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Abstract. Today, validation or accuracy assessment is an integral component of most mapping projects

incorporating remotely sensed data. Other spatial information may not be so stringently evaluated, but at least

requires meta-data that documents how the information was generated. This emphasis on data quality was not

always the case. In the 1970s only a few brave scientists and researchers dared ask the question, ‘How good is this

map derived from Landsat MSS imagery?’ In the 1980s, the use of the error matrix became a common tool for

representing the accuracy of individual map categories. By the 1990s, most maps derived from remotely sensed

imagery were required to meet some minimum accuracy standard. A similar progression can be outlined for other

spatial information. However, this progression is about 5 years behind the validation of remotely sensed data. This

paper presents a series of steps moving towards better assessment and validation of spatial information and asks the

reader to evaluate where they are in this series and to move forward.
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Introduction

Accuracy assessment or validation is a key component of any

project employing spatial data. There are a number of

reasons why this assessment is so important including:

(1) The need to know how well you are doing and to learn

from your mistakes;

(2) The ability to quantitatively compare methods; and

(3) The ability to use the information resulting from your

spatial data analysis in some decision-making process.

There are many examples in the literature as well as an

overwhelming selection of anecdotal evidence to

demonstrate the need for accuracy assessment. Many

different groups have mapped or quantified the amount of

tropical deforestation in the Amazon Basin (e.g. Skole and

Tucker 1993). Estimates have ranged by almost an order of

magnitude. Which estimate is correct? Without a valid

accuracy assessment we may never know. Several Federal,

State, and local agencies have created maps of wetlands in a

county on the Eastern Shore of Maryland. Techniques used

to make these maps included satellite imagery, aerial

photography (at various scales and film types), and ground

sampling, all with varying classification schemes and

wetlands definitions. Comparing the various maps yielded

very little agreement about where wetlands actually existed.

Without a valid accuracy assessment we may never know

which of these maps to use. 

It is no longer sufficient to have the final step in creating

a map from remotely sensed or other spatial data simply be

printing out the map. Instead, it is absolutely necessary to

take some steps towards assessing the accuracy or validity of

that map. There are a number of ways to investigate the

accuracy/error in spatial data. These steps should be viewed

as a progression and are as follows:

(1) Visual inspection;

(2) Non-site specific analysis;

(3) Difference image creation;

(4) Error budgeting; and

(5) Quantitative accuracy assessment

It is the goal of this paper to review these steps and help

the reader to move along this progression of steps to increase

the information gained from the spatial data analysis. In

other words, to motivate everyone to do more accuracy

assessment/validation.



322 R.G. Congalton 

Accuracy assessment/validation methods

Visual inspection

The visual inspection of your map derived from spatial data

should be the first step in any assessment (Fig. 1). Visual

inspection is a necessary first step, but it is not sufficient. In

other words, it is very important to perform a visual

assessment of your map and to be convinced that it looks

right. After all, it would not make sense to further assess a

map that does not even look right. However, it is not

appropriate to conclude your assessment with a visual

inspection. It is simply not sufficient. Many maps that

‘looked good’ were later found to have serious errors as a

result of further accuracy assessment. In the example in

Fig. 1, it is important that the water in the image be labeled

water in the land cover map. It is also possible to compare

other map classes to determine if the visual inspection makes

sense. If the map fails the visual inspection then the analysis

should be redone before any further accuracy assessment is

undertaken.

Non-site-specific analysis

Non-site-specific analysis of a map derived from spatial data

involves only the comparison of overall amounts of various

areas without regard to any locational component. As shown

in Table 1, the total area of forest created by two different

image analysts can be compared to some reference amount.

The reference amount could come from a variety of sources

such as county agricultural statistics or US Forest Service

Forest Inventory and Analysis (FIA) data. Reference data are

assumed to be correct (Congalton and Green 1999).

Whichever analyst’s estimate is closer to the reference value

will be deemed better. A quick study of Fig. 2 demonstrates

why non-site specific analysis may not provide enough

information for a valid map assessment. Note that, despite

concluding through the non-site-specific analysis that the

map created by image analyst #1 is better (error of only

113 ha), there is very little correspondence between where

the reference data show the forests are located and where

they are on the map. The map generated by image analyst #2

has much better spatial correspondence, although using only

non-site-specific analysis one would conclude that this map

is inferior. 

Landsat TM Image (4,3,2) Land Cover Map

 
Fig. 1. Example of visual inspection of a map as the first step in accuracy assessment/validation.

Table 1. Results of a non-site-specific assessment

Total area of

forest (ha)

Analyst #1 2322

Analyst #2 2635

Analyst #3 2435

Assessment

Difference #1 = 2435–2322 = 113 ha

Difference #2 = 2435–2635 = 200 ha
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Difference image creation

The creation of a difference image is the first step at

evaluating the spatial component of the map error. A

difference image is a direct comparison of any two registered

images/maps of the same area. It is produced by comparing

the two images/maps, pixel by pixel, and representing areas

of agreement in black and areas of disagreement in white

(Fig. 3). If one of the maps is assumed to be correct, then the

difference image represents the exact pattern of error in the

map. If the maps are from different dates, then the difference

image represents changes over time. If the maps are from

different analysts using the same date of imagery, then the

difference image represents differences in analyst

methodology. In any case, the difference image presents a

very graphic and easy to understand method for studying

spatial patterns in maps and is a first step towards

quantifying error.

Error budgeting

Over the last 20 years, many papers have been written about

the quantification of error associated with remotely sensed

and other spatial data (Congalton and Green 1999). Our

ability to quantify the total error in a spatial data set has

developed substantially. However, little has been done to

partition this error into its component parts and construct an

error budget. Without this division into parts, it is not possible

to evaluate the impact of a certain error on the whole.

Therefore, it is not possible to determine which components

contribute the most error and which are most easily corrected.

Some work was begun in this area in a paper by Lunetta et al.

(1991) and resulted in a diagram like the one shown in Fig. 4.

This figure shows the accumulation of error throughout a

remote sensing project and is the beginning of understanding

that the final map accuracy is a combination of many errors

along the way. Each of the major error sources adds to the

total error budget separately, and/or through a mixing

process. For many applications there is a definite need to

identify and understand (1) error sources, and (2) the

appropriate mechanisms for controlling, reducing and/or

reporting to the end users the magnitude of such errors.

Table 2 presents the results of performing an example

error budget analysis for a GIS project. The table is

generated column by column, beginning with a listing of the

possible sources of error for the project. In order to make

effective use of any GIS, it is important to understand the

errors associated with the spatial information (Goodchild

and Gopal 1989). This knowledge is critical whether you are

a user of a GIS or whether you are one of the suppliers of

spatial information (i.e. data layers) used in the GIS. Errors

associated with spatial information can be divided into three

groups as follows: (1) user errors; (2) measurement/data

errors; and (3) processing errors (Burrough 1986). User

errors are those errors which are probably most obvious and

are more directly in the control of the user. Measurement/

data error deals with the variability in the spatial information

and the corresponding accuracy with which it was acquired.

Finally, processing error involves errors inherent in the

techniques used to input, access, and manipulate the spatial

information.

Once the various components that comprise the total error

are listed, then each component is assessed to determine its

contribution to the overall error. Next, our ability to deal with

this error is evaluated. It should be noted that some errors

may be very large but are easy to correct while others may be

rather small. In this example, an error index is created

directly by multiplying the error contribution potential by the

error control difficulty. Combining these two factors allows

one to establish priorities in dealing with error. 

Quantitative accuracy assessment

The key element of a quantitative accuracy assessment is the

creation of an error matrix. An error matrix is a square array

of numbers organized in rows and columns which express

the number of sample units (i.e. pixels, clusters of pixels, or

polygons) assigned to a particular category relative to the

actual category as indicated by the reference data (Table 3).

The columns usually represent the reference data while the

rows indicate the classification generated from the remotely

sensed data. Reference data are assumed correct and can be

collected from a variety of sources including photo

Fig. 2. Pictorial representation of the problems of a non-site specific

assessment.
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interpretation, videography, ground observation, and ground

measurement. An error matrix is a very effective way to

represent accuracy in that the accuracies of each category are

plainly described along with both the errors of inclusion

(commission errors) and errors of exclusion (omission

errors) present in the classification.

The error matrix can then be used as a starting point for a

series of descriptive and analytical statistical techniques.

Perhaps the simplest descriptive statistic is overall accuracy,

which is computed by dividing the total correct (i.e. the sum

of the major diagonal) by the total number of samples in the

error matrix. In addition, accuracies of individual categories

can be computed in a similar manner. However, this case is a

little more complex in that one has a choice of dividing the

number of correct samples in that category by either the total

number of samples in the corresponding row or the

corresponding column. Traditionally, the total number of

correct samples in a category is divided by the total number

of samples of that category as derived from the reference

data (i.e. the column total). This accuracy measure indicates

Image from Analyst #1 Image from Analyst #2

Difference Image

White = Disagreement 
 
Black = Agreement

LEGEND

 

Fig. 3. Example of generating a difference image.
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the probability of a reference sample being correctly

classified and is really a measure of omission error. This

accuracy measure is often called ‘producer’s accuracy’

because the producer of the classification is interested in

how well a certain area can be classified. On the other hand,

if the total number of correct samples in a category is divided

by the total number of samples that were classified in that

category, then this result is a measure of commission error.

This measure, called ‘user’s accuracy’ or reliability, is

indicative of the probability that a sample classified on the

map/image actually represents that category on the ground

(Story and Congalton 1986).

In addition to these descriptive techniques, an error

matrix is an appropriate beginning for many analytical

statistical techniques. This is especially true of the discrete

multivariate techniques. Starting with Congalton et al.

(1983), discrete multivariate techniques have been used for

performing statistical tests on the classification accuracy of

digital remotely sensed data. Since that time many others

have adopted these techniques as the standard accuracy

assessment tools (e.g. Rosenfield and Fitzpatrick-Lins 1986;

Campbell 1987; Hudson and Ramm 1987; Lillesand and

Kiefer 1994). Discrete multivariate techniques are

appropriate because remotely sensed data are discrete rather

than continuous. The data are also binomially or

multinomially distributed rather than normally distributed.

Therefore, many common normal theory statistical

techniques do not apply.

One analytical step to perform once the error matrix has

been built is to ‘normalize’ or standardize the matrix using a

technique known as ‘MARGFIT’ (Congalton et al. 1983).

This technique uses an iterative proportional fitting

procedure, which forces each row and column in the matrix

to sum to 1. The rows and column totals are called marginals,

hence the technique name MARGFIT. In this way,

differences in sample sizes used to generate the matrices are

eliminated and therefore individual cell values within the

matrix are directly comparable. Also, because the iterative

process totals the rows and columns, the resulting

normalized matrix is more indicative of the off-diagonal cell

values (i.e. the errors of omission and commission) than is

the original matrix. The major diagonal of the normalized

matrix can be summed and divided by the total of the entire

matrix to compute a normalized overall accuracy.

Another discrete multivariate technique of use in

accuracy assessment is called KAPPA (Cohen 1960). The

result of performing a KAPPA analysis is a KHAT statistic

(an estimate of KAPPA), which is another measure of

agreement or accuracy. The values can range from +1 to –1.

However, since there should be a positive correlation

 ACQUISITION 
• Geometric Aspects 
• Sensor Systems 
• Platforms 
• Ground Control 
• Scene Considerations 

DATA PROCESSING 
• Geometric Rectification 
• Radiometric Rectification 
• Data Conversion 

DATA ANALYSIS 
• Quantitative Analysis 
• Classification System 
• Data Generalization 

DATA CONVERSION 
• Raster to Vector 
• Vector to Raster 

ERROR ASSESSMENT 
• Sampling 
• Spatial Autocorrelation 
• Locational Accuracy 
• Error Matrix 
• Discrete Multivariate Statistics 
• Reporting Standards 

FINAL PRODUCT  
PRESENTATION 
• Spatial Error 
• Thematic Error 

DECISION 

IMPLEMENTATION 

ERROR 

Fig. 4. Error source accumulation process in a remote sensing project.
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between the remotely sensed classification and the reference

data, positive KHAT values are expected. Landis and Koch

(1977) characterized the possible ranges for KHAT into three

groupings: a value greater than 0.80 (i.e. 80%) represents

strong agreement; a value between 0.40 and 0.80 (i.e. 40–

80%) represents moderate agreement; and a value below

0.40 (i.e. 40%) represents poor agreement.

The power of the KAPPA analysis is that it provides two

statistical tests of significance. Using this technique, it is

possible to test if an individual land cover map generated

from remotely sensed data is significantly better than if the

map had been generated by randomly assigning labels to

areas. The second test allows for the comparison of any two

matrices to see if they are statistically significantly different.

In this way, it is possible to determine that one algorithm is

different than another one and, based on a chosen accuracy

measure (e.g. overall accuracy), to conclude which is better.

The above descriptive and analytical techniques are based

on the error matrix. An assumption made here is that the

matrix was properly generated and is therefore indicative of

the map it represents. If the matrix was not properly created

then it is useless, or at best anecdotal evidence. Certain

statistical considerations are required in order to assure that

this assumption is valid. Developing a statistically rigorous

accuracy assessment requires choosing an appropriate

sampling scheme, sample size, sampling unit, maintaining

independence between the training and reference data, and

considering the effects of spatial autocorrelation (Congalton

1991).

Sampling scheme

There are numerous possible sampling schemes used in

collecting accuracy assessment data including: simple

random sampling, systematic sampling, stratified random

sampling, cluster sampling, and stratified systematic

Table 2. Matrix showing GIS error sources and priority for dealing with them

Error contribution potential: relative potential for this source as contributing factor to the total error 

(1 = low; 2 = medium; 3 = high). Error control difficulty: given the current knowledge about this 

source, how difficult is controlling the error contribution ( 1 = not very difficult; 5 = very difficult); 

Error index: an index that represents the combination of error potential and error difficulty; Error 

priority: order in which method should be implemented to understand, control, reduce, and/or 

report the error due to this source based on the error index

Error source Error contribution 

potential

Error control 

difficulty

Error index Error priority

User

Age 2 3 6 6

Scale 3 4 12 11

Coverage/extent 1 2 2 1

Indirect/derived layer 2 4 8 7

Measurement/data

Instrument error 2 4 8 7

Field error 1 3 3 4

Natural variation 1 5 5 5

Processing

Precision 1 2 2 1

Interpolation 2 4 8 7

Generalization 3 3 9 10

Conversion 3 4 12 11

Digitization 1 2 2 1

Table 3. Example error matrix

Land Cover Categorie s

V = Vegetation 

 

W = Water 

 

U = Urban

43 10   6

  3 23   5

  2   1 30

59

31

33

34 41 123

V W U

V

W

U

row 

tota l

column 

tota l

Referen ce Data

Classi fied 

   Data

PRODUCER’S ACCURACY

V   =  43/ 48  =   

W  =  23/ 34  =  

U  =   30/ 41  =  

90% 

68% 

73% 

OVERALL  ACCURACY  

= 96/ 123 =  78%
48

USER’S ACCURACY

V   =  43/ 59  =   

W  =  23/ 31  =  

U  =   30/ 33  =  

73% 

74% 

91% 
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unaligned sampling. Each scheme has its own advantages

and disadvantages. Randomness provides very nice

statistical properties that are important for further analysis of

the results. Systematic and cluster sampling can provide

practical advantages. It is important to understand each

scheme and apply the one most appropriate for the situation.

The analysis undertaken must then match the sampling

scheme chosen. In most cases, stratified random sampling is

most appropriate.

Independence

It is critical that the data collected for training in the

classification process be independent (separate) from the

data used in the accuracy assessment. After the ground

reference data are collected, a stratified random sample of the

data should be selected for accuracy assessment and put aside

and not looked at until after the map has been generated. The

remaining data can then be used for training. It is important

to stratify the data by map class to insure that sufficient

training and accuracy samples exist for each map class.

Sample size

Sample size is dictated by the need to express accuracy in

an error matrix. The sample size must be large enough to

provide that the error matrix estimates have adequate

precision. An error matrix does not fall into the right/wrong

binomial scenario but rather a multinomial situation in which

there is one correct for each class and n–1 wrongs (where n

is the number of map classes). Therefore, experience as well

as the multinomial equation show that approximately 50

samples (30 as an absolute minimum) per map class are

required to adequately populate an error matrix (Story and

Congalton 1986).

Sampling unit

There are three common sampling units proposed in

assessing the accuracy of remotely sensed data. They are (1)

the pixel; (2) a 3×3 grouping of pixels; or (3) a polygon. It

should be noted that the pixel should not be used as the

sampling unit because of our inability to accurately locate it

on the ground (even using GPS) and on the imagery. Either a

grouping of pixels, such as a 3×3 block or a polygon, should

be selected as the sample unit depending on the specific

needs of the project.

Spatial autocorrelation

Spatial autocorrelation is a measure of the influence,

positive or negative, that some characteristic at a certain

location has on its surrounding neighbors. Spatial

autocorrelation is an important consideration when deciding

which sampling scheme to employ. If there is positive

correlation between samples, then it is important for

precision of the accuracy estimates to space the samples far

enough apart to minimize this correlation. This issue is

particularly important for certain schemes such as cluster

sampling and systematic sampling.

Conclusions

This paper presents a variety of techniques that can be used

to assess or validate maps derived from remotely sensed and

other spatial data. Although it is important to perform a visual

examination of the map, it is not sufficient. Other techniques,

such as non-site-specific analysis and difference images, can

help. Error budgeting is a very useful exercise in helping to

realize error and consider ways to minimize it. Quantitative

accuracy assessment provides a very powerful mechanism for

both descriptive and analytical evaluation of the spatial data.

As our use of spatial data continues to grow, so must our use

of these tools for evaluation. If you are a novice spatial data

user, please consider the techniques proposed here and

implement as many as you can. If you are an advanced spatial

data user, there is no excuse for not employing these

techniques to better evaluate your analysis. Let us not stay

stuck in a mode of ‘it looks good,’ but rather let us struggle

forward to advance the use of spatial data in all aspects of our

work. To obtain more details on any of the procedures and

techniques described in this paper, see Congalton and Green

(1999); Stehman and Czaplewski (1998); Janssen and van der

Well (1994); and Congalton (1991).
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