Accuracy and Stability of Numerical Algorithms

Nick Higham School of Mathematics The University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham @nhigham

SIAM Chapter Day, Cardiff University January 21, 2013

SIAM

■ ~ 13, 500 members: ~ 9000 USA, ~ 500 UK.

- 59\% in maths depts 16% in eng depts 11% in CS depts
- 108 student chapters:

Oxford (2007)	$\# 53$
Heriot Watt \& Edinburgh	$\# 71$
Manchester	$\# 76$
Strathclyde	$\# 93$
Warwick	$\# 93$
Reading	$\# 100$
Cardiff	$\# 104$
Bath	$\# 105$

Outline

(1) Rounding

(2) Precision

(3) Accuracy

- Higher Precision
© Tiny Relative Errors

Floating Point Number System

Floating point number system $F \subset \mathbb{R}$:

$$
y= \pm m \times \beta^{e-t}, \quad 0 \leq m \leq \beta^{t}-1 .
$$

- Base β,
- precision t,
- exponent range $e_{\min } \leq e \leq e_{\max }$.

Rounding Precision Accuracy Higher Precision Tiny Errors

Floating Point Number System

Floating point number system $F \subset \mathbb{R}$:

$$
y= \pm m \times \beta^{e-t}, \quad 0 \leq m \leq \beta^{t}-1 .
$$

- Base β,
- precision t,
- exponent range $e_{\min } \leq e \leq e_{\text {max }}$.

Floating point numbers are not equally spaced.
If $\beta=2, t=3, e_{\min }=-1$, and $e_{\max }=3$:

$\begin{array}{llllllll}0 & 0.5 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 \\ 7.0\end{array}$

Rounding

For $x \in \mathbb{R}, f(x)$ is an element of F nearest to x, and the transformation $x \rightarrow f(x)$ is called rounding (to nearest).

Theorem

If $x \in \mathbb{R}$ lies in the range of F then

$$
f(x)=x(1+\delta), \quad|\delta| \leq u:=\frac{1}{2} \beta^{1-t} .
$$

u is the unit roundoff, or machine precision.

Types of Rounding

- Round to nearest-with rule for breaking ties.
$8.12 \rightarrow 8.1,8.17 \rightarrow 8.2$. $8.15 \rightarrow 8.1$ or 8.2 .

Types of Rounding

- Round to nearest-with rule for breaking ties.
$8.12 \rightarrow 8.1,8.17 \rightarrow 8.2$.
$8.15 \rightarrow 8.1$ or 8.2 .
- Round up: to $+\infty$. $8.11 \rightarrow 8.2$.

Types of Rounding

- Round to nearest-with rule for breaking ties.
$8.12 \rightarrow 8.1,8.17 \rightarrow 8.2$.
$8.15 \rightarrow 8.1$ or 8.2 .
- Round up: to $+\infty$.
$8.11 \rightarrow 8.2$.
- Round down: to $-\infty$.
$8.68 \rightarrow 8.6$.

Types of Rounding

- Round to nearest-with rule for breaking ties.
$8.12 \rightarrow 8.1,8.17 \rightarrow 8.2$.
$8.15 \rightarrow 8.1$ or 8.2 .
- Round up: to $+\infty$.
$8.11 \rightarrow 8.2$.
- Round down: to $-\infty$. $8.68 \rightarrow 8.6$.

Thomas (9) homework

- Round 17.37 to the nearest tenth.
- Round 13.75 to the nearest tenth. "13.8"

Justin Gatlin Record, 2006

BBICSPORT ATHLETICS

Low oraphics | Help
Last Updated: Wednesday, 17 May 2006, 09:56 GMT 10:56 UK

- E-mail this to a friend
(9) Printable version

Gatlin denied outright 100 m mark

Justin Gatlin has been denied the outright world 100 m record after his time was suddenly altered almost a week after his blistering run in Qatar.

Officials have revealed the World and Olympic champion clocked 9.766 seconds, not 9.760 seconds as first thought. B nen world record
"The American was given a time of 9.76 sec at the Qatar Super grand prix but his official time was 9.766, which was rounded down instead of being rounded up to Powell's time of 9.77 set in Athens last year according to rules set out by track and field's governing body, the timekeeper Tissot admitted."

Bank of England: Inflation Rate, 2007

King faces a point of embarrassment

A TINY price movement equivalent to one hundred thousandth of one per cent on the inflation rate could make all the difference to the Bank of England this week.
With Government statisticians crunching cost of living numbers to six decimal places, the slightest rise could force Bank governor Mervyn King to explain what went wrong.

The Office for National Statistics publishes inflation numbers to one decimal place, meaning that a 3.049 rate would appear as three per cent, letting the MPC off the hook.

Vancouver Stock Exchange Index

■ January 1982: Index established at 1000.

- November 1983: Index was 520.

But exchange seemed to be doing well.

Vancouver Stock Exchange Index

■ January 1982: Index established at 1000.
■ November 1983: Index was 520.
But exchange seemed to be doing well.
Explanation:
■ Index rounded down to three digits at each recomputation.

- Errors always in same direction \Rightarrow thousands of small errors add up to a large error.

Upon correct recalculation, the index doubled!

Rounding Precision Accuracy Higher Precision Tiny Errors

Virgin Media, 2007

Important information on your Virgin Media services

Dear Mr Higham

We're writing to tell you about changes to your phone charges that will be coming into effect from 1st May 2007.

The price of our monthly phone packages is coming down, so Size: XL (Talk Unlimited) will go from $£ 14$ a month to $£ 9.95$ and Size: L (Talk Evenings and Weekends) will go from $£ 5,50$ to $£ 3.95$. Your phone line will stay the same at $£ 11$ a month.

The way your call charges are calculated is also changing. Instead of charging to the nearest second, calls will be rounded up to the next minute. So, for example, a call that lasts 4 minutes 50 seconds will be rounded up to 5 minutes. If you have a phone package, any calls made outside your call plan will be rounded up to the next minute.

Rounding Precision Accuracy Higher Precision Tiny Errors

Virgin Media, 2007

Important information on your Virgin Media services

Dear Mr Higham

We're writing to tell you about changes to your phone charges that will be coming into effect from 1st May 2007.

The price of our monthly phone packages is coming down, so Size: XL (Talk Unlimited) will go from $£ 14$ a month to $£ 9.95$ and Size: L (Talk Evenings and Weekends) will go from $£ 5.50$ to $£ 3.95$. Your phone line will stay the same at $£ 11$ a month.

The way your call charges are calculated is also changing. Instead of charging to the nearest second, calls will be rounded up to the next minute. So, for example, a call that lasts 4 minutes 50 seconds will be rounded up to 5 minutes. If you have a phone package, any calls made outside your call plan will be rounded up to the next minute.

Remember

Rounding doesn't always mean round to nearest!

Next time, no rounding off!

Outline

(2) Precision

(4) Higher Precision

- Tiny Relative Errors

Rounding Precision Accuracy Higher Precision Tiny Errors

Precision versus Accuracy

Unit roundoff $u=\frac{1}{2} \beta^{1-t}$.

$$
\begin{aligned}
f l(a b c) & =a b\left(1+\delta_{1}\right) \cdot c\left(1+\delta_{2}\right) \quad\left|\delta_{i}\right| \leq u, \\
& =a b c\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \\
& \approx a b c\left(1+\delta_{1}+\delta_{2}\right) .
\end{aligned}
$$

- Precision $=u$.
- Accuracy $\approx 2 u$.

Precision versus Accuracy

Unit roundoff $u=\frac{1}{2} \beta^{1-t}$.

$$
\begin{aligned}
f l(a b c) & =a b\left(1+\delta_{1}\right) \cdot c\left(1+\delta_{2}\right) \quad\left|\delta_{i}\right| \leq u, \\
& =a b c\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \\
& \approx a b c\left(1+\delta_{1}+\delta_{2}\right) .
\end{aligned}
$$

- Precision $=u$.
- Accuracy $\approx 2 u$.

Accuracy is not limited by precision

Walkers' Trouser Review

THIS LOWDOWN

Fabric Nikwax Analogy Insulator (polyester microfibre outer, 100g polyester fill)
Sizes XS-XL (unisex)
Inside leg 79cm only
Waist integral belt, front flap with Velcro tabs
Pockets none

RATINGS

Comfort	80%
Fabric performance	100%
Versatility	50%
Quality/value	85%

RGB to XYZ

From CIE Standard (1931):

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0 & 0.01 & 0.99
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

RGB to XYZ

From CIE Standard (1931):

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0 & 0.01 & 0.99
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

But in many books:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
0.49000 & 0.31000 & 0.20000 \\
0.17697 & 0.81240 & 0.01063 \\
0 & 0.01000 & 0.99000
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right] .
$$

Outline

(3) Accuracy
4. Higher Precision
(5) Tiny Relative Errors

Rational Function

$$
r(x)=\frac{(((7 x-101) x+540) x-1204) x+958}{(((x-14) x+72) x-151) x+112}
$$

Continued Fraction

$$
r(x)=7-\frac{3}{x-2-\frac{1}{x-7+\frac{10}{x-2-\frac{2}{x-3}}}}
$$

Division by zero at $x=1,2,3,4$, but r evaluates correctly in IEEE arithmetic!

Cancellation Example

$$
0 \leq \frac{1-\cos x}{x^{2}}<1 / 2, \quad x \neq 0
$$

With $x=1.2 \times 10^{-5}, \cos x$ rounded to 10 sig figs is

$$
c=0.9999999999 \quad \Rightarrow \quad 1-c=0.0000000001
$$

Then $(1-c) / x^{2}=10^{-10} / 1.44 \times 10^{-10}=0.6944 \ldots$!
To avoid cancellation, rewrite as

$$
\frac{1}{2}\left(\frac{\sin (x / 2)}{x / 2}\right)^{2}
$$

Cancellation Example

$$
0 \leq \frac{1-\cos x}{x^{2}}<1 / 2, \quad x \neq 0
$$

With $x=1.2 \times 10^{-5}, \cos x$ rounded to 10 sig figs is

$$
c=0.9999999999 \quad \Rightarrow \quad 1-c=0.0000000001
$$

Then $(1-c) / x^{2}=10^{-10} / 1.44 \times 10^{-10}=0.6944 \ldots$!
To avoid cancellation, rewrite as

$$
\frac{1}{2}\left(\frac{\sin (x / 2)}{x / 2}\right)^{2}
$$

- The subtraction $1-c$ is exact.

Cancellation

Theorem (Sterbenz)

Let x and y be floating point numbers with $y / 2 \leq x \leq 2 y$. Then $x-y$ is computed exactly (assuming $x-y$ does not underflow).

Cancellation

Theorem (Sterbenz)

Let x and y be floating point numbers with $y / 2 \leq x \leq 2 y$. Then $x-y$ is computed exactly (assuming $x-y$ does not underflow).

Cancellation brings earlier errors into prominence but is not always a bad thing.
■ Numbers being subtracted may be error free.

- Cancellation may be a symptom of intrinsic ill conditioning of problem.

Midpoint of Arc

Guo, H \& Tisseur (2009):

- Problem: Find midpoint c of an $\operatorname{arc}(a, b)$.
- Obvious formula $c=(a+$ b) $/|a+b|$ is unstable when $a \approx-b$.
- Solution: If $a=e^{i \theta_{1}}, b=$ $e^{i \theta_{2}}$ then $c=e^{i\left(\theta_{1}+\theta_{2}\right) / 2}$.

How to Compute $\log \lambda_{2}-\log \lambda_{1}$

Define the unwinding number

$$
\mathcal{U}(z):=\frac{z-\log e^{z}}{2 \pi i}=\left\lceil\frac{\operatorname{lm} z-\pi}{2 \pi}\right\rceil \in \mathbb{Z} .
$$

Let $z=\left(\lambda_{2}-\lambda_{1}\right) /\left(\lambda_{2}+\lambda_{1}\right)$.

How to Compute $\log \lambda_{2}-\log \lambda_{1}$

Define the unwinding number

$$
\mathcal{U}(z):=\frac{z-\log e^{z}}{2 \pi i}=\left\lceil\frac{\operatorname{lm} z-\pi}{2 \pi}\right\rceil \in \mathbb{Z} .
$$

Let $z=\left(\lambda_{2}-\lambda_{1}\right) /\left(\lambda_{2}+\lambda_{1}\right)$. Then

$$
\begin{aligned}
\log \lambda_{2}-\log \lambda_{1} & =\log \left(\frac{\lambda_{2}}{\lambda_{1}}\right)+2 \pi i \mathcal{U}\left(\log \lambda_{2}-\log \lambda_{1}\right) \\
& =\log \left(\frac{1+z}{1-z}\right)+2 \pi i \mathcal{U}\left(\log \lambda_{2}-\log \lambda_{1}\right) \\
& =\operatorname{atanh}(z)+2 \pi i \mathcal{U}\left(\log \lambda_{2}-\log \lambda_{1}\right) .
\end{aligned}
$$

H (2008): used in MATLAB logm.

Outline

(4) Higher Precision
© Tiny Relative Errors

IEEE Standard 754-2008 and 1985

Type	Size	Range	$u=2^{-t}$
single	32 bits	$10^{ \pm 38}$	$2^{-24} \approx 6.0 \times 10^{-8}$
double	64 bits	$10^{ \pm 308}$	$2^{-53} \approx 1.1 \times 10^{-16}$
quadruple	128 bits	$10^{ \pm 4932}$	$2^{-113} \approx 9.6 \times 10^{-35}$

- Arithmetic ops (+, -, *,/, $\sqrt{ }$) performed as if first calculated to infinite precision, then rounded.
- Default: round to nearest, round to even in case of tie.

Need for Higher Precision

- Bailey, Simon, Barton \& Fouts, Floating Point Arithmetic in Future Supercomputers, Internat. J. Supercomputer Appl. 3, 86-90, 1989.
- Bailey, Barrio \& Borwein, High-Precision Computation: Mathematical Physics and Dynamics, Appl. Math. Comput. 218, 10106-10121, 2012.
- Long-time simulations.
- Large-scale simulations.
- Resolving small-scale phenomena.

Increasing the Precision

$y=e^{\pi \sqrt{163}}$ evaluated at t digit precision:

$$
\begin{array}{cl}
t & y \\
\hline 20 & 262537412640768744.00 \\
25 & 262537412640768744.0000000 \\
30 & 262537412640768743.999999999999
\end{array}
$$

Is the last digit before the decimal point 4 ?

Increasing the Precision

$y=e^{\pi \sqrt{163}}$ evaluated at t digit precision:

$$
\begin{array}{cl}
t & y \\
\hline 20 & 262537412640768744.00 \\
25 & 262537412640768744.0000000 \\
30 & 262537412640768743.999999999999
\end{array}
$$

Is the last digit before the decimal point 4 ?

t	y
35	262537412640768743.99999999999925007
40	262537412640768743.9999999999992500725972

So no, it's 3 !

Zimbabwe resorts to the $\$ 100$ trillion note

By Our Foreign Staff

ZIMBABWE'S central bank will introduce a 100 trillion Zimbatssvean dollar banknote, worth about £22, on the black market, to try to ease desperate cash shortages, state-run media said yesterday. Prices
are doubling every day and food and fucl are in shorl supply:

A cholera epidurnic has killesl more than 2,000 people and a deadlock between Mr Mugabe and the opposition hus put hopes of ending the crisis on hold. Hyper-inillation
has forced the central bank to continue to relesse new hankrotess which quickly become almost worthless. There is an official uxchange rate. but most Zimbabweans use th: informal market for turrency deals.
As well as the 7.\$1HAtrillion
dullar note, the Reserve Bank of Zimbabwe plans to introdure $\mathbf{Z} \$ 10$ trillion, $\mathbf{Z} \$ 20$ trillion and ZS50trillion notes, the Herald newsspaper reported.

Zimbabweans often line up for hours outside banks to withuruw barely enough to buy a loaf of bread.

Old Mutual's new chief weighs rescue options

JUDGING: by the empty state of his spacious South African office, it is quite clear that Julian Roberts has yet to settle into his role as the new chief executive of Old Mutual.

While his secretary bustles around, tidying away his few possessions - a 5 p piece and a penny coin left lying on his desk - the four books on his vacant shelves stand out. The titles Blown to Bits and On the Brink of Faihure could almost sum up the state of the blue-chip company Mr Roberts has just taken over. Old Mutual was the worst-performing European

PROFILE Julian Roberts
 Chief executive, OldMutual

The economic turmoil revealed cracks in Old Mulual's model when it emerged that its $\$ 2.86 n$ ($£ 1.9 \mathrm{bn}$) variable annuity business in the US could not meet guarantees due to adverse movements in the Asian markets. It has heen forcod to inject
going to be immune. South Africa laps the rest of the world by six months to a year."

Political tensions are also playing on his mind. Old Mutual is listed not only in the UK and Johannesburg but also on the Zimhabwe Stock Exchange. Due to technical difficultics of transferring a figure with so many noughts on the end of it. Old Mutual struggled to pay shareholders an interim dividend of Z\$453 trillion per share - which in November equated to just 2.45 p .
"It is absolutely tragic. We have a significant business with a large

Going to Higher Precision

If we have quadruple or higher precision, what do we need to do to modify existing algorithms?

To what extent are existing algs precision-independent?

Matrix Functions

(Inverse) scaling and squaring-type algorithms for e^{A}, $\log (A), \cos (A), A^{t}$ use Padé approximants.

- Padé degree chosen to achieve accuracy u.
- Padé coeffs and algorithm parameters need rederiving for a different u. Logic may change!
- MATLAB's expm, logm need changing for smaller u.

Methods based on best L_{∞} approximations to e^{A} for Hermitian A also need higher order approximations deriving.

- Scalar elementary functions!

Outline

Accuracy
© Higher Precision
(5) Tiny Relative Errors

Tiny Relative Errors

Normwise relative errors

$$
\frac{\|x-y\|_{\infty}}{\|x\|_{\infty}}=\frac{\max _{i}\left|x_{i}-y_{i}\right|}{\max _{i}\left|x_{i}\right|}
$$

from a numerical experiment:

$1.32 e-22$	$3.39 e-22$	$3.39 e-21$	$8.67 e-20$
$1.39 e-18$	$4.36 e-18$	$5.30 e-18$	$5.83 e-18$
$1.45 e-17$	$3.76 e-17$	$3.76 e-17$	$4.27 e-17$

How can errors be $<u \approx 10^{-16}$?

Base $\beta=2, u=2^{-t}$. Dingle \& H (2011):

Theorem

If $x \neq 0$ and y are distinct normalized flpt numbers then $|x-y| /|x| \geq u$ and this lower bound is attainable.

Base $\beta=2, u=2^{-t}$. Dingle \& H (2011):

Theorem

If $x \neq 0$ and y are distinct normalized flpt numbers then $|x-y| /|x| \geq u$ and this lower bound is attainable.

But $\frac{\|x-y\|_{\infty}}{\|x\|_{\infty}} \ll u$ is possible.

$$
x=\left[\begin{array}{c}
1 \\
10^{-22}
\end{array}\right], \quad y=\left[\begin{array}{c}
1 \\
2 \times 10^{-22}
\end{array}\right], \quad \frac{\|x-y\|_{\infty}}{\|x\|_{\infty}}=10^{-22} .
$$

Relative Errors

Performance Profiles

Dolan \& Moré (2002).

For the given set of solvers and test problems, plot
x-axis: α
y-axis: probability that solver has error within factor α of smallest error over all solvers on the test set.

Performance Profile

The Effect of Tiny Errors

Problem	Algorithm 1	Algorithm 2
1	$4 e-14$	$1 e-16$
2	$6 e-16$	$4 e-16$
3	$1 e-16$	$3 e-16$
4	$9 e-23$	$1 e-17$
5	$6 e-20$	$5 e-17$

Which algorithm is better?

Profile

Alg $1 \quad$ Alg 2 $4 \mathrm{e}-14 \quad 1 \mathrm{e}-16$ $6 \mathrm{e}-16 \quad 4 \mathrm{e}-16$
1e-16 $3 \mathrm{e}-16$
$9 \mathrm{e}-23 \quad 1 \mathrm{e}-17$
$6 e-20 \quad 5 e-17$

Transform the Data

- Map 0 to a (parameter). Typically, $a=u / 20$.
- Map $[0, u]$ to $[a, u]$ linearly.
- Leave values $\geq u$ alone.
- Imposes positive minimum.
- Preserves ordering of errors.

Before

Alg $1 \quad$ Alg 2 $4 \mathrm{e}-14 \quad 1 \mathrm{e}-16$ $6 \mathrm{e}-16 \quad 4 \mathrm{e}-16$
1e-16 $3 \mathrm{e}-16$
$9 \mathrm{e}-23 \quad 1 \mathrm{e}-17$
$6 e-20 \quad 5 e-17$

After

Matrix Exponential (Al-Mohy \& H, 2011)

Matrix Exponential Transformed

Time to ${ }^{L A T} T_{E} X$
DX2-33 7.5 mins
Pentium 2.8Ghz
5 secs
Pentium 120Mhz 1.3 mins Athlon X2 44004 secs
Pentium 500Mhz 20 secs Core i7 @4.4Ghz slower! Pentium 1Ghz 10 secs

References I

EA. H. Al-Mohy and N. J. Higham.
Computing the action of the matrix exponential, with an application to exponential integrators.
SIAM J. Sci. Comput., 33(2):488-511, 2011.
E N. J. Dingle and N. J. Higham.
Reducing the influence of tiny normwise relative errors on performance profiles.
MIMS EPrint 2011.90, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, Nov. 2011.
11 pp.

References II

E. D. Dolan and J. J. Moré.

Benchmarking optimization software with performance profiles.
Math. Programming, 91:201-213, 2002.
E. C.-H. Guo, N. J. Higham, and F. Tisseur.

An improved arc algorithm for detecting definite Hermitian pairs.
SIAM J. Matrix Anal. Appl., 31(3):1131-1151, 2009.

References III

I N. J. Higham.
Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.
ISBN 0-89871-521-0.
xxx+680 pp.

