6 i

∣
∣ ·

∣
∣Ai

(

r⋄e
2
3 π i)

∣
∣

= 2

∣
∣
∣
∣
cos

(
π

6
+ 2

3
πn

)∣
∣
∣
∣
·
∣
∣Ai

(

r⋄e
2
3 π i)

∣
∣,

and
∑

θ :h(θ)=τ

∣
∣Ai

(

r⋄eiθ )
∣
∣ ∼ 2

∣
∣Ai

(

r⋄e
2
3 π i)

∣
∣, max

θ :h(θ)=τ

∣
∣Ai

(

r⋄eiθ )
∣
∣ ∼

∣
∣Ai

(

r⋄e
2
3 π i)

∣
∣.
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Now,
∣
∣
∣
∣
cos

(
π

6
+ 2

3
πn

)∣
∣
∣
∣
=

{√
3/2, n �≡ 2 (mod 3),

0, n ≡ 2 (mod 3),

in accordance with the fact that the Taylor coefficients of Ai(z) satisfy an �= 0 if and
only if n �≡ 2 (mod 3). Altogether, Theorem 10.1 then gives us

lim
n→∞:an �=0

κ⋄(n) = 2√
3
, ω = lim

n→∞:an �=0

κ̄(n)√
2πρn

= 1√
3
. (10.15)

We observe that the general upper bound given in (10.10) is sharp here. An illustration
of the limit result (10.15) by some actual numerical data for various n can be found
in Table 3.

Example 10.5 As for Ai(z) in the last example, the discussion of Bi(z) begins with
its asymptotic expansions (Abramowitz and Stegun 1965, (10.4.63–65)) as z → ∞
in different sectors of the complex plane. Skipping the details, we find that Bi is of
completely regular growth with order ρ = 3

2 , type τ = 2
3 , and Phragmén–Lindelöf

indicator

h(θ) = 2

3

∣
∣
∣
∣
cos

(
3

2
θ

)∣
∣
∣
∣

(

|θ | < π
)

.

Thus, h(θ) = τ for θ = ± 2
3π and also for θ = 0; hence Ω = 3. The asymptotic

expansions yield

Bi
(

re± 2
3 π i) = e± π

3 i

2
√

π
r−1/4e

2
3 r3/2(

1 + O
(

r−3/2)) (r → ∞)

and

Bi(r) = 1√
π

r−1/4e
2
3 r3/2(

1 + O
(

r−3/2)) (r → ∞),

that is, arg Bi(r) = 0 and

arg Bi
(

re± 2
3 π i) = ±π

3
+ O

(

r−3/2) (r → ∞).

Hence, as r → ∞,

∣
∣Bi

(

re± 2
3 π i)

∣
∣ ∼ 1

2

∣
∣Bi(r)

∣
∣

and thus, as n → ∞,
∣
∣
∣
∣

∑

θ :h(θ)=τ

e−inθ Bi
(

r⋄eiθ )
∣
∣
∣
∣
∼

∣
∣
∣
∣

1

2
e

2
3 πnie− π

3 i + 1

2
e− 2

3 πnie
π
3 i + 1

∣
∣
∣
∣
·
∣
∣Bi(r⋄)

∣
∣

=
∣
∣
∣
∣
1 + cos

(
π

3
− 2

3
πn

)∣
∣
∣
∣
·
∣
∣Bi(r⋄)

∣
∣,



Found Comput Math (2011) 11: 1–63 49

Table 4 For f (z) = Bi(z), a comparison of the quasi-optimal radius r⋄(n) with its asymptotic value
(8.10) as taken from Table 2. This asymptotic value is already quite accurate for small n. The value of
r⋄(n) = |zn| was actually computed by numerically solving the saddle-point equation znf ′(zn)/f (zn) = n

in the complex plane. Note that limn→∞ κ⋄(n) = 4/3
.= 1.33333, see (10.16)

n r⋄(n) κ⋄(n) n2/3 κ(n,n2/3)

1 1.36603 1.35408 1.00000 1.57640

10 4.72421 1.37605 4.64159 1.39833

100 21.58047 1.33751 21.54435 1.33948

1000 100.01668 1.33375 100.00000 1.33394

and
∑

θ :h(θ)=τ

∣
∣Bi

(

r⋄eiθ )
∣
∣ ∼ 2

∣
∣Bi(r⋄)

∣
∣, max

θ :h(θ)=τ

∣
∣Bi

(

r⋄eiθ )
∣
∣ ∼

∣
∣Bi(r⋄)

∣
∣.

Now,
∣
∣
∣
∣
1 + cos

(
π

3
− 2

3
πn

)∣
∣
∣
∣
=

{

3/2, n �≡ 2 (mod 3),

0, n ≡ 2 (mod 3),

in accordance with the fact that the Taylor coefficients of Bi(z) satisfy an �= 0 if and
only if n �≡ 2 (mod 3). Altogether, Theorem 10.1 then gives us

lim
n→∞:an �=0

κ⋄(n) = 4

3
, ω = lim

n→∞:an �=0

κ̄(n)√
2πρn

= 2

3
. (10.16)

An illustration of the limit result (10.16) by some actual numerical data for various n

can be found in Table 4.

10.4 A Resonant Case: f (z) = 1/Ŵ(z)

In the statement of Theorem 10.1 the condition on the zeros of f cannot be disposed
of: if f possesses infinitely many zeros in the vicinity of its directions of predominant
growth, then it may happen that a pair of saddle points recombines in the limit r → ∞
to a single maximum of the indicator function h(θ). That is, even though we have
Ω = 1 in the limit, the contributions of the two saddle points may yield resonances
in (9.8) as n → ∞; thus κ⋄(n), as well as κ∗(n), may behave quite irregularly.

We demonstrate such a behavior for the entire function f (z) = 1/Ŵ(z), whose
zeros are located at 0,−1,−2,−3, . . . . This function has order ρ = 1, but is of max-
imal type τ = ∞ (see Levin 1980, p. 27). Therefore, at first glance, the results so far
do not seem to be applicable at all. However, using Valiron’s concept of a proximate
order ρ(r) it is possible to extend the definition of functions of completely regular
growth and of their indicator functions in such a way that the results cited above still
hold true (see Levin 1980, Sect. I.12). By Stirling’s formula, and Euler’s reflection
formula

Ŵ(z) · Ŵ(1 − z) = π

sin(πz)
,
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Fig. 6 Left: plot of the quasi-optimal condition number κ⋄(n) (1 ≤ n ≤ 2600); f (z) = 1/Ŵ(z). Within
the shown range of n, the maximum is taken for n = 2006: κ⋄(2006)

.= 47 067.2. Note that there is not
much to be gained from using the optimal radius r∗(n) instead of r⋄(n): κ∗(2006)

.= 47 063.9. Right: plot
of the density histograms of t = log logκ⋄(n) (1 ≤ n ≤ N ) for N = 100 000 and N = 1 000 000 and of

the density F ′(t) belonging to the distribution F(t) = 2
π arccos(exp(−et )), printed transparently on top

of each other. Since there is such a close agreement, we are led to conjecture the limit law (10.20) and,
therefore, lim infn→∞ κ⋄(n) = 1 and lim supn→∞ κ⋄(n) = ∞

we get the following asymptotic expansion, valid uniformly in θ :

log |1/Ŵ(reiθ )|
r log r

= − cos θ + cos θ + θ sin θ

log r
+ O

(

r−1) (r → ∞ : r �∈ E), (10.17)

where the set E of possible exceptions has relative linear density zero. From this we
can read that 1/Ŵ(z) is a function of completely regular growth with a proximate
order ρ(r) given by rρ(r) = r log r ; the indicator function is then

h(θ) = − cos θ.

Now, the problem is that this indicator becomes asymptotically maximal at the single
direction θ = ±π , which is actually the direction of the ray that contains the count-
ably many zeros of 1/Ŵ(z). In fact, a closer look at (10.17) reveals that this single
maximum is formed, in the limit r → ∞, through a recombination of two distinct
maxima for finite r . And indeed, Fig. 6.a shows quite an irregular behavior of the
quasi-optimal condition number κ⋄(n) (the picture would be essentially the same for
the optimal condition number κ∗(n) itself, though much more difficult to compute).

The quasi-optimal radius r⋄(n) can straightforwardly be obtained by means of the
saddle-point equation (9.2a): that is, r⋄(n) = |zn| where zn is one of the two complex
conjugate solutions of

n = z
d

dz
log

1

Ŵ(z)
= −zψ(z);

we choose Im zn > 0 for definiteness. Asymptotically, as n → ∞, this saddle-point
equation can actually be solved explicitly in terms of the principal branch of the
Lambert W -function: using the asymptotic expansion (Abramowitz and Stegun 1965,
(6.3.18)) of the digamma function ψ we obtain

−zψ(z) = −z log z + 1

2
+ O

(

z−1) (

| arg z| < π
)

,
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and therefore, as n → ∞,

zn ∼
1
2 − n

W( 1
2 − n)

= eW( 1
2 −n) = rneiθn , r⋄(n) ∼ eReW( 1

2 −n) = rn, (10.18)

which we take as the definition of the radius rn and the angle π/2 < θn < π .
A detailed quantitative analysis of κ⋄(n) can now be based on the well-known fact

(see Hayman 1956, p. 91) that the saddle-point analysis of Sect. 9.2 is applicable to
f (z) = 1/Ŵ(z): in fact, the approximations (9.6) and (9.7) are asymptotic equalities
as n → ∞. We find that they can be recast in the form

an ∼
√

2

πn

|1/Ŵ(rneiθn)|
rn
n

cosφn, (10.19a)

κ̄⋄(n) ∼
√

πn

2
| secφn|, (10.19b)

κ⋄(n) ∼ | secφn| (10.19c)

with the collective phase approximation21

φn =
(

n − 1

2

)(
sin2 θn

θn

− θn + θn

12(n − 1
2 )2

)

− 1

2
arccot

(

cot θn − θn csc2 θn

)

.

The asymptotics (10.19c) not only explains the very possibility of resonances, it ac-
tually gives excellent numerical predictions even for rather small values of n such as
those illustrated in Table 5.

Based on Table 5 and Fig. 6.a it is certainly quite reasonable to conjecture that
lim infn→∞ κ⋄(n) = 1. On the other hand, by just looking at the rather randomly
distributed positions n of the resonances and the corresponding extreme values of
κ⋄(n) we cannot really establish any serious conjecture about the probable value of
lim supn→∞ κ⋄(n). Instead, we look at the statistics of the values of κ⋄(n) for 1 ≤
n ≤ N . The very close agreement of the two histograms shown in Fig. 6.b suggests
that there should be a limit law of the form

lim
N→∞

N−1 · #
{

1 ≤ n ≤ N : log logκ⋄(n) ≤ t
}

= F(t). (10.20a)

If the phases φn were equidistributed modulo π (and the empirical data of the first
one million instances strongly point in that direction), we would immediately find
from (10.19c) that the distribution would be

F(t) = 2

π
arccos

(

e−et )

. (10.20b)

21Hayman (1956, p. 92) basically states the same results with the much simpler phase approximation

φn =
(

n − 1

2

)
(

θ−1
n sin2 θn − θn

)

,

which is, however, numerically far less accurate for small values of n and would not allow such a precise
prediction of κ⋄(n) as in Table 5.
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Table 5 The precision of the asymptotics (10.19c) near some resonances

n κ⋄(n) | sec(φn)| n κ⋄(n) | sec(φn)|

2002 1.018 1.018 10931 1.006 1.006

2003 1.034 1.033 10932 1.124 1.124

2004 1.301 1.300 10933 1.498 1.497

2005 2.354 2.352 10934 2.798 2.797

2006 47067.162 42811.637 10935 138149.749 143720.416

2007 2.355 2.353 10936 2.798 2.797

2008 1.301 1.300 10937 1.498 1.497

2009 1.034 1.033 10938 1.124 1.124

2010 1.018 1.017 10939 1.006 1.006

In fact, we observe that the thus given density F ′(t) is very well approximated by
the histograms in Fig. 6.b, and we therefore conjecture that the limit law (10.20) is
correct. Now, since F ′(t) > 0 for all t ∈ R, this conjecture would also imply that

lim inf
n→∞

κ⋄(n) = 1, lim sup
n→∞

κ⋄(n) = ∞.

Actually, things are not as bad as such a spread of the condition number might sug-
gest: from 2

π
arccos(1/100)

.= 0.9936 we infer that just about 0.64% of all n (in the
sense of natural density) have κ⋄(n) ≥ 100; that is, up to at least 99.36% of all the
Taylor coefficients an can be computed with a loss of less than two digits. We find
that the asymptotic median of κ⋄(n) would be as small as

√
2.

Remark 10.6 In the same vein, a worst-case analysis based on Fig. 6.a tells us that
there will only be a loss of at most three digits in computing the first one thousand of
the Taylor coefficients of

1

Ŵ(z)
=

∞
∑

n=0

anz
n

by means of a Cauchy integral with radius r⋄(n). Note that the only competitor of
this approach, namely using the recursion formula (see Luke 1969, Sect. 2.10)

a0 = 0, a1 = 1, a2 = γ,

an = na1an − a2an−1 +
n−1
∑

k=2

(−1)kζ(k)an−k (n > 2),

shows much worse behavior and suffers from severe numerical instability almost
right from the beginning: in hardware arithmetic all the digits are lost for n ≥ 27.
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11 H -Admissible Entire Functions

The function f (z) = eez−1 of Example 7.5 is not covered by our results so far: it has
order ρ = ∞. Nevertheless, the general idea of using the saddle-point method (see
Sect. 9) can certainly also be applied to functions that grow even stronger than f .
Hayman (1956) has axiomatized an important class of functions (with predominant
growth in the direction of the real axis), for which the saddle-point method is applica-
ble along circular contours and which enjoys nice closure properties. Expositions of
this method can be found in Wong (1989, Sect. II.79), Odlyzko (1995, Sect. 12.2),
Wilf (2006, Sect. 5.4), and Flajolet and Sedgewick (2009, Sect. VIII.5).

Hayman’s method is based on the Taylor expansion (9.3) with the expansion point
z∗ = r , that is, on the Taylor expansion

logf
(

reiθ ) = logf (r) + ia(r)θ − 1

2
b(r)θ2 + O

(

θ3) (θ → 0), (11.1a)

where the coefficients are given by

a(r) = r
f ′(r)

f (r)
= r

d

dr
logf (r), b(r) = ra′(r). (11.1b)

Now, an entire function f (z) that is positive on (r0,∞) for some r0 > 0 is said to be
H -admissible, if it satisfies the following three conditions:

• b(r) → ∞ as r → ∞;
• for some function θ0(r) defined over (r0,∞) and satisfying 0 < θ0(r) < π , one

has, uniformly in |θ | ≤ θ0(r),

f
(

reiθ ) ∼ f (r)eiθa(r)−θ2b(r)/2 (r → ∞);

• uniformly in θ0(r) ≤ |θ | ≤ π

f
(

reiθ ) = o(f (r))√
b(r)

.

However, one rarely checks these conditions directly but relies on the following clo-
sure properties instead.

Theorem 11.1 (Hayman 1956) Let f and g be H -admissible entire functions and
let p be a polynomial with real coefficients. Then:

(a) the product f (z)g(z) and the exponential ef (z) are admissible;
(b) the sum f (z) + p(z) is admissible;
(c) if the leading coefficient of p is positive, then f (z)p(z) and p(f (z)) are admis-

sible;
(d) if the Taylor coefficients of ep(z) are eventually positive, then ep(z) is admissible.

For instance, with the help of this theorem it is fairly obvious to see that the func-
tions f (z) = ez and f (z) = eez−1 are both H -admissible. On the other hand, the H -
admissibility of functions like f (z) = z−k/2Ik(2

√
z) has to be inferred more labor-

intensively from the definition.
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From the definition of H -admissibility we immediately read that the maximum
modulus function is given, for r large enough, by

M(r) = f (r), (11.2)

which, by the strict convexity of logM(r) with respect to log r ,22 by Theorems 7.3
and 9.1, implies that the quasi-optimal radius r⋄ = r⋄(n) is the unique solution of

a(r⋄) = n (11.3)

for n large enough. Hayman’s main results are summarized in the following theorem.

Theorem 11.2 (Hayman 1956) Let f be an entire H -admissible function. Then, for
the quasi-optimal radius r⋄ = r⋄(n), we have23

an ∼ r−n
⋄ M1(r⋄) ∼ f (r⋄)

rn
⋄
√

2πb(r⋄)
(n → ∞); (11.4)

in particular, we get an > 0 for n large enough. Moreover, we have, uniformly in the
integers n,24

anr
n

f (r)
= 1√

2πb(r)

(

exp

(

− (n − a(r))2

2b(r)

)

+ o(1)

)

(r → ∞). (11.5)

Finally, the ratio an/an+1 forms an eventually increasing sequence since25

r⋄(n) ∼ an

an+1
∼ an−1

an

(n → ∞). (11.8)

22Note that this strict convexity implies b(r) = (r d
dr

)2 logf (r) > 0 for all r > r0 .
23Note that (11.4) can be thought of as being a generalization of Stirling’s formula, cf. Examples 5.1 and
7.4: this was the original headline of Hayman’s (1956) work.
24Because f (r) =

∑∞
k=0 akrk , the quantities anrn/f (r) form, if an ≥ 0 for all n, a probability distribution

in the discrete variable n. The result (11.5) thus tells us that this probability distribution is asymptotically,
in the limit of large radius r → ∞, Gaussian with mean a(r) and variance b(r).
25Note that the asymptotic representation (11.8) of the quasi-optimal radius holds for the generalized
hyperbolic functions (8.6) with p ≤ q , too: namely, we have by Theorem 8.4, Example 8.2, and Remark 8.7
that

r⋄(n) ∼ nq+1−p ∼
∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
∼

∣
∣
∣
∣

an−1

an

∣
∣
∣
∣

(n → ∞). (11.6)

On the other hand, such a representation is not valid for the function of Example 12.4. However, there the
following corollary of (11.6) is nevertheless correct:

r⋄(n) ∼
√

∣
∣
∣
∣

an−1

an+1

∣
∣
∣
∣

(n → ∞). (11.7)

Hence, if we restrict ourselves to those n for which an−1, an+1 �= 0, we observe that (11.7) does in fact
hold for all the functions of Table 2 except the function 1/Ŵ(z). Whether this fact is just a contingency or
whether it is for some deeper structural reason, we do not yet know.
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As for the condition numbers, we straightforwardly get the following corollary; for
reasons of a better comparison we have also included the quantities of the Wiman–
Valiron theory as introduced in Sect. 8.3 (their asymptotics can directly be read
from (11.5)).

Corollary 11.3 Let f be an entire H -admissible function. Then

lim
n→∞

κ⋄(n) = 1, lim
n→∞

κ̄⋄(n)√
2πb(r⋄(n))

= 1.

Moreover, we have ν(r) ∼ a(r) as r → ∞ and

M
(

r⋄(n)
)

∼
√

2πb
(

r⋄(n)
)

μ
(

r⋄(n)
)

(n → ∞).

Applications have already been discussed in Examples 7.4 and 7.5.

Remark 11.4 If the entire H -admissible function f is of finite order ρ with normal
type τ , it is instructive to compare Corollary 11.3 with Theorem 10.2. From the defi-
nition of H -admissibility it then follows that:

• f is of perfectly and completely regular growth;
• there is just one direction of predominant growth, Ω = 1 with h(0) = τ ;
• f has at most finitely many zeros in the vicinity of the positive real axis.

Thus, f satisfies the assumptions of Theorem 10.2 and also those that have led to
the definition (8.19) of ω. Therefore, by Ω = 1 we get from (10.9) and (10.10) that
ω = 1 and

lim
n→∞

κ⋄(n) = 1, lim
n→∞

κ̄⋄(n)√
2πρn

= 1.

(Recall that H -admissible functions have an > 0 for n large enough.) Further, by
Theorem 8.6 we have ν(r) ∼ τρrρ . These results are consistent with Corollary 11.3;
a comparison gives, by using (8.10), the asymptotic equations

a(r) ∼ τρrρ, b(r) ∼ τρ2rρ (r → ∞). (11.9)

Formally, as suggested by (11.1b), these equations could have been obtained from
differentiating the asymptotic equation logf (r) = logM(r) ∼ τrρ (which just states
the perfectly regular growth of the function f , see (8.5) for the definition). The differ-
entiability of these asymptotic equations has also been observed by Pólya and Szegö
(1964, Sect. IV.70/71) under the weaker assumption that f is a function of perfectly
regular growth with an ≥ 0.

12 Entire Functions with Nonnegative Taylor Coefficients

In this final section we consider entire transcendental functions f which have non-
negative Taylor coefficients: an ≥ 0 for all n. Such functions are typically met as
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generating functions in combinatorial enumeration or in probability theory. The non-
negativity of the Taylor coefficients implies at once that

M(r) = f (r) (r > 0). (12.1)

Thus, by Theorem 7.1, we infer that logf (r) and hence log(r−nf (r)) are strictly
convex functions of log r . Moreover, since

d2

dr2
r−nf (r) = r−n−2

∞
∑

k=0

(n + 1 − k)(n − k)akr
k > 0 (r > 0),

we conclude that the function r−nf (r) itself is strictly convex, too. The same rea-
soning that led to (11.3) in the last section proves the following simplification of
Theorem 9.1.

Theorem 12.1 Let f be an entire transcendental function with nonnegative Taylor
coefficients: an ≥ 0 for all n. Then, the quasi-optimal radius r⋄ = r⋄(n) is given as
the unique solution of the convex optimization problem

r⋄ = arg min
r>0

r−nf (r), (12.2)

and, equivalently, as the unique solution of the real saddle-point equation

r⋄
f ′(r⋄)

f (r⋄)
= n (r⋄ > 0). (12.3)

Remark 12.2 If f is a function of perfectly regular growth (of order ρ and type τ )
with nonnegative Taylor coefficients, Theorem 12.1 yields the assertion of Theo-
rem 8.4 with a proof that is much shorter than the one of the general result given
there. First, from the definition of perfectly regular growth in (8.5) and from (12.1)
we get

logf (r) ∼ τrρ (r → ∞);

next, since the Taylor coefficients are nonnegative, we may differentiate this asymp-
totic equation (see Pólya and Szegö 1964, Sect. IV.70) and obtain

r
f ′(r)

f (r)
∼ τρrρ (r → ∞).

Therefore, by recalling r⋄(n) → ∞ as n → ∞ (see Theorem 4.6), the saddle-point
equation (12.3) is asymptotically solved by

r⋄(n) ∼
(

n

τρ

)1/ρ

(n → ∞),

which is, finally, the assertion of Theorem 8.4.
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Fig. 7 (Color online) Left: the quasi-optimal radius r⋄ as a function of s for calculating the gap probability
E2(10; s) of GUE as the 10-th Taylor coefficient of a Fredholm determinant. Right: the relative error of
the calculation; the dotted line (red) shows the errors for the radius r = 1, the solid line (blue) shows the
errors for the radius r⋄ (see also Example 3.1 and Fig. 2). Note that, although κ⋄

.= 1 throughout the range
of s, there is still a noticeable loss of accuracy in the tails: this is because the Fredholm determinant is
not computed to small relative but small absolute errors; hence the model assumption (3.2) is violated.
Nevertheless, r⋄ gives a significant improvement over the fixed radius r = 1 that belongs to the concept of
absolute errors

Example 12.3 We resume the computation of the gap probabilities E2(n; s) as dis-
cussed in Example 3.1, this time striving for small relative errors instead of absolute
errors. As we have seen, the generating function is given by the Fredholm determinant

f (z) =
∞
∑

k=0

E2(k; s)zk = det
(

I − (1 − z)K
∣
∣
L2(0,s)

)

, K(x, y) = sinc
(

π(x − y)
)

,

which is known to be, as a function of z, an entire function of order ρ = 0.26 Fig-
ure 7.a shows that, for n = 10, the quasi-optimal radius r⋄ (as computed from (12.2)
by means of MATLAB’s fminbnd command) varies over about 20 orders of mag-
nitude as the parameter s runs through the interval 2 ≤ s ≤ 18. The corresponding
condition number satisfies κ⋄

.= 1, up to machine precision throughout. We will ex-
plain this optimal condition number result and the strong variability of the radius by
discussing a “mock-up” model in the next example. Note that even though Fig. 7.b
shows a significant accuracy improvement in the tails, we do not get the full accuracy
that we would have expected from κ⋄

.= 1. The reason is simply that the numerical
evaluation of the Fredholm determinants does not satisfy the model assumption (3.2);
see Bornemann (2010, Sect. 4).

26Generally, if the kernel K(x,y) satisfies a Hölder condition with exponent α, with respect to either
x or y, then f (z) = det(I − zK) is an entire function of order ρ ≤ 2/(1 + 2α); see, e.g., Lax (2002,
Lemma 24.10).
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Example 12.4 Lacking a proof that κ⋄ ≈ 1 in Example 12.3, we analyze a “mock-up”
Fredholm determinant in full detail, namely the q-series

f (z) = (−z;q)∞ =
∞
∏

k=0

(

1 + zqk
)

(0 < q < 1).

By a result of Euler (see Andrews et al. 1999, Corollary 10.2.2) it is known that

f (z) =
∞
∑

k=0

q(k
2)

(q;q)k
zk,

where

(q;q)k = (1 − q)
(

1 − q2) · · ·
(

1 − qk
)

;
in particular, f has positive Taylor coefficients. By using (8.3), f is easily seen to be
an entire function of order ρ = 0. Now, a numerical experiment shows that κ⋄(n)

.= 1
up to machine precision for n = 20 and q = 1/2. Hence, we aim at proving that
κ⋄(n) → 1 as n → ∞.

A natural first try would be to check f for H -admissibility; see Corollary 11.3.
This approach is doomed to fail, however, since we get the following asymptotics
from an application of the Euler–Maclaurin sum formula:

a(r) = r
f ′(r)

f (r)
=

∞
∑

k=0

rqk

1 + rqk
= log r

log(1/q)
+ 1

2
+ O

(

r−1) (r → ∞); (12.4)

but

b(r) = ra′(r) =
∞
∑

k=0

rqk

(1 + rqk)2
= 1

log(1/q)
+ O

(

r−1) (r → ∞),

which remains bounded (recall that H -admissibility would require b(r) → ∞). Nev-
ertheless, from (12.3) and (12.4) we get the strong estimate

r⋄(n) = q1/2−n + O(1) (n → ∞), (12.5)

which not only shows that r⋄(n) grows exponentially fast for this slowly growing
function f (z), but also that r⋄ varies very strongly with respect to the parameter q

(an effect that we had already observed in Example 12.3).
To study κ⋄(n) we look more closely at logf (reiθ ) for large values of r . Apply-

ing the Euler–Maclaurin sum formula once more and using a uniformity criterion of
Levin (1980, p. 142), we get that

Re logf
(

reiθ ) = 1

2

log(r)2

log(1/q)
+ 1

2
log r + 1

12
log(1/q) + π2 − 3θ2

6 log(1/q)
+ O

(

r−1),

(12.6a)
and

Im logf
(

reiθ ) = θ
log r

log(1/q)
+ 1

2
θ + q

1 − q
sin(θ)r−1 + O

(

r−2), (12.6b)
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uniformly in θ as r → ∞ (r /∈ E) with the possible exception of a set E of relative
linear density zero. The first asymptotics, (12.6a), means that f is of completely
regular growth with the proximate order ρ(r) (see Levin 1980, Sect. I.12),27

rρ(r) = 1

2

log(r)2

log(1/q)

and constant indicator function h(θ) = 1. This implies that the growth of f is not
localized enough in the angular direction to hope for an application of the Laplace
method to estimate the Cauchy integrals. In other words, the second stage of using
the saddle-point method (de Bruijn 1981, p. 77) seems to be about to fail. However,
this is not the case here, since the whole circular contour of radius r⋄ = r⋄(n) is
approximately a level line of Im log z−nf (z), not just the segment near the saddle
point itself. In fact, from (12.6b) we get that

Im logf
(

r⋄eiθ ) − nθ = qn+1/2

1 − q
sin θ + O

(

q2n
)

(n → ∞), (12.7)

which is exponentially close to zero. Note that we can arrange for r⋄(n) /∈ E since E

is built from sets of increasingly small neighborhoods of the radii of the zeros of f ,
which are located at −q−k , k ∈ N0. That is, (12.7) holds uniformly in θ . Hence, we
get

an = 1

2πrn
⋄

∫ π

−π

e−inθf
(

r⋄eiθ )dθ = 1

2πrn
⋄

∫ π

−π

ei(Im logf (r⋄eiθ )−nθ)
∣
∣f

(

r⋄eiθ )|dθ

= 1

2πrn
⋄

∫ π

−π

(

1 + iqn+1/2

1 − q
sin θ + O

(

q2n
)
)

·
∣
∣f

(

r⋄eiθ )
∣
∣dθ

= 1

2πrn
⋄

∫ π

−π

∣
∣f

(

r⋄eiθ )
∣
∣dθ ·

(

1 + O
(

q2n
))

,

since the contribution of the odd function sin θ |f (r⋄eiθ )| to the integral is zero. There-
fore, we obtain the approximation

κ⋄(n) = 1 + O
(

q2n
)

(n → ∞), (12.8)

whose exponentially small error term helps us to understand the excellent condition
numbers observed in Example 12.3.

Example 12.5 We close the paper with a nontrivial example from the theory of ran-
dom permutations. Let us denote the length of the longest increasing subsequence28

of a permutation σ ∈ Sn by ℓ(σ ). The probability distribution of ℓ(σ ) that is induced

27Note that, consistent with ρ = 0, we have ρ(r) → 0 as r → ∞.
28For instance, the longest increasing subsequence of σ = (3,7,10,5,9,6,8,1,4,2) ∈ S10 is given by
(3,5,6,8); hence, ℓ(σ ) = 4 in this case.
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by the uniform distribution on Sn can be encoded in a family of exponentially gener-
ating functions φλ(z) via

P
(

σ ∈ Sn : ℓ(σ ) ≤ λ
)

= dn

dzn
φ

(n)
λ (z)

∣
∣
∣
∣
z=0

(λ,n ∈ N). (12.9)

Now, the seminal work of Gessel (1990) shows that φλ(z) can be expressed in terms
of a Toeplitz determinant,

φλ(z) = det
(

I|j−k|(2
√

z)
)λ−1
j,k=0. (12.10)

Since the modified Bessel functions z−k/2Ik(2
√

z) (k ∈ N0) are entire functions of
perfectly regular growth (of order ρ = 1/2 and type τ = 2, see Table 2), φλ must also
be an entire function of perfectly regular growth; its order and type are easily inferred
to be ρ = 1/2 and τ = 2λ. Likewise, we obtain that the Phragmén–Lindelöf indicator
of φλ(z) is given by

h(θ) = 2λ cos(θ/2)
(

|θ | ≤ π
)

.

Hence, we have Ω = 1 and, since there are no zeros of φλ(z) in the vicinity of the
real axis, ω = 1 and limn→∞ κ⋄(n) = 1 by Theorem 10.2. This explains the very well-
behaved quasi-optimal condition numbers shown in Table 6. Theorem 8.4 yields the
following asymptotics of the quasi-optimal radius:

r⋄(n) ∼ (n/λ)2 (n → ∞). (12.11)

However, as we can see from Table 6, this asymptotics probably does not hold uni-
formly in λ and is therefore of limited practical use. Hence, one has to compute the
value of the radius r⋄(n) itself by numerically solving (12.2). Using these radii and
high-precision arithmetic, we were able to reproduce numerically the exact rational
values of the distributions (12.9) for n = 15, 30, 60, 90, and 120 as tabulated by
Odlyzko (2000),29 who has used the combinatorial methods exposed in Odlyzko and
Rains (2000) for his calculations.

Remark 12.6 The numerical evaluation of φλ(z) as given by the Toeplitz determinant
(12.10) turns out to suffer from severe numerical instabilities. Instead, we suggest
taking one of the famous equivalent expressions in terms of a Fredholm determinant,
such as the one given by Borodin and Okounkov (2000, p. 391)

φλ(z) = ez det
(

I − K
∣
∣
ℓ2(λ,λ+1,...)

)

,

K(j, k) =
√

z
Jj (2

√
z)Jk+1(2

√
z) − Jj+1(2

√
z)Jk(2

√
z)

j − k
,

or the one given by Baik et al. (2001, p. 629)

φλ(z) = 2−nez det(I − K|L2(C1)
), K(t, s) = 1 − tne

√
z(t−t−1)s−ne−√

z(s−s−1)

2π i(t − s)
;

29For n = 30, 60, and 90, these tables can be found in print in the book of Mehta (2004, pp. 464–467).
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Table 6 For f (z) = φλ(z), a comparison of the quasi-optimal radius r⋄(n) with its asymptotic value
(12.11). Note that this asymptotic value is not necessarily useful in practice. The value of r⋄(n) =
arg minr−nf (r) was actually computed by using MATLAB’s fminbnd command

n λ r⋄(n) κ⋄(n) (n/λ)2 κ(n, (n/λ)2)

20 3 55.08575 1.00005 44.44444 1.39833

100 15 108.74559 1.00000 44.44444 5.17900 · 1011

see also Basor and Widom (2000) and Böttcher (2002). Both expressions can be eval-
uated in a numerically stable way; the first using the projection method, the second
using the quadrature method exposed in Bornemann (2010, Sects. 5 and 6).

Acknowledgements I am grateful to Ken McLaughlin and Peter Miller, who suggested that there should
be a relation of the asymptotic formula (8.10) for the quasi-optimal radius r⋄(n) to the saddle-point
method. This has turned out to be the “missing link” to really understand the previously mysterious (to me
at least) fact that there is κ⋄(n) ≈ 1 for so many entire functions I had been looking at. The observation
stated in Footnote 25 is owed to a stimulating discussion with Divakar Viswanath.
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